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Abstract

Predictive models of gene regulation
Anshul Bharat Kundaje

The regulation of gene expression plays a central role in the development and function of a

living cell. A complex network of interacting regulatory proteins bind specific sequence

elements in the genome to control the amount and timing of gene expression. The abundance

of genome-scale datasets from different organisms provides an opportunity to accelerate

our understanding of the mechanisms of gene regulation. Developing computational tools

to infer gene regulation programs from high-throughput genomic data is one of the central

problems in computational biology.

In this thesis, we present a new predictive modeling framework for studying gene regula-

tion. We formulate the problem of learning regulatory programs as a binary classification

task: to accurately predict the the condition-specific activation (up-regulation) and repression

(down-regulation) of gene expression. The gene expression response is measured by microar-

ray expression data. Genes are represented by various genomic regulatory sequence features.

Experimental conditions are represented by the gene expression levels of various regulatory

proteins. We use this combination of features to learn a prediction function for the regulatory

response of genes under different experimental conditions. The core computational approach

is based on boosting. Boosting algorithms allow us to learn high-accuracy, large-margin

classifiers and avoid overfitting. We describe three applications of our framework to study

gene regulation:

• In the GeneClass algorithm, we use a compendium of known transcription factor



binding sites and gene expression data to learn a global context-specific regulation

program that accurately predicts differential expression. GeneClass learns a prediction

function in the form of an alternating decision tree, a margin-based generalization

of a decision tree. We introduce a novel robust variant of boosting that improves

stability and biological interpretability in the presence of correlated features. We also

show how to incorporate genome-wide protein-DNA binding data from ChIP-chip

experiments into the framework.

• In several organisms, the DNA binding sites of many transcription factors are unknown.

Hence, automatic discovery of regulatory sequence motifs is required. In the MEDUSA

algorithm, we integrate raw promoter sequence data and gene expression data to

simultaneously discover cis regulatory motifs ab initio and learn predictive regulatory

programs. MEDUSA automatically learns probabilistic representations of motifs and

their corresponding target genes. We show that we are able to accurately learn the

binding sites of most known transcription factors in yeast.

• We also design new techniques for extracting biologically and statistically significant

information from the learned regulatory models. We use a margin-based score to ex-

tract global condition-specific regulomes as well as cluster-specific and gene-specific

regulation programs. We develop a post-processing framework for interpreting and

visualizing biological information encapsulated in our models.

We show the utility of our framework in analyzing several interesting biological contexts

(environmental stress responses, DNA-damage response and hypoxia-response) in the bud-

ding yeast Saccharomyces cerevisiae. We also show that our methods can learn regulatory

programs and cis regulatory motifs in higher eukaryotes such as worms and humans. Several

hypotheses generated by our methods are validated by our collaborators using biochemical

experiments. Experimental results demonstrate that our framework is quantitatively and

qualitatively predictive. We are able to achieve high prediction accuracy on test data and



also generate specific, testable hypotheses.
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Chapter 1
Introduction

The complex behavior of cellular biological systems — including growth, reproduction,

and adaptation to environmental changes — derives from the molecular interactions of

thousands of genes and their products in a highly intricate and poorly understood network.

Understanding how this network operates and predicting its behavior are primary goals of

biology and have broad implications for science, medicine, and biotechnology.

The genomic information revolution of the last decade has made it possible to study

complex cellular networks from a global and data-driven perspective. We now have the

complete DNA sequences for scores of organisms, giving an increasingly detailed “parts

list” of the makeup of the cell and the structure of genes. High-throughput molecular assays

provide copious but noisy and incomplete data on the molecular state of the cell under

different experimental conditions.

In all organisms, the cellular network operates on a few well established general princi-

ples. Proteins, encoded by the DNA of the genome (genes), are translated from intermediate

messenger RNA molecules (mRNAs). The production of mRNA from the genome (tran-

scription) is controlled by regulatory proteins (transcription factors) that bind to the DNA in

special regions referred to as promoters. The transcription factors are in turn regulated by

complex pathways of molecular interactions in the cell. The switching on and off of genes is

one of the key methods that the cell uses for controlling its behavior and response to environ-

1
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mental changes. Many members of the transcriptional regulatory machinery, and to a lesser

extent the DNA sequences they bind to on promoters, are already described. We are only

beginning to discover how these parts work together. While only part of the picture, studying

these gene regulatory mechanisms — the interplay of mRNA expression (measured with

microarrays), regulators, and promoter sequences — has already emerged as an important

paradigm for dissecting molecular networks with machine learning methods [34, 39].

Machine learning approaches offer powerful new tools for using these data to make

predictions of the underlying structure of the network and its behavior, and developing these

techniques has become a central problem in computational biology [34, 39]. The ultimate

goal is to provide biologists with new computational tools to generate hypotheses and guide

wet lab experiments in an iterative process of prediction and testing.

1.1 Contributions

Our main contributions in this thesis are enumerated below.

• We present a predictive modeling framework, based on boosting algorithms for learn-

ing details of transcriptional regulation from heterogenous sources of high-throughput

genomic data. We integrate regulatory sequence data, DNA-binding data and microar-

ray expression data into a unified model that is based on biologically meaningful

assumptions. From a computational perspective, we present stabilized variants of

boosting algorithms that work well in the presence of meaningful, correlated features.

• Our models are quantitatively and qualitatively predictive. We show that it is possible

to learn prediction functions that are both accurate and qualitatively interpretable.

In machine learning, algorithms often tend to be evaluated primarily on the basis of

their statistical and computational performance. However, in an applied setting, it is

important to develop algorithms that are also able to generate well-defined testable

hypotheses. In this thesis, we develop new scores to rank and extract features from our
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models, that provide potential answers to specific biological questions. We introduce

a post-processing framework to extract and display interesting biological information.

• We introduce a novel algorithm called GeneClass to learn gene regulatory programs

from gene expression data and regulatory sequence data. Specifically, we model the

problem of learning regulatory programs as a binary classification task in which we

predict the up-regulation and down-regulation of genes in different sets of experimental

conditions. In contrast to most methods, GeneClass avoids grouping genes into static

clusters and is able to learn a single global model of gene regulation over all genes

and all experimental conditions. This approach allows genes to be coregulated with

different sets of genes in a context dependent manner. The prediction function learned

by GeneClass is context-specific. In order to predict the expression level of a gene in

an experiment, we need to represent the gene context and the experimental context.

We use regulatory sequence information such as known transcription factor binding

sites and high-throughput DNA binding data to represent the gene context. We use the

expression levels of regulatory proteins to represent the experimental (cellular) context.

The basic modeling assumption is that we should be able to predict the expression

level of any gene in any experimental condition by using the regulatory sequence of

the gene and the expression levels of regulatory proteins in that experiment. Thus,

using GeneClass we attempt to answer the most basic and often poorly understood

biological question - “Which regulatory proteins regulate which target genes through

which sequence elements under what conditions?” We specifically apply GeneClass

to learn regulatory programs relevant to environmental stress responses and DNA

damage stress responses in yeast.

• One limitation of GeneClass is that it relies on having information about regulatory

sequence motifs or binding targets of regulatory proteins. Unfortunately, in most

organisms very little is known about the specifics of DNA binding sites of regulatory
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proteins. Thus, we introduce MEDUSA (Motif Element Detection Using Sequence

Agglomeration), an algorithm that is not only able to learn regulatory programs but

also discover DNA binding sites de novo. The experimental context is once again

represented by the expression levels of regulatory proteins. However, MEDUSA

represents the gene context by its promoter sequence. We search through all possible

subsequences (k-mers) and gapped elements (dimers) in the promoter sequences of

all genes to discover probabilistic motifs that allow us to predict up/down expression

of target genes. Most motif discovery algorithms either use regulatory sequence

data alone or use gene expression data indirectly to cluster genes as a preprocessing

step. MEDUSA is able to elegantly integrate these two complementary sources of

information. We apply MEDUSA to various gene expression datasets of different

sizes in organisms such as yeast, worm and humans.

• In order to test the usefulness of our algorithms in the field, we used GeneClass

and MEDUSA to rigorously analyze a small gene expression dataset that probes the

response of yeast to hypoxia (low oxygen levels). Little is known about the regulators

of hypoxia stress response. Using our framework, we were able to decipher the

hypoxia regulome. We not only identified several known regulators and sequence

motifs but also discovered several new ones. Some of our hypotheses were validated

by our collaborators through biochemical experiments. Thus, we show that our

methods are able to decipher novel regulatory relationships even in the presence of

limited amounts of noisy data.

1.2 Outline

The outline of the thesis is as follows.

In Chapter 2, we start with a brief overview of the biology of gene regulation. We

describe the characteristics of the main functional elements in the cell such as DNA, RNA
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and proteins. We discuss key gene regulatory processes specifically focusing on the process

of transcription. We describe characteristics of and representations for DNA binding sites.

We introduce the main types of high-throughput assays and data types that we refer to in

this thesis.

In Chapter 3, we review several machine learning approaches used to study gene regula-

tion. We introduce our predictive modeling approach and show how we improve upon the

state of the art. Finally, we give an overview of boosting and alternating decision trees.

In Chapter 4, we present a novel classification-based algorithm called GeneClass for

learning gene regulatory programs from gene expression data and a candidate set of reg-

ulatory proteins and sequence motifs. We also show how to incorporate genome-wide

protein-DNA binding data into the GeneClass algorithm. In computational experiments

based on yeast environmental stress response and DNA damage datasets, we show that

GeneClass predicts up- and down-regulation on held-out experiments with high accuracy.

We explore a range of experimental setups related to environmental stress response, and

we retrieve important regulators, binding site motifs, and relationships between regulators

and binding sites that are known to be associated with specific stress response pathways.

We present a postprocessing framework for biological interpretation, including gene and

gene set analysis to reveal condition-specific regulatory programs and to suggest signaling

pathways. This chapter is based on work presented in [79], [80] and [62].

In Chapter 5, we present MEDUSA, an integrative method for learning motifs repre-

senting transcription factor binding sites by incorporating promoter sequence and gene

expression data. Like GeneClass, MEDUSA also produces a model of the transcriptional

control logic that can predict the expression of any gene in the organism, given the sequence

of the promoter region of the target gene and the expression state of a set of known or

putative regulatory proteins. We apply MEDUSA to various datasets of different sizes in

yeast, worm and human B-cells. We learn yeast motifs whose ability to predict differen-

tial expression of target genes outperforms motifs from a compendium of known binding
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sites and from a previously published candidate set of learned motifs. We also show that

MEDUSA retrieves many experimentally confirmed transcription factor binding sites. We

introduce a novel margin-based score to extract significant context-specific regulators and

motifs. This chapter is based on work presented in [78].

In Chapter 6, we present a specific case study where our collaborators validate some of

our regulatory hypotheses using biochemical experiments. We use GeneClass and MEDUSA

to study the oxygen regulatory network in the yeast (S. cerevisiae), using a small data set of

perturbation experiments that probe the response of yeast to hypoxia (low oxygen levels).

We assemble a global map of the oxygen sensing and regulatory network. We also identify

many DNA motifs that are consistent with previous experimentally identified transcription

factor binding sites. Our collaborators directly test a set of regulators predicted by MEDUSA

for the OLE1 gene that is specifically induced under hypoxia, by experimental analysis of

the activity of its promoter. In each case, deletion of the candidate regulator results in the

predicted effect on promoter activity, confirming that several novel regulators identified

by MEDUSA are indeed involved in oxygen regulation. This chapter is based on work

presented in [61].

Chapter 7 contains a brief summary of the thesis and concluding remarks. We provide a

discussion of some of the limitations of our framework and future challenges and extensions

to our current framework.



Chapter 2
Biology background

In this chapter, we start with a brief overview of the biology of gene regulation. We describe

the characteristics of the main functional elements in the cell such as DNA, RNA and

proteins. We discuss key gene regulatory processes specifically focusing on the process of

transcription. We describe characteristics of and representations for DNA binding sites. We

then introduce the main types of high-throughput assays and data types that we learn from.

2.1 Functional units in a living cell

The living cell is a complex system of interacting and tightly regulated biochemical entities.

The primary heritable, encoding unit is the genome which is enclosed within the nucleus in

eukaryotic cells. The genome is made up of a biopolymer known as deoxyribose nucleic acid

(DNA). DNA is a double stranded, linear, unbranched polymer. Each monomeric subunit

is known as a nucleotide. A nucleotide is made up of a pentose sugar molecule known

as deoxyribose, a nitrogenous base and a phosphate group. The most common structural

conformation of DNA known as B-DNA is a right-handed double helix (See Figure 2.1).

Two complementary strands of DNA run in opposite directions. Base-pairing between the

two strands stabilizes the structure. This base-pairing involves the formation of hydrogen

bonds between complementary bases of the nucleotides. The bases are of four types: adenine

7
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Figure 2.1: The structure and composition of DNA: Two representations of the double helix. On the left
the structure is shown with the sugar-phosphate backbones of each polynucleotide with the base pairs

involving hydrogen bonds. On the right the chemical structure for four base pairs is given. A base-pairs with
T, and G base-pairs with C. (Image taken from http://en.wikipedia.org/wiki/DNA)
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(A), cytosine (C), guanine (G) and thymine (T). Adenine pairs with thymine (A-T) and

guanine pairs with cytosine (G-C). The exact sequence of nucleotides in the genome and the

complementarity of base pairs (bp) is the fundamental property of DNA that allows it to

store, replicate and transfer information. DNA polymerases are enzymes that read off one

strand of DNA and exploit the complementarity to synthesize a new DNA molecule.

Ribose nucleic acid (RNA) is another polynucleotide similar to DNA but with two

differences. The sugar in an RNA nucleotide is ribose and RNA contains uracil (U) instead

of thymine (T). Also, most RNA molecules in their functional form are single stranded.

RNA molecules are less stable than DNA. Hence, they are generally upto a few thousand

nucleotides in length. RNA polymerases are enzymes that read off sections of DNA to make

complementary RNA copies. This process is known as transcription (See Figure 2.2 (A)).

RNA is the primary molecule that transfers biological information out of the genome.

The sequence of nucleotides in the genome encode various functional units. Genes

represent regions of DNA that are copied into various classes of small and large RNAs.

The messenger RNAs (mRNA) are a specific class of RNAs that are further decoded into

proteins which form the basic units of various sensing, regulatory and functional subsystems

in the cell. The process of decoding mRNA molecules into proteins is known as translation.

Proteins, like DNA, are biopolymers (rarely more than 2000 units in length) where the

monomeric subunits are called amino acids. There are 21 types of amino-acids. Specific

triplets of nucleotides known as codons encode specific amino acids. This is known as as the

genetic-code. The genetic code is partially degenerate i.e. multiple codons can code for the

same amino acid. This redundancy allows genetic polymorphisms and resistance to genomic

instability due to mutations. In most cases, the entire sequence of a protein-coding gene

does not get translated. The portions of the gene that code for the protein are called exons

and the intermediate regions are known as introns. Introns are spliced out of the mRNA

molecules before their translation to proteins.

The transfer of genetic information from the nucleotide sequence of a gene to the
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nucleotide sequence of RNA or the amino acid sequence of a protein is termed gene

expression (See Figure 2.2 (A)). However, for the purpose of this thesis, gene expression

primarily refers to the process of transcription.

2.2 Regulatory sequences in the genome

Figure 2.2: Regulation of gene expression: (A) shows the processes involved in eukaryotic gene
expression namely transcription and translation (Image taken from 2001 Sinauer Associates Inc.) (B) shows
the structure of a typical eukaryotic transcriptional system. The core promoter consists of the TATA box and

the transcription start site. RNA polymerase and general transcription factors (GTFs) bind to this area.
Activators and repressors bind to sequence-specific binding sites in the proximal promoter as well as

enhancers and silencers which are distal regulatory regions in the genome. (Image modified from
http://scienceblogs.com/pharyngula/2007/01/basics_what_is_a_gene.php)

Living cells are extremely robust and adaptable systems. The presence/absence of

external/internal perturbation signals such as temperature and chemical concentrations,

is sensed and transduced by several interconnected signal transduction pathways. These

signaling pathways are generally cascades of interacting proteins and the signals are various

chemical modifications that change the conformational structure and hence the activity

of the proteins. The signaling cascades ultimately converge on the DNA by modifying

specific DNA binding proteins known as transcription factors that regulate the process of
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gene transcription. Transcription factors regulate the activation and/or repression of gene

expression by binding to sequence elements (motifs) on DNA. The DNA sequence thus also

encodes a plethora of regulatory information. The regulatory sequence units tend to localize

to certain regions of the genome.

Promoters are regulatory sequence-rich regions which are proximal to genes. Promoters

of genes that encode proteins have three identifying characteristics (See Figure 2.2 (B)).

A transcription start site, the TATA box or other initiation regions and transcription factor

binding sites. The typical length of a core promoter (containing the start site and the TATA

box) is approximately 100 bp. In lower eukaryotes such as the yeast S. cerevisiae and the

worm C. elegans, binding sites for transcription factors extend upto 1000 bp. upstream of

the transcription start site. This is typically the length of the entire promoter. However, in

higher eukaryotes such as mammals, promoter sequences can sometimes be as long as 5000

bp. Recent studies which are part of the ENCODE project [2] have shown that transcription

factor binding sites are also abundant downstream of the transcription start site upto and

including the first intron. The TATA box or other initiation elements are structural elements

which define a minimal promoter required for recruiting RNA polymerase. In higher

eukaryotes, the TATA box is normally around 30 bp upstream of the transcription start site.

These initiation elements are sufficient for formation of the basal transcriptional apparatus

which allows a basal transcription activity. A regulated transcription (upregulation or

downregulation) requires the sequence-specific transcription factors to bind to the regulatory

sequences in the genome.

Enhancers, silencers and insulators are regulatory regions that can be several thousands

of base pairs away from the genes they affect. Enhancers and silencers typically contain

clusters of DNA-binding motifs that affect transcription independent of their orientation and

position.
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2.3 Elements of transcriptional regulation

The essential elements of regulation at the level of transcription involve:

Cis regulatory sequences: Transcription factors tend to bind sequence specific regulatory

motifs in the proximal promoters of genes or in distal enhancers and silencers. In

higher eukaryotes such as mammals, these cis elements are also abundantly found

within the transcribed region. Transcription factor binding to these cis elements can

have an activating or inhibiting effect on transcription. The DNA binding sites for

sequence-specific transcription factors are usually around 3-8 base pairs in length.

Many transcription factors have dimeric DNA binding domains. The symmetry of

the DNA binding domain of the protein is often reflected in the corresponding DNA

binding site. Also, several transcription factors tend to bind DNA in the form of dimers

or higher-order structures. Hence, the dimer binding sites are commonly arranged

either palindromically, in direct repeats or inverted repeats. The distance between and

the nature of the bases in the dimeric binding sites plays an important role. Changes

in distance by even a few base pairs can cause a loss in cooperativity. Another aspect

of multimeric cis regulatory motifs is the formation of heterodimers. This generally

occurs when different interacting transcription factors collaboratively bind DNA.

Concentration of trans-acting transcription factors: The presence of a transcription fac-

tor binding site in the promoter or enhancer of a gene is not sufficient to activate

or repress it. The transcription factor itself must be in its active conformation and

must be present in sufficient concentration. The concentration of transcription factors

affects the transcription rate in a non-linear fashion. Transcription factors tend to

bind DNA stochastically. They can bind different sequence elements with different

affinities. When a transcription factor is present in high concentrations, low affinity

binding sites can substantially affect gene expression. In most cases, it is difficult to

measure the exact concentration of active transcription factors. In this thesis, we use
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the mRNA expression levels of transcription factors and upstream signaling molecules

as a surrogate for their true activity.

2.4 Characteristics and representation of cis regulatory

motifs

An important property of transcription factors is that they do not bind sequence elements

in a binary manner. The affinity of a transcription factor to a particular sequence element

is determined by the types and positions of the nucleotides in the sequence motif. Some

nucleotides in some positions are generally more important than others. The degeneracy of

a cis regulatory motif is captured by using a consensus sequence or a position independent

probabilistic representation known as a position-specific scoring matrix (PSSM).

