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ABSTRACT
Challenges arise in assuring the quality of applications that
do not have test oracles, i.e., for which it is difficult or impos-
sible to know what the correct output should be for arbitrary
input. Recently, metamorphic testing [7] has been shown to
be a simple yet effective technique in addressing the quality
assurance of these so-called “non-testable programs” [51]. In
metamorphic testing, existing test case input is modified to
produce new test cases in such a manner that, when given
the new input, the function should produce an output that
can easily be computed based on the original output. That
is, if input x produces output f (x), then we create input x’
such that we can predict f (x’ ) based on f (x); if the appli-
cation does not produce the expected output, then a defect
must exist, and either f (x) or f (x’ ) (or both) is wrong.

Previously we have presented an approach called “Auto-
mated Metamorphic System Testing” [37], in which meta-
morphic testing is conducted automatically as the program
executes. In the approach, metamorphic properties of the
entire application are specified, and then checked after ex-
ecution is complete. Here, we improve upon that work by
presenting a technique in which the metamorphic properties
of individual functions are used, allowing for the specifica-
tion of more complex properties and enabling finer-grained
runtime checking. Our goal is to demonstrate that such an
approach will be more effective than one based on specify-
ing metamorphic properties at the system level, and is also
feasible for use in the deployment environment.

This technique, called Metamorphic Runtime Checking, is
a system testing approach in which the metamorphic proper-
ties of individual functions are automatically checked during
the program’s execution. The tester is able to easily specify
the functions’ properties so that metamorphic testing can be
conducted in a running application, allowing the tests to ex-
ecute using real input data and in the context of real system
states, without affecting those states. We also describe an
implementation framework called Columbus, and present the
results of empirical studies that demonstrate that checking
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the metamorphic properties of individual functions increases
the effectiveness of the approach in detecting defects, with
minimal performance impact.
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1. INTRODUCTION
It has long been known that there are software applica-

tions for which it is difficult to detect subtle errors, faults,
defects or anomalies because there is no reliable “test oracle”
to indicate what the correct output should be for arbitrary
input. Applications in the fields of scientific calculations,
optimizations, machine learning, etc. are among those that
fall into a category of software that Weyuker describes as
“Programs which were written in order to determine the an-
swer in the first place. There would be no need to write such
programs, if the correct answer were known” [51].

One approach to testing such“non-testable programs” [51]
is to use a “pseudo-oracle” [12], in which multiple implemen-
tations of an algorithm process an input and the results are
compared; if the results are not the same, then one or both
of the implementations contains a defect. This is not al-
ways feasible, though, since multiple implementations may
not exist, or they may have been created by the same devel-
opers, or by groups of developers who are prone to making
the same types of mistakes [26].

In the absence of multiple implementations, metamorphic
testing [7] can be used to produce a similar effect. Meta-
morphic testing is designed as a general technique for creat-
ing follow-up test cases based on existing ones, particularly
those that have not revealed any failure, in order to try
to find uncovered flaws. Instead of being an approach for
test case selection, it is a methodology of reusing input test
data to create additional test cases whose outputs can be
predicted. In metamorphic testing, if input x produces an
output f (x), the function’s so-called “metamorphic proper-
ties” can then be used to guide the creation of a transfor-
mation function t, which can then be applied to the input



to produce t(x); this transformation then allows us to pre-
dict the output f (t(x)), based on the (already known) value
of f (x). If the output is not as expected (the expectation
may be based on some type of equality or semantic equiv-
alence), then a defect must exist. Of course, this can only
show the existence of defects and cannot demonstrate their
absence, since the correct output cannot be known in ad-
vance (and even if the outputs are as expected, both could
be incorrect), but metamorphic testing provides a powerful
technique to reveal defects in such non-testable programs by
use of a built-in pseudo-oracle.

A “metamorphic property” can be defined as the relation-
ship by which the change to the output of a function can be
predicted based on a transformation of the input [7]. Con-
sider a function that calculates the standard deviation of a
set of numbers. Certain transformations of the set would be
expected to produce the same result. For instance, one of
these metamorphic properties is that permuting the order
of the elements should not affect the calculation; nor would
multiplying each value by -1, since the devation from the
mean would still be the same. Furthermore, other transfor-
mations will alter the output, but in a predictable way. For
instance, if each value in the set were multipled by 2, then
the standard deviation should be twice as much as that of
the original set.

Metamorphic properties can exist for an entire applica-
tion, as well. Consider an application that reads a text file
of test scores for students in a class, computes their aver-
ages, and uses the function described above to calculate the
standard deviation of the averages and determine the stu-
dents’ final grades based on a curve. The application itself
has some metamorphic properties, too: permuting the order
of the students in the input file should not affect the final
grades; nor should multiplying all the scores by 10 (since the
students are graded on a curve). These system-level proper-
ties are not necessarily the same as those of the constituent
functions, but the function-level properties would still be
expected to hold.

Previously we have presented an approach called “Auto-
mated Metamorphic System Testing” [37], in which meta-
morphic testing of programs without test oracles is con-
ducted by specifying the metamorphic properties of the en-
tire application. Testing is done automatically as the pro-
gram executes: the properties are specified prior to execu-
tion and then checked after the program is complete. Here,
we improve upon that work by presenting a technique in
which the metamorphic properties of individual functions
are used to conduct system testing of software without test
oracles, enabling finer-grained runtime checking and increas-
ing the number of test cases; our goal is to demonstrate that
such a technique is more effective at identifying defects than
simply specifying properties of the application as a whole.

This paper makes three contributions:

1. We introduce a new type of testing called Metamor-
phic Runtime Checking. This is a technique for sys-
tem testing applications without test oracles in which,
rather than specify the metamorphic properties of the
application as a whole, we do so for individual func-
tions. While the program is running, we apply func-
tions’ “metamorphic properties” to derive new test in-
put for those functions, so that we should be able to
predict the corresponding test output; if it is not as
predicted then there is a defect in the implementation.

