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Abstract

We propose the concept of a generalized assorted pixel (GAP) camera, which

enables the user to capture a single image of a scene and, after the fact, control the

trade-off between spatial resolution, dynamic range and spectral detail. The GAP

camera uses a complex array (or mosaic) of color filters. A major problem with us-

ing such an array is that the captured image is severely under-sampled for at least

some of the filter types. This leads to reconstructed images with strong aliasing. We

make four contributions in this paper: (a) We present a comprehensive optimization

method to arrive at the spatial and spectral layout of the color filter array of a GAP

camera, (b) We develop a novel anti-aliasing algorithm for reconstructing the under-

sampled channels of the image with minimal aliasing, (c) We demonstrate how the

user can capture a single image and then control the trade-off of spatial resolution

to generate a variety of images, including monochrome, high dynamic range (HDR)

monochrome, RGB, HDR RGB, and multispectral images and (d) Finally, the per-

formance of our GAP camera has been verified using extensive simulations that use

multispectral images of real world scenes. A large database of these multispectral

images is being made available at http://www1.cs.columbia.edu/CAVE/

projects/gap_camera/ for use by the research community.

Index Terms - Color filter array, assorted pixels, sub-micron pixels, demosaicing,

color reproduction, dynamic range, signal to noise ratio, multispectral imaging, skin

detection.
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1 Introduction

Most color image sensors use a color mosaic which is an assortment of different spectral

filters. A color mosaic usually consists of three primary colors (e.g., RGB). One reason

for the use of tri-chromatic filter arrays is that tri-chromatic sensing is near-sufficient in

terms of colorimetric color reproducibility. It is also commonly assumed that this pixel as-

sortment is the only practical way to sense color information with a single semiconductor

image sensor1.

Recently, new image sensing technologies have emerged that use novel pixel assort-

ments to enhance image sensing capabilities. For high dynamic range (HDR) imaging, a

mosaic of neutral density filters with different transmittances have been used [9] [8]. A

new approach to high sensitivity imaging builds upon the standard Bayer mosaic by using

panchromatic pixels [6] that collect a significantly larger proportion of incident radiation.

Color filter arrays (CFAs) with more than three colors have been proposed to capture

multispectral images [14] [2].

In this paper, we introduce the notion of a generalized assorted pixel (GAP) camera,

that uses a mosaic with a richer assortment of filters and enables a user to produce a

variety of image types from a single captured image. Each filter type in an assortment

can serve to enhance a specific attribute of image quality. Examples of attributes are

color reproduction, spectral resolution, dynamic range, and sensitivity. We propose a

comprehensive framework for designing the spatial layout and spectral responses of the

color filter array of a GAP camera. The following are the main contributions of our

work: (a) We develop an optimization method to arrive at the spatial and spectral layout

of the color filter array of a GAP camera. The cost function that we optimize includes

terms related to colorimetric/spectral reproduction, dynamic range and signal-to-noise

ratio (SNR), (b) We develop a novel anti-aliasing algorithm for reconstructing the under-

1The Foveon X3 sensor [7] is an exception.
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sampled channels of the image with minimal aliasing. Our approach is to use a sub-

micron pixel size to avoid aliasing for some of the channels. The high frequency content

from these channels are then used to remove aliasing from the remaining (under-sampled)

channels, (c) We have developed software that enables a user to capture a single image

and then control the trade-off of spatial resolution to generate a variety of images. The

output image can be monochrome, HDR monochrome, RGB, HDR RGB, or multispectral

and (d) Finally, the performance of our GAP camera has been verified using extensive

simulations that use multispectral images of real world scenes. The multispectral images

are used to emulate GAP camera images and results computed from the GAP images

are compared with the original multispectral images. We have released a large database

of high quality multispectral images (at http://www1.cs.columbia.edu/CAVE/

projects/gap_camera/) for use by the research community.

The trend in manufacturing has been towards producing sensors with increasing num-

bers of smaller pixels. The time is therefore ripe for exploring more interesting pixel

assortments than the ones used in the past. Furthermore, each of the previously proposed

mosaics have been used to generate one specific type of output image. In contrast, our goal

is to create a mosaic that lends itself to post-capture control over the output image. Since

sensor fabrication is a very expensive endeavor, we have used high quality multispectral

data as our ground truth as well as to verify our optimized mosaic and reconstruction al-

gorithm. Given the high quality of results we have obtained, we have begun to pursue the

fabrication of a GAP sensor.

2 Assorted Pixel Imaging with Sub-Micron Pixels

The resolution of an optical imaging system may be limited by multiple factors, but the

dominant factors are diffraction and aberration. While aberrations can be corrected for
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during lens design, diffraction is a fundamental limitation that cannot be avoided. There-

fore, we assume an aberration-corrected optical system and focus on only diffraction.