The consensus sequence of a DNA binding site is obtained by aligning known variants

of the site. It represents an idealized sequence motif that represents the predominant bases

at each position. The following IUPAC letters are used to represent ambiguity in DNA

sequences:

R = G,A (purine) S = G,C H = A,C,T

Y = T,C (pyrimidine) W = A,T V = G,C,A

K = G,T (keto) B = G,T,C N = A,G,C,T

M = A,C (amino) D = G,A,T

While a consensus sequence (See Figure 2.3) is a compact representation of a binding

site it provides little insight into the quantitative conservation of base pairs at each position

in a DNA binding site. Also, the construction of a consensus sequence is relatively arbitrary

since it is not clear what fraction of degeneracy warrants the use of a particular consensus

symbol.

A position-specific scoring matrix (PSSM) is a richer probabilistic representation for

a set of aligned sequence elements. It captures relative preference for the four base pairs
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at each position. The basic assumption is that the probability of observing a base pair

at a particular position in the sequence motif is independent of all other positions. This

assumption has been shown to be not entirely accurate [17], [76]. However, it is generally

difficult to reliably learn more complex models that involve positional dependencies due

to the the limited number of degenerate observations of a binding site. For a binding site

of length k, a PSSM P is a k X 4 matrix that assigns a probability pi(x), for each position

i = 1 . . . k and nucleotide x ∈ {A,C,G,T }. These probabilities can be obtained from an

aligned set of sequences by calculating the normalized fraction of every nucleotide at every

position. A typical and convenient visualization of a PSSM is via a PSSM logo [103] as

shown in Figure 2.3. The uncertainty at each position i is given by the entropy defined as

H(i) = −
∑

x∈{A,C,G,T } pi(x) log2 pi(x). The information at the position is represented by the

decrease in uncertainty i.e. R(i) = 2 − H(i). The height of each base in the logo is given

by pi(x)R(i). The bases are then stacked on top of each other in increasing order of their

frequencies and plotted. An example is shown in Figure 2.3.

In order to search for hits of a binding site of length k in a longer sequence, we score all

overlapping subsequences of length k using a log-odds score. For a subsequence a1, a2 . . . ak

where ai ∈ {A,C,G,T }, and a PSSM as defined above, the log-odds score is defined as∑
i=1...k log2

(
pi(x = ai)/pbg(x = ai)

)
. The background probability of nucleotide x is given by

pbg(x). This log-odds score is compared to some threshold θ to determine if the subsequence

is a hit. Determining this threshold accurately is a challenging task. Most motif discovery

methods determine this threshold by optimizing for false positives or false negatives. How-

ever, this is difficult to determine since true target sites of a DNA binding protein are rarely

available. In MEDUSA, we are able to automatically optimize this threshold.
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Figure 2.3: Mathematical representations of a DNA binding site: The figure shows a set of aligned
sequences and their corresponding representations as a consensus sequence, position-specific scoring matrix

and a PSSM logo
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Figure 2.4: DNA microarrays and ChIP-chip assays: (A) shows a schematic overview of the process of
gene expression measurement using dual-channel cDNA microarrays (Image modified from

http://en.wikipedia.org/wiki/DNA_microarray) (B) shows workflow overview of a ChIP-chip assay.
(Image taken from http://en.wikipedia.org/wiki/ChIP-on-chip)

2.5 High-throughput genomic data

DNA microarrays [48] allow global and parallel measurements of cellular activity. Microar-

rays are typically used to measure genome-wide gene expression profiles (gene expression

microarrays). They can also be used to simultaneously measure the affinity of transcription

factors to promoter regions of all genes in a genome. Below is a brief description of some of

the high-throughput technology that is referenced in this thesis.

Gene Expression Microarrays: A DNA microarray [127] is a collection of microscopic

DNA spots. The spots contain probes for single genes or gene products, arrayed

on a solid surface by covalent attachment to chemically suitable matrices. DNA

microarrays are based on the process of hybridization which is a process by which

a DNA or RNA strand binds to its unique complementary strand. Qualitative or

quantitative measurements with DNA microarrays utilize this selective nature of DNA-

DNA or DNA-RNA hybridization under high-stringency conditions and fluorophore-
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based detection. DNA arrays are most commonly used for gene expression profiling

i.e. monitoring expression levels of thousands of genes simultaneously.

The two most common DNA microarrays are spotted arrays and oligonucleotide

arrays. In spotted arrays, the probes are typically cDNA (DNA that obtained from

reverse-transcribing mRNA). This type of array is hybridized with cDNA from two

samples to be compared (e.g. normal vs. cancer) that are labeled with two different

fluorophores (typically red and green). The samples can be mixed and hybridized to

one single microarray that is then scanned, allowing the genome-wide visualization

and quantification of up-regulated and down-regulated genes. The degree of up or

down regulation of a gene in an experiment is typically displayed by varying intensities

of red or green respectively. In oligonucleotide arrays, the probes are designed to

match parts of the sequence of known or predicted mRNAs. These microarrays give

estimations of the absolute value of gene expression and therefore the comparison of

two conditions requires the use of two separate microarrays.

Typically, a gene expression dataset consists of multiple microarray experiments

represented as a matrix of expression fold changes in log scale, where each row in the

matrix represents a gene and each column represents a single microarray experiment

for spotted, dual-channel arrays or a comparison of two microarray experiments for

oligonucleotide, single-channel arrays (See Figure 2.4 (A)).

Protein-DNA binding arrays (ChIP chips): Chromatin immunoprecipitation (IP) [126]

is an in-vivo technique used to determine whether DNA binding proteins such as

transcription factors bind to a particular region on the genome. DNA-bound proteins

in living cells are cross-linked using formaldehyde fixation to the DNA sequences

to which they are bound. The cells are lysed and sonicated to break the DNA into

fragments. The protein-DNA complexes are then immunoprecipitated using an an-

tibody specific for the protein (See Figure 2.4 (B)). The fragments are then allowed
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to hybridize to DNA microarrays. Each spot on the microarray covers a genomic

region of interest such as the promoter region of a particular gene. For each genomic

region, the protein-DNA binding affinity is generally reported as the log intensity ratio

of an IP-enriched channel versus a background genomic DNA channel. ChIP-chip

technology has been used to measure the genome-wide binding profiles of most yeast

transcription factors [42, 69].



Chapter 3
Machine learning approaches to modeling

gene regulation

In this chapter, we present a review of a few machine learning approaches used to study

gene regulation. We introduce our predictive modeling approach and show how we improve

upon the state of the art. Finally, we give an overview of boosting and alternating decision

trees.

3.1 Related methods

Due to the complexity of high-throughput genomic data and limited biological understanding

of the underlying regulatory network, the first main challenge in applying machine learning

to study gene regulation is deciding how to formulate the problem as a learning task.

The first and still most widely used method of learning about gene regulation from mRNA

expression data is the clustering of genes by their expression profiles. Hierarchical clustering

of gene expression profiles was introduced a decade ago [27], followed by numerous papers

proposing alternate clustering algorithms and thousands of studies reporting the results

of gene cluster analysis. From a machine learning perspective, clustering views the gene

expression matrix obtained by measuring genes across multiple conditions as a set of “row

19
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Figure 3.1: Use of expression data in clustering, Bayesian networks, and GeneClass/MEDUSA: (A)
Clustering considers rows of the expression matrix, representing expression profiles for genes, and computes
pairwise similarities between rows. The pairwise similarities are used to produce a set of gene clusters. (B)

Bayesian networks treat each column of the expression matrix, representing the expression levels of all genes
in a particular experiment, as the joint observation of thousands of gene random variables. Joint expression
observations are modeled probabilistically to determine a model that maximizes the likelihood (or a related

Bayesian objective function) of the data. (C) In GeneClass and MEDUSA, every differentially expressed target
gene-experiment example is a separate training example, represented by sequence data (the gene’s promoter
sequence) and regulation expression data (the expression states of regulators in the experiment). We discover
sequence motifs and select regulators that jointly help predict target expression across the entire training set.

The regulatory program can then be used to predict up/down target gene expression in held-out data.
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vectors” (Figure 3.1(A)), and makes use of the strong correlation structure between rows

in order to find clusters. The biological purpose of clustering is the expectation that genes

with correlated expression patterns may be co-regulated. In an important study establishing

a link between co-expression and co-regulation, Tavazoie and colleagues [117] showed

that common motifs could be found in the promoters of co-clustered genes, yielding a

clustering-based method for discovering putative cis regulatory elements. Numerous motif

discovery algorithms based on this “cluster-first” approach – that is, first clustering genes

based on expression profiles, annotations, or both, and then looking for overrepresented

patterns in the promoters of genes in each cluster – have since been proposed, including

MEME [5], Consensus [46], Gibbs Sampler [67], AlignACE [53] and many others.

Despite its popularity, clustering is widely understood to have limitations, both for

discovering regulatory motifs and more generally for modeling gene regulation. A recent

comment on the challenges of scaling to human promoters describes the following difficulties

[35]: “correlation between clusters and motifs is not a one-to-one relationship [20]; often

many genes in a cluster do not contain any known motif, and not all genes that contain a

motif belong to the cluster from which it was derived. Furthermore, motif combinatorics

could not be easily deduced. For instance, two motifs may be derived from a cluster either

because they truly synergize in regulating the cluster’s genes, or simply because they form

alternative regulatory programs that converged onto a similar pattern [92].” More generally,

clusters are static: they imply a regulatory model where co-clustered genes are controlled by

the same set of regulators across all experiments. Static clusters do not represent context-

specific regulation, i.e. a model where different sets of genes are co-regulated by different

regulators, as mediated by different DNA motifs, under different experimental conditions.

One approach to the context-specificity problem of clustering is the development of

biclustering algorithms (reviewed in [116]). Biclustering attempts to find blocks of genes and

experiments with a coordinated expression response, though the notion of a bicluster is not

as well defined as a cluster [116]. An important advance to address the context-specificity
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problem in modeling gene regulation came from the machine learning community, when

Friedman and colleagues followed by other groups applied Bayesian networks, also called

probabilistic graphical models, to this problem domain [33,44,86]. In the classical Bayesian

network formulation, every “column vector” or experiment of the gene expression matrix

is a joint observation of thousands of random variables (genes), and the goal is to find the

structure of a probabilistic network that best accounts for the conditional dependencies

and independencies of these variables (Figure 3.1(B)). These approaches had encouraging

successes at retrieving pieces of known regulatory networks in yeast [86]. There have

also been non-Bayesian approaches that construct network models based on the statistics

of “column vectors” of the expression matrix, in particular, methods based on mutual

information (e.g. [6,87]). Other authors have tried to learn explicit parameterized models

for pieces of the regulatory network by fitting linear models to the training data [25, 134].

More recently, there have been several efforts to incorporate the advantages of clustering

– e.g. a cluster of genes gives a stronger statistical signal than a single gene, standard motif

discovery algorithms can be applied to clusters of genes – within a probabilistic graphical

modeling framework, creating a hybrid of the data views in Figure 3.1(A) and (B) where

cluster assignment is modeled as a hidden variable. One such hybrid approach is the module

networks algorithm of Segal et al. [104], which partitions genes into clusters or “modules”,

each of which is assigned a set of regulators that control the module genes in a condition-

specific manner. In this setting, the assignment of genes to clusters is still static, but the

model proposes an explanation for the cluster’s variation in expression across conditions in

terms of the activity of regulators. Global regulatory models that integrate gene expression

data and promoter sequence data have been relatively rare. There have been two approaches

that conceptually try to reverse the traditional flow of information from clusters to motifs.

One approach, due to Beer and Tavazoie [10], clusters genes, learns cluster-specific motifs by

standard motif-discovery methods, and then learns a Bayesian network model to assess how

well a gene’s cluster membership can be predicted by the motif content of its promoter. The
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second approach, due to Segal et al. [105], uses a technically more sophisticated algorithm

called probabilistic relational models to learn clusters of genes whose shared expression

patterns are also explained by shared motifs; the algorithm is seeded by database motifs,

though the motifs may be re-estimated based on the data in the course of training the model.

Most recently, in the special case of time series expression data, Ernst et al. [29] have

proposed a probabilistic model that induces a temporally-organized hieararchical clustering

of genes, where bifurcations of genes that go up or down at specific time points are explained

by shared motifs or ChIP chip occupancy data. There have been attempts to generalize

beyond the static cluster assumption, for example by allowing overlapping clusters via

probabilistic assignments, but statistically these models do not yet seem to perform as well

as the static models [7].

As structure learning approaches become more complex and attempt to integrate multiple

kinds of noisy data, a few general comments are in order. First, learning complex structure

from limited data – at best a few 100 microarray experiments, and typically much fewer – is

statistically problematic. The key challenge is to avoid overfitting, i.e. the scenario where

too complicated a model is fit to the training data and fails to generalize to new (test) data.

Second, if the goal is to learn the “true” structure (network, modules, etc.), in most cases

there is no gold standard by which to evaluate success. While one can evaluate how well a

particular structure learning algorithm performs on simulated data sampled from a known

model (e.g. [112]), it is more difficult to assess how well the model assumptions reflect the

underlying biology in real data. Third, recent structure learning work on gene regulatory

models has incorporated a cluster or modular assumption in order to gain statistical power,

but in virtually all cases, this has meant relying on static clusters.
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3.2 Our approach: Predictive modeling of gene regulation

We propose a new algorithmic approach for learning and interpreting predictive models of

gene regulation. In the context of this thesis, a predictive model is one that accomplishes

two goals. First, the model represents a regulatory program that predicts the differential

expression of target genes in terms of biologically meaningful regulatory inputs, including

the context-specific expression of transcriptional regulators and signal transducers and the

presence of shared motifs in the regulatory sequences of target genes. Therefore, rather than

learning a network or a set of clusters/modules, we are learning a prediction function, and

we view the learning task as a prediction problem rather than a model selection problem.

Second, the model should not only be able to make quantitative predictions, but it should

make accurate predictions on data not seen in training (test data). The key issue is to use a

learning strategy that avoids overfitting in the high-dimensional feature space of potential

regulators and sequence motifs and in the presence of noisy gene expression data. Our

strategy is based on boosting, a technique from statistical learning theory that has empirically

shown resistance to overfitting in noisy and high-dimensional feature spaces.

The core of our approach are two novel algorithms called GeneClass [79] — which

learns to predict gene regulatory response from regulatory sequence and expression data —

and MEDUSA [78], which additionally discovers motifs representing transcription factor

binding sites. The inputs to the GeneClass learning algorithm are the gene-specific regulatory

sequences — represented by the set of binding site patterns they contain (“motifs”) — and

the experiment-specific expression levels of regulators. The output is a prediction of the

expression state of the regulated gene. In MEDUSA, the binding site motifs are learned

from the raw promoter sequence while building the prediction function for differential

expression. Rather than trying to predict a real-valued expression level, we formulate the

task as a binary classification problem, that is, we predict only whether the gene is up- or

down-regulated. This reduction allows us to exploit modern and effective classification

algorithms. GeneClass and MEDUSA use stabilized variants of the Adaboost learning
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algorithm with a margin-based generalization of decision trees called alternating decision

trees (ADTs). Boosting, like support vector machines [120], is a large-margin classification

algorithm that performs well for high-dimensional problems. We evaluate the performance

of our method by measuring prediction accuracy on held-out test data, and we achieve very

good classification results in this setting.

Our approach uses expression data in a significantly different way than previous ap-

proaches like clustering and Bayesian networks, as illustrated in Figure 3.1. Instead of

computing correlations between rows of the expression matrix, as in clustering, or viewing

every column of the matrix as a joint observation of thousands of gene variables, as in

Bayesian networks, in the GeneClass/MEDUSA approach, every differentially expressed tar-

get gene example is a training example. We learn to predict the up/down expression of these

training examples by using both regulatory sequence data and the expression of regulators.

This way of using expression data and integrating sequence data allows us to learn from a

very large training set, typically consisting of 10,000s of differentially expressed examples.

Moreover, because we use biologically meaningful inputs for learning regulatory programs,

we can also analyze the learned model to extract biologically meaningful information and

to derive specific hypotheses about gene regulation. Computational analysis of regulatory

programs learned by GeneClass and MEDUSA can generate networks showing connections

from regulators and targets and among regulators or define “modules” of similarly regulated

target genes.

3.3 Introduction to Boosting algorithms

Boosting is a meta-algorithm that is used to create a highly accurate prediction rule known

as a “strong” hypothesis by combining several “weak” hypotheses, each of which is only

slightly better than a random predictor.
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3.3.1 Adaboost: An adaptive Boosting algorithm

Figure 3.2: A schematic overview of Adaboost

The underlying classification algorithm that we use in GeneClass and MEDUSA is

Adaboost, introduced by Freund and Schapire [32]. Adaboost is an adaptive, iterative

boosting algorithm that learns a strong hypothesis (rule) as a linear combination of weak

hypotheses (rules) obtained by minimizing an exponential loss function at each iteration.

For binary prediction problems, Adaboost learns from a training set that consists of m

pairs (x1, y1), (x2, y2), . . . , (xm, ym), where xi corresponds to the features of a (gene,experiment)

example and yi ∈ {−1,+1} is the binary (up or down) label to be predicted. Adaboost main-

tains a weight distribution over the examples i.e. it assigns a non-negative real value wi

to each example (xi, yi). Given a set of weak rules {h}, at each iteration t of the boosting

process, the weak learner is applied to the training set with weights wt
1, . . . ,w

t
m and produces

a weak prediction rule ht(x) that maps x to {0, 1}. Each weak rule ht(x) is required to have a

small but significant correlation with the labels y when measured using the current weighting.

After the function ht(x) is generated, the example weights are changed so that the weak
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predictions ht(x) and the labels y are de-correlated. The weak learner is then called with

the new weights over the training examples and the process repeats. Finally, one takes a

linear combination of all the weak prediction rules to obtain a real-valued strong prediction

function or prediction score F(x). The strong prediction rule is given by sign(F(x)) (See

Figure 3.2).

Thus, after T iterations

FT (x) =

T∑
t=1

αtht(x) (3.1)

where the linear coefficients αt can be positive or negative indicating the contribution

of the weak rule ht to the positive or negative class respectively. Weak rules are known as

abstaining weak rules if they abstain from contributing to the prediction score FT (x) of an

example x when the weak rule evaluates to “false” for that example.

We now describe the details of obtaining ht and calculating αt and wi at each iteration.

At iteration T , the exponential loss function to be minimized is given by

LT =

m∑
i=1

exp (−yiFT (xi)) (3.2)

=

m∑
i=1

exp

−yi

T∑
t=1

αtht(xi)

 (3.3)

=

m∑
i=1

exp

−yi

T−1∑
t=1

αtht(xi)

 . exp (−yiαT hT (xi))

 (3.4)

=

m∑
i=1

wi. exp (−yiαT hT (xi)) (3.5)

where wi represents the weight of each example xi at iteration T − 1 and is given by

wi = exp(−yi
∑T−1

t=1 αtht(xi)). Let us define W0(hT ) =
∑

i:hT (xi)=0 wi i.e. the sum of weights of

all examples on which the hT abstains (hT (xi) = 0). Similarly, W+(hT ) =
∑

i:hT (xi)=1,yi=1 wi,

represents the sum of all positively labeled examples for which hT (xi) = 1. W−(hT ) =∑
i:hT (xi)=1,yi=−1 wi, represents the sum of all negatively labeled examples for which hT (xi) = 1.
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The loss function can thus be simplified as:

LT = W0(hT ) + W−(hT ). exp(αT ) + W+(hT ). exp(−αT ) (3.6)

Solving for α, L is minimized when

αT =
1
2

ln
(
W+(hT )
W−(hT )

)
(3.7)

Substituting in Eq. 3.6 we get

LT = W0(hT ) + 2
√

W+(hT ).W−(hT ) (3.8)

Hence, Adaboost begins by initializing the weights of all m examples to 1/m.

For any weak rule h, we define

W0(h) =
∑

i:h(xi)=0

wi

W+(h) =
∑

i:h(xi)=1,yi=1

wi

W−(h) =
∑

i:h(xi)=1,yi=−1

wi

At every iteration t, the weak learner evaluates the loss function given by L(h) = W0(h) +

2
√

W+(h).W−(h) for the entire set of weak rules {h} and picks the weak rule ht with the

lowest loss. The coefficient for this weak rule is given by αt = 1
2 ln

(
W+(ht)
W−(ht)

)
. The weights of

the examples are then updated using wi = exp(−yiFt−1(xi)).