2. We also present an implementation framework called
Columbus that supports the execution of Metamorphic
Runtime Checking from within the context of an ap-
plication as it runs in the deployment environment,
so that real-world inputs can be used to drive the pa-
rameters used in metamorphic testing of the individual
functions. Columbus conducts the tests with minimal
performance overhead, and will ensure that the execu-
tion of the tests does not affect the state of the original
application process from the users’ perspective.

3. Finally, we describe the results of empirical studies of
real-world non-testable programs (from the domain of
machine learning) to demonstrate the effectiveness of
our technique, and compare these results to those in
previous work [37] to show that conducting metamor-
phic testing based on the properties of individual func-
tions shows a 30% improvement in detecting defects
over testing based on system-level properties.

2. BACKGROUND
Our work to date has primarily focused on the quality as-

surance of machine learning applications. As these types of
applications become more and more prevalent in various as-
pects of everyday life [33], it is clear that the dependability
of machine learning software takes on increasing importance.
The majority of the research effort in the domain of machine
learning focuses on building more accurate models that can
better achieve the goal of automated learning from the real
world. However, to date very little work has been done on
assuring the correctness of the software applications that
perform machine learning. Formal proofs of an algorithm’s
optimal quality do not guarantee that an application im-
plements or uses the algorithm correctly, and thus software
testing is necessary.

Previously we have applied metamorphic testing as part
of an approach to testing machine learning applications [34],
and identified six categories of metamorphic properties that
such applications typically display, which roughly speaking
are based on: adding a constant to numerical values; multi-
plying numerical values by a constant; permuting the order
of the input data; reversing the order of the input data;
removing part of the data; and, adding additional data [36].

Here, we focus on improving the metamorphic testing
technique, and demonstrate that system testing that is done
by checking the metamorphic properties of individual func-
tions is more effective at detecting defects than checking the
properties of entire applications, as we investigated in [37].

2.1 Metamorphic Testing Example
As a more complex example of how metamorphic test-

ing can be used for applications in the domain of machine
learning, anomaly-based network intrusion detection sys-
tems build up a model of “normal” behavior based on what
has previously been observed; this model may be created, for
instance, according to the byte distribution of incoming net-
work payloads (since the byte distribution in worms, viruses,
etc. may deviate from that of normal network traffic [50]).
When a new payload arrives, its byte distribution is then
compared to that model, and anything deemed anomalous
causes an alert. For a particular input, it may not be possi-
ble to know a priori whether it should raise an alert, since
that is entirely dependent on the model. However, if while



the program is running we take the new payload and ran-
domly permute the order of its bytes, the result (anomalous
or not) should be the same, since the model only concerns
the distribution, not the order. If the result is not the same,
then a defect (“bug”) must exist in the implementation.

Clearly metamorphic testing can be very useful in the ab-
sence of an oracle: regardless of the values, if the different
outputs for the different inputs are not as expected, then a
defect must exist in the implementation. Although the use
of these simple relationships for testing numerical functions
is not unique to metamorphic testing (e.g., testing based on
algebraic properties [11] or programs that can check their
work [5]), the approach can be used on a broader domain of
any functions that display metamorphic properties, partic-
ularly in applications without test oracles.

2.2 Limitations of Previous Approaches
Previous efforts into the automation of metamorphic test-

ing have typically focused on considering the properties of
entire applications. Although this has been shown to be
simple and effective (since it requires no knowledge of, or
even access to, the source code), we intend to show that the
technique can be improved using metamorphic testing of
the individual functions that display such properties. Intu-
itively, this makes sense: any property that can be specified
for the application itself can at least be specified for the pro-
gram’s entry point function(s), plus the properties of some
other functions may be checked, too, so that the number of
properties is bound to increase.

Additionally, in order to generate the different test cases,
metamorphic testing requires the initial input x and output
f (x) values; the inputs could be generated using techniques
like equivalence partitioning or random testing [14]. How-
ever, inputs chosen using these techniques might miss some
defects, since they might not happen to consider a suffi-
cient variety of potential system states or execution paths
in the program. Some defects in such systems may only
be found under certain application states that may not have
been tested prior to deployment: for large, complex software
systems, especially if there is no test oracle, it is typically im-
possible in terms of time and cost to reliably test all possible
system states before releasing the product into the field. We
require a “perpetual testing” [43] approach that specifically
considers the field states that arise in practice, by using real
inputs and outputs from actual executions rather than just
those generated in the testing lab.

Our goal is to present a technique for performing system
testing of applications without test oracles. We demonstrate
that such an approach based on using real-world input data
to perform runtime checking of the metamorphic properties
of individual functions is more effective at detecting defects
than checking properties of the program as a whole.

3. APPROACH
To address the limitations described above, we introduce a

new technique called Metamorphic Runtime Checking. This
technique, used for system testing of applications without
test oracles, is based on checking the metamorphic proper-
ties of individual functions, rather than those of the entire
system. This technique can be used to continually test the
application as it runs in the deployment environment, to
ensure that the properties hold as the program executes.

This must be done in such a manner that the user only

Figure 1: Model of Metamorphic Runtime Checking

sees the results of the main (original) execution, and not
from any function calls that are only for testing purposes.
In other words, the user must not observe any modification
to the application state; however, the tests themselves do
need to be able to modify the state because the functions
are necessarily being called multiple times, which could have
side effects. Thus, the modifications to the state that are
caused by the tests must be hidden from the user.

One approach is to run the tests in the same process as the
user state and then transactionally roll them back (an idea
explored in [29]). Another approach is to create a “sand-
box” so that the test function and the original function run
in parallel, but in two separate processes that do not af-
fect each other; the sandbox must also make sure that the
test function does not affect external entities such as the file
system. Metamorphic Runtime Checking uses the sandbox
approach, as further described below in Section 3.2.4.