The 2-D diffraction pattern of a lens with a circular aperture is called the Airy disk. The

width of the Airy disk determines the maximum resolution limit of the system and is

given by: I(θ) = I0{2J1(x)/x}2, where I0 is the intensity in the center of the diffrac-

tion pattern, J1 is the Bessel function of the first kind of order one, and θ is the angle of

observation. x = πq
λN

, where q is the radial distance from the optical axis in the obser-

vation plane, λ is the wavelength of incident light, and N is the f-number of the system.

In the case of an ideal lens, this diffraction pattern is the Point Spread Function (PSF)

for an in-focus image. The Fourier transformation of the PSF is used to characterize

the resolution of the optical imaging system. This quantity is referred to as the Modu-

lation Transfer Function (MTF). The MTF of an ideal optical system can be calculated

directly from the wavelength λ of incident light and the f-number N , and is denoted as

MTFopt(λ, N) = F(I(θ)), where, F(·) denotes the Fourier transformation.

Pixels typically have a rectangular shape, and their finite size contributes to the res-

olution characteristics of the imaging system. The MTF of an image sensor can be ap-

proximated as the Fourier transformation of a rectangular function which is denoted by

MTFsensor(p) = F(x(t)), where

x(t) =

⎧⎪⎪⎨
⎪⎪⎩

1 |t| ≤ pζ
2

0 |t| > pζ
2

, (1)

is the rectangular function, p is pixel size, and ζ is the pixel aperture ratio, which is

assumed to be 1 due to the use of on-chip microlenses. The total fundamental optical

resolution limit of a camera (lens and sensor) is denoted in the frequency domain as

MTF = MTFopt(λ, N) · MTFsensor(p). To compute an MTF, we use the values λ =
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Pixel Size = 1.66um
(10M Pixels on 1/2.33inch)

Pixel Size = 1.40um
(12.25M Pixels on 1/2.5inch)

Pixel Size = 1.00um

Pixel Size = 0.70um
(fabricated in [3])

Human eye's recognition limit

fs

Figure 1: The optical resolution limits (MTFs) corresponding to different pixel sizes (λ =
555nm and N = f/5.6). The MTF for pixel size p = 1.0μm is 0.1 at about 0.25fs

(fs is the image sensor’s sampling frequency). We consider the optical resolution limit
of an image sensor with p = 1.0μm pixel size to be half of the image sensor’s Nyquist
frequency. The resolution performance of a sensor with sub-micron pixels exceeds the
optical resolution limit.

555nm (corresponding to the peak of the sensitivity of the human eye) and N = f/5.6

(which is a pupil size commonly used in consumer photography). With these numbers

fixed, the fundamental MTF is determined only by pixel size p. The MTFs for various

pixel sizes are shown in Figure 1. In this figure, the minimum pixel size we use is 0.7μm,

which is the pixel size of the fabricated detector described in [3]. Note that the MTF

for pixel size p = 1.0μm is 0.1 at about 0.25fs, where, fs is the image sensor’s sampling

frequency. Generally, the human eye cannot recognize contrast when the MTF is less than

0.1. Thus, we can consider the optical resolution limit of an image sensor with p = 1.0μm

pixel size to be half of the image sensor’s Nyquist frequency. From this, we can conclude

that the resolution performance of a sensor with sub-micron pixels exceeds the optical
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Figure 2: Nyquist Limits of previous assorted designs used with sub-micron pixel image
sensors (pixel pitch p = 1.0nm).

resolution limit.

Figure 2 shows the Nyquist limits when the CFA patterns of previous assorted pixels

are used with the sub-micron pixel size image sensor. When the highest frequency of

the input signal is lower than the Nyquist limit, aliasing does not occur, according to the

sampling theorem. Therefore, aliasing is not generated at pixels marked ‘1’ in Figure

2(b).
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Figure 3: Our proposed GAP mosaic (7 colors and 2 exposures) used with a sub-micron
pixel image sensor (pixel pitch p = 1.0nm) and its Nyquist Limits.

3 Spatial Design of GAP Mosaic

For a 1.0μm pixel size, the combined MTF due to both diffraction by the lens aperture

and averaging by pixels, leads to an optical resolution limit of almost 1/4 of the sampling

frequency fs = 1/Δs, where Δs is the sampling pitch. To exploit this property, we

propose a novel CFA to be used in conjunction with a sub-micron image sensor, which is

shown in Figure 3. The pixels marked ‘a’, ‘b’ and ‘c’ in the CFA capture three different

spectral images on a rectangular grid with sampling pitch Δsa,b,c = 2p. Thus, the Nyquist

frequency for ‘a’, ‘b’ and ‘c’ pixels is fna,b,c = fsa,b,c/2 = fs/4. Note that ‘a’, ‘b’, and

‘c’ pixels do not suffer from aliasing because the optical resolution limit is 0.25fs due

to diffraction. These aliasing-free pixels are used for reconstruction of high resolution

images and we refer to their filters as the primary filters of the mosaic. Note that we have

increased the number of aliasing-free pixels from one color in conventional mosaics to

three colors in our GAP design (See Figure 2). This change results in significantly better

anti-aliasing for our non-primary filters, as described next.