Intuitively, at each iteration Adaboost increases the weights of examples misclassified

by the prediction function and decreases the weights of examples correctly classified. In the

following iteration, the weak learner is able to focus on the hard-to-classify examples and

pick a weak rule accordingly.

One can prove that if the weak rules are all slightly correlated with the label, then the
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strong rule learned by Adaboost will have a very high correlation with the label — in other

words, it will predict the label very accurately. Freund and Schapire [100] prove that the

training error at iteration T has an upper-bound given by

training error ≤ exp

−2
T∑

t=1

(1/2 − εt)2

 (3.9)

where εt is the training error (fraction of misclassified training examples) of weak rule ht.

This shows that the training error drops exponentially fast. Adaboost has also been shown to

have a bounded generalization error. It has been observed that the test error of the strong

rule (percentage of mistakes made on test examples) continues to decrease even after the

training error (fraction of mistakes made on the training set) reaches zero. This behavior has

been related to the concept of a “margin”, which is simply the value yF(x) [102]. While

yF(x) > 0 corresponds to a correct prediction, yF(x) > a > 0 corresponds to a confident

correct prediction, and the confidence increases monotonically with a. The performance

of Adaboost depends primarily on the amount of training data. It also depends on the

hypothesis space (set of weak rules). If the rules are too complex, Adaboost can overfit the

training data.

3.3.2 Alternating decision trees

In machine learning, decision trees are commonly used to represent prediction rules that

involve logical combinations of features. An Alternating Decision Tree (ADT) is a margin-

based generalization of decision trees [31]. As shown in Figure 3.3 (A), an ADT consists of

alternating levels of prediction nodes and splitter nodes. In terms of Adaboost, each splitter

node represents a weak rule ht and the associated prediction node below it represents its

coefficient αt. The tree is seeded with a prediction node α0 that corresponds to the coefficient

of a generic weak rule that always evaluates to 1. At every boosting iteration, a new splitter

node together with its prediction node is introduced. The splitter node can be attached to
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Figure 3.3: Alternating decision trees: ADTs are a margin-based generalization of decision trees that
consist of alternating layers of splitter nodes (representing weak rules) and prediction nodes (representing the
coefficient of each weak rule). Each path in the ADT consists of a conjunction of weak rules. (A) shows an
ADT that uses abstaining weak rules which contribute to the prediction function only if the condition in the
corresponding splitter node evaluates to “yes”. (B) shows an ADT that uses non-abstaining weak rules that

contribute different values to the prediction function depending on the “yes” or “no” outcome of the condition
in the corresponding splitter node.
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any previous prediction node, not only leaf nodes. Hence, every splitter node is followed by

a single prediction node. However, any prediction node can be followed by more than one

splitter node.

Since the weak learner has to pick a weak rule and its position in the tree at every

iteration, the search space grows according to the tree structure. The weak rule ht(xi) can

evaluate to 1 only for examples xi that can reach the corresponding splitter node, and 0 for

all other examples. A prediction node is said to be reachable if all weak rules in the path

from the prediction node to the root node evaluate to 1. In order to calculate the value of the

prediction function F(xi) for an example xi, we sum the values in all the prediction nodes

that are reachable. The predicted label for an example xi is given by sign(F(xi)). Intuitively,

each splitter node in the tree consists of a question of the form “Is ht(xi) = 1”. If an example

answers the question in the affirmative i.e. “yes” and the node is reachable, we add the value

of the corresponding prediction node else we add nothing. Such weak rules are known as

abstaining weak rules, since they abstain from contributing to the prediction score of an

example if the condition in the corresponding splitter node is not satisfied by that example.

As shown in Figure 3.3 (B), ADTs can also contain non-abstaining weak rules. In this

case, every splitter node is followed by two prediction nodes representing the “yes” and “no”

outcomes of the condition. A non-abstaining weak rule contributes different values to the

prediction function depending on whether the condition in the splitter node is satisfied or

not.

A non-abstaining weak rule in a splitter node in the tree is equivalent to a pair of

abstaining weak rules ht and ĥt, such that ĥt = 1 − ht for all examples that can reach that

splitter node and ĥt = 0 otherwise. The two prediction nodes represent two coefficients αt

and βt for ht and ĥt respectively.
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Analogous to Equation 3.5, the loss function at iteration t can be expressed as

Lt =

m∑
i=1

wi. exp
(
−yiαtht(xi) + βtĥt(xi)

)
(3.10)

= W((ht = 0)&(ĥt = 0)) + W−(ht).eαt + W+(ht).e−αt (3.11)

+W−(ĥt).eβt + W+(ĥt).e−βt (3.12)

where W((ht = 0)&(ĥt = 0)) is the sum of weights of all examples that cannot reach the

splitter node. W±(ht) represent the sum of the weights of all examples with labels ±1 that

reach the splitter node and satisfy ht. Similarly, W±(ĥt) represent the sum of the weights of

all examples with labels ±1 that reach the splitter node and satisfy ĥt.

Solving for αt and βt, Lt is minimized when

αt =
1
2

ln
(
W+(ht)
W−(ht)

)
(3.13)

βt =
1
2

ln
(
W+(ĥt)

W−(ĥt)

)
(3.14)

Substituting back into Equation 3.12, we get

Lt = W((ht = 0)&(ĥt = 0)) + 2
√

W+(ht).W−(ht) + 2
√

W+(ĥt).W−(ĥt) (3.15)



Chapter 4
Learning regulatory programs: GeneClass

In this chapter, we present a novel classification-based algorithm called GeneClass which

integrates regulatory sequence information and expression data to learn a genome-wide regu-

latory program that accurately predicts up/down regulation of genes in different experimental

conditions. This chapter is based on work presented in [79], [80] and [62].

4.1 Introduction

We present an algorithm called GeneClass that learns a prediction function for the regulatory

response of genes under different experimental conditions. The inputs to our learning

algorithm are the gene-specific regulatory sequence features – represented by the set of

binding site patterns they contain (“motifs”) or transcription factor occupancy data from

ChIP-chip assays – and the experiment-specific expression levels of a candidate set of

regulatory proteins. The output is a prediction of the expression state of the regulated gene.

Rather than trying to predict a real-valued expression level, we formulate the task as a

binary classification problem, that is, we predict only whether the gene is up- or down-

regulated. This reduction allows us to exploit modern and effective classification algorithms.

GeneClass uses the Adaboost learning algorithm with a margin-based generalization of

decision trees called alternating decision trees (ADTs). We present a robust variant of the

33
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Adaboost algorithm that increases stability and computational efficiency, yielding a more

scalable and robust predictive model. The main idea in our stabilized boosting approach is

to allow a set of correlated features, rather than single features, to be included at nodes of the

tree. In regular boosting, biologically important features that are correlated with the single

best feature are decorrelated in the next round of boosting and may fail to be captured by

the model. Stabilized boosting retains these correlated features, so that in post-processing

we obtain more stable ranked lists of features.

In computational experiments based on an yeast stress response and DNA damage

datasets, we show that GeneClass predicts up- and down-regulation on held-out test data

with high accuracy. We explore a range of experimental setups, and we retrieve important

regulators, binding site motifs, and relationships between regulators and binding sites that are

known to be associated to specific response pathways. Our method thus provides predictive

hypotheses, suggests biological experiments, and provides interpretable insight into the

structure of genetic regulatory networks. Finally, we present a detailed postprocessing

framework for biological interpretation, including individual and group target gene analysis

to reveal condition-specific regulatory programs and to suggest signaling pathways.

4.2 Related methods

Among recent statistical approaches, the most revelant method related to GeneClass is the

REDUCE algorithm of Bussemaker et al. [20] for regulatory element discovery. Given

gene expression measurements from a single microarray experiment and the regulatory

sequence S g for each gene g represented on the array, REDUCE proposes a linear model

for the dependence of log gene expression Eg (or “motifs”) Eg = C +
∑
µ∈S g

FµNµg, where

Nµg is a count of occurrences of regulatory subsequence µ in sequence S g, and the Fµ are

experiment-specific fit parameters.

REDUCE models the condition-specific activity of a motif by the experiment-specific
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fit parameters Fµ. Thus, REDUCE is able to learn a prediction function over all genes

in a single experimental condition using their sequence motif profiles. When presented

with multiple experiments (microarrays), REDUCE learns multiple models, one for each

experiment. On the other hand, GeneClass is able to learn a single global prediction function

over all genes and all experimental conditions in a given dataset. In order to predict the

expression levels of all genes in all experiments, we need our feature space to represent

the gene context and the experiment context. We use regulatory sequence information such

as regulatory sequence motif profiles and ChIP-chip data to represent the gene context.

We use the expression levels of regulatory proteins to represent the experimental (cellular)

context. In GeneClass, we infer condition-specific motif activity by associating motifs with

regulatory proteins i.e. we learn paired (motif,regulator) features. The condition-specific

expression levels of regulators thus model the condition-specific activity of associated motifs.

The basic modeling assumption is that genes that have similar regulatory sequence features

should have similar expression levels in experimental conditions that show coexpression of

associated regulatory proteins. Due the linearity assumption, REDUCE is unable to model

non-linear relationships between motifs. Since GeneClass learns a generalized decision

tree as the regulatory model, it is able to model regulator and motif combinatorics more

effectively. Also, while REDUCE learns a regression model, GeneClass discretizes gene

expression data and uses classification instead.

Learning from a candidate set of potential regulatory proteins has also been used in

the probabilistic model literature, including in the regression-based work of Segal et al.

for partitioning target genes into regulatory modules for S. cerevisiae [104]. Here, each

module is a coexpressed set of genes that is modeled as a probabilistic regression tree, where

internal nodes of the tree correspond to states of regulators and each leaf node prescribes a

normal distribution describing the expression of all the module’s genes given the regulator

conditions. The authors provide some validation on new experiments by establishing that

the target gene sets of specific modules do have statistically significant overlap with the set
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of differentially expressed genes; however, they do not focus on making accurate predictions

of differential expression as we do here.

GeneClass retains the distinction between regulator genes and target genes, as well

as a model that can capture combinatorial relationships among regulators; however, the

margin-based GeneClass trees are very different from probabilistic trees. Unlike in [104], we

learn from both expression and sequence data, so that the influence of a regulator is mediated

through the presence of a regulatory sequence element. We note that in separate work, Segal

et al. [105] present a probabilistic model for combining promoter sequence data and a large

amount of expression data to learn transcriptional modules on a genome-wide level in S.

cerevisiae, but they do not demonstrate how to use this learned model for predictions of

regulatory response.

4.3 Learning regulatory programs as alternating decision

trees

4.3.1 Feature space

A typical gene expression dataset measures the mRNA expression levels of several genes

across different experimental conditions. We model the task of learning regulatory programs

as a classification problem i.e. we try to learn a prediction function that can accurately

classify the significantly upregulated data points (labeled +1) from the downregulated ones

(labeled -1). We discretize the gene expression data into three levels: +1 representing

significant up-regulation of expression, -1 representing significant down-regulation of ex-

pression and 0 representing no significant change in expression. Details of the discretization

procedure are discussed in Section 4.5.2. Our goal is to learn a single global regulatory

program that is able to predict differential gene expression for all genes in all experiments.

Thus, every (gene,experiment) pair that is labeled +1 or -1 is used as a training or test
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example in the learning procedure. The examples labeled 0 are not used in training since

their labels are uncertain, in that the amount of up/down regulation is within the level of

noise.

Figure 4.1: Training data for GeneClass: We show the data presentation for our GeneClass. Every (target
gene,experiment) is assigned a label of +1 (up-regulated, in red) or -1 (down-regulated, in green) and

represented by the genes vector of motif occurrences and the experiments vector of regulator expression states.

In order to predict the expression levels of all genes in all experiments, we need our

feature space to represent the gene context and the experiment context. We start with a

candidate set of M motifs {µ} representing known or putative transcription factor binding

sites and a candidate set of R regulators {π}. Let Mµg ∈ {1, 0} represent the presence or

absence of a motif µ in the regulatory sequence of a gene g. Each gene g can then be

represented by a vector {Mµg} of motif occurrences. Let Pπe ∈ {−1, 0, 1} represent the state

of regulator π in an experiment e. The experimental context can then be represented by

a vector {Pπe} of the expression states of all the candidate regulators in that experiment.

The feature vector for each training example xge is given by {{Mµg}, {Pπe}}. The hypothesis

space (set of weak rules) on which the prediction function is defined can be written as

χ = {−1, 0, 1}R × {0, 1}M. The set of weak rules represents all possible pairings of sequence

motifs with regulators. Based on the nature of transcriptional regulation, we assume that a

target gene’s expression is dependent on the state of regulatory proteins and the presence or

absence of sequence motifs. The data representation is depicted in Figure 4.1. The motif

data can be replaced or augmented by ChIP-chip data that assays whether a gene’s promoter
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is bound by a particular regulatory protein.

4.3.2 GeneClass weak learner

GeneClass models regulatory programs as alternating decision trees (ADTs) (See Section

3.3.2). The nature of transcriptional regulation is such that different combinations of

regulators and motifs regulate target genes in a context-specific manner. ADTs allow us to

capture regulator and motif combinatorics. GeneClass uses the Adaboost algorithm, which

we introduce in Sections 3.3.2 and 3.3.1, to learn the model. The algorithm maintains a

weight distribution over the set of training examples. GeneClass iteratively calls a weak

learner that picks a weak rule from a set of weak rules to minimize the exponential boosting

loss. Examples are re-weighted at each iteration so that the algorithm is able to focus on

hard-to-classify examples.

In GeneClass, the set of weak rules {h} are boolean decision statements of the form “Is

motif µ present in the regulatory sequence of a gene and is regulator π up-regulated in an

experiment?” or “Is motif µ present in the regulatory sequence of a gene and is regulator π

down-regulated in an experiment?”. For a particular (gene,experiment) example (g, e), these

statements are equivalent to “Is MµgPπe = 1?” or “Is MµgPπe = −1?”, respectively. We thus

have a set of 2MR weak rules representing all possible motif-regulator pairs (µ, πs) where

the regulator π can be in state s = ±1. We do not use decision statements with regulators in

state 0 based on the biological assumption that differential expression of a regulator triggers

the differential expression of its targets.

The learning algorithm begins with a single prediction node that represents the class-bias

in the dataset. At each iteration of boosting, the weak learner picks a weak rule and a position

(prediction node) in the ADT to add the weak rule to. The position and (motif-regulator)

pair (µ, πs) are selected by minimizing the exponential boosting loss. The splitter nodes in

our ADTs contain the the selected weak rules of the form “Is MµgPπe = ±1?”. Paths in the

learned ADT correspond to conjunctions of these boolean (motif,regulator) conditions. It is
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important to note that GeneClass does not restrict regulators to pair only with their DNA

binding motifs. Hence, the relationship between a motif and a regulator is learned and not

used a-priori in the learning algorithm.

We use ADTs with abstaining weak rules. As a consequence of the sparseness of the

motif occurrences and discretized regulator expression, each weak rule evaluates false for

a predominant part of the training data data. By abstaining from predicting “no”, trained

ADTs become shallower, and specific paths in the tree are statistically more significant and

more easily intepretable in biological terms.

4.3.3 Predicting gene expression using a regulatory program

Figure 4.2 presents a simplified example to illustrate how a regulatory program generated by

GeneClass computes a context-specific prediction score to predict the up/down regulation

of target genes. In context a (Figure 4.2, top), the promoter of gene a contains a pair of

sequence motifs associated by the regulatory program to a weak activator and a stronger

repressor that are both expressed in the experimental condition. The regulatory program

makes a moderately confident prediction that gene a will be downregulated, based on the

sum of scores from the relevant pair of nodes in the tree. In context b (Figure 4.2, bottom),

the promoter of target gene b contains binding sites for the weak activator but also for a

co-factor, placed in a node below the weak activator in the tree. Both the activator and the

co-factor are expressed in the condition shown, and the regulatory program computes a

confident up prediction for gene b in this condition. In this way, GeneClass encapsulates a

genome-wide and context-specific regulatory program, learned directly from motif data and

expression data and without the introduction of additional prior assumptions.

4.3.4 Stabilized boosting

At each iteration, boosting adds the weak rule with the smallest exponential loss. The training

examples are then reweighted such that they become decorrelated with the previously added
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Figure 4.2: Interpreting regulatory programs: Simplified example showing how the regulatory program
learned by GeneClass predicts context-specific up/down gene expression. GeneClass learns a global regulatory

program described by an alternating decision tree. A simple regulatory program is shown, along with the
prediction it makes in two contexts, indicated as context a (top-right) and context b (bottom-right).
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rule. In a case where several weak rules are highly correlated with each other, only one of

them will be added to the ADT. This means that correlated regulators and motifs might be

missed. This presents an interpretability problem because important biologically meaningful

features such as correlated regulators and motifs that co-occur in regulatory sequences could

be missing in the ADT.

We solve this problem by averaging the prediction of several weak rules in the case where

the rules with smallest boosting loss are highly correlated with each other. We determine

whether the empirical correlation is statistically significant by comparing it with a threshold

which is is a function of the weights of the examples used for choosing the rules. As shown

in the Section 4.6.6, this scheme not only finds biologically-meaningful, correlated features

but also stabilizes the trees trained on different folds.

Let us consider two different weak rules h1, h2. Let Ahi = {x|hi(x) = 1} be the set of

examples x on which learner hi predicts one. We define the symmetric difference of two sets

of examples as the set of examples for which one but not both rules predict one i.e. the set

of all examples xi for which h1(xi) + h2(xi) = 1 holds. The two weak rules, h1 and h2, then

have a highly correlated prediction if the total weight of the symmetric difference Ah1 	 Ah2

is small. We denote this weight by W(Ah1 	 Ah2).

In order to test the statistical significance of this correlation, we need to consider the

distribution of the weights wi of the examples in the two sets Ah1 and Ah2 . If the distribution is

very skewed, small changes in the cardinality of the symmetric difference set can cause large

changes in the corresponding weight. If the distribution is more uniform, then fluctuations

in the size of the symmetrical difference set will cause appropriately scaled fluctuations in

the weight of the symmetric difference set.

As shown in Appendix A, the function we use is motivated by Chernoff bounds [47].

We average over those weak rules h that obey

W(Ah∗ 	 Ah) ≤ η1

√ ∑
i w2

i

(
∑

i wi)2 (4.1)
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where h∗ is the weak rule with smallest loss at the considered boosting round, and η1 > 0

is an empirically tuned parameter. The summation of weights is over all examples that

reach the prediction node to which we want to add the stabilized weak rule. In the limit of

equally weighted examples, this threshold evaluates to η1/
√

N where N is the total number

of examples. For more skewed distributions the threshold becomes more permissive. This

allows more weak rules to be averaged leading to a stable weak rule that is more resistant to

fluctuations. In the extreme case, where all the weight is on a single example, the threshold

evaluates to η1.

For a weak rule h, let us define W0(h) =
∑

i,h(xi)=0 wi, W+(h) =
∑

i,h(xi)=1,yi=+1 wi, W−(h) =∑
i,h(xi)=1,yi=−1 wi, where yi is the label of example xi. We assume that the weights are

normalized such that W0(h) + W+(h) + W−(h) = 1. h has a corresponding coefficient α[h]

given by

α[h] =
1
2

ln
W+(h)
W−(h)

(4.2)

We average over a set of weak hypotheses {h} by defining a new hypothesis havg that

predicts 1 if all hypotheses have approximately equal coefficients α[h] and takes a majority

vote over the set of hypotheses if about half of them predict 1. Otherwise, it predicts 0.

havg(xi) =


1, |

∑
h α[h]h(xi)| > θ

0, otherwise
(4.3)

where we set

θ =
(
∑

h |α[h]| −minh|α[h]|)
2

(4.4)

The coefficient of this new weak rule is given by

α[havg] =
1
2

ln
(W+(havg)

W−(havg)

)
(4.5)

In some cases, we may obtain several highly correlated weak rules that have very low
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predictive strength. These would most likely be the result of noise. In such a case, we

want to avoid averaging weak rules. Thus, our algorithm abstains from stabilization if the

weighted loss of the weak rule h∗ is so close to 1/2 that interpretability of the selected

feature is questionable, even though the overall classification performance might still be

improving [102].