3.1 Model
Metamorphic Runtime Checking is a technique by which

tests are to be executed in the running application, using
the arguments to instrumented functions as they are called.
The arguments are modified according to the specification
of the function’s metamorphic properties, and the output of
the function with the original input is compared to that of
the function with the modified input; if the results are not
as expected, then a defect has been exposed.

For instance, in the standard deviation example presented
above, whenever the function is called, its argument can be
passed along to a test method, which will multiply each el-
ement in the array by -1 and check that the two calculated
output values are equal. This does not require a test oracle
for the particular input; the metamorphic relationship spec-
ifies its own test oracle. It is true that if the new output
is as expected (according to some expectation of equality or
sematic equivalence), the results are not necessarily correct,
but if the result is not as expected, then a defect must exist.
This model will allow us to execute tests in the field, within
the context of the running application, in applications with-
out a test oracle, by using the metamorphic tests themselves
as built-in pseudo-oracles.



In our model of the testing framework, metamorphic tests
are logically attached to the functions that they are designed
to test. Upon a function’s execution, the framework invokes
its corresponding test(s) with some probability. In order
not to have the user see the effects of the test, the testing
framework will execute the metamorphic test in an isolated
“sandbox”, so that any changes to the state are not reflected
in the original process. Additionally, the tests execute in
parallel with the application: the test code does not preempt
the execution of the application code, which can continue as
normal. Figure 1 demonstrates the model we will use for
conducting these tests.

3.2 Implementation
In order to facilitate the execution of metamorphic test-

ing in the deployment environment, we require a system that
conducts the tests during actual runs of the application, us-
ing the same internal state as that of the original function. A
system like Skoll [31] is a candidate for something on which
to build, but it is primarily intended for execution of regres-
sion tests and determining whether builds and installs were
successful, and not for testing the system as it runs; other
assertion checking techniques (as surveyed in [10]) or moni-
toring tools (such as Gamma [41]) could be used, but they
generally do not allow for calling a function again with dif-
ferent arguments (which we require), and do not safeguard
against visible side effects.

For reasons of familiarity and simplicity, the Metamor-
phic Runtime Checking framework, called Columbus, is built
upon a testing framework we already had access to that im-
plements what is known as “In Vivo Testing” [35]. Though
not specifically focused on metamorphic testing or testing
applications without oracles, In Vivo Testing is an approach
in which unit tests are executed in the context of the running
application without affecting the application state. In the
approach, the tests are designed to ensure that properties
of given subsystems or units hold true no matter what the
application’s state is.

3.2.1 In Vivo Testing Overview
In Vivo Testing conducts tests “from within” the running

application, using the current accumulated state of the com-
ponent under test, as opposed to testing from a clean or con-
structed state, as is typical in unit testing [25]. Developers
create tests that are designed ensure that properties of given
subsystems or units hold true no matter what the applica-
tion’s state is. In the simplest case, they can be thought of
as program invariants and assertions [10], though they go
beyond checking the values of individual variables or how
variables relate to each other, and focus more on the con-
ditions that must hold after sequences of variable modifica-
tions and method calls, without worrying about side effects
visible to the user.

An example can be found in Mozilla Firefox. One of the
known defects is that attempting to close all other tabs from
the shortcut menu of the current tab may fail on Mac OS
X when there are more than 20 tabs open.1 In this case, an
In Vivo test designed to run in the field would be one that
calls the function to close all other tabs, then checks that no
other tabs are open; this sequence should always succeed,
regardless of how many tabs were open or what operating

1http://www.mozilla.com/en-
US/firefox/2.0.0.16/releasenotes/

/*@

* @meta sine(angle + 2 * M_PI) == \result
* @meta sine(-angle) == -1 * \result
*/

double sine(double angle) { ... }

Figure 2: Specifying metamorphic properties

int __test_sine(double angle, double result) {

double s0 = sine(angle + 2 * M_PI);

double s1 = sine(-angle);

return (s0 == result && s1 == -1 * result);

}

Figure 3: Example of a Metamorphic Runtime
Checking test generated by the pre-processor

system is in use. Particular combinations of execution envi-
ronment and state may not always be tested in development
prior to release of the software, and one way to fully explore
whether this property holds in all cases is to test it in the
field, as the application is running. Thus, an In Vivo test
would be useful in this case.

By combining metamorphic testing and In Vivo Testing,
we avoid the need for a test oracle but also gain the bene-
fits of testing in the field: the tests are conducted within the
runtime environment, within the context of the application’s
state. The use of such an approach in the development envi-
ronment may not reveal defects if the initial test inputs are
not sufficient, particularly if the defects only appear in ap-
plication states that were not or could not have been tested
prior to deployment. When we use this approach in the field,
we will get a wide range of input values that represent ac-
tual usage, as opposed to a smaller set of test cases that are
conjured up by developers in the lab.

We have currently implemented the Columbus framework
in both Java and C.

3.2.2 Creating Tests
The Columbus framework must be provided with test code

that specifies the metamorphic properties to be checked within
the running program. This test code would be written by
the software developer (as opposed to a third-party devel-
oper or the end-user). We currently assume access to the
source code, since the instrumentation of the functions is
done at compile-time. Given that it is the software devel-
opers who will write the tests and instrument the code, we
feel that this assumption is reasonable. However, as it may
not always be possible or desirable to recompile the code, an
approach to dynamically instrumenting the compiled code,
such as in Kheiron [18], could be used instead.

To aid in the generation of these tests, as explored in
[38], we have created a pre-processor to allow developers to
specify metamorphic properties of a function using a special
syntax in the comments. Figure 2 shows such properties for
an implementation of the sine function, which exhibits two
metamorphic properties: sin(α) = sin(α + 2π) and sin(α)
= -sin(-α). The parameter “\result” represents the return
value of the original function call, so that outputs can be
compared; this notation is typical in specification languages
such as Java Modeling Language (JML) [27]. These prop-
erties can then be used by the pre-processor in the testing
framework to generate the test code shown in Figure 3.