Pixels ‘d’, ‘e’, ‘f ’, and ‘g’ each sample the incident image on rectangular grids

through different spectral filters, and are referred to as the secondary filters. The sam-

pling pitch for each of these filters is Δsd,e,f,g = 4p, and the Nyquist frequency is
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fnd,e,f,g = fsd,e,f,g/2 = fs/8. These Nyquist frequencies are lower than the optical

resolution limit, which can lead to aliasing artifacts. However, this aliasing can be re-

moved by using high frequency information from the demosaiced images obtained using

the primary filters.

Due to the nature of the cost function used in our optimization procedure, the primary

filters end up with spectral responses that closely resemble the red, green and blue fil-

ters commonly used in color image sensors. As a result, the primary filters can be used

to compute RGB images which essentially cover the entire visible wavelength spectrum.

In other words, images captured by the secondary filters, irrespective of their spectral

responses, are guaranteed to be highly correlated with the images obtained using the pri-

mary filters. Consequently, the demosaiced image obtained using the primary filters can

be used to perform anti-aliasing of the images produced by the secondary filters. Further-

more, our cost function also results in the secondary filters having lower exposures than

the primary ones. Hence, by using all of the primary and secondary filters, we can ob-

tain high dynamic range information. Finally, since the 7 filters (primary and secondary)

have different spectral responses, their reconstructed images can be used to obtain smooth

estimates of the complete spectral reflectance distribution of each scene point, i.e., a mul-

tispectral image.

4 Spectral Responses of GAP Filters

Our GAP mosaic allows a variety of image characteristics to be captured simultane-

ously, but a trade-off must be made with respect to the fidelity of each characteristic.

Monochrome and RGB images are reconstructed at high resolution from the primary fil-

ters. For HDR images, the dynamic range is improved by utilizing the secondary filters

and decreasing the spatial resolution. We can obtain multispectral images due to low
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resolution images captured by secondary filters. We now develop a cost function that

incorporates several terms, including quality of color reproduction, reconstruction of re-

flectance and dynamic range.

4.1 The Cost Function

The value xm measured at a pixel in the mth channel (m ∈ {a, b, c, d, e, f, g}) is given by

xm =

∫ λmax

λmin

i(λ)r(λ)cm(λ)dλ, (2)

where i(λ) is the spectral distribution of the illumination, r(λ) is the spectral reflectance

distribution of the scene point, and cm(λ) is the spectral response of the camera’s mth

color channel. When the wavelength λ is sampled at equally-spaced L points, Eq.2 be-

comes a discrete expression:

xm =
L∑

l=1

i(λl)r(λl)cm(λl). (3)

If we rewrite Eq.3 in matrix form, we obtain

X = CTIR, (4)

where X = [xa, xb, ...xg]
T, C = [cm(λl)], I is a diagonal matrix made up of the discrete

illumination samples i(λl), and R = [r(λl)]. Our goal now is to determine the 7 spectral

response functions in C. We do this by dividing up our cost function into several parts,

each of which is described below.
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4.1.1 Cost 1: Color Reproduction of RGB Image

To obtain HDR RGB images, a high exposure RGB image is reconstructed from the pri-

mary filters, and a low exposure image is reconstructed from the secondary filters. The

spectral responses of all the filters must ideally yield the highest color reproduction. A va-

riety of filter rating indices have been proposed to evaluate the color reproduction charac-

teristics of a filter [13][12]. These indices use a cost function that minimizes the difference

between the measured color of a reference material and its known color. To calculate this

difference, we use the CIE 1931 XYZ color space, which is based on direct measurements

of human visual perception. The calculation of sRGB tristimulus values (which are em-

ployed in many digital cameras and color monitors) from the CIE XYZ tristimulus values

uses a linear transformation. The CIE XYZ tristimulus values are defined as Y = ATIR,

where Y represents the true tristimulus values, and A is a matrix of CIE XYZ color

matching functions [x̄ ȳ z̄]. The estimated CIE tristimulus values corresponding to the

primary filters Ŷ′ can be expressed as an optimal linear transformation: Ŷ′ = T′X′,

where X′ = [xa, xb, xc]
T. The transformation T′ is determined so as to minimize the

color difference: min ‖Y −T′X′‖2. The estimated CIE tristimulus values corresponding

to the secondary filters are denoted as Ŷ′′ = T′′X′′, where X′′ = [xd, xe, xf , xg]
T.

The average magnitude of the color difference between the true color Y and the es-

timate Ŷ over a set of N real-world objects may be used as a metric to quantify the

camera’s color reproduction performance. The color reproduction errors corresponding

to the primary and secondary filters can therefore be written as:

E ′(C) = min
T′

N∑
n=1

‖Yn −T′X′
n‖2, (5)

E ′′(C) = min
T′′

N∑
n=1

‖Yn −T′′X′′
n‖2. (6)
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4.1.2 Cost 2: Reconstruction of Spectral Reflectance

In this paper, we use the model-based spectral reconstruction method described in [10].