The coefficient of the weak rule h∗ is given by α[h∗] = 1
2 ln

(
W+(h∗)
W−(h∗)

)
. α[h∗] will be positive

when W+(h∗) > W−(h∗) and negative otherwise. Hence, h∗ will correctly predict the weights

of examples with total weight max (W+(h∗),W−(h∗)). A weighted loss that approaches

random guessing (1/2) can be defined as

1
2

W0(h∗) + min(W+(h∗),W−(h∗)) (4.6)

=
1
2

(1 −W+(h∗) −W−(h∗)) + min(W+(h∗),W−(h∗)) (4.7)

=
1
2
−

(W+(h∗) + W−(h∗))
2

+ min(W+(h∗),W−(h∗)) (4.8)

=
1
2
−

1
2
|W+(h∗) −W−(h∗)| (4.9)

The advantage over random guessing is thus 1
2 |W+(h∗) −W−(h∗)|. We want this term to

be large. Hence, we introduce another threshold η2 and perform stabilization only if

1
2
|W+(h∗) −W−(h∗)| ≥ η2

√ ∑
i w2

i

(
∑

i wi)2 (4.10)

For all experiments in this thesis we use η1 = η2 = 0.1.

The pseudocode for the GeneClass algorithm is presented in Appendix B.

4.4 Extracting predictive features from regulatory programs

In this section, we introduce a post-processing framework for extracting context-specific reg-

ulatory features from our learned models, that answer specific biological queries. GeneClass
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learns a global regulatory program over all genes and all experiments in a dataset. Each

node in the ADT consists of a weak rule defined on a set of motif-regulator pairs. Note that

the association of a motif and a regulator in a weak rule does not necessarily imply a direct

binding relationship between the regulator and the motif. Such a pair could represent an

indirect regulatory relationship such as an upstream signaling regulator regulating targets

through another transcription factors binding site. It could also represent co-occurrence of

the true binding site of the regulator with another motif.

4.4.1 Extracting global features

In order to identify regulators and motifs that are globally predictive over all examples, we

introduce two scoring metrics for ranking motifs and regulators.

The iteration score (IS) of a weak rule (motif-regulator pair) is the boosting iteration

during which it first appears in the ADT. Weak rules that are learned in early boosting rounds

tend to predict on large sections of the data. Hence, weak rules with low IS, tend to be

globally significant.

We define the abundance score (AS) of a regulator/motif as the number of splitter nodes

in the ADT that include the regulator/motif as part of its weak rule. A regulator/motif with a

large abundance score will affect a large number of paths through the ADT and hence affect

a large number of target genes. If the state of a regulator is changed, its predicted effect on

target genes will depend on its abundance in the ADT.

4.4.2 Gene set analysis: Extracting context-specific features

A biologist would also be interested in identifying regulators and motifs that regulate

different subsets of genes in various subsets of experiments. Below, we present scores to

rank regulators and motifs relevant to regulation of specific gene sets.

To rank motifs and regulators that are predictive of a gene or group of genes in a single

experiment, we extract all paths in the ADT whose splitter nodes evaluate true for the (gene,
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experiment) examples (g, e) in question. We then rank motifs and regulators using AS and

IS in the extracted subtree.

To study the regulation of a gene set in multiple experiments, we rank motifs and

regulators using a frequency score (FS). The frequency score for a motif/regulator over a set

of B = {(g, e)} examples is defined as the number of correctly predicted examples in B that

pass through all splitter nodes containing the motif/regulator.

4.4.3 Signaling pathways and regulatory cascades

Different signaling pathways are activated under different experimental conditions, and

these highly interconnected pathways affect regulation via activation or repression of sets

of transcription factors. Since many kinases and phosphatases are auto-regulated or are

in tight positive and/or negative feedback relationships with the transcription factors that

they regulate [37], we hypothesize that mRNA levels of signaling molecules in particular

pathways might be predictive of expression patterns of targets genes of downstream tran-

scription factors. We use two methods to identify regulatory cascades. First, we use gene set

analysis on individual transcription factors to identify predictive regulators that might be

act upstream. Second, we use ChIP-chip data to identify regulators that co-associate with

transcription factor binding profiles in high ranking weak rules.

4.5 Datasets

4.5.1 Expression data

We present analysis of two gene expression datasets: The environmental stress response

(ESR) dataset [37], consists of 173 dual-channel cDNA microarray experiments measur-

ing the genome-wide response (6110 genes) of the yeast (S. cerevisiae) to 13 different

environmental stresses. These include heat shock, hyper-osmolarity, hypoosmolarity and
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simultaneous heat shock and osmotic stress; peroxide stress; oxidative stress due to mena-

dione, diamide and dithiothreitol (DTT), amino acid starvation, nitrogen starvation, diauxic

shift, entry into stationary phase, steady state growth and growth on a alternative carbon

sources.

The DNA damage dataset [36], consists of 53 experiments measuring expression patterns

(6167 genes) of wild-type and knock-out mutant yeast (S. cerevisiae) cells exposed to various

DNA damaging agents.

Both datasets also includes control experiments in which both channels in the microarray

assay the gene expression of replicate samples. We use these arrays to empirically estimate

the noise in the dataset (See Section 4.5.2). We use the noise model to discretize the

expression data.

All measurements are given as log2 fold changes with respect to a reference expression

value.

4.5.2 Discretization of expression data

To model the learning problem as a classification task, we discretize the gene expression

data into three levels—down-regulation (-1), up-regulation (+1), and no significant change

beyond noise levels (0) or baseline—based on the empirical noise distribution around

the baseline (0). The noise model incorporates the dependence of noise on fluorescence

intensities.

In order to estimate the null model, we use control experiments [36] for the ESR and the

DNA damage datasets, in which both channels of a microarray assay replicate samples. Let

R and G represent the values for the red (Cy3) and green (Cy5) channels for each spot (gene)

in the microarray. For single channel microarrays, R and G represent expression levels of

a gene in replicate experiments. We plot the log ratio of the two channels M = log2( R
G )

versus the average log-intensity A = log2(
√

RG)) for all genes, as shown in Figure 4.3). This

displays the intensity specific distribution of the noise in log-scale. Ideally all these points
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Figure 4.3: Noise model for discretizing data: We plot the log ratio of the two channels M versus the
average log-intensity A for all genes in microarrays assaying replicate samples. We use this to develop an

average intensity-dependent noise model to discretize expression data.

should have a value of 0 for the M axis and any deviations are due to noise. It is clear that

the noise is higher at lower intensities.

We compute the cumulative empirical null distribution of M conditioned on A by binning

the A variable into small bin sizes, maintaining a good resolution while having sufficient

data points per bin. For any expression value (M, A) of a gene in an experiment, we estimate

a p-value based on the null distribution conditioned on A, and we use a p-value cutoff of

0.05 to discretize the expression values into +1, -1 or 0. The noise model is based on work

of Tu et al. [119].

4.5.3 Candidate set of regulators

Our candidate set of regulatory proteins consists of 475 genes consisting of 237 known

and putative transcription factors and 250 known and putative signaling molecules, with an

overlap of 12 genes of unknown function. Of these, 466 are from Segal et al. [104] and 9

generic (global) regulators are obtained from Lee et al. [68].
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4.5.4 Motif data

The TRANSFAC database [128] provides a library of known and putative transcription factor

binding sites, some of which are represented by position-specific scoring matrices (PSSMs)

and consensus sequences. In order to identify target genes of these motifs, we obtain the 500

bp upstream promoter sequences of all S. cerevisiae genes from the Saccharomyces Genome

Database (SGD). For each of these sequences, we search for transcription factor binding

sites using the PATCH software licensed by TRANSFAC [128]. A total of 354 binding sites

are used after pruning to remove redundant and rare sites.

We also use motif data provided by Pilpel et al. [92]. 356 PSSMs are obtained using

AlignACE [53] which is a “cluster-first” motif-discovery method based on detecting over-

represented sequence patterns in promoter sequences of different gene sets. These PSSMs

are matched to promoters of 5651 genes in the genome using ScanACE [53].

4.5.5 ChIP-chip data

Lee et al. [68] use genome-wide location analysis, based on modified chromatin immuno-

precipitation (ChIP), to identify genomic binding sites for 113 transcription factors in living

yeast cells under a single growth condition, using upstream regions of 6270 yeast genes.

For each genomic region, the transcription factor occupancy is reported as the log intensity

ratio of the IP-enriched channel versus the genomic DNA channel, and a single array error

model [68] is used to assign p-values to these measurements. We use the ChIP-chip data

as a binary “motif” matrix by thresholding the p-values, so that each target gene’s motif

vector is replaced or augmented by a transcription factor occupancy vector for the set of

transcription factors. We tried different thresholds of 0.001, 0.05 and 0.1 and found the best

prediction accuracy on test data with a p-value threshold of 0.1. Although, this value might

seem very permissive, recent work has shown that weak binding of transcription factors

has a significant effect on gene regulation. Lee et al. [68] suggest to use a p-value of 0.005

in order to reduce false positives. However, this causes a large number of false negatives.
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GeneClass has no way of accounting for lack of motif data. However, it can potentially filter

out false positives. Hence, we use a more permissive p-value to allow a lower number of

false-negatives.

4.6 Statistical validation

4.6.1 Prediction accuracy in cross-validation experiments

In order to assess the predictive ability of our algorithm we perform 10-fold cross-validation

on the datasets for 1000 boosting iterations. We divide the experiments into 10 random folds.

We use each of the 10 folds as test sets while using the remaining 9 folds as training data to

learn ADTs. We average the test-loss (percentage errors in prediction) over the 10 folds.

When we use the motif list from the TRANSFAC database [128] with the set of 475

candidate regulators for the ESR dataset, we get an average test loss of 20.8% ± 2.8%.

The AlignACE [92] motif-data gives us an average test-loss of 16.2% ± 4.0% on the ESR

data set. This result clearly shows that the set of hand-curated motifs in the TRANSFAC

database are incomplete and motifs learned using motif-discovery tools have better predictive

performance.

On using the motif data from AlignACE [92] with the DNA damage dataset, we obtain

an average test loss of 23.4% ± 6.3%. The DNA damage dataset is an older dataset than

the ESR dataset where the the observed noise levels are higher. The dataset also contains

several knockout phenotypes which are known to have secondary responses.

4.6.2 Motif data versus ChIP-chip data

In order to study the effect of the different types of regulators and motif data, we use a single

random held-out test set consisting of one tenth of the examples labeled ±1 in order to get

an estimate of test error. We compare performance of the AlignACE [92] motif set against
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ChIP-chip data. We also compare prediction accuracy when we use only transcription factors

(TF), only signaling molecules (SM) and all regulators as the candidate set of regulators.

The experiments are summarized in Table 4.1. Results show that the motif data outperforms

the ChIP-chip data and the different sets of candidate regulators give similar test errors.

Experiment Motif data Regulators Targets Error on Error on
ESR DNA damage

ChIP+all ChIP 475 SM+TF 6102 17.29% 23.56%
ChIP+SM ChIP 250 SM 6102 16.7% 23.33%

AlignACE+all AlignACE motifs 475 SM+TF 5579 12.7% 18.87%
AlignACE+TF AlignACE motifs 237 TF 5579 13.7% 20.34%
AlignACE+SM AlignACE motifs 250 SM 5579 14.11% 19.58%

Table 4.1: Different experimental setups and their performance

4.6.3 Prediction scores show correlation with expression data

Figure 4.4: Correlation of prediction scores with expression data (Left) The scatter plot shows the
correlation between prediction scores (x-axis) and true log expression values (y-axis) for genes on held-out

experiments. (Right) Confusion matrix: truth and predictions for all genes in the held-out experiments,
including those expressed at baseline levels. Examples are binned by assigning a threshold of 0.95 for positive

prediction scores and −0.2 for negative prediction scores.

Although, GeneClass is a binary classification algorithm, the output is a real-valued

prediction function for all genes and experiments in the form of an alternating decision
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tree (See Section 3.3.1). The sign of the prediction score gives the predicted label and the

absolute value represents a confidence level for the prediction.

Figure 4.4 (Left) shows real-valued expression data versus prediction scores for all

examples (up, down, and baseline) from the held-out experiments using 10-fold cross-

validation on the entire ESR data set, where baseline examples are randomly divided among

the 10 folds. The correlation coefficient is 0.58 for +1 and -1 examples in the test set and

0.31 for all examples. While this correlation would not be considered high for a regression

problem, it is significant in our current setting, since we do not use the true expression values

or the baseline examples for training.

Let F(xge) represent the prediction function for any gene-experiment example (xge, yge)

with feature vector xge and label yge ∈ {−1, 0, 1}. We can make 3-class predictions by

thresholding on the confidence levels of up and down predictions, that is, we predict

examples to be up- or down-regulated if F(xge) > a or F(xge) < −b , and to be baseline

if −b ≤ F(xge) ≤ a where a, b > 0. By assigning thresholds to expression and prediction

scores (a = 0.95, b = 0.2), we bin the examples into up, down and baseline to obtain

the confusion matrix in Figure 4.4 (right). We see a good separation between classes,

represented by the strong diagonal elements in the confusion matrix. It is important to note

that examples are labeled as baseline when they are within the replicate noise limits. These

examples are not used in training since the confidence in the labels is low. However, the

baseline examples predicted as +1 or -1 with high prediction scores could possibly indicate

biologically meaningful differential expression within the levels of replicate noise.

4.6.4 Comparison to a baseline classification method

To assess the difficulty of the classification task, we also compare to a baseline method,

k-nearest neighbor classification (kNN), where each test example is classified by a vote of

its k nearest neighbors in the training set. For a distance function, we use a weighted sum

of Euclidean distances d((g1, e1), (g2, e2))2 = wm||mg1 −mg2 ||
2 + wp||pe1 − pe2 ||

2, where mg
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represents the vector of motif counts for gene g and pe represents the parent expression

vector in experiment e. We try various weight ratios 10−3 < (wm/wp) < 103 and values of

k < 20, and we use both binary and integer representations of the motif data. We obtain

minimum test loss of 25.5% for the whole ESR data set at k=15 for integer motif counts

using a weight-ratio of 1, giving much poorer performance than boosting with ADTs (test

loss of 16.2%).

4.6.5 Randomization experiments

Figure 4.5: Test error for GeneClass with randomized data: The figure shows that test error for
GeneClass runs using randomized target gene expression data, randomized regulator expression and

randomized motif data are significantly higher than experiments on true data.

In order to evaluate the predictive relevance of the regulator expression data and the
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motif data, we use GeneClass to learn models using partially randomized version of these

data and compare the test error to models learned using the true data. Figure 4.5 shows

six sets of randomization experiments on a subset of 1400 high variance target genes in

the heat shock experiments of the ESR dataset. The blue curve labeled “true data” shows

the test error for the actual expression and motif data. We see that the test error decreases

exponentially with each boosting iteration. We now describe each of the randomization

experiments.

Let σ represent a randomization function. Given a target gene expression matrix, we

can randomize the expression data in three ways i.e. shuffle all entries in the matrix or

shuffle only rows (genes) or columns (experiments). The curves labeled σ(Xge) (green),

Xgσ(e) (yellow) and Xσ(g)e (red) show the test error for these three experiments. We clearly

see that randomizing the labels leads to overfitting behavior i.e. after an initial drop, the test

error begins to increase with the number of iterations. However, it is interesting to note that

the test loss is more sensitive to shuffling experiments than shuffling genes.

Similarly to assess the effect of regulator expression on predictive performance, we

randomize the regulator expression matrix in three ways. For the curve labeled σ(Pπe) (light

blue) we shuffle all the values in the regulator expression matrix. For the curve labeled

Pπσ(e) (black) we shuffle columns of the regulator expression matrix. For the curve labeled

Pσ(π)e (magenta) we shuffle rows of the regulator expression matrix. We see that in all three

cases, the algorithm is able to learn with reasonable accuracy. However, the test error is still

significantly poorer than experiments using true data. This shows that information provided

by the motif data is sufficient but not adequate to predict expression.

4.6.6 Stabilized boosting results in robust ADTs

Table 4.2 shows how GeneClass stabilizes trees trained on different folds. We rank regulators

based on an iteration score (IS) which is the boosting iteration at which the regulator first

appears in the ADT. We compare the 20 top-ranking regulators for 10-fold cross-validation
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without stabilization with stabilization
rank parent iteration score rank parent iteration score

1 TPK1 1.400±1.265 1 TPK1 1.400±1.265
2 USV1 3.500±1.434 2 USV1 3.500±1.434
3 AFR1 6.800±3.360 3 AFR1 6.800±3.360
4 ATG1 11.800±20.099 4 ATG1 7.700±7.747
5 MDG1 12.100±11.090 5 MDG1 10.000±9.369
6 XBP1 17.800±6.460 6 XBP1 16.800±5.287
7 ETR1 41.400±24.972 7 CIN5 18.600±7.604
8 YJL103C 45.000±26.600 8 GIS1 20.600±12.607
9 CIN5 56.100±71.527 9 SDS22 20.900±11.406

10 KIN82 57.800±24.179 10 YFL052W 22.000±6.815
11 GAT2 58.800±55.249 11 YJL103C 22.200±4.803
12 MSG5 61.700±96.126 12 KIN82 22.400±3.806
13 PDE1 65.200±61.853 13 PDE1 22.800±9.426
14 ASK10 68.300±91.629 14 SIP4 22.900±8.478
15 RME1 69.900±23.572 15 ETR1 24.000±3.771
16 YVH1 73.500±24.865 16 GAC1 24.400±4.142
17 MET28 86.300±43.564 17 GAT2 25.100±5.666
18 SDS22 86.800±72.380 18 HAP4 25.900±6.173
19 MTH1 91.900±50.573 19 SIP2 26.000±6.146
20 GPA2 92.800±44.619 20 MTL1 26.000±6.146

Table 4.2: The effect of stabilized boosting on ranking of predictive features: Top ten parents ranked
by iteration score (IS) for alternating decision trees learned with and without stabilization. The stabilization

uses parameters η1 = 0.01 and η2 = 0.03
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runs with and without stabilization on the ESR data set. These lists are the result of the

change in the tree structure due to changes in the training set by holding out different sets of

experiments. The standard deviation in IS over folds decreases by up to a factor of 10. The

ordering is affected especially for lower-ranking regulators (rank > 6). By including more

complete information about predictive features, we obtain more stable and interpretable

trees.

We also find that using abstaining weak rules instead of non-abstaining weak rules

leads to a 4-fold reduction in running time on the ESR dataset for 1000 iterations without

a significant change in the prediction accuracy. For abstaining weak rules, only a single

prediction node is added to the ADT at each boosting iteration. For non-abstaining weak

rules, two prediction nodes are added at each iteration. Hence, the search space is reduced

by half for the abstaining case. Abstaining also leads to shallower and more interpretable

trees.

4.7 Biological validation

We use the different feature extraction methods and scores introduced in Section 4.4 to

identify predictive regulators and motifs. Below, we present a few illustrative examples.

4.7.1 Globally predictive regulators and motifs

For the ESR dataset, the first weak rule added to the tree contains the STRE motif and

a regulator Tpk1. The STRE motif is the binding site of the MSN2/4 transcription factor

which is known to be the most important general stress response regulator and affects

the expression levels of over 900 genes [37]. It is known that the transcriptional activity

of the Msn2/4 protein is regulated by the protein-kinase Tpk1 via cellular localization.

MSN2/4’s expression levels are found to not change significantly as it is mainly regulated

post-transcriptionally. Thus, we see an interesting indirect relationship between the motif
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and its associated regulator.

While the binding sites of some very important stress factors like Msn2/4 and Hsf1

(heat shock factor) have high iterations scores in the ADT, the mRNA expression levels of

these regulators do not seem to be very predictive. Hsf1 does not appear as a regulator in

the tree and Msn2/4 gets low abundance and iteration scores as a regulator, despite their

importance as heat-shock and general stress response regulators respectively. Similar results

are observed in the modules of Segal et al. [104], where Hsf1 is not found in any of the

regulatory programs and Msn2/4 is found in only three of the fifty regulatory programs but

with low significance. We find that the mRNA expression levels of MSN2 and HSF1 are

mostly in the baseline state within the limits of experimental noise due to which it is difficult

to identify these as important regulators based simply on their expression profiles. Thus, we

see the advantage of using complementary sources of regulatory information namely motif

data along with mRNA expression levels of regulatory proteins.