The testing approach is not limited only to those functions
that take input values and return an output, as in the “sine”
example; nor is it limited to simple metamorphic properties
that can easily be expressed or specified using annotations
in the comments. Consider a function calculate sum that
determines the sum of the elements in an array referred to
by a pointer p, and stores that value in a variable sum.
The developer can then write a test function that permutes
the elements in p, multiplies them by a random number,
calls calculate sum, and checks that the value of sum is as
expected. Figure 4 shows how the tester could then specify
that the metamorphic property of calculate sum is described
in the function test calculate sum.

int* p;

int sum;

/*@

* @meta __test_calculate_sum()

*/

void calculate_sum() { ...

int __test_calculate_sum() {

int temp = sum; // remember the old value

// ...code to randomly permute p...

int r = rand();

// ...code to multiply values in p by r...

calculate_sum();

return temp == sum * r;

}

Figure 4: Example of a manually created Metamor-
phic Runtime Checking test

Note that the framework ensures that sum will already
have been modified by the original function call and will
have the corresponding result by the time it is accessed in
the first line of test calculate sum. Additionally, the test is
executed in a sandboxed process, so the tester does not have
to worry about the fact that sum will be overwritten by the
test. There are, however, some limitations to the extent of
what is sandboxed; see [35] and Section 6 below for details.

3.2.3 Instrumentation
Before compiling the source code, the software vendor uses

the Columbus pre-processor to first generate test code from
the specifications, and then to instrument each annotated
function with its corresponding test. During instrumenta-
tion, functions to be tested are renamed and wrapped by
another function. Figure 5 shows pseudocode for the wrap-
per of a function f ; further details are discussed below.

3.2.4 Configuration
At deployment time, the administrator can configure the

maximum number of concurrent tests that the system is al-
lowed to execute at any given time. This prevents the testing
framework from launching so many simultaneous tests that
they flood the CPU and essentially block the main applica-
tion. The administrator can also set a maximum allowable
performance overhead, so that tests will be run only if the
overhead of doing so does not exceed the threshold. The
system tracks how much time it has spent running tests

/* original function */

int __f(int x) { ... }

/* test function */

boolean __test_f(int x, int result) { ... }

/* wrapper function */

int f(int x) {

int result = __f(x);

if (should_run_test("f")) {

create_sandbox_and_fork();

if (is_test_process()) {

if (__test_f(x, result) == false) fail();

else succeed();

destroy_sandbox();

exit();

}

}

return result;

}

Figure 5: Wrapper of instrumented function

compared to how much time it has been running applica-
tion code, and only allows for the execution of tests when
the overhead is below the threshold. Alternatively, the ad-
ministrator can configure the framework so that, for each
instrumented function with a corresponding test, there is a
probability ρ with which that function’s test will be run.
The configuration is read at run-time so it can be modified
by a system administrator at the customer site if necessary.

3.2.5 Execution of Tests
Once deployed, as shown in Figure 5, the function is first

called with its input arguments, and any return value is
stored in a variable called “result”. The framework then
uses the measured performance overhead and/or the proba-
bility value ρ for the function to decide whether to execute
a test; it also checks whether the maximum allowed number
of concurrent tests are currently executing.

When a test is to be executed, a new process is first cre-
ated as a copy of the original to create a sandbox in which to
run the test code, ensuring that any modification to the lo-
cal process state caused by the test will not affect the “real”
application, since the test is being executed in a separate
process with separate memory. At this point, the original
process continues by returning the result and carrying on
as normal; meanwhile, in the test process, the original in-
put and the result of the original function call are passed as
arguments to the test function. Within that function, the
input can be modified and the outputs can be compared ac-
cording to the metamorphic properties, without having to
worry about changes to the application state. Note that the
application and the test run in parallel in two processes: the
test does not block normal operation of the application after
the sandbox is created. Depending on the configuration and
the hardware, the test process may be assigned to a sepa-
rate CPU or core, so as not to further pre-empt the original
process.

In our current implementation of the Columbus frame-
work, we use a process “fork” to create the sandbox, which
gives each test process its own memory space to work in, so
that it does not alter that of the original process. In our



investigations so far, this has been sufficient for our testing
purposes, but to ensure that the metamorphic test does not
make any changes to the file system, etc., we have begun in-
tegration with a thin OS virtualization layer that supports a
“pod” (PrOcess Domain) [42] abstraction for creating a vir-
tual execution environment that isolates the process running
the test and gives it its own view of the process ID space
and a copy-on-write view of the file system. However, the
overhead of creating new “pods” may limit the effectiveness
of the approach in the general case, so they will likely only
be used for tests that actually affect the file system.

When the test is completed, the framework logs whether
or not it passed, the process in which the test was run notifies
the framework indicating that it is complete (so that the
framework can keep track of how many concurrent tests are
running), and finally the test process exits.

3.2.6 Handling Test Failure
In the case in which a test fails, the failure is logged to a

local file. Additionally, the system administrator can con-
figure what action the system should take when a failure is
detected, on a case-by-case basis. In some cases, the admin-
istrator may want the system to simply continue to execute
normally and ignore the failure; it may be desirable to notify
the user of the failed test; and, last, the administrator may
choose to have the program terminate.

4. EMPIRICAL STUDIES
To demonstrate that Metamorphic Runtime Checking ex-

hibits an improvement over existing approaches in terms of
effectiveness of detecting defects, we performed an empirical
study based on the one originally presented using the Au-
tomated Metamorphic System Testing (AMST) technique
[37]. AMST is based on testing metamorphic properties of
the entire application; our goal here is to show that conduct-
ing metamorphic testing based on function-level properties
will be more effective at detecting defects than using system-
level properties.