Fortunately, the spectral reflectance distribution of most real-world surfaces can be well-

approximated using a low-parameter linear model. The linear model we use is the set of

orthogonal spectral basis functions bk(λ) proposed by Parkkinen et al [11]:

r(λ) =

K∑
k=1

σkbk(λ), (7)

where σk are scalar coefficients and K is the number of basis functions. By substituting

Eq.7 in Eq.2, we get a set of equations:

xm =

K∑
k=1

σk

∫ λmax

λmin

bk(λ)i(λ)cm(λ)dλ. (8)

These equations can be written as X = F · σ, where F is a M × K matrix: F =∫ λmax

λmin
bk(λ)i(λ)cm(λ)dλ, M is number of color filter channels (in our GAP mosaic, M =

7), and σ = [σk]. The spectral reflectance distribution is reconstructed by minimizing

‖F · σ −X‖2. Note that the spectral reflectance distribution of most real-world materials

is known to be smooth and must be positive [10]. Thus, the reconstruction problem can

be posed as a constrained minimization as follows:

σ̂ = arg min
σ

‖F̃ · σ − X̃‖2, subject to B · σ ≥ 0, (9)

where F̃ =
[
FT αPT

]T
, Plk = ∂2bk(λl)/∂λ2 is a smoothness constraint, α is a smooth-

ness parameter, 1 ≥ l ≥ L, 1 ≥ k ≥ K, X̃ =
[
XT 0

]T
, and B = [bk(λl)]. This

regularized minimization can be solved using quadratic programming. The multispectral
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image’s mean squared reconstruction error R(C) is given by

R(C) =

N∑
n=1

‖σn − σ̂n‖2, (10)

where σn represents the actual coefficients of the nth object and σ̂n are the reconstructed

coefficients. In our implementation, the number of basis functions K is 8 and the smooth-

ness parameter α is set to 64.0 [10].

4.1.3 Cost 3: Dynamic Range and SNR

To achieve HDR imaging, our secondary filters have lower transmittances than the pri-

mary filters, as mentioned earlier. This may cause deterioration of the signal-to-noise

ratio (SNR) for the secondary filters. This trade-off can be controlled based on the ratio

of the exposures of the primary and secondary filters: β = emax

emin
, where emax is the average

exposure of the primary filters and emin is the average exposure of the secondary filters.

Therefore, β is determined by C in Eq.4. Our goal here is to determine the value of β that

best balances extension of dynamic range versus reduction of SNR.

Dynamic range is often defined as DR = 20 log10
Vfull

Nr
, where Vfull represents the

full-well capacity of the detector, and Nr is the total noise of the detector. The total noise

of the detector is defined as Nr =
√

N2
shot + N2

dark, where Nshot =
√

V is the shot noise,

V is the signal, and Ndark is the dark noise [4]. In the case of a GAP camera, we do not

change Nr, but the maximum detectable level becomes β Vfull [9]. Hence, the dynamic

range of a GAP camera is

DRGAP = 20 log10

β Vfull

Nr
. (11)

The SNR can be written as: SNR = 20 log10
V
N

, where V is the signal and N is the

noise. The signal corresponding to a secondary filter can be expressed using the exposure
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ratio β as V ′′ = V ′/β, where V ′ is a signal due to a primary filter. When the signal

due to the primary filter is not saturated, the signal due to the secondary filter can be

determined from the primary signal. The SNR for a secondary filter when the primary

signal is saturated is the worst-case SNR of the GAP mosaic:

SNRGAP = 20 log10

Vfull/β

Nmax
, (12)

where Nmax =
√

N
′′2
shot + N2

dark, and N
′′
shot =

√
Vfull

β
.

Since the camera has a high performance in SNR and dynamic range when SNRGAP

and DRGAP are both large, we use the following as our cost function:

D(C) =
1

DRGAP
· 1

SNRGAP
. (13)

In our implementation, we have used Vfull = 3500e− and Ndark = 33e− (see [3]).

4.1.4 Total Cost Function

Since each of the above cost functions represents a specific dimension of image quality,

our final cost function is a weighted sum of the individual costs:

G = w1{E ′ + E ′′} + w2R + w3D. (14)

The weights (w1, w2, w3) must be determined according to the image quality requirements

of the application for which the GAP camera is manufactured. Since all camera filters

must have positive spectral responses (C must be positive), the optimization of C can be

written as

C = arg min
C

G, subject to C ≥ 0. (15)
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4.1.5 Initial Guesses for Filter Spectral Responses