4.7.2 Regulators of functionally related genes

It has been observed that a subset of approximately 26 protein folding chaperones is induced

by a variety of stress conditions [37]. The Hsf1 transcription factor along with Msn2/4 are

known to be the prime regulators for this set of genes. We first use the gene set analysis

framework to analyze this set of genes across all 173 ESR experiments. We then analyze

specific sets of experiments — MSN2/4 deletion mutants, MSN2 and MSN4 over-expression

mutants, YAP1 deletion mutant and YAP1 over-expression mutant— as well as study the

regulatory machinery in opposite polarities of heat shock, i.e. temperature increase versus

temperature decrease (see Figure 4.6).

We start with a global analysis of the protein folding chaperones in all experiments. We

rank the motif-regulator pairs using the frequency score (FS). We find Cmk2 and Slt2 among

the top scoring regulators. Slt2p is the terminal MAPKinase in the PKC pathway and is

known to be involved in regulating response to heat shock, hypo-osmotic shock, polarized
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Figure 4.6: Regulation of protein-folding chaperones (Left) Comparison of trees for response of heat
shock proteins to increasing and decreasing heat shock. Xbp1 and Wtm1 are both repressors. (Right)

Condition-specific regulation of SSA1 and HSP104. The grey squares indicate that the target gene was in the
baseline state for those experiments.

cell growth and response to nutrient availability [137]. In both experimental setups, Slt2

is found associated in a motif-regulator pair with the Hsf1 binding site, indicating that

Hsf1 may be a target of the PKC pathway in many of these stresses. Cmk2 is also found

associated with the Hsf1 binding occupancy data. In mammalian cells, CaMKII which

is an ortholog of Cmk2 has been found to significantly affect Hsf1 function [49], and the

association between Cmk2 and the Hsf1 motif might indicate a similar relationship in yeast.

Other high scoring regulators include Usv1 and Tpk1. The high scoring Msn2/4 motif

is found to be associated with regulators Slt2 and Ptp2, the latter being part of the HOG

MAPKinase pathway. Ptp2 can inactivate Slt2 via phosphorylation and a Ptp2 mutant has

been found to be hyper-sensitive to heat [82]. Msn2/4 could thus be a downstream target of

pathways involving these signaling molecules. A weak rule containing Tpk1 as the regulator

and Skn7 binding occupancy is found to be high scoring. Skn7p has a DNA binding domain

homologous to that of Hsf1p and is considered to be an integrator of signals from various

MAPKinase pathways. We note that neither Hsf1 nor Msn4 are found to be high scoring
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regulators. Without the use of motif data we would not be able to identify these as the key

regulators of this set of protein folding chaperones.

We also use the gene set analysis framework in sets of experiments consisting of specific

stresses, again ranking features by frequency score, to examine regulatory phenomena unique

to these stress responses. Figure 4.7 shows the regulators and motifs that are predictive of

the differential expression of the heat shock genes in the simultaneous heat and osmolarity

shock experiments. The predictive regulators and motifs are the same as the ones found

in the global analysis of these targets in all experiments. However, in the alternate carbon

source response and diauxic shift experiments, we specifically find the weak rule containing

the Snf3 regulator and Hap4 binding occupancy data to be the highest scoring feature. Snf3

is part of the glucose sensor family and Hap4 is a transcription factor involved in regulating

growth in non-fermentable carbon sources [96]. Similarly, the Ptp2-Msn4 regulator-motif

pair is particularly prominent in the hyperosmotic stress indicating possible activation of the

HOG1 pathway. Skn7 and Hsf1 have been shown to induce several heat shock proteins in

response to oxidative stress [94]. We observe this phenomenon in the features extracted for

response to oxidative stress due to peroxide, DTT and diamide. For the starvation responses,

which are unique in that the cells undergo permanent cell-cycle arrest, we see the emergence

of Clb2 and Cdc5 as high scoring regulators. Both these regulators control exit from mitosis,

and Clb2 (necessary for G2 repression of the SCB factor) is found to be associated with the

SCB motif. This finding is clear evidence that, in addition to global regulatory mechanisms,

we are also able to extract important context-specific regulatory features for gene sets.

4.7.3 Regulation of individual target genes

We now focus on regulation of two specific heat shock genes, SSA1 and HSP104. Interesting

aspects of condition-specific regulation, are summarized in Figure 4.6 (right). We look for

high scoring Hsf1 and Msn4 motifs to account for activity of these factors. SSA1 seems to be

independent of Msn4 in all stresses. It appears to be primarily regulated by Hsf1 and Yap1
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Figure 4.7: Regulation of heat shock proteins in heatshock and osmotic stress The figure shows the
regulatory motifs and regulators that are predictive of the expression of the heat shock proteins in the

simultaneous heat and osmolarity shock experiments. The bottom right rectangle represents the discretized
expression of the targets in the experiments under study. Red represents +1 (up regulation). Green represents

-1 (down regulation). Black represents 0 (baseline). The top right rectangle shows the expression of the
predictive regulators. The regulators are ordered from top to bottom in decreasing order of frequency score

(number of examples that pass through nodes containing the parent). The bottom left illustration represents the
upstream regulatory promoter regions of the target genes. The motifs are arranged in decreasing order of

frequency score from left to right. A reduced section of the subtree with the top 3 predictive features is also
shown. The intensity of the nodes (in gray scale) reflect the frequency scores. Darker nodes have higher

frequency scores.
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in experiments involving heat shock, simultaneous heat and osmotic shock, YAP1 deletion

mutant exposed to heat shock and YAP1 deletion mutant exposed to peroxide. Yap1 seems to

have exclusive control in the peroxide response while Gis1 is found to be the key regulator

in the diamide response and stationary phase response. Gis1 is known to regulate some

heat shock proteins [85]. It is not known if Gis1 binding is dependent on Hsf1p binding. It

appears from our analysis that the two might be independent at least in the case of SSA1.

HSP104 has Msn4, Hsf1 and Skn7 binding sites in its upstream region and appears to be

actively regulated by these transcription factors in a stress specific manner. All three factors

appear to jointly control regulation in almost all stresses. The exceptions are hyper-osmotic

stress and peroxide stress where only Skn7 and Msn4 seem to be active and the response to

stationary phase induction where Skn7 and Hsf1 seem to be active.

4.7.4 Identifying signaling pathways

We focus on the Hsf1 transcription factor and extract the signaling molecules that are

predictive of its activity and its targets. We extract all signaling molecules that associate

with Hsf1 binding occupancy as regulators in the entire regulatory program. We find an

important section of the PKA signaling pathway (Tpk1, Bcy1, Pde1, Yak1) as well as parts

of the PKC pathway (Wsc4, Slt2 and Cdc28). We also find Sds22, Gip2 and Gac1, all of

which are subunits of the Glc7p protein phosphatase, which has been identified as an Hsf1p

binding protein [72].

4.7.5 In silico knockouts to identify transcription factor targets

The target genes of several transcription factors and regulatory proteins are unknown and so

it remains an interesting topic of research to identify their putative functions. A common

wet lab technique that is used to understand the global regulatory effect of a particular gene

is to create a mutant (a knockout) in which the protein of interest is not in a functional state.

The genome wide response of the knockout is compared to that of the normal wild-type
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strain and genes that change their expression significantly are identified as potential primary

or secondary targets of a regulator. By analyzing the functions of the targets, one can get a

rough estimate of the biological processes that the protein of interest might regulate. We

decided to try a computational analog of a wet lab knockout to check if we could recover

functional information about predictive regulators.

In the GeneClass framework, by removing a candidate from the regulator list and

retraining the ADT, we can evaluate whether test loss significantly increases with omission

of the regulator and identify other weaker regulators that are also correlated with the labels.

We perform an in silico knockout of the regulator Usv1 in the heat shock experiment, and

observed a small but significant increase of 4% in test error. Regarding structural changes in

the ADT, we observe that the overall hierarchy of the features does not change significantly:

Tpk1, Xbp1, Ppt1 and Gis1 remain the highest scoring regulators. However, we find that

on retraining the ADT, we make errors on 305 target genes whose expression profiles were

previously correctly predicted. We use the Gene Ontology database and identify functional

terms that are enriched in this set of genes using a hypergeometric p-value. The significant

terms include cell wall organization and biogenesis, heat-shock protein activity, galactose,

acetyl-CoA and chitin metabolism and tRNA processing and cell-growth. These match

many of the terms enriched by analyzing Gene Ontology annotations of genes that changed

significantly in a microarray experiment by Segal et al. [104] with stationary phase induced

in a true USV1 knockout [104].

4.8 Conclusions

Our work on the GeneClass algorithm is motivated by two important challenges in learning

models of transcriptional gene regulation from high throughput data. The first challenge is

to find a favorable trade-off between the statistical validity of the model—most convincingly

measured by its ability to generalize to test data—and biological interpretability. Clearly, an
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interpretable model that overfits the training data is not meaningful, while a fully “black box”

prediction rule, however accurate its generalization performance, may tell us little about

biology. The second challenge is to capture condition-specific rather than static models

of regulation. A model based on partitioning genes into static clusters, for example, fails

to address the fact that under different conditions, a gene could be controlled by different

regulators and share transcriptional programs with different sets of target genes.

Most work on modeling gene regulation has focused on the problem of learning inter-

pretable structure and placed less emphasis on quantifying how well the models generalize.

The most popular structure-learning approach, probabilistic graphical models, can certainly

be used to make predictions in various ways and can generalize well in the presence of

sufficient training data. However, since both the underlying regulatory mechanisms and

the probabilistic model trying to represent them are complex, and since training data is

limited, it is critical to demonstrate the statistical validity of the learned structure, or at least

to investigate how much of the structure is robust to noise or small perturbations in the

data. For example, the Bayesian network-based MinReg algorithm [87] has been shown

to improve the probability of correct target gene state prediction in cross-validation over

a clustering approach, and bootstrapping has been used to extract robust subnetworks in

Bayesian network learning [86]. More prevalent use of statistical validation of these kinds is

essential to assess progress in modeling efforts.

In the GeneClass approach, we formulate gene regulation as a binary prediction problem

(i.e. predicting up/down regulatory response of target genes), and we demonstrate very

strong predictive performance on test data. We present a stabilized version of boosting to

increase the stability of features included in the prediction tree and to enable the detailed

target gene analysis that we present in our post-processing framework. As we show in

Table 4.2, our stabilization technique greatly improves the robustness of the ranked list of

features added to the model. Improved stability allows the reliable analysis of subtrees

corresponding to specific target genes or experiments, giving more meaningful biological
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interpretation. The use of abstaining weak rules is specifically intended to improve inter-

pretability of the prediction tree. Abstaining makes the trees and subtrees shallower and

easier to understand and makes individual paths shorter and more statistically significant.

The accuracy/interpretability trade-off in GeneClass allows us to extract interpretable and

stable subtrees for target gene analysis, enabling a more sensitive, detailed, and biologically

relevant study of gene regulatory response.

The second modeling challenge that we address in this work is the issue of capturing

condition-specific regulation. The GeneClass approach learns a single predictive model for

all target genes based on the presence of binding site motifs in the promoter sequence and

the activity of regulators in the experiment. However, different paths of the prediction tree

affect different targets under different conditions, as represented by the state of the regulators.

In this way, the GeneClass model naturally captures condition-specific regulation. The

post-processing method described in this chapter addresses condition-specific regulation by

extracting and analyzing subtrees corresponding to related sets of experiments.

We present results based on using transcription factor occupancy as measured by ChIP

chip assays to replace binding site data, and in examples of our post-processing framework

for target gene, we also perform simple signaling pathway analysis. We anticipate that

the predictive modeling methodology that we develop here will become a valuable new

approach for gaining biological insight from high throughput genomic data sources.



Chapter 5
Learning cis regulatory motifs: MEDUSA

In this chapter, we present MEDUSA, an integrative method for learning motif models of

transcription factor binding sites by incorporating promoter sequence and gene expression

data. This chapter is based on work presented in [78].

5.1 Introduction

One of the central challenges in computational biology is the elucidation of mechanisms for

gene transcriptional regulation using functional genomic data. The identification of binding

sites and targets of transcription factors is a key component in these computational efforts.

In Chapter 4, we introduce a predictive framework for modeling gene regulation and

describe the GeneClass algorithm for learning gene regulation programs from expression

data and regulatory motif data. However, the GeneClass algorithm uses a fixed set of

candidate motifs as an input to the algorithm and cannot discover unknown motifs. In many

organisms, the binding sites of most transcription factors are not known. Even in well-

studied organisms such as yeast, compendia of known DNA binding sites are incomplete

and most binding sites are poorly characterized as deterministic sequences or consensus

sequences due to limited number of experimentally confirmed target sites. As described in

Section 2.4 transcription factors bind stochastically to different regulatory sequences with

64
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different affinities. Hence, it is important to develop motif-discovery methods that catalog

all the variants of a binding site in order to identify targets of the corresponding transcription

factor.

In this chapter, we present MEDUSA (Motif Element Detection Using Sequence Agglom-

eration), an integrative method for learning motif models of transcription factor binding

sites by incorporating promoter sequence and gene expression data. As in GeneClass, we

use boosting with alternating decision trees (see Section 3.3), to enable feature selection

from the high-dimensional search space of candidate binding sequences while avoiding

overfitting. MEDUSA searches through the massive space of all possible subsequences

in the promoter sequences of genes and builds a motif model whose presence in the pro-

moter region of a gene, coupled with activity of a regulator in an experiment, is predictive

of differential expression. Each motif model is either a k-length sequence, a dimer, or a

position-specific scoring matrix (PSSM) (see Section 2.4) that is built by agglomerative

probabilistic clustering of sequences with similar boosting loss. In this way, we learn motifs

that are functional and predictive of regulatory response rather than motifs that are simply

overrepresented in promoter sequences. Also, unlike GeneClass we do not use a set of

candidate motifs or known transcription factor binding sites. We learn sequence motifs

directly from raw promoter sequence data. Moreover, MEDUSA produces a model of the

transcriptional control logic that can predict the expression of any gene in the organism,

given the sequence of the promoter region of the target gene and the expression state of a set

of known or putative transcription factors and signaling molecules.

We apply MEDUSA to various datasets of different sizes in yeast, worm and human

B-cells. We learn yeast motifs whose ability to predict differential expression of target

genes outperforms motifs from a compendium of known binding sites and from a previously

published candidate set of learned motifs. We also show that MEDUSA retrieves many

experimentally confirmed transcription factor binding sites. We also introduce a novel

margin-based score to extract context-specific regulators and motifs.



CHAPTER 5. LEARNING CIS REGULATORY MOTIFS: MEDUSA 66

5.2 Related methods

While there is a vast literature on the subject of motif discovery, only a few different

conceptual approaches have been tried, and each of these standard approaches has its

limitations. We briefly described some of these approaches in Section 3.1. Here we

recapitulate the main differences between MEDUSA and other common motif discovery

methods.

As discussed in Section 3.1, most methods for discovering transcription factor binding

sites rely on first clustering genes (based on expression profiles, annotations, or both) and

then looking for overrepresented patterns in the regulatory sequence for these genes. These

methods tend to learn motifs specific to static clusters of genes and is it is unclear how one

objectively generalizes these motifs to the entire genome to identify other targets of the

motif. These methods also fail to account for the transcription factor concentration and its

effect on target expression.

The REDUCE method of Bussemaker et al. [20] discovers motifs whose presence

individually correlates with differential mRNA expression in a single microarray experiment.

Also, motifs are learned as deterministic subsequences and variation in the motifs can exist

by selecting close variants of the same subsequence.

The motif-discovery algorithms by Beer and Tavazoie [10] and Segal et al. [106] force

genes into static modules and do not model dynamic motif activity. The learning algorithms

are highly sensitive to initialization procedure and can suffer from local minima problems.

For statistical validation, these methods do not specifically predict the gene expression data

directly. Rather, they try to predict module assignment of genes.

In MEDUSA, we adopt an alternative approach. Rather than trying to learn structure

in promoter sequence data relevant to specific modules of genes, we learn a single context-

specific regulation program for all genes. The model predicts the differential expression

of target genes as a function of biologically meaningful regulatory inputs, including the

expression levels of regulatory proteins and promoter sequence data. We view the learning
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task as a prediction problem rather than a model selection problem, and we seek to learn

regulatory programs that will make accurate predictions of differential expression in new

or held-out experiments. MEDUSA learns probabilistic representations of motifs and

automatically learns all the genes targeted by the motifs. The MEDUSA algorithm does

not require complex initialization and has very few parameters, making it easy to run

“out-of-the-box”.

5.3 Learning cis regulatory motifs from regulatory sequence

and expression data

The MEDUSA learning algorithm is an extension of the GeneClass algorithm presented

in Chapter 4. We once again model the learning task as classification problem i.e. we use

boosting with alternating decision trees to learn a single regulation program that predicts the

up and down regulation of all genes in all experiments of a given expression dataset. The

primary difference between GeneClass and MEDUSA is the construction of the regulatory

sequence feature space and the manner in which the weak learner learner picks a weak rule

at each boosting iteration. We begin with an overview of the learning process.

5.3.1 Overview of the MEDUSA learning algorithm

Figure 5.1 illustrates the major steps and data used in the MEDUSA learning algorithm. As

in GeneClass, the gene expression data is discretized into three states, up (over-expressed),

down (under-expressed), and baseline (not significantly differentially expressed), and genes

are partitioned into potential regulators (transcription factors and signal transducers) and

targets. The regulators are also included in the list of target genes so that their transcriptional

regulation can be modeled. The MEDUSA learning algorithm is presented with the promoter

sequences of target genes, the discretized expression profiles of the regulators across multiple

conditions, and the differentially expressed (up and down) target gene examples from these
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Figure 5.1: Overview of the MEDUSA learning algorithm: Part (A) shows the data-preprocessing steps.
Part (B) shows the representation of the training data. Part (C) shows an example of a weak rule. Part (D)

shows the regulation program as an alternating decision tree
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experiments. Baseline examples are not used to train MEDUSA. MEDUSA considers rules

based on promoter sequence data and regulator expression states. MEDUSA uses a boosting

strategy to avoid overfitting over many rounds of the algorithm. At each iteration i, a motif-

regulator rule is chosen based on the current weights on the training examples. This rule

predict that targets whose promoters contain the motif will go up (or down) in experiments

where the regulator is over- (or under-) expressed. Before the next iteration, the examples are

reweighted to emphasize the ones that are difficult to predict. To learn the sequence motif,

the algorithm agglomerates predictive subsequences to produce candidate PSSMs, and it

optimizes both the choice of PSSM and the probabilistic threshold used to determine where

the hits of the motif occur. At the end of each round of training, motif-regulator rules are

placed into an alternating decision tree, building a global regulation program. The regulation

program asks questions such as, ”Is the mRNA level of regulator i up (or down) in the

experiment, and is the motif j present in the upstream region of the gene?” The control logic

of the regulatory program is described by an alternating decision tree (See Figure 5.1(D) and

Figure 4.2), which encodes how the overall up or down prediction score for a target gene

in a given experimental condition results from the contribution and interaction of multiple

regulators and motifs.

5.3.2 Feature space

The discretization of expression data (see Section 4.5.2) into up- and down-regulated

expression levels allows us to formulate the problem of predicting regulatory response of

target genes as the binary classification task of learning to predict up and down examples.

Rather than viewing each microarray experiment as a training example, MEDUSA considers

all genes and experiments simultaneously and treats every gene-experiment pair as a separate

instance, dramatically increasing the number of training examples available. For every gene-

experiment example, the gene’s expression state in the experiment (up- or down-regulation)

gives the output label yge = ±1. As in GeneClass, baseline examples labeled 0 are not used
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in training since their labels are uncertain, in that the amount of up/down regulation is within

the level of noise.