In these tests, we investigated four real-world“non-testable
programs” from the domain of machine learning. The first
two are classification algorithms: Support Vector Machines
(SVM) [49], as implemented in the Weka [52] 3.5.8 toolkit for
machine learning in Java; and C4.5 [45] release 8, which uses
a decision tree and is written in C. The third is the ranking
algorithm MartiRank [19], also written in C, developed by
researchers at Columbia University’s Center for Computa-
tional Learning Systems (CCLS). Last is the anomaly-based
intrusion detection system PAYL [50], implemented in Java.

4.1 Machine Learning Background
In these experiments, we investigated four real-world“non-

testable programs”from the domain of machine learning (the
authors of this paper were not involved in the development
of any of these programs). In supervised machine learning,
data sets consist of a collection of examples, each of which
has a number of attribute values and, in some cases, a label.
The examples can be thought of as rows in a table, each
of which represents one item from which to learn, and the
attributes are the columns of the table. The label indicates
how the example is categorized. These applications execute
in two phases. The first phase (called the learning phase)
analyzes a set of training data; the result of this analysis is a
model that attempts to make generalizations about how the

attributes relate to the label. In the second phase (called
the classification phase), the model is applied to another,
previously-unseen data set (called the testing data) where
the labels are unknown.

4.1.1 Support Vector Machines
The Support Vector Machines (SVM) algorithm [49] is

one of the more common classification algorithms used in
real-world applications, ranging from facial recognition to
computational biology [48]. In the learning phase, SVM
treats each example from the training data as a vector of
N dimensions (since it has N attributes), and attempts to
segregate examples from different classes with a hyperplane
of N -1 dimensions. In the learning phase, the goal is to
find the hyperplane with the maximum margin (distance)
between the “support vectors”, which are the examples that
lie closest to the surface of the hyperplane; the resulting hy-
perplane is the model. In the classification phase, examples
in the testing data are classified according to which “side”
of the hyperplane they fall on. The Weka implementation
of SVM uses the Sequential Minimal Optimization (SMO)
technique [44], which breaks the large quadratic program-
ming optimization problem into smaller problems that can
be solved analytically and thus avoids a large matrix com-
putation with limited loss of quality in the results.

4.1.2 C4.5
C4.5 [45] is a very popular algorithm for building decision

trees, in which branches represent decisions based on at-
tribute values and leaves represent how the example is to be
classified. Like other decision tree classifiers, it takes advan-
tage of the fact that each attribute in the training data can
be used to make a decision that splits the data into smaller
subsets. During the training phase, for each attribute, C4.5
measures how effective it is to split the data on a particular
attribute value, and the attribute with the highest “informa-
tion gain” (a measure of how well similar labels are grouped
together) is the one used to make the decision. The al-
gorithm then continues recursively on the smaller sublists.
During classification, the tree is applied to each example,
which is classified once it reaches a leaf of the tree.

4.1.3 MartiRank
MartiRank [19] is a ranking algorithm that is used as

part of a prototype application for predicting electrical de-
vice failures: the examples in the data sets have labels of
0 (“negative example”) or 1 (“positive example”), indicat-
ing whether the device failed during a particular time pe-
riod. In the learning phase, MartiRank executes a number
of “rounds”. In each round the set of training data is broken
into sub-lists; there are N sub-lists in the N th round, each
containing 1/N th of the total number of positive examples.
For each sub-list, MartiRank sorts that segment by each at-
tribute, ascending and descending, and chooses the attribute
that gives the best “quality”. The quality is assessed using a
variant of the Area Under the Curve (AUC) [22] calculation
that is adapted to ranking rather than binary classification.
The model, then, describes for each round how to split the
data set and on which attribute and direction to sort each
segment for that round. In the second phase, MartiRank
applies the segmentation and sorting rules from the model
to the testing data set to produce the final ranking.

4.1.4 PAYL



Application Function Description Property
SVM buildClassifier Creates a model from a set of Randomly permuting the order of the

instances (training data) instances should yield the same model
SVM buildClassifier Creates a model from a set of Negating the values of the instances

instances (training data) should yield the same model but with
all values negated

SVM buildClassifier Creates a model from a set of Adding a constant to the values of
instances (training data) the instances should yield the same

model but with all values increased
SVM SVMOutput Computes output (distance from If all instances in model have values

hyperplane) for given instance negated, and given instance does as well,
output should stay the same

C4.5 FormTree Creates a decision tree Permuting the order of the examples in the
training data should not affect the tree

C4.5 FormTree Creates a decision tree Multiplying each element in the training data
by a constant should yield the same tree, but
with the values at decision points also increased

C4.5 FormTree Creates a decision tree Adding each element in the training data
by a constant should yield the same tree, but
with the values at decision points also increased

C4.5 Classify Classifies an example Multiplying the values in the example should
yield the same classification if the values at
decision points are also similarly increased

MartiRank pauc Computes the “quality” [22] of a ranking \result = 1 - reverse ranking
MartiRank sort examples Sorts a set of examples based Permuting the order of the elements and

on a given comparison function negating them returns the same result, but
with the elements in the reverse order

MartiRank sort examples Sorts a set of examples based Multiplying the elements by a constant
on a given comparison function returns the same result

MartiRank insert score Inserts a value into an array Calling the function a second time with
used to hold top N scores the same value to be inserted should not

affect the array of scores
PAYL computeTCPLenProb Computes probability of different Changing the byte values and permuting

lengths of TCP packets their order does not change the results
PAYL testTCPModel Returns the distance between an Permuting the order of the elements in the

instance and the corresponding model and multiplying all values by a constant
“normal” instance in the model c affects the result by a factor of c

Table 1: Metamorphic properties used in testing

PAYL [50] is an anomaly-based intrusion detection sys-
tem, and is an example of unsupervised machine learning. In
PAYL, the training data simply consists of a set of TCP/IP
network packets (streams of bytes), without any associated
labels or classificiation. During its learning phase, it com-
putes the mean and variance of the byte value distribution
for each payload length in order to produce a model of what
is considered “normal” network traffic. During the second
(“detection”) phase, each incoming packet is scanned and
its byte value distribution is computed. This new payload
distribution is then compared against the model (for that
payload length); if the distribution of the new payload is
above some threshold of difference from the norm, PAYL
flags the packet as anomalous and generates an alert. PAYL
may also raise an alert in other circumstances, for instance
if the payload length had not been seen in the training data.