Note that in the absence of additional constraints, our goal of finding the 7 spectral re-

sponse functions in C is an intractable optimization problem. Therefore, we assign initial

guesses to the filter responses. These filter guesses are driven by two factors: (a) They are

selected from a set of 177 commercially available optical band pass filters [1] and on-chip

filters [7]. (b) The commercial filters are assigned to the 7 channels based on only one of

our cost functions, namely, color reproduction. That is, we find the primary filters C ′
0 and

secondary filters C′′
0 such that:

min
C′

0

E(C′
0) (C′

0 ∈ C0), (16)

min
C′′

0

E(C′′
0) (C′′

0 ∈ C0), (17)

where C0 is the set of 177 commercial filters. Once the 7 assignments are made in this

way, they are used as initial guesses in the final stage of the optimization. This final stage

is a constrained non-linear minimization of Eq.15 which requires the used of an iterative

algorithm. In our implementation, we used the fmincon routine of Matlab. For the

weights, we have used w1 = w2 = w3 = 1.0. As mentioned earlier, these weights can be

chosen differently to meet the needs of the application.

4.2 Results of GAP Filter Optimization

Using the above optimization, we obtain the optimal filter spectra shown in Figure 4. We

use the spectral reflectance distribution of color patches in the Macbeth color chart and the

Munsell color book as the known references r(λ), and the illuminance spectrum of D65

for i(λ). Three observations are worth making. First, as a result of the color reproduction

term in the cost function, the primary filters are close in their responses to red, green

and blue filters. Second, due to the spectral reconstruction term, the computed filters
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Figure 4: The spectral responses of the seven optimized filters.The secondary filters (‘d’,
‘e’, ‘f ’, ‘g’) have lower exposures than the primary ones (‘a’, ‘b’, ‘c’). Hence, using
the primary and secondary filters, we can obtain high dynamic range information. Since
the 7 filters (primary and secondary) have different spectral responses, their reconstructed
images can also be used to obtain smooth estimates of the complete spectral reflectance
distribution.

nicely sample the visible spectrum, which enables the GAP camera to produce reliable

multispectral images. Third, due to the nature of our cost function, the primary filters

have higher transmittances than the secondary filters. This enables the capture of high

dynamic range images.

Table 1 shows the errors in the color reproduction and spectral reconstruction compo-

nents of our cost function G, the estimated dynamic range, and the SNR of the initial and

final (optimized) set of seven filters. Note that all the errors except SNR are reduced as

Table 1: Optimization Accuracy

Initial fillters Optimal filters Bayer
ΔE ′(C) 0.0497 0.0429 0.0490
ΔE ′′(C) 0.0100 0.0055 N/A
ΔR(C) 0.0624 0.0610 0.0709
DRGAP 58.2970 62.9213 56.9020

SNRGAP 34.7069 32.3694 N/A
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Figure 5: An overview of the proposed multimodal image reconstruction.

a result of the optimization. The deterioration of SNR is kept low at around 2.3dB while

the dynamic range is improved by about 4.6dB. To illustrate the superiority of our GAP

mosaic, the results corresponding to a set of 3 optimized color filters in a Bayer mosaic

pattern are also included in Table1. The errors of the low exposure RGB image’s color re-

production ΔE ′′ and SNR all involved spectral responses of secondary filters. As a result,

there is no corresponding value for these in the Bayer mosaic. Note that all performances

are higher for our GAP mosaic.

5 Post-capture Control of Image Types

At each pixel of the GAP mosaic in Figure 3, there is only one color measurement, which

means that the other colors must be estimated from neighboring pixels in order to produce

interpolated output images (irrespective of their type). This process is commonly referred

to as “demosaicing.”

Denoting Λm as the set of pixel locations (i, j) for filter m ∈ {a, b, c, d, e, f, g}, a

mask function for each filter can be defined as

Wm(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

1 (i, j) ∈ Λm

0 otherwise

. (18)
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Figure 6: The diagram of control shows the trade-off between spatial resolution, dynamic
range and spectral detail. Our proposed GAP mosaic lends itself to post-capture control
over the output image, including monochrome, HDR monochrome, RGB, HDR RGB,
and multispectral images.

In the GAP mosaic, there are seven types of color channels: a, b, c, d, e, f, and g. There-

fore, the observed data y(i, j) is

y(i, j) =
∑

m∈{a,b,c,d,e,f,g}
Wm(i, j)xm(i, j), (19)

where xm is mth channel’s full resolution image, given by Eq.2. Figure 5 shows the

complete framework of our proposed multimodal image reconstruction. The interpolated

image after demosaicing is denoted as x̂. Different types of images are reconstructed from

all interpolated images by simply changing the image reconstruction matrix:

Ip = ZpA, (20)

where Ip is the reconstructed image (which can be monochrome, HDR monochrome,

RGB, HDR RGB, or multispectral), Zp is an image reconstruction matrix, and A is an in-

terpolated image set denoted as a vector: A =

[
x̂a x̂b x̂c x̂d x̂e x̂f x̂g x̂LEM

]T

.
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The user can control the trade-off of spatial resolution to generate a variety of images by

changing the image reconstruction matrix Zp from a single captured image y(i, j). Fig-

ure 6 shows the trade-off between spatial resolution, dynamic range and spectral detail

of reconstructed images in the case of our GAP camera. We now describe the different

processing operations of Figure 5.