The inputs to the algorithm are (i) the promoter sequences of the target genes and (ii)

the discretized expression levels of a set of candidate regulator genes. The sequence data

is represented only via occurrence or non-occurrence of motifs represented by all possible

length-k words (k = 3 . . . 7) known as k-mers and dimers with specific gaps and orientations.

A full discussion of how MEDUSA determines the set of motifs at each round of boosting is

given in Section 5.3.4. Let Mµg indicate the presence (Mµg = 1) or absence (Mµg = 0) of a

motif µ in the promoter sequence of gene g, and let Ps
πe indicate the up-regulation (s = +1)

or down-regulation (s = −1) of a regulator π in experiment e (Ps
πe = 1, if regulator π is in

state s in experiment e, and Ps
πe = 0, otherwise). Hence, the feature vector for a gene g in an

experiment e is given by {{Mµg}, {Ps
πe}}.

5.3.3 MEDUSA weak learner

Figure 5.2: Overview of the MEDUSA weak learner
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As shown in Figure 5.2, at each iteration of boosting, MEDUSA invokes a weak learner

that picks a weak rule h∗ that optimizes the exponential Adaboost loss function (See Sec-

tion 3.3.1) given by

L(h) = W0(h) + 2
√

W+(h).W−(h) (5.1)

Our weak rules split the gene-experiment examples in the training data by asking questions

of the form “Is MµgPs
πe = 1?”; i.e., “Is motif µ present, and is regulator π in state s?”. In

this way, each rule introduced corresponds to a putative interaction between a regulator and

some sequence element in the promoter of the target gene that it regulates.

However, since binding sites of transcription factors are rarely deterministic sequences

we augment this weak learner with a hierarchical agglomerative procedure over motifs

to learn PSSMs. The sequence agglomeration procedure is equivalent in principle to

the stabilization procedure used in GeneClass (See Section 4.3.4). The main idea is to

agglomerate motifs with similar boosting loss into a more predictive PSSM. This procedure

serves two purposes. First, it stabilizes the learned model thus improving prediction accuracy.

Second, it avoids masking of equally predictive k-mers or dimers allowing us to learn a

richer motif representation. Thus a weak rule can contain a motif which can be a k-mer,

a dimer or a probabilistic PSSM. Details of the agglomeration procedure are presented in

Section 5.3.4.

The weak rules are combined by weighted majority vote using the structure of an

alternating decision tree [31, 79] (See Section 3.3.2). If the {motif presence, regulator state}

condition for a particular rule holds in the example considered, the coefficient of the rule

is added to the final prediction score. This coefficient can be either positive or negative,

contributing to up- or down-regulation respectively. Rules that appear lower in the tree are

conditionally dependent on the rules in ancestor nodes. The tree structure is thus able to

reveal combinatorial interactions between regulators and/or motifs. The sign of the final

prediction score gives the prediction, and the absolute value of the score indicates the level

of confidence.
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Each iteration of the boosting algorithm results in the addition of a new splitter node

(corresponding to a new weak rule) and its corresponding prediction node to the tree. The

weak rule and its position in the tree at which it is added are chosen by minimizing the

boosting loss over all possible combinations of motifs, regulators, and regulator-states, and

over all possible positions (“preconditions”) in the current tree. A pseudo-code description

is given in Appendix C.

The implementation uses efficient sparse matrix multiplication in MATLAB, exploiting

the fact that our motif-regulator features are outer products of motif occurrence vectors

and regulator expression vectors, and allows us to scale up to large datasets and the high-

dimensional feature space.

5.3.4 Learning PSSMs using hierarchical sequence agglomeration

Figure 5.3: Overview of hierarchical sequence agglomeration in MEDUSA

At each boosting iteration, MEDUSA considers all occurrences of k-mers and gapped

homodimers in the promoter sequence of each gene as candidate motifs. We restrict the set of
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all dimers to those whose two components (monomers) have specific relationships, consistent

with most known dimer motifs: equal (e.g. ACG ACG), reversed (e.g. ACG GCA),

complements (e.g. ACG TGC), or reverse complements (e.g. ACG CGT). Since slightly

different sequences might in fact be instances of binding sites for the same regulator,

MEDUSA uses a hierarchical motif clustering algorithm to generate more general candidate

PSSMs as binding site models (see Figure 5.3). The motif clustering uses k-mers and dimers

associated with low boosting loss as a starting point to build PSSMs: these sequences are

viewed seed PSSMs, and then the algorithm proceeds by iteratively merging similar PSSMs,

as described below. The generated PSSMs are then considered as additional putative motifs

for the learning algorithm.

As discussed in Section 2.4, for a binding site of length k, a position-specific scoring

matrix (PSSM) is a k X 4 matrix that assigns a probability pi(x), for each position i = 1 . . . k

and nucleotide x ∈ {A,C,G,T }. In order to search for hits of a binding site of length k

in a longer sequence, we score all overlapping subsequences of length k using a log-odds

score. For a subsequence a1, a2 . . . ak where ai ∈ {A,C,G,T }, and a PSSM as defined above,

the log-odds score is defined as S =
∑

i=1...k log2(pi(x = ai)/pbg(x = ai)). The background

probability of nucleotide x is given by pbg(x). This log-odds score is compared to some

threshold θ to determine if the subsequence is a hit. For PSSMs representing gapped dimers,

the part of the subsequence corresponding to the gap in the dimer is not used for scoring the

subsequence.

When comparing two PSSMs, we allow possible offsets between the two starting

positions. In order to give them the same lengths, we pad either the left or right ends

with the background distribution. We then define a distance measure d(p, q) as the minimum

over all possible position offsets of the JS entropy [23] between two PSSMs p and q.

d(p, q) ≡ min
offsets

[
bpDKL(p||bp p + bqq) + bqDKL(q||bp p + bqq)

]
,
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where DKL is the Kullback-Leibler (KL) divergence [23] and is given by

DKL(p||q) ≡
∑

a1,...,an

p(a1, . . . , an) ln
p(a1, . . . , an)
q(a1, . . . , an)

By using p(a1 . . . an) =
∏n

i=1 pi(ai) and
∑

ai
pi(ai) = 1 (and the analogous equations for

q) one can easily show that DKL(p||q) =
∑n

i=1 DKL(pi||qi). The relative weights of the two

PSSMs, bp and bq, are here defined as bp,q = Gp,q/(Gp + Gq), where Gp, Gq are the number

of genes whose promoter sequences have hits for PSSMs p and q respectively. Note that

this distortion measure is not affected by adding more “padded” background elements either

before or after the PSSM. Our merge criterion is similar to the one used in the agglomerative

information bottleneck algorithm [110], though we also consider offsets in our merges.

At every boosting iteration, we first find the weak rule h∗ among all possible combinations

of regulators, regulator-states and k-mers/dimers, that minimizes boosting loss. The input

to the sequence agglomeration procedure are a set of K motifs with lowest loss appearing

with the same regulator, regulator state, and tree-position as h∗. Sequence motifs can be

regarded as PSSMs with 0/1 emission probabilities, smoothed by background probabilities.

By iteratively joining the PSSMs with smallest d(p, q), the clustering proposes a set of

K − 1 PSSMs from the various stages of the hierarchy. The threshold θp for a PSSM p

determines the set of genes Gp targeted by the PSSM. The boosting loss L(h) associated

with a regulator-PSSM pair depends on the weights wi of training examples (g, e) for all

g ∈ Gp (See Equation 5.1). Hence, the threshold θp determines the boosting loss. At every

merge of two PSSMs, the optimal score threshold θp associated with the new PSSM is found

by minimizing the boosting loss over possible values for the threshold.

Note also that the new PSSM can be longer than either of the two PSSMs used in the

merge, due to the procedure of merging with offsets; in this way, we can obtain candidate

PSSMs longer than the maximum seed k-mer length of 7. The number of target genes,

which determines the weight of the PSSM for further clustering, is calculated by counting
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the number of promoter sequences which score above the threshold. The total number of

possible weak rules is equal to 2R(Nk−mer +Ndimer)+K−1 where R is the number of candidate

regulators and Nk−mer and Ndimer are the numbers of k-mers and dimers, respectively. This

is of the order of 107. Our results show that even in this high-dimensional space boosting

does not lead to overfitting. The new node that is added to the alternating decision tree is the

weak rule that minimizes boosting loss considering all sequence motifs and PSSMs.

5.4 Extracting predictive features

In order to extract context-specific regulators and motifs that are predictive of a subset of

genes in a set of experiments, we introduced the frequency score in Section 4.4.2. The

frequency score for a motif/regulator over a set, B = {(g, e)}, of examples is defined as the

number of correctly predicted examples in B that pass through all splitter nodes containing

the motif/regulator.

However, this score does not take into account the relative contribution of the mo-

tif/regulator to the prediction scores of these examples. We thus, introduce a margin-score

for ranking the regulators and motifs affecting target genes based on the theoretical idea of a

margin [61]. In large-margin techniques like boosting and SVMs, the margin for a example

xge with label yge = ±1 and prediction function F is given by ygeF(xge). If the margin is

positive, the prediction is correct, and the size of the margin gives a measure of confidence

in the prediction. If we remove, for example, regulator R from the regulatory program (i.e.

delete nodes containing R and their subtrees from the ADT learned by boosting), we denote

F−R as the modified prediction function and define the following score:

S R =
∑

{(xge,yge)}∈T

yge

(
F(xge) − F−R(xge)

)
(5.2)

where T is a set of training examples of interest, e.g. a particular set of genes restricted to

some subset of experiment. The score S R will again be positive if on average R is important
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for making predictions, and its size measures its importance to the target set.

5.5 Datasets

5.5.1 Yeast (S. cerevisiae) datasets

We use MEDUSA to analyze three gene expression datasets of different sizes in the yeast S.

cerevisiae.

5.5.1.1 Gene expression data

Section 4.5.1 introduced two yeast gene expression datasets sets namely the environmental

stress response dataset [37] (ESR) and the DNA damage dataset [36]. The ESR dataset

assays the genome-wide gene expression response in 173 cDNA microarray experiments

spanning 13 different environmental stresses. We discretize the gene expression data as

explained in Section 4.5.2.

The DNA damage dataset is a moderately sized dataset consisting of 53 microarrays

assaying the mRNA levels of all yeast genes in response to different DNA damaging agents.

We discretize the gene expression data as explained in Section 4.5.2.

We also analyze a new unpublished yeast dataset from our collaborator Dr. Li Zhang.

We refer to this dataset as the hypoxia dataset. We use RNA samples from 8 different

experimental conditions. These include aerobic response, aerobic response of a ∆hap1

knockout, early hypoxia response, late hypoxia response, late hypoxia response of a ∆hap1

knockout, response to cobalt chloride (Co2+), response to heme sufficiency and heme

deficiency. We use 24 single channel Affymetrix oligonucleotide microarrays to assay

the gene expression. Details of the yeast samples used, RNA preparation and microarray

setups are provided in Section 6.2. We use this dataset to study the role of oxygen, heme,

Hap1, and Co2+ in oxygen sensing and regulation [61]. Since Affymetrix microarrays are

single channel arrays, we compare each of the knockout, stress or perturbation microarray
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experiments to a corresponding reference microarray. The expression fold-changes are

converted to p-values using an intensity-specific noise model obtained from replicate data

(See Section 4.5.2). The fold-changes are then discretized into +1, 0 or -1 labels using a

p-value threshold of 0.05. A label of ±1 indicates up/down-regulation beyond the threshold

level of noise. In Affymetrix arrays several genes have multiple probes on the gene chip.

In such cases, we discretize each probe reading independently and used a majority vote

over the +1 and -1 discretized values to obtain a final label for the gene. In cases where a

majority vote is not possible (due to equal number of probes with +1 and -1 values), we use

the label corresponding to the reading with the lowest p-value. All the replicate experiments

are used as input to MEDUSA. However, in order to remove inconsistency, for each gene,

we further filtered out expression values that did not agree with the consensus label (+1 or

-1) across replicates of a particular experimental condition.

5.5.1.2 Candidate set of regulators

Our candidate set of yeast regulatory proteins consists of 475 genes consisting of 237 known

and putative transcription factors and 250 known and putative signaling molecules, with an

overlap of 12 genes of unknown function. Of these, 466 are from Segal et al. [104] and 9

generic (global) regulators are obtained from Lee et al. [68].

5.5.1.3 Promoter sequences

We use 1000 bp nucleotide sequences upstream of the transcription start site (TSS) of

all S. cerevisiae genes that we obtain from the Saccharomyces Genome Database (SGD,

ftp://ftp.yeastgenome.org/yeast/, Jan 2006). We scan these sequences for all

occurring k-mer motifs (k = 3 . . . 7) as well as 3 − 3 and 4 − 4 dimer motifs allowing a

middle gap of up to 8 bp. We restrict the set of all dimers to those whose two components

have specific relationships, consistent with most known dimer motifs: equal, reversed,

complements, or reverse complements.
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5.5.1.4 Gene annotations

We obtain gene annotations and functional associations from Saccharomyces Genome

Database (SGD, ftp://ftp.yeastgenome.org/yeast/, Jan 2006). The gene ontology

(GO) tree structure was downloaded from the Gene Ontology Consortium [1]. To identify

statistically enriched terms associated with sets of genes, we calculate p-values using the

cumulative hypergeometric null distribution on the basis of the number of genes in the set,

the number of genes in that set that are annotated with each GO term, and the number of

genes in the genome that are annotated with that GO term. We then filter terms using a

threshold.

5.5.2 Worm (C. elegans) dataset

We also use MEDUSA to analyze early embryonic development of the worm Caenorhabditis

elegans. We use the expression dataset by Baugh et al. [8]. It consists of a finely sampled

time course that commences with the zygote and extends into mid-gastrulation, spanning the

transition from maternal to embryonic control of development and including the presumptive

specification of most major cell fates. The dataset consists of 7 time points with multiple

replicates for each experiment. The gene expression data is assayed using single channel

affymetrix microarrays. We transform the data into fold changes using the PC32 time

point (32 minutes after pseudo-cleavage) as control. We use replicate data to estimate an

intensity-dependent noise model. We discretize the data into 3 levels — ±1 representing

significant up(down)regulation and 0 representing expression measurements within the level

of noise using a p-value of 0.01. This gives us a total of 9135 genes that significantly change

expression in at least one time point.

Our candidate regulator set consists of 1370 genes consisting of transcription factors, ki-

nases, phosphates and signaling molecules from WormBook, http://www.wormbook.org,

TRANSFAC [77] and WormPD [22]. We obtain promoter sequences spanning 1000 bp up-

stream of the genes from Wormmart (http://www.wormbase.org/biomart/martview).
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5.5.3 Human B-cell dataset

The human B-cell gene expression dataset [6] consists of 336 samples including: normal

purified cord blood (5 samples), germinal center (10), memory (5) and naive (5) B cells;

34 samples of B cell chronic lymphocytic leukemia (B-CLL), 68 of diffuse large B cell

lymphomas (DLBCL) including cases further classified as immunoblastic or centroblastic, 27

of Burkitt lymphoma (BL), 6 of follicular lymphoma (FL), 9 of primary effusion lymphoma

(PEL), 8 of mantle cell lymphoma (MCL), 16 of hairy cell leukemia (HCL), 4 cell lines

derived from Hodgkin disease (HD), 5 B-cell lymphoma cell lines and 5 lymphoblastic cell

lines. We restricted our analysis of the B cell data set to the well-studied Burkitt lymphoma

cell line (Ramos) treated in vitro to activate CD40 or B-cell receptor (antiIgM) signaling

and cell lines engineered to stably express BCL6 and BCL6(∆PEST) mutant [6]. We use

several sets of control conditions to obtain a data set of 102 experiments, grouped into 12

sets, each of which probe the genome-wide response to specific treatments.

We use the discretization procedure explained in Section 4.5.2. This gives us a set of

8500 genes that show significant up/down regulation in atleast one experiment.

We use the BioMart database (http://www.biomart.org/ to compile a candidate set

of 3800 regulators. These regulators are obtained by searching for genes whose functional

annotations contain keywords such as “DNA-binding”, “transcription factor”, “signal trans-

duction”, “kinase”, “phosphatase”, “receptor”, “cofactor” and “regulation of transcription”.

We also use BioMart to obtain promoter sequences spanning 2000 bp upstream of the 8500

target genes.
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5.6 Statistical validation

5.6.1 Prediction accuracy in cross-validation experiments

We report prediction accuracy in cross-validation experiments for MEDUSA on the five

gene expression data sets described in Section 5.5. These datasets are of different sizes and

involve very different biological processes in the yeast S. cereviseae, the worm C. elegans,

and human B-cells: a large data set measuring yeast stress response to diverse environmental

stress (ESR) [37], a moderate sized dataset measuring yeast DNA damage response, a small

unpublished data set from our collaborator Dr. Li Zhang studying the role of oxygen, heme,

Hap1, and Co2+ in oxygen sensing and regulation (Hypoxia), a developmental time course

from the early worm embryo [9] (Worm), and part of a human B cell expression atlas [6] (B

Cell).

Data set #expts / #genes cross-validation set-up algorithm sequence features error rate

ESR 173 / 5-fold c.v., held-out expts, MEDUSA promoters 13.4%
475 regs replicate expts grouped AlignAce motifs 16.1%
∼6000 targets TRANSFAC motifs 20.8%

k-nearest neighbor TRANSFAC motifs 31.3%

DNA 52/ 10-fold c.v., held-out examples MEDUSA promoters 20.7%
damage 475 regs

∼6000 targets

Hypoxia 18 (6 conditions) / 10-fold c.v., held-out examples MEDUSA promoters + ChIP 8.0%
475 regs ChIP only 26.0%
∼3500 targets 10-fold c.v., held-out examples MEDUSA promoters + ChIP 23.9%

replicate gene-expts grouped

Worm 22 (6 time points) / 10-fold c.v., held-out examples MEDUSA promoters 17.0%
1390 regs replicate gene-expts grouped
∼8500 targets

B Cell 102 (23 conditions) / 10-fold c.v., held-out examples MEDUSA promoters 25.7%
3291 regs replicate gene-expts grouped
∼7500 targets

Table 5.1: Prediction performance for MEDUSA across multiple yeast, worm and human data sets:
For the ESR data set, we compare to a baseline method, k-nearest neigbor, to assess the difficulty of the

prediction problem.

Results showing that MEDUSA achieves low prediction error rates across all the data

sets and in different cross-validation experiments are summarized in Table 5.1. In each case,

we report the error rate of MEDUSA’s up/down predictions on the differentially expressed

test examples, i.e. baseline examples are not used for training nor are they included in this
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evaluation.

5.6.1.1 Prediction accuracy for yeast datasets

Our largest scale experiments are performed on the ESR data set. Here we divide experiments

into 5 folds and group replicate experiments together within folds for 5-fold cross-validation.

This procedure ensures that replicates of an experimental condition are never in both training

and test sets, making the prediction task more difficult. In this setting, learning motifs

directly from promoter sequences, MEDUSA achieves an impressively low error rate of

13.4%.

For the smaller DNA damage data set, we performed 10-fold cross-validation experi-

ments on held-out gene-experiment examples instead of held-out experiments, and we ran

MEDUSA for 300 iterations of boosting. DNA damage is both smaller and more diverse

than ESR, with many of the experiments involving gene knockout strains and mutants, so

that the reference conditions vary across the data set; our noise modeling also revealed that

the data were noisier than in ESR. For these reasons, the error rate of 20.7%, while not as

good as ESR, still represents significant generalization performance.

Since the hypoxia data set is too small to allow evaluation of test-loss on held-out

experiments, we perform 10-fold cross-validation experiments on held-out gene-experiment

examples in this case. Here, we achieve a very low error rate of 8.0%, but the prediction task

is made easier by the presence of replicates in the data set: each of 6 experimental conditions

are represented by 3 replicates, though one replicate is from a different yeast strain. We

repeat the 10-fold cross-validation but group replicate measurements (replicate expression

values for the same gene and in the same condition) within folds, so that we never see the

same gene in the same condition in both training and testing. In this more difficult setting,

MEDUSA still achieves significant prediction performance, with an error rate of 23.9%.



CHAPTER 5. LEARNING CIS REGULATORY MOTIFS: MEDUSA 82

5.6.1.2 Prediction accuracy for worm and human datasets

To test MEDUSA’s statistical performance in higher eukaryotes, we perform the same

10-fold cross-validation set-up with held-out examples and replicate examples grouped in

folds on the Worm and B-cell data sets.