4.2 Experimental Setup
In these experiments, mutation testing was used to sys-

tematically insert defects into the source code; the goal was
to determine whether the mutants could be killed (i.e., whether
the defects could be detected) using our approach. Muta-
tion testing has been shown to be a suitable technique for
measuring the effectiveness of a test data suite or, as in our
case, a testing approach [2]. These mutations fell into three
categories: (1) comparison operators were switched to their
logical opposites, e.g. “less than” was switched to “greater
than or equal”; (2) mathematical operators were switched to
their opposites, e.g. addition was switched to subtraction;
and (3) off-by-one errors were introduced for loop variables,

array indices, and other calculations that required adjust-
ment by one. All functions in the programs were candidates
for the insertion of mutations; each variant that we created
had exactly one mutation (i.e., we did not create any pro-
gram variants with more than one mutation).

To determine which variants were suitable for testing, the
output of each was compared to the output of the applica-
tion with no mutants, which was considered the “gold stan-
dard”. To obtain this initial output, the same data sets
were used as in the experiment with system-level metamor-
phic properties: for SVM and C4.5, the “iris” data set from
the UC-Irvine repository [39] (150 examples, five attributes);
for MartiRank, a real-world data set from the electrical de-
vice failure application, containing 10,000 examples and 119
attributes; for PAYL, network traffic on the department’s
LAN (2790 examples). If the outputs of the gold standard
and the variant were the same, the mutation would be con-
sidered unsuitable for testing, since the mutation may not
have been on the execution path, or may have been a “weak
mutant” that did not affect the overall output. Addition-
ally, if the mutation yielded a fatal error (crash), an infinite
loop, or an output that was clearly wrong (for instance, be-
ing nonsensical to someone familiar with the application, or
simply being blank), that variant was also discarded since
our approach would not be needed to detect such defects.

Once we deteremined which variants could be used for
our experiment, we investigated the source code, determined
the metamorphic properties of various functions (using the
guidelines presented in [36]), and annotated the code with
the specifications. Each property was verified with the “gold
standard” version to make sure that the property was, in



fact, expected to hold. Each of the applications used in this
experiment had the same number of metamorphic properties
specified as in the original experiment using AMST (four
for SVM, C4.5, and MartiRank; two for PAYL); the specific
properties are listed in Table 1.

For each variant, we used the Columbus framework to
instrument the code and the tests were conducted to see
whether Metamorphic Runtime Checking would detect any
violation. If so, then the mutant was considered to be killed.

4.3 Findings
The goal of the experiment is to demonstrate that Meta-

morphic Runtime Checking is more effective in revealing the
defects in these applications, by measuring what percentage
of the mutants can be killed, and comparing the results to
those obtained using Automated Metamorphic System Test-
ing (AMST) in [37].

Tables 2, 3, 4, and 5 summarize the results of our testing
of SVM, C4.5, MartiRank, and PAYL respectively. In each
table, we specify the type of mutation and the number of
mutants that were suitable for use in the testing (i.e., that
resulted in a different output compared to the gold stan-
dard, and that did not produce an obvious error). The third
column shows the total number of distinct mutants killed
by the tests when using AMST, and the overall percentage;
the last column provides the number detected when using
Metamorphic Runtime Checking (abbreviated MRC).

Mutation Mutants AMST MRC
Comparison 30 17 (57%) 19 (63%)
operators
Math 24 18 (75%) 22 (92%)
operators
Off-by-one 31 31 (100%) 31 (100%)
Total 85 66 (77%) 72 (85%)

Table 2: Results of Mutation Testing for SVM

Mutation Mutants AMST MRC
Comparison 8 8 (100%) 8 (100%)
operators
Math 15 14 (93%) 14 (93%)
operators
Off-by-one 5 5 (100%) 5 (100%)
Total 28 27 (96%) 27 (96%)

Table 3: Results of Mutation Testing for C4.5

Mutation Mutants AMST MRC
Comparison 20 18 (90%) 18 (90%)
operators
Math 23 15 (65%) 23 (100%)
operators
Off-by-one 26 17 (65%) 20 (77%)
Total 69 50 (72%) 61 (88%)

Table 4: Results of Mutation Testing for MartiRank

4.4 Discussion and Analysis
Overall, Metamorphic Runtime Checking detected 189 of

the 222 defects, compared to 145 detected when using the
approach based on system-level metamorphic properties; this
is an improvement of 30%. Additionally, as expected, none
of the defects detected by the system-level properties were
missed by the function-level properties.

Mutation Mutants AMST MRC
Comparison 11 1 (9%) 8 (73%)
operators
Math 7 0 (0%) 5 (71%)
operators
Off-by-one 22 1 (5%) 16 (73%)
Total 40 2 (5%) 29 (73%)

Table 5: Results of Mutation Testing for PAYL

The improvement shown for the testing of PAYL (Table
5) is admittedly low-hanging fruit. For PAYL, the AMST
approach had very little success. In particular, only very
basic properties could be used: permuting the ordering of
the input data (which were network packets), and permut-
ing the ordering of the bytes within those packet payloads.
It was not possible to automate metamorphic tests based on
modifying the values of the bytes inside the payloads (say,
increasing them), not because of a limitation of the testing
tool, but because the application itself only allowed for par-
ticular valid inputs that reflected what it considered to be
“real” network traffic. However, once we could use Meta-
morphic Runtime Checking to put the metamorphic tests
“inside” the application, we were able to circumvent such
restrictions and perform tests using properties of the func-
tions that involved changing the byte values. Thus, we were
able to create more complex metamorphic tests that revealed
substantially more defects (29 instead of 2). Note that we
restricted ourselves to just two metamorphic properties to
provide a fair comparison with the original results; adding
more properties would presumably have allowed us to detect
more defects.