5.1 Demosaicing for ‘a’, ‘b’, and ‘c’ Images

As described in section 3, images captured by the primary filters do not suffer from alias-

ing. Therefore, we can estimate the missing data using a simple interpolation. The ‘a’,

‘b’, and ‘c’ channels’ images x̂a, x̂b, and x̂c are reconstructed using just the data mea-

sured by the primary filters, to maintain high resolution. For interpolation we use a Finite

Impulse Response (FIR) filter F (i, j):

x̂ν(i, j) = Wν(i, j)y(i, j) + W̄ν(i, j) [F (i, j) ∗ y(i, j)] , (21)

where ν = a, b, or c, ∗ denotes convolution, and W̄ (i, j) = 1 − W (i, j). To minimize

the loss of high frequencies due to interpolation, we used Matlab’s fir2 function to find

FIR filters of size 30 × 30 that pass all frequencies.

5.2 Demosaicing for ‘d’, ‘e’, ‘f ’, and ‘g’ Images

Interpolated secondary filter images – x̂d, x̂e, x̂f , and x̂g – can be respectively computed

using only the ‘d’, ‘e’, ‘f ’, or ‘g’ pixels. However, this results in severe aliasing (see

Figure 7(a)). In conventional demosaicing methods for RGB mosaics [5], an assumption

of strong positive inter-channel correlation is commonly used so as to suppress aliasing

of the sparsely sampled channels (R, B) by estimating the amount of aliasing from the

high frequency information of a densely sampled channel (G). However, this assumption
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(a) Without Anti-Aliasing (b) Downsampled x̂a (c) Aliasing in (a) (d) Anti-Aliased Result

Figure 7: The anti-aliasing algorithm (simulated with N = f/5.6, p=1.0μm). (a) Low ex-
posure RGB image computed from the secondary filters without anti-aliasing (false color
artifacts caused by aliasing are observed). (b) Downsampled image Ω∗{We(i, j)x̂a(i, j)}
computed using the pixels with primary filter ’a’. (c) Aliasing Υe(i.j) estimated using (b)
and the full resolution image for channel ’a’ (brightness enhanced for visualization). (d)
Low exposure RGB image obtained after anti-aliasing using the image in (c).

often results in artifacts because the differences in the spectral responses of RGB filters

cause the inter-channel correlation of RGB to be not always strongly positive. On the

other hand, our anti-aliasing method can exploit the inherent inter-channel correlations

within GAP mosaic. As shown in Figure 4, one primary filter color can be chosen for

each secondary filter color in terms of similarity of the spectral response, with high ex-

pectation of strong positive inter-channel correlation due to strong overlap between the

spectral responses of the chosen primary and secondary channels. For example, channel

‘a’ is chosen as a strongly correlated channel with channel ‘e’. So we first sample the

interpolated full resolution ‘a’ filter image x̂a at all ‘e’ locations to estimate the aliasing

of ‘e’ filter image. These samples are then used to compute a full resolution image for the

‘e’ filter: Ω∗{We(i, j)x̂a(i, j)}, where Ω represents an low-pass filter. We used a bilinear

interpolation filter for Ω. Aliasing can be inferred by subtracting the original x̂a image

from this interpolated one. To get the final estimate of aliasing in the ‘e’ channel, Υe, we

need to scale this difference by Ψae – the ratio of the filter transmittances of the ‘a’ and

‘e’ pixels – since the exposures of ‘a’ and ‘e’ pixels are different. We assume that the
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response of channel ‘e’ is proportional to the response of channel ‘a’ to the same incident

light with a coefficient. The estimated aliasing Υe is given by:

Υe(i.j) = Ψae [Ω ∗ {We(i, j)x̂a(i, j)} − x̂a(i, j)] , (22)

where Ψae = ‖Ce‖
‖Ca‖ . The anti-aliased image x̂e is obtained as:

x̂e(i, j) = Ω ∗ {We(i, j)y(i, j)} − Υe(i.j). (23)

Since the same sampling We and low-pass filter Ω are used, the aliasing component in

Ω ∗ {We(i, j)y(i, j)} and estimated aliasing Υe(i.j) are identical. The other anti-aliased

secondary filter images – x̂d, x̂f , x̂g – can be similarly computed. Figure 7 shows an

example that illustrates the efficacy of this anti-aliasing technique.