On the Worm data set, an early embryonic expression time course, we obtain a test error

of 17.0% which is comparable to our yeast results and is in fact much better than results on

the hypoxia data set, which is about the same size but more diverse and noisier.

In the B-cell data set, despite the complexity of mammalian gene regulation and the

larger number of regulators and targets, the statistical performance is still good, with test

error of 25.7% – comparable to a that of the DNA damage stress response in yeast.

5.6.2 Comparison to GeneClass

We also compare the prediction accuracy of MEDUSA to that obtained using GeneClass

with a fixed set of database motifs as sequence features. As seen in Table 5.1 for the ESR

dataset using either TRANSFAC [128] or AlignAce [92] motifs results in a significantly

higher prediction error rate of 20.8% and 16% respectively as compared to MEDUSA’s

error rate of 13.4%, suggesting that MEDUSA can extract sequence information that is not

represented in these databases.

Also, for the hypoxia dataset using GeneClass with transcription factor occupancy data

from ChIP-chip experiments [42] leads to a much higher error rate of 26.0% as compared to

MEDUSA’s 8% error rate, suggesting that the problem is not trivial (and that the conditions

under which the ChIP chip experiments were performed are not relevant to hypoxia).
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Figure 5.4: Three-class prediction performance on the hypoxia dataset: (A) shows the distribution of
the prediction scores for the three classes. (B) shows a scatterplot of the true log2 expression values versus

prediction scores for all examples in 10-fold cross validation.

5.6.3 Prediction accuracy for the three-class (up/down/baseline) pre-

diction problem

MEDUSA uses only the up/down-regulated examples for training and testing. This generally

constitutes a small fraction of all the expression data (10-15%). However, it is possible to

make three-class predictions (up, down, or baseline) by thresholding MEDUSA’s prediction

scores, and in this way we can report 3-class cross-validation accuracy across all examples,

including those that are labeled baseline.

The output of the MEDUSA learning algorithm is a real-valued prediction function

F(xge) for all genes and experiments in the form of an alternating decision tree. The sign of

the prediction score gives the predicted label and the absolute value represents a confidence

level for the prediction. We can make 3-class predictions by thresholding on the confidence

levels of up and down predictions, that is, we predict examples to be up- or down-regulated

if F(xge) > a or F(xge) < −b , and to be baseline if −b ≤ F(xge) ≤ a where a, b > 0.

We reexamine our 10-fold cross-validation results on the hypoxia dataset using held-out

examples to evaluate three-class prediction performance, where baseline examples were

randomly divided among the 10 folds for the purpose of reporting results. Figure 5.4 (A)
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Figure 5.5: Confusion matrix for three-class classification on the hypoxia dataset: Truth and
predictions for all genes in the held-out experiments, including those expressed at baseline levels. Examples
are binned by assigning thresholds a = 0.49 and −b = −1.21 for prediction of positive and negative labels,

respectively.

shows the distribution of the prediction scores for the three classes, and Figure 5.4 (B) shows

a scatterplot of the true log2 expression values versus prediction scores for all examples.

In both figures, we see a good separation between classes, and in the scatterplot, we see a

significant correlation between true expression level and real-valued prediction score. We

choose the confidence thresholds a and b so as to optimize the mean balanced accuracy

(average accuracy over the three classes) over the 10 folds. We find the minimum balanced

accuracy to be 70.1% for a = 0.49 and −b = −1.21. Performance of a random classifier

would yield a balanced accuracy of 33.3%. While it would be more correct to choose the

thresholds based on a separate cross-validation scheme, we observe that the balanced error is

fairly stable across folds, suggesting that our choice does not lead to overrated performance.

For these thresholds, we obtain the confusion matrix shown in Table 5.5, demonstrating

strong diagonal entries and reasonable accuracy on the baseline examples, despite the fact

that these examples are omitted from training.

5.6.4 Comparison to simple methods based on clustering or correla-

tion

We have already shown that GeneClass strongly outperforms a baseline approach, based on

k-nearest neighbor, when both methods are tested on the same prediction problem: predict

up/down target expression from regulator expression states and promoter motif content,
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using database motifs (Section 4.6.4). We now consider a different question, which is

whether MEDUSA outperforms “strawman” methods based on clustering or correlation

which make no attempt to use sequence information. We consider two approaches: a

clustering strawman, where genes are clustered across the training experiments, each cluster

is assigned a “nearest regulator”, and this regulator’s expression state or fold-change is

used to predict the up/down state for all the cluster’s genes; a nearest regulator strawman,

which similarly assigns a nearest regulator to every target gene whose state or fold-change is

used to predict the target’s state. To emphasize that the strawmen solve different prediction

problems than MEDUSA, with different implied models of regulation, we contrast the

methods in Table 5.2.

prediction method gene-specific information used implied regulation model

clustering strawman gene’s cluster membership all genes in cluster are controlled by one regulator
(or possibly k highly correlated regulators)
under all experimental conditions

nearest regulator gene’s identity each gene is controlled by one regulator
(or possibly k highly correlated regulators)
under all experimental conditions

MEDUSA gene’s promoter sequence genes are controlled by a set of regulators;
different regulators act in different experimental conditions
and are not necessarily well-correlated with each other

Table 5.2: Strawman methods for comparison to MEDUSA: The strawmen methods and MEDUSA use
different information in order to make predictions and make different assumptions about gene regulation.

We test the clustering strawman on the ESR data set. We use exactly the same 5-fold

cross-validation set-up with held-out experiments as in our MEDUSA results. Prediction

results are reported on differentially expressed (significantly up or down) test examples only,

as before. We use k-means clustering on training experiments to assign genes to clusters

(using hierachical clustering led to similar results), and we use 50 clusters, which is typical

for this dataset (e.g. [104]), though other choices also leads to similar results. We also try

three choices of cluster representative used to make predictions for the cluster’s genes in

the test experiments: a randomly chosen gene from each cluster, the gene in the cluster

whose expression profile correlates best with the mean cluster profile, and the regulator that

correlates best with the cluster profile.
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Results of the cluster-representative approach are reported in Table 5.3. We try using

both discrete expression or real-valued expression data in order to perform the clustering

on the training set examples. However, what matters most critically is whether the cluster

strawman is required to make predictions based on the discretized expression state of

the regulator/representative, as MEDUSA does, or if it can use the sign of the log fold

change. When restricted to using discrete (up or down) states to make predictions, the

cluster strawman gives high error in cross-validation for all variants of the method, since

fairly often the chosen cluster representative is in a baseline state in the test experiments. In

this case, results are somewhat better if the clustering is performed on discrete rather than

real-valued expression data, so we report these results only in the table. We note that in the

ESR data set, the ratio of up to down differentially expressed examples is about 60 to 40,

so that the best guessing strategy of always guessing “up” leads to 40% error. The cluster

strawman with discrete regulator states performs worse than this guessing strategy.

If the cluster strawman is allowed to use the fold change of the cluster representative in

order to make up/down predictions in the test experiments, prediction performance is much

better, with the nearest regulator representative leading to 16.0% test error, slightly higher

than but comparable to MEDUSA’s 13.4% accuracy. Note that in this situation, the cluster

representative is making up/down predictions for significantly differentially expressed targets

even though its own fold change may not be significant.

Is the clustering strawman in fact identifying important regulators, based on its good

prediction performance when used with real-valued cluster representative levels? We first

note that all choices of cluster representative – nearest regulator, nearest gene, random gene

– give the same prediction performance. This result suggests that the cluster strawman is

learning mainly about the correlation structure of the data, and it will only be successful

in identifying regulators with a strong correlation signal. To examine this issue, we rank

regulators by the number of clusters to which they are assigned as “nearest regulators” across

all folds in the cross-validation study. We observe that the clustering strawman is able to
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identify some of the known stress response regulators such as Tpk1, Usv1 and Xbp1, which

are also picked by MEDUSA and a previous study based on module networks [104]. These

regulators have a uniform, strong signal across all the experiments and are hence easily

identified as predictive regulators by both techniques. However, more subtle regulatory

signals such as the regulatory activity of Msn2/4 and Hsf1, which MEDUSA identifies, are

not identified by the strawman. Also, since the strawman solely relies on expression data,

it misses out on regulators whose activity is controlled post-translationally. An interesting

example is the universal stress response regulator Msn2/4 whose regulatory activity is

controlled by translocation into and out of the nucleus. Its mRNA expression does not

change significantly in most of the ESR experiments, and hence it is difficult to identify as

a significant regulator based on its expression profile. MEDUSA, however, identifies the

Msn2/4 binding site as the top scoring motif. In this way, MEDUSA is able to identify a

richer set of biologically relevant features as compared to the strawman techniques that use

expression data alone.

prediction method 5-fold c.v. error rate
held-out experiments
replicates grouped

MEDUSA (discrete regulator states) 13.4%

Cluster strawman, using Representative target gene chosen randomly from cluster 63.6%
representative’s discrete state Representative target gene closest to cluster mean 41.3%
for prediction Representative regulator closest to cluster mean 51.4%

Cluster strawman, using Representative target gene chosen randomly from cluster 19.0%
representative’s fold change Representative target gene closest to cluster mean 15.0%
for prediction Representative regulator closest to cluster mean 16.0%

Table 5.3: Comparison of MEDUSA prediction performance to simple clustering-based methods on
the ESR data set: We report results for a clustering-based approach, where training set examples are

clustered and a representative gene from each cluster, or a representative regulator for each cluster, is chosen.
This gene’s expression level on each test experiment is used to predict the up/down expression state for all

other cluster members.

Due to the small number of experiments in the hypoxia data set, we use a cross-validation

set-up of held-out examples, making it difficult to perform the clustering method. Instead,

we compare the prediction performance of MEDUSA against a simple correlation-based

approach, where we identify the regulator that best correlates with each target gene across
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prediction method 10-fold c.v. error rate 10-fold c.v. error rate
held-out examples held-out examples,

replicates grouped

MEDUSA 8.0% 23.9%

Discretize nearest regulator 40.2% 69.0%
Majority vote of discretize 11.1% 42.5%
k = 10 nearest regulators

Real-valued nearest regulator 56.7% 63.0%
Majority vote of real-valued 13.6% 23.0%
k = 10 nearest regulators

Table 5.4: Comparison of MEDUSA prediction performance to simple correlation-based methods on
the hypoxia data set: We report results for both the Pearson correlation over real-valued expression data
(including baseline examples) and the normalized Hamming distance (excluding baseline examples) for

discretized expression data, where the inclusion/exclusion of baseline examples was chosen in order to report
the better results.

the training examples and use this regulator to predict the target’s expression level on the

test examples. We also consider taking a majority vote of k-nearest regulators. We note that

this approach necessarily uses the target gene’s identity rather than learning a single model

that can be applied to all genes. In this data set, the ratio of up to down target gene examples

is about 40 to 60; therefore, the best guessing strategy of always guessing the larger class

has an accuracy of 60% and an error rate of 40%.

Results of our experiments are summarized in Table 5.4. Here we again choose nearest

regulators based on both discrete and real expression profiles, but prediction is based on

the discrete state of the regulator or vote of discrete states for more direct comparison

to MEDUSA. We find that using a single “nearest regulator” for each target gives poor

prediction results (similar or worse than the best guessing strategy) for both choices of

the correlation metric. Taking the majority vote over a set of k = 10 discrete nearest

regulators gives good test performance on the easier cross-validation set-up, but when

replicate examples are grouped in folds, test error is again high (similar to the best guessing

strategy). Finally, when we take a weighted vote of k = 10 real-valued nearest neighbors,

test error is comparable to MEDUSA.

We again ask the question whether the real-valued k-nearest regulator method, whose

prediction performance is similar to MEDUSA’s, in fact extracts meaningful regulators. In
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the case of this smaller hypoxia dataset, we find that the biological relevance of the identified

“nearest regulators” is lacking altogether. When we rank regulators based on the number

of targets for which they are designated “nearest regulator”, we find that every regulator is

picked at least once. Hap1, Rox1 and Mga2 are the key regulators mediating hypoxia and

related responses. These regulators rank very low in the list (Hap1 ranks 452, Rox1 ranks

433 and Mga2 ranks). By constrast, in our main study (Chapter 6), MEDUSA identifies 54

statistically significant predictive regulators, many of which are known to be key regulators

of the experimental conditions considered. Hap1, Rox1 and Mga2 rank among the top 15

regulators. We can conclude that, especially in the case of small datasets, single correlations

between targets and regulators cannot be used to accurately predict expression of held-out

examples and that the majority vote process leads to improved accuracy but does not identify

biologically relevant regulators.

5.7 Biological validation

In this section, we show that MEDUSA is able to learn binding sites of several known

transcription factors in the yeast, worm and human genomes. We also use the margin score

(Section 5.4) to reveal context-specific regulators and motifs that regulate related groups of

genes in different experiments. We present biological validation results on the yeast hypoxia

dataset in Chapter 6.

5.7.1 MEDUSA discovers most known transcription factor binding

sites in yeast

5.7.1.1 ESR dataset

For the ESR dataset, we compare motifs learned by MEDUSA to several known and putative

binding sites, consensus sequences and PSSMs from five databases: TRANSFAC [128],
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Figure 5.6: MEDUSA motifs learned from the ESR dataset: By using the symmetrized KL divergence
as a distance measure, we match PSSMs identified by MEDUSA’s to motifs known in the literature. The table

shows the logos of MEDUSA’s PSSMs (column 3), the matching motif of the database (column 2), the
corresponding transcription factor (column 1), the name of the database (column 4) and the distance (column

5).

TFD, SCPD, YPD and a set of PSSMs found by AlignACE [92]. After converting the

sequences and consensus patterns to PSSMs, smoothed by background probabilities, we

compare all PSSMs with the ones found by MEDUSA using the symmetrized Kullback-

Leibler divergence which is the same distance metric we use for PSSM clustering in

MEDUSA (Section 5.3.4). We define the best match for each of MEDUSA’s PSSMs as the

database PSSM that is closest to it in terms of this distance metric. Each splitter node in

the alternating decision tree predicts on a particular subset of gene-experiment examples.

Hence, the motifs in the splitter nodes define some subset of target genes. We can associate

motifs with Gene Ontology (GO) annotations by looking for enriched GO annotations

(Section 5.5.1.4) in these gene subsets, and we can estimate the putative functions of the

targets of a transcription factor that might bind to the PSSM in each node.

We see matches to variants of the STRE element, the binding site for the Msn2/4 general

stress response transcription factors. The genes passing through nodes containing these

PSSMs are significantly enriched for the GO terms carbohydrate metabolism, response
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to stress and energy pathways, consistent with the known functions of Msn2/4. Gcr1 and

Rap1 are known to transcriptionally regulate ribosomal genes, consistent with enriched GO

annotations associated with the nodes of the specific PSSMs. The heat shock factor Hsf1—

which binds to the heat shock element (HSE)—plays a primary role in stress response to heat

as well as several other stresses. The heat shock element exists as a palindromic sequence of

the form nGAAnnTTCn. We find almost an exact HSE in the tree. In S.cerevisiae, several

important responses to oxidative and redox stresses are regulated by Yap1, which binds to

the YRE element. We find several strongly matching variants of the YRE. Comparison of

PSSMs from AlignACE with our PSSMs reveals the PAC and RRPE motifs to be among the

top three matches. These PSSMs also appear in the top 10 iterations in the tree, indicating

they are also strongly predictive of the target gene expression. Both these putative regulatory

motifs have been studied in great depth with respect to their roles in rRNA processing and

transcription as well their combinatorial interactions. The enriched GO annotations of these

nodes are the same as their putative functions. The tree contains 122 dimer motifs with

variable gaps. These include the HSE motif (GAAnnTTC), Hap1 motif (CCGnnCCG), Gis1

motif (AGGGGCCCCT) as well as variants of the CCG everted repeat. A few examples of

important biologically verified PSSMs learned by MEDUSA are given in Fig. 5.6.

5.7.1.2 DNA damage dataset

For the DNA damage dataset, we compare the probabilistic motifs discovered by MEDUSA

to several known and putative binding sites of transcription factors. In addition to the

TRANSFAC, SCPD, YPD and TFD databases we also use compare to motifs discovered by

MacIsaac et al. [74] based on ChIP-chip data. Figure 5.7 shows a subset of the sequence

motifs discovered by MEDUSA that have high scoring hits. We use the symmetrized

Kullback-Leibler divergence as a distance metric for comparison. We calculate p-values

based on the ALLR (averaged log likelihood ratio) score, where significance values were

computed based on Karlin-Altschul statistics as reported by the MatAlign program (personal
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communication, Dr. Gary Stormo). The p-value indicates the probability of observing an

equal or higher ALLR score at random.

Workman et al. [129] recently identified a regulatory subnetwork for the DNA damage

stress response in yeast using ChIP-chip experiments and gene expression data obtained

from transcription factor deletion experiments. They target a set of 30 transcription factors

believed to be important for DNA damage stress response. Of these, 25 have known or

predicted binding sites. MEDUSA is able to find high scoring matches to 19 of these

transcription factors, in addition to several others not used by Workman et al. [129]. These

include several important cell cycle factors such as Ace2, Fkh1/2, Mcm1 and Swi4/5/6 as

well as stress factors such as Yap1/2/3/4/5/6, Msn2/4 and Hsf1. Thus, we see that without

using any prior knowledge of regulatory function, MEDUSA can automatically learn binding

sites of key transcription factors involved in the DNA damage response.

5.7.2 MEDUSA regulatory programs uncover key regulators of the

DNA damage signature

Gasch et al. [36] compare the gene expression response in the DNA damage dataset to that

obtained from a diverse set of 13 environmental stress conditions [37]. Using hierarchical

clustering, they identify only a small set of genes (Figure 5.8) that are specifically induced

due to DNA damage, which they label the DNA damage signature. Among these signature

genes, Rad51 and Rad54 are required for repair of DNA damage, while the RNR genes

catalyze DNA synthesis and are some of the best studied targets of the Mec1 DNA damage

response pathway [36]. We use the MEDUSA framework to study the regulatory phenomena

behind this unique expression signature in 33 experiments involving MMS and radiation

damage. We use the margin score to rank regulators and sequence motifs discovered by

MEDUSA. Figure 5.8 shows a schematic representation of the regulatory program predicted

by MEDUSA.

We find that MEDUSA is able to identify many transcription factors known to regulate
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Figure 5.7: Motifs identified by MEDUSA for DNA damage: MEDUSA motifs with most significant
matches to database motifs are listed. Two filters are used to compute significance of the match, the

symmetrized Kullback-Leibler divergence and the p-value for the ALLR score. The p-values are reported
without correction for multiple testing.
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Figure 5.8: Key regulators of DNA damage signature genes as identified by MEDUSA: A network
showing the predictive transcription factors and signal transducers identified by MEDUSA as regulators of

DNA damage signature genes.

these target genes. Msn4 and Yap1 are stress response transcription factors that work in

tandem [113]. The STRE element (AAGGGGt), which is the Msn4 binding site, is also

among the top ranking predictive motifs. The mRNA profile of HAP4, which is involved in

aerobic respiration, as well as its binding site (CCAAT) are found to be highly predictive.

Gasch et al. [36] discuss the similarity between the DNA damage response and the hypoxia

response, due to the involvement of the Rox1 transcription factor in both processes. It is

therefore likely that Hap4 is also an important regulator of this DNA damage cluster. Wtm1,

a protein that controls nuclear localization of Rnr2 and Rnr4 [70], is found to be a predictive

regulator. One of the most important effects of DNA damage is cell-cycle arrest. Thus, it is

interesting that we find the binding sites of Mbp1 (CGCGTAA), Swi4 (CNCGAAA ) and

Kar4 (CAAA) as high ranking motifs, as these are key cell cycle transcription factors [30].