On the flip side, there was not much room for improve-
ment for C4.5 (Table 3); we were unable to devise a test case
to detect the last defect, though someone more familiar with
the algorithm may be able to (we are admittedly software
engineers, not machine learning experts!).

The most interesting result was that in both SVM and
MartiRank, none of the newly discovered defects were in the
functions whose metamorphic properties were being checked.
The defects actually existed outside those functions, but put
the system into a state in which the metamorphic property
of the function would be violated. For example, a particular
function in MartiRank took an array of numbers and per-
formed a calculation on them, returning a normalized result
(i.e., between 0 and 1). One of the metamorphic properties
of that calculation is that reversing the order of the values in
the array should produce the “opposite” result, i.e., f (A) =
1 - f (A’ ) where A’ is the array in which the values of A are
in reverse order. However, a defect in a separate function
that dealt with how the array was populated caused this
property to be violated because the data structure holding
the array itself was in an invalid state, even though the code
to perform the calculation was correct.

This metamorphic property was very effective at detecting
the defects that had not been found using the system-level
approach, especially those related to math operator defects
in MartiRank. In particular, the system-level metamorphic
properties only considered how the results of different calcu-
lations compared to each other, but not their actual values.
Consider a simple defect in the system such that the func-
tion f described above returns a value that is 0.1 more than
it should be. At the system level, the properties that were
specified could not access the value returned by f, since the



results of the individual calculations were not directly re-
flected in the program output. Rather, the properties at
this level were only influenced by relationships such as: if
f (A) > f (B), then f (A’ ) < f (B’ ). Even though the func-
tion was producing the wrong result (due to an invalid data
structure), this system-level property still held. However,
when we used Metamorphic Runtime Checking, we could
see that there was a violation in the property of f, revealing
the defect.

This result demonstrates the real power of our testing
technique: without much knowledge of the details of the im-
plementation, we were able to detect many of the defects by
simply specifying the expected behavior of particular func-
tions, even though the defects were not in those functions;
rather, those defects created violations of the metamorphic
properties because they put the system into an invalid state.
Although we have yet to demonstrate this quantitatively, al-
ternative approaches to detecting such invalid states (such
as checking data structure integrity [13] or algebraic specifi-
cations [40], further described below) may require more inti-
mate familiarity with the source code, such as the details of
pointer references or how variables relate to each other, as
opposed to simply specifying how a function should behave
when its inputs are modified.

5. PERFORMANCE CONSIDERATIONS
Although Metamorphic Runtime Checking is more effec-

tive than AMST at detecting defects, this runtime checking
of the metamorphic properties comes at a cost, particularly
if the tests are run frequently. In AMST, each metamor-
phic property is checked exactly once (just at the end of
the program execution). In Metamorphic Runtime Check-
ing, though, each property can be checked numerous times,
depending on the framework configuration.

During our empirical studies, we measured the perfor-
mance impact of the Columbus framework. As described
above, safeguards have been built into the system to allow
for control of the overhead and number of simultaneous test
processes; during these tests, however, we removed such re-
strictions so that we could get a better measurement of the
effect of Metamorphic Runtime Checking.

To determine the overhead, we instrumented the func-
tions listed in Table 1 and varied the value probability ρ
with which a metamorphic test would be executed while the
application ran. Tests were conducted on a server with a
dual-core 3GHz CPU running Ubuntu 7.10. Figure 6 shows
the results of the experiment, with ρ equal to 0% (with the
functions instrumented but no tests executed), 25%, 50%,
75%, and 100% (with all function calls resulting in tests).

The linear nature of the resulting graphs indicates that, as
one would expect, the overhead increases linearly with the
number of tests that are executed. The slope of the lines
results from a combination of the number of tests that are
run, and the implementation language: the line for SVM is
very steep because many tests were run and the overhead is
greater for Java applications; the line for C4.5 is less steep
because fewer tests were run and there is less overhead for
C.

On average, the performance overhead for the Java appli-
cations was around 5.5ms per test; for C, it was only 1.5ms
per test. This cost is mostly attributed to the time it takes
to create the sandbox and fork the test process.

This impact can certainly be substantial from a percent-

age overhead point of view if many tests are run in a short-
lived program, and some ML programs can run for hours or
even days, so care must be taken in configuring the frame-
work. However, for the programs we investigated in our
study, the overhead was typically a few seconds, which we
consider a small price to pay for detecting that the output
of the program was incorrect.

6. RELATED WORK
Others have previously applied metamorphic testing to

situations in which there is no test oracle, e.g. [8]. In some
cases, these works have looked at situations in which there
cannot be an oracle for a particular application [9], as in
the case of “non-testable programs”; in others, the work has
considered the case in which the oracle is simply absent or
difficult to implement [6]. However, this previous work did
not consider the challenges of automating the process, but
rather relied on a tester to manually perform the transfor-
mations and comparisons.

Beydeda [4] first brought up the notion of combining meta-
morphic testing and self-testing components so that an ap-
plication can be tested at runtime, but did not investigate an
implementation or produce any results. Gotleib and Botella
[17] have described how the process of metamorphic testing
can be conducted automatically, but their work focuses more
on the automatic creation of input data that would reveal
violations of metamorphic properties, and not on automat-
ically checking that those properties hold after execution.
Also, they do not describe any mechanism for addressing
performance concerns or for ensuring that the additional in-
vocation of the function or the program is not seen by the
user (i.e., their approach was targeted at the development
environment, whereas we target both the development envi-
ronment and - primarily - the deployment environment).