5.3 Demosaicing for Low Exposure Monochrome Images

In order to compute an HDR monochrome image, we need to first compute a low ex-

posure monochrome image. We can construct this low exposure image using only the 4

secondary filters which have lower exposure and also collectively cover the entire visible

spectrum (Figure 4). In Figure 3, we see that 4 different secondary pixels are arranged

diagonally about each ‘a’ pixel. Therefore, the monochrome value at each ‘a’ pixel can

be computed as the average of the measurements at the 4 neighboring secondary pixels:

L(i, j) = Wa(i, j){QD ∗ y(i, j)}, where

QD =

⎛
⎜⎜⎜⎜⎝

1
4

0 1
4

0 0 0

1
4

0 1
4

⎞
⎟⎟⎟⎟⎠ . (24)
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Note that by adding four pixels in a diagonal neighborhood, aliasing caused by half-pixel

phase shifts gets canceled out2. The values at the ‘a’ pixels are then interpolated for all

other pixels to yield the low exposure monochrome image x̂LEM :

x̂LEM(i, j) = L(i, j) + Ws{QD ∗ L(i, j)}

+ Wb{QH ∗ L(i, j)} + Wc{QV ∗ L(i, j)}, (25)

where Ws(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

1 (i, j) ∈ {d, e, f, g}

0 otherwise

, and QH = QT
V = [0.5 0 0.5].

5.4 Multimodal Image Reconstruction

As shown in Figure 3, the primary filters capture images at a higher sampling frequency

than the secondary filters. Thus, the spatial resolution of x̂a, x̂b, and x̂c is higher than that

of x̂d, x̂e, x̂f , and x̂g. Although the aliasing of images reconstructed from secondary filters

is reduced due to our anti-aliasing process, the usage of x̂LEM and x̂d, x̂e, x̂f ,x̂g slightly

degrades the spatial resolution of the reconstructed image. We now describe how each of

the different output images can be reconstructed with the least loss in spatial resolution.

5.4.1 Reconstruction of Monochrome Image

Monochrome image IM is reconstructed using just the data measured by the primary

filters to maintain high resolution:

IM = ZMA, (26)

where ZM =

[
1/3 1/3 1/3 0 0 0 0 0

]
.

2Note that this anti-aliasing method can only be used for a monochrome image computed from the low
exposure secondary filters and not for a color image computed from the same.
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5.4.2 Reconstruction of RGB Image

To construct the RGB image IRGB , we use the color reproduction matrix T′ (section 4.1.1)

and H (linear transformation from CIE XYZ to sRGB) to combine the information in the

x̂a, x̂b, and x̂c images computed using only the primary pixels (Eq.21):

IRGB = ZRGBA, (27)

where ZRGB =

⎡
⎢⎣ HT′ 0

0 0

⎤
⎥⎦.

5.4.3 Reconstruction of HDR Monochrome and HDR RGB Image

We combine the monochrome image IM and the anti-aliased low exposure monochrome

image x̂LEM to produce the HDR monochrome image IHDRM :

IHDRM = τ(ZHDRMA), (28)

where ZHDRM =

⎡
⎢⎣ 1/3 1/3 1/3 0 0 0 0 0

0 0 0 0 0 0 0 1

⎤
⎥⎦, and τ(·) is the processing that

combining the HDR image from different exposure images, and is based on the method

described in [9].

Similarly, we obtain the HDR RGB image IHDRRGB from the RGB image IRGB and

the low exposure RGB image that is obtained by multiplying the secondary filter images

by a color reproduction matrix T′′ and color space conversion H:

IHDRRGB = τ(ZHDRRGBA), (29)
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where ZHDRRGB =

⎡
⎢⎢⎢⎢⎣

HT′ 0

0 HT′′

0 0

⎤
⎥⎥⎥⎥⎦.

5.4.4 Reconstruction of Multispectral Image

For multispectral imaging, x̂a, x̂b, x̂c and the anti-aliased x̂d, x̂e, x̂f , x̂g images are used to

reconstruct the spectral reflectance distribution of an object using the method given by

Eq.9:

X = ZMSA, (30)

where ZMS =

⎡
⎢⎣ I7×7 0

0 0

⎤
⎥⎦, and I7×7 is 7 by 7 identity matrix.

6 Comparison with other Mosaics

The performance of demosaicing methods depends on the spatial layout and spectral re-

sponses of the color filters used, both of which vary from detector to detector. Moreover,

previous CFA mosaics [8][2] were not designed for controlling the trade-off of spatial

resolution to generate a variety of images. Therefore, a direct comparison of image qual-

ities is difficult to perform. Instead, Table2 shows a qualitative comparison between the

performances of our GAP mosaic, a previously proposed assorted pixel CFA [8] and a

previously proposed multispectral CFA [2]. Note that when the difference of exposures

for HDR imaging is disregarded in the case of assorted pixels, it is identical to the Bayer

mosaic [5]. For monochrome images, although there is fundamentally no spatial resolu-

tion difference between the three mosaics, the monochrome image of the GAP mosaic is

reconstructed from the ‘a’, ‘b’, and ‘c’ channels, which together cover all visible wave-

lengths (See Figure 4). Therefore, the GAP mosaic can reproduce monochrome images

more accurately than other CFAs. The GAP mosaic can also create HDR RGB images of
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Table 2: Comparison of the GAP camera with previous assorted pixels [8] and multispec-
tral CFA [2]. The shaded CFA offers the best quality image for each image type.
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the same resolution as the assorted pixel array. However, because the assorted pixel array

has 4 different exposures, it is more effective at extending dynamic range than the GAP

camera.