We also find several components of the signaling pathways acting upstream of these

transcription factors to be highly predictive in the MEDUSA regulatory program, including:

Tpk1 and Tpk2, which are believed to regulate nuclear localization of Msn4; and Ras2,
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which is the key component of the RAS pathway and affects targets through Yap1 and

Msn4 [113]. Other MEDUSA-identified stress-related signaling components include Cmk1,

Cmk2, Cin5 and Atg1. The role of the Mec1-Rad53 pathway in response to DNA damage

has previously been recognized through its effects on RNR gene expression and cell-cycle

arrest [52, 84, 99, 125, 142]. MEDUSA finds the Rad53 expression profile to be highly

predictive. Also, Dun1, which is the only regulator that is part of the DNA damage signature,

is predicted to have a strong regulatory role; it is a protein kinase required for the induction

of the RNR genes and acts downstream of Mec1 [122]. Rck2, which is a radiation sensitive

kinase, is also a highly-ranked regulator [24]. MEDUSA also finds several predictive

cell-cycle related cyclins and kinases such as Cdc28, Cdc37, Ckb2 and Clb2 [30]. The

highest ranking regulator found by MEDUSA is Shp1. It is a potential regulatory unit of

Glc7 (also found to be predictive) and acts as an adaptor for protein degradation via the

ubiquitin-proteosome pathway. Although there is no confirmed role for Shp1 in response to

MMS or radiation induced DNA damage, it has been found that an SHP1 null mutant shows

increased sensitivity to bleomycin, which is a DNA damaging carcinogenic agent [3].

The DNA damage gene expression response is particularly confounding due to the

strong general stress response component [37] and a strong post-transcriptional regulatory

component. It is thus interesting to note that using our framework, we are able to filter out

non-specific regulatory phenomena and highlight signaling components that are integral to

the DNA damage pathways using mRNA expression and sequence data alone.

It is important to note that predictions made by MEDUSA based on the mRNA profiles

of DNA-binding transcription factors do not necessarily represent direct binding; they could

indicate indirect effects. However, evidence of a predictive binding site of a transcription

factor discovered by MEDUSA suggests that the regulatory effect involves direct binding of

the transcription factor.

A striking difference we observe between the regulatory programs learned by MEDUSA

for the DNA damage response and the general environmental stress response (ESR) is the
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behavior of Msn4 as a predictive regulator. For the ESR dataset, Msn4 is predicted to be an

important regulator primarily through its binding site (the STRE element) which ranks as

the top scoring motif. The expression profile of MSN4, however, is only weakly predictive.

In fact, a closer look at the expression profile of Msn4 in the ESR dataset shows that the

fold changes are not very significant. This could indicate that Msn4’s activity is primarily

regulated by the PKA pathway through cellular localization. The Tpk1 kinase, one of the

main components of the PKA pathway, is associated with the STRE motif in the regulatory

program learned by MEDUSA. However, for the DNA damage response dataset, MEDUSA

finds the binding site of Msn4 as well as its expression profile to be highly predictive.

Several components of the PKA pathway are also found to be predictive. This could suggest

that for the DNA damage response, Msn4 is specifically regulated both transcriptionally and

post-transcriptionally.

5.7.3 Lineage-specific regulation in the early worm embryo

For the worm dataset, we compare the MEDUSA PSSMs learned in the first 500 boosting

rounds against TRANSFAC and WormBook PSSMs. We find the binding site for Hlh-8, a

helix-loop-helix transcription factor expressed in all body wall muscle cells from several

cell lineages during embryogenesis, and for Mec-3, a transcription factor essential to touch

cell differentiation in the neural lineage.

As a proof of principle that MEDUSA captures interesting context-specific regulation

in this system, despite the limitation that the expression data came from whole embryo

samples, we perform a case study relevant to touch receptor neurons. Six mechanosensory

neurons (the touch cells) mediate the response of C. elegans to gentle touch. Experimental

evidence suggests that the gene MEC-3 encodes a transcription factor which specifies the

differentiation of the touch cells [124,131,140], and a subset of 34 genes in our data set have

been previously identified as Mec-3-dependent genes expressed in touch cells [140]. We

first analyze this set of genes across all time points after the 4-cell stage during embryonic
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Figure 5.9: Context-specific regulation for target genes relevant to touch cell differentiation: (a)
Patterns of up (red), down (green), and baseline (black) expression levels for the statistically significant

regulators controlling target genes regulated by MEC-3 across the time points after 4-cell stage. At the left of
each row, the number of target genes affected by the regulator in these experiments is given. (b) The

top-ranked sequence features learned by MEDUSA, as determined by a margin-based score, and their hits
across the set of target gene promoters. The PSSMs learned by MEDUSA are represented by their consensus

sequences. At the bottom of each column, the number of target genes containing the motif is given. (c)
Patterns of discretized gene expression levels for the target genes regulated by MEC-3 across the time points

after 4-cell stage.
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development in order to find MEDUSA motifs which strongly affect this group of targets.

We rank the motifs using the margin score (Section 5.4).

We find a Mec-3 binding site (ATCGAT) among the top motifs ranked by margin score.

We also study two special time points, 53 and 83 minutes after the 4-cell stage, at which time

Mec-3 is most up-regulated and potentially most active. In both cases, the same binding site

scores the highest among all motifs. In this way, MEDUSA successfully discovers a Mec-3

motif despite the lineage-specific nature of touch cell differentiation. Figure 5.9 shows the

most predictive motifs and regulators, as ranked by margin score, for the Mec-3-dependent

genes.

5.7.4 Condition-specific regulators and motifs in human B cells

Figure 5.10: Context-specific regulation in human B cells: (A) Predictive regulators identified by
MEDUSA for a set of 159 known MYC targets that are consistently downregulated in response to

simultaneous CD40 and antiIgM stimulation. (B) Predictive regulators identified by MEDUSA for a set of 25
known MYC targets that are consistently upregulated in the BCL6(∆PEST) mutant in response to the CD40

treatment. The regulators circled in red are known to have a key role in the conditions under study.

We restricted our analysis of the B cell data set (See Section 5.5.3) to a well-studied

Burkitt lymphoma cell line (Ramos) treated in vitro to activate CD40 or B-cell receptor

(antiIgM) signaling and cell lines engineered to stably express BCL6 and BCL6(DeltaPEST)

mutant. We use the margin-score based analysis (See Section 5.4) to study a set of 930

genes that are experimentally confirmed to be targets of the Myc transcription factor [138].

Below, we report results on two experimental groups.

The first group shown in Figure 5.10(A) is a set of 159 known Myc targets that are

consistently downregulated in response to simultaneous CD40 and antiIgM stimulation.
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We expect to see the strongest response from this group, since both the CD40 and BCR

signaling pathways are active and regulate target genes through two transcription factors,

Myc and NF-κB. The nuclear factor-κ B (NF-κB) family is essential for lymphocyte survival

and activation and for mounting normal immune responses [71]. NF-κB proteins are present

in the cytoplasm in association with the inhibitory proteins IkBs. After activation of the

CD40 and BCR pathways, the IkB proteins become phosphorylated, ubiquitylated and,

subsequently, degraded, which allows nuclear translocation of NF-κB. NF-κB can then

transcriptionally activate its targets. Figure 5.10(A) shows that MEDUSA identifies both

MYC and NF-κB2 as predictive regulators. Also, we see that the expression of the targets is

directly correlated with that of MYC, indicating its role as an activator. However, NF-κB2’s

expression profile is inversely correlated with that of the targets. This could be because

NF-κB’s activity is primarily controlled through cellular localization and hence its mRNA

activity is not a direct indicator of its regulatory role. We also identify Ccl3 and PCNA as

predictive regulators, both of which are downstream of the Bcl6 transcription factor. Bcl6 is

believed to facilitate the proliferative expansion of germinal centers during normal immune

responses through PCNA and its cell cycle arrest partner p21 [90].

The second group (Figure 5.10(B)) consists of a set of 25 known Myc targets that are con-

sistently upregulated in the BCL6(∆PEST) mutant in response to the CD40 treatment. BCL6

affects germinal center development and lymphomagenesis by transcriptional suppression of

target genes controlling B cell activation and plasma cell differentiation. Bcl6 transcription is

downregulated by signaling from the CD40 receptor [83]. Bcl6 protein stability is regulated

by signaling from the B cell receptor that induces MAP kinase-mediated phosphorylation

of Bcl6, thus targeting Bcl6 for rapid degradation by the ubiquitin-proteasome pathway. In

the Bcl6(∆PEST) mutant however, the Bcl6 protein is resistant to degradation due to the

absence of the PEST domain. Thus, the mRNA activity of Bcl6 is largely representative

of its regulatory activity. Since Bcl6 is a repressor, we would expect the targets genes’

expression to be inversely correlated with Bcl6 expression. Figure 5.10(B) shows that
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MEDUSA identifies Bcl6 as a predictive repressor of the target genes under study. Other

predictive regulators identified by MEDUSA include CLFAR, Mxi1 and Lyn. CLFAR is

involved in positive regulation of I-κB kinase/NF-κB cascades [97]. Mxi1 along with the

Max gene antagonize Myc dependent activation [97]. The Lyn tyrosine kinase is part of

the BCR signaling pathway [97]. Thus, we see that many of the regulators identified by

MEDUSA have key roles in the conditions under study.

MEDUSA also learns the cACGTGAc and ggcTTTCctg motifs which are near exact

matches to the known binding sites of the Bcl6 (CACGTG) and NF-κB (gggACTTTCC)

consensus binding sites respectively [58].

5.8 Conclusion

In this chapter, we propose a new algorithm called MEDUSA for learning binding site

motifs along with a predictive model for gene regulation. MEDUSA jointly learns from

promoter sequence data and multiple gene expression experiments, together with a candidate

list of putative regulators (transcription factors and signaling molecules), and builds motif

models whose presence in the promoter region of a target gene, together with the activity

of regulators in an experiment, is predictive of up/down regulation of the gene. We can

readily evaluate the predictive accuracy of the learned motifs and regulation model on

test data, and we present cross-validation results for datasets of various sizes probing

many different experimental conditions in organisms such as yeast, worm and humans.

We see that MEDUSA is able to accurately predict expression data in all cases. We also

show that MEDUSA’s binding site motifs are better able to predict regulatory response

on held-out experiments than binding site sequences taken from ChIP-chip transcription

factor occupancy data, TRANSFAC motifs or previously published computationally-derived

PSSMs.

Popular cluster-first motif discovery strategies often require heuristic or even manual



CHAPTER 5. LEARNING CIS REGULATORY MOTIFS: MEDUSA 101

preprocessing to determine suitable putative clusters of coregulated genes. In practice,

in addition to using gene expression profiles in the clustering algorithm, one might need

to incorporate annotation data or even use hand curation to properly refine the putative

clusters [53]. One must then carefully apply a standard motif discovery algorithm to find

overrepresented motifs in the promoter sequences of genes in each cluster, which may

involve optimizing parameters in the algorithm and thresholds for each of the extracted

motif models. By contrast, MEDUSA avoids clustering and manual preprocessing altogether,

and automatically determines PSSMs together with thresholds used for determining PSSM

hits by optimizing boosting loss. In our experiments, MEDUSA learns many of the known

binding site motifs in yeast.

The MEDUSA algorithm builds binding site motifs while producing a single regu-

lation model for all target genes without introducing conceptual subunits like “clusters”

or “transcriptional modules”. This single regulation model is arguably more biologically

realistic and can capture combinatorial regulatory effects on overlapping sets of targets. The

regulation model can also be interpreted as a gene regulatory network, since the activity of

regulators predicts differential expression of targets via binding sites, although necessarily

this network is large and contains many nodes. Nonetheless, we can use this model to

address specific biological questions. We introduce the margin-score, which we use to

analyze regulation of interesting gene sets in specific experimental conditions thus revealing

context-specific regulators and motifs and analyze. Most of our observations are validated

in the literature.

One difficulty of using complex parametrized models is that they require careful training

methodologies to avoid poor local optima and severe overfitting. MEDUSA uses very few

tunable parameters and can be run “out-of-the-box”, making it easy to reproduce results and

allowing non-specialists to apply the algorithm to new datasets. Moreover, it is difficult to

statistically validate the full structure or the components of complex network models; in

the literature, most work using these models for gene regulation has focused on biological
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validation of particular features in the graph rather than generalization measures like test

loss. MEDUSA’s predictive methodology—using large-margin learning strategies to focus

on improving generalization—produces binding site motifs that achieve good accuracy for

prediction of regulatory response on held-out experiments. The fact that we can easily

evaluate the predictive performance of our learned motifs and regulation model gives us a

simple statistical test of confidence in our results.

The superior performance of MEDUSA in discovering predictive motifs is very encour-

aging for applying such large-margin techniques to analysis of expression data for as-yet

unannotated genomes and for elucidating the transcriptional regulatory mechanisms of more

complex organisms.



Chapter 6
Case Study: Regulation of hypoxia

responses in yeast

In this chapter, we present a specific case study to showcase the post-processing and

visualization aspects of our framework. We use GeneClass and MEDUSA to study the

oxygen regulatory network in S. cerevisiae using a small data set of perturbation experiments.

Mechanisms of oxygen sensing and regulation underlie many physiological and pathological

processes, and only a handful of oxygen regulators have been identified in previous studies.

We uncover detailed information about the global oxygen regulatory network. We also use

biochemical experiments to validate several hypotheses generated by our analysis. This

chapter is based on work presented in [61].

6.1 Introduction

Oxygen is critical for the survival and development of virtually all living organisms. As such,

living organisms ranging from yeast to humans have developed sophisticated mechanisms to

respond to changes of oxygen level [18]. Several microarray gene expression studies

have been performed to understand oxygen sensing and regulation at a genome-wide

level [63,65,93,115,118] in the yeast Saccharomyces cerevisiae. However, most of these

103
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studies mainly identify genes responding to low levels of oxygen [63, 65, 93, 115, 118] or

determine the DNA-binding sites for several known oxygen regulators, such as Rox1 [115].

Recently, there has also been a cluster analysis of expression profiles under hypoxia and

reoxygenation in glucose versus galactose media [65, 66], where the authors looked for

enrichment of functional annotations and known transcription factor binding sites within

gene clusters and also applied existing motif discovery algorithms to the clusters. These

previous microarray studies have provided further evidence of the role of known regulators

such as Hap1, Rox1, and Upc2, but they have had limited success in identifying novel

components of the oxygen and heme regulatory network.

In this chapter, we apply an integrative computational approach to analyze genome-wide

changes in expression in response to perturbations of the oxygen regulatory network by

varying levels of oxygen, heme, Hap1, and Cobalt (Co2+). We use MEDUSA and GeneClass

to learn predictive cis regulatory motifs and regulatory programs by integrating promoter

sequence, promoter occupancy data from ChIP-chip experiments, and the expression levels

of potential regulators. We use a novel margin-based score (See Section 5.4) to extract the

condition-specific regulators and putative DNA binding site motifs that are most significant

for predicting the expression of particular sets of target genes. We summarize this infor-

mation with a global map of the oxygen regulatory network, which includes both known

and novel regulators. Since MEDUSA associates regulators to target genes via motifs in

the promoter sequence, we directly test the predicted regulators for the OLE1 gene by

experimental analysis of its promoter activity under deletion of each of these regulators. In

each case, the change in OLE1’s promoter activity under hypoxia is found to be consistent

with MEDUSA’s predictions. These results confirm that several novel regulators are indeed

involved in oxygen regulation. Finally, we perform a comprehensive comparison of the motif

discovery results of MEDUSA with a conventional cluster-first motif discovery algorithm,

and we find that MEDUSA identifies many DNA binding site motifs that are relevant to

hypoxia and missed by the traditional approach.
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The gene expression dataset that we analyze is a small dataset consisting of 24 microarray

assays spanning 8 related experimental conditions. Most computational methods that learn

regulatory networks or discover cis-regulatory motifs de-novo, require substantial amounts

of data to learn reliable models. However, the reality on the ground is that most biology

laboratories tend to produce small gene expression datasets similar to the one we analyze. It

is thus important to be able to design algorithms that can learn reliable models using limited

amounts of data to answer specific biological questions. GeneClass and MEDUSA use

boosting (See Section 3.3) to avoid over-fitting as they search through the a massive space

of possible regulators and sequence motifs. As a result, we achieve high prediction accuracy

in cross-validation results. More important using our margin score and post-processing

framework we are able to extract reliable signal from noisy data and reveal novel regulatory

mechanisms. We show that even in this difficult setting, we are able to not only expose the

hypoxia regulome but also capture subtle gene regulation at the level of a single gene.

6.2 Microarray experiments

In this section, we briefly describe the hypoxia dataset generated in the laboratory of our

collaborator Dr. Li Zhang. Details of data generation and microarray data processing

are presented in Appendix D. RNA samples are prepared from 8 different experimental

conditions:

Normoxic (HAP1): Yeast cells bearing the Hap1 expression plasmid maintained under

aerobic conditions.

Normoxic (∆hap1): Yeast cells bearing the empty expression plasmid maintained under

aerobic conditions i.e. HAP1 is deleted.

Anaerobic, early (HAP1): Yeast cells bearing the Hap1 expression plasmid maintained

under anaerobic conditions for 1.5 hours.
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Anaerobic, late (HAP1): Yeast cells bearing the Hap1 expression plasmid maintained

under anaerobic conditions for 6 hours.

Anaerobic, late (∆hap1): Yeast cells bearing the empty expression plasmid maintained

under anaerobic conditions for 6 hours.

Normoxic, +Co2+ (HAP1): Yeast cells bearing the Hap1 expression plasmid in the pres-

ence of 400 µM cobalt chloride for 6 hours.

Heme sufficient (Heme): Yeast cells grown in medium containing 250 µg/ml (heme-sufficient)

5-aminolevulinic acid.

Heme deficient (∆Heme): Yeast cells grown in medium containing 2.5 µg/ml (heme-

deficient) 5-aminolevulinic acid.

For each condition, three replicates are generated by preparing RNA samples from three

batches of independently grown cells. The gene expression data is obtained from single

channel Affymetrix microarrays. Each of the knockout, stress or perturbation microarray

experiments is compared to a corresponding reference microarray. The expression fold-

changes are converted to p-values using an intensity-specific noise model obtained from

replicate data (See Section 5.5.1.1). The fold-changes are then discretized into +1, 0 or

−1 labels using a p-value threshold of 0.05. A label of +1 (−1) indicates up-regulation

(down-regulation) beyond the threshold level of noise.

6.3 Perturbations of the oxygen regulatory network reveal

diverse expression signatures

Prior to performing more integrative computational analysis, we examine the broad patterns

of gene expression in our data set. These results also allow us to compare MEDUSA to
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Figure 6.1: Expression signatures identified by perturbation of the oxygen regulatory network. (A)
Heat maps showing real-valued expression profiles of genes that are members of the 16 signatures identified.
The expression values are in log2. The rows represent genes and the columns represent the 6 experimental

conditions. Bright red indicates strong upregulation, bright green indicates strong downregulation, and black
indicates no change in expression. Each signature is labeled with statistically significant functional

annotations (B) Each block displays the average real-valued expression (stem plot in dark blue) and discrete
expression profile (bar plot in light blue) for each signature over the 6 experimental conditions. The

real-valued expression values are in log2.
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other “cluster-first” motif discovery methods. We use a two-phase procedure to partition the

genes into expression signatures.

The first phase is used to identify the number of unique signatures. We first average

the expression data for each gene in each experimental condition over all replicates. We

then discretize this expression data into 2 levels (±1) based on the sign of the foldchange in

expression. We group genes into sets of unique patterns across all experiments. We then

average the real-valued expression data for all genes belonging to each pattern to obtain a

“mean expression signature”. Patterns with small support (< 10 genes) are hierarchically

merged with their nearest pattern until there are no patterns with < 10 genes. The nearest

neighbor is determined using a square-euclidean distance metric over the mean expression

signatures for each pattern. This procedure groups the 3358 significantly expressed genes

into 16 sets.

The second phase is used to refine the clustering. We recluster the genes into 16

expression signatures using the k-means clustering algorithm. We use the square-euclidean

distance metric over the real-valued expression data. In an attempt to avoid local minima, we

repeat the clustering procedure 10 times with different starting points. The initial candidate

genes for cluster centroids are obtained by randomly sampling the 16 gene sets identified in

the first phase. The final expression signatures are calculated by taking a majority vote over

the 3-level (+1/0/-1) discretized expression for all genes in each gene set.

As shown in Figure 6.1, we identify 16 distinct discretized co-expression signatures to

which we assign the differentially