Programming languages such as ANNA [30] and Eiffel
[32], as well as C and Java, have built-in support for as-
sertions that allow programmers to check for properties at
certain control points in the program. In Metamorphic Run-
time Checking, the tests can be considered runtime asser-
tions; however, approaches using assertions typically address
how variable values relate to each other, but do not describe
the relation between sets of inputs and sets of outputs, as we
do in metamorphic testing. Additionally, the assertions in
those languages are not allowed to have side effects; in our
approach, the tests are allowed to have side effects (in fact
they almost certainly will, since the function is called again),
but these side effects are hidden from the user. Last, com-
plex assertions (such as checking for data structure integrity
[13]) typically pre-empt the application by running sequen-
tially with the rest of the program, whereas in Metamorphic
Runtime Checking the program is allowed to proceed while
the properties are checked in a parallel process.

Metamorphic properties are similar in some ways to alge-
braic specifications [11], though algebraic specifications of-
ten declare legal sequences of function calls that will produce
a known result, typically within a given data structure (e.g.
pop(push(X )) == X in a Stack), but do not describe how a
particular function should react when its input is changed.
The runtime checking of algebraic specifications has been
explored in [40] and [46], though neither work considered
the particular issues that arise from testing without oracles.
Even in the cases in which algebraic specifications or formal
specification languages (such as Alloy [24], Z [1], etc.) are



Figure 6: Graph indicating performance overhead caused by different values of ρ for the different applications.



Application Number of tests ρ = 0% ρ = 25% ρ = 50% ρ = 75% ρ = 100%
MartiRank 26,791 22.6s 32.9s 43.2s 52.1s 60.7s
C4.5 4,719 14.3s 17.8s 19.3s 20.6s 22.9s
SVM 13,694 5.7s 26.0s 47.0s 66.1s 83.6s
PAYL 2,300 1.5s 4.4s 7.4s 10.5s 13.5s

Table 6: Results of Performance Tests. The five rightmost columns indicate the time to complete execution
with different values of ρ.

used to act as oracles, work to date has focused primarily
on consistency checking of abstract data types [47] and has
not sought to create (pseudo-)oracles for applications that
do not otherwise have them.

The Columbus implementation framework presented here
extends our previous work in “In Vivo Testing” [35] in which
software tests itself. Other approaches to testing software
as it runs in the field include the monitoring, analysis, and
profiling of deployed software, as surveyed in [15], and in
particular tools like Gamma [41], Skoll [31], and Cooperative
Bug Isolation [28]; Columbus differentiates itself from these
others by explicitly addressing the problems associated with
testing applications without test oracles.

7. LIMITATIONS AND FUTURE WORK
The most critical limitation of the current Columbus im-

plementation is that anything external to the application
process itself, e.g. database tables, network I/O, etc., is not
included in the sandbox and modifications made by a meta-
morphic test may therefore affect the external state of the
original application. As described previously, we are cur-
rently looking into integration with a sandboxing solution,
and we hope to address these limitations soon.

Another implementation issue is that the test function is
called after the function to be tested, rather than at the
same point in the program execution. This limitation grew
out of the necessity to pass the result of the original function
call to the test function. Another reason for this implemen-
tation decision is that, since the two function calls are in
two different processes, challenges would arise in comparing
the outputs if the results are pointers, which would point to
memory in separate process spaces. The possible side effect
of our implementation is that the original function call may
alter the system state in such a way that the metamorphic
property would not be expected to hold by the time the test
function is called, possibly introducing false positives. In our
testing, we took precaution to avoid this case, but further
investigation needs to be performed to determine how often
this problem may arise.

Another limitation of the testing framework is that it uses
function calls as the insertion points for metamorphic tests.
In our investigation of the MartiRank source code, we no-
ticed that some functions were quite long (over 200 lines)
and that we were limited to what sorts of metamorphic prop-
erties we could check. Smaller functions may have yielded
more opportunities for metamorphic testing. Future work
could consider instrumenting the code with tests at arbi-
trary points, rather than just the start of a function.

Because the approach tests individual functions, it will be
clear which function’s test failed, so fault localization could
start there. However, it may not necessarily be the case
that the function itself contains the defect, since the system
may be in an invalid state due to a defect in another part of
the code (as shown in our experiments). We have begun to

investigate other fault localization techniques, though these
are currently outside the scope of this particular work.

Additional future work may also include the automatic de-
tection of metamorphic properties, similar to the work that
has been done in discovering likely program invariants [16]
[21] and algebraic properties [23]. It could be argued that
static analysis of the code may be able to determine whether
these properties hold, and we have begun preliminary inves-
tigations. Further research will be required to determine
what are the limits for such approaches when detecting and
checking these metamorphic properties.

Finally, the applications we investigated were all deter-
ministic, but approaches like Statistical Metamorphic Test-
ing [20] could easily be incorporated into the framework to
address non-determinism. Future work should also explore
the application of these techniques to other domains of non-
testable programs, such as simulation, optimization, and sci-
entific computing.

8. CONCLUSION
We have introduced Metamorphic Runtime Checking, a

system testing approach based on the metamorphic prop-
erties of individual functions in applications without test
oracles. These properties are checked as a program executes
in the field, using real inputs from actual program execu-
tions. We have also described an implementation framework
called Columbus, and shown that this approach improves
upon other techniques in which metamorphic testing is con-
ducted based on system-level properties.

This work goes beyond applying a system testing approach
to individual functions: rather, we use properties of the func-
tions to conduct system testing, and have shown that such
properties can detect defects even in functions that are not
themselves being tested.

Addressing the testing of applications without oracles has
been identified as a future challenge for the software testing
community [3]. We hope that our findings here help others
who are also concerned with the quality and dependability
of such non-testable programs.
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