In summary, when high spatial resolution is necessary, the GAP camera offers images

with quality that is similar to, or better than, other CFA mosaics.

7 Experimental Results

7.1 Results for the CZP Chart

Figure 8(a) shows a synthesized Circular Zone Plate (CZP) image computed using a

diffraction-limited model of a lens with an f-number of 5.6 and 1.0μm pixel size (without
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Figure 8: The result of multimodal demosaicing for a CZP chart. (a) Ground truth (sim-
ulated with N = f/5.6, p = 1.0μm). (b) Demosaiced monochrome image. (c) Demo-
saiced RGB. (d) Demosaiced (anti-aliased) low-exposure monochrome image. (e) Demo-
saiced (anti-aliased) low exposure RGB image. (f) MTFs of ground truth and demosaiced
CZP images.

considering noise). This serves as the ground truth. Figures 8(b-e) show demosaiced im-

ages computed from a GAP mosaic image – (b) monochrome, (c) RGB, (d) low exposure

monochrome, and (e) low exposure RGB. Figure 8(f) shows MTFs of these demosaiced

images. The monochrome and RGB images computed using the primary filters are very

close to the ground truth. The low exposure monochrome image has an MTF of 0.1 at

0.1754fs, while the low exposure RGB image’s MTF is 0.1 at 0.1647fs. For standard

monochrome and RGB images this occurs at 0.2125fs. This demonstrates that our GAP

mosaic with multimodal demosaicing allows a user to control the trade-off between spatial

resolution and radiometric details of the output image.

7.2 Experiments with Multispectral Images

We also captured 31-band multispectral images (400-700nm, at 10nm intervals) of sev-

eral static scenes using a tunable filter (VariSpecTM Liquid Crystal Tunable Filter) and

a cooled CCD camera (Apogee Alta U260, 512 × 512 pixels). We have captured multi-

spectral images for a wide variety of objects and materials, including, textiles, skin, hair,
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Figure 9: Results for real scenes. (a,h) Ground truths (simulated with N = f/5.6,
p = 1.0μm). (b,i) GAP mosaic (raw) images. (c,j) demosaiced monochrome images.
(d,k) HDR monochrome images. (e,l) RGB images. (f,m) HDR RGB images. (g,n)
multispectral images and examples of reconstructed spectral reflectance distributions.
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Figure 10: Results for real scenes. (a) Ground truth (simulated with N = f/5.6, p =
1.0μm). (b) GAP mosaic (raw) image. (c) demosaiced monochrome image. (d) HDR
monochrome image. (e) RGB image. (f) HDR RGB image. (g) Multispectral image
and reconstructed spectral reflectance distributions. (h) Result of skin detection for RGB
Image by using simple correlation-based method. (i) Result of skin detection applied to a
multispectral image computed from the GAP image.

27



real and fake fruits and vegetables, candy, drinks, paints, etc. We believe this database

could be valuable to researchers working in areas related to multispectral imaging. The

database has been made publicly available at: http://www1.cs.columbia.edu/

CAVE/projects/gap_camera/.

The multispectral images were used to simulate images captured with a GAP mo-

saic. Figure 9 and 10 shows these as well as our multimodal demosaicing results for

two different scenes. For both scenes, the textures and colors of saturated regions in the

monochrome and RGB images become visible in the corresponding HDR images. As ex-

pected, one can see more detail in the HDR monochrome images than in the HDR RGB

images. We also experimented within skin detection using RGB image and multispectral

data. Figure 10(h) shows the result of skin detection using an RGB image by using a

simple correlation-based method. Figure 10(i) shows the result of skin detection applied

to multispectral images computed from GAP images (See Figure 10(g)). Note that the

scene shown in Figure 10 includes a real face (skin) on the right and a photo of the same

face (printed paper) on the left. As seen in Figure 10(h), these two faces (real and fake)

are difficult to distinguish using the RGB image – skin detection based on color analysis

finds both the faces although only one of them is real. In contrast, skin detection applied

to the multispectral image computed from the GAP image results in the desired result –

only the real face is found as pixels within it have the spectrum of real skin (see Figure

10(i)).

8 Conclusion

We have presented the concept of a generalized assorted pixel camera. We have devel-

oped a general framework for designing GAP cameras that can simultaneously capture

extended dynamic range and spectral resolution. We have also proposed a demosaicing
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algorithm that includes anti-aliasing for spectral channels that are under-sampled.

This algorithm has some limitations that we plan to investigate in future work. For

instance, when the primary pixels are saturated, anti-aliasing cannot be applied to the

secondary pixels and the spectral reflectance distribution cannot be fully reconstructed

in the saturated regions. Since the fabrication of an image detector is very expensive,

the results in this paper were generated using simulations done using real multispectral

images. Encouraged by our results, we are currently pursuing the fabrication of a GAP

detector chip.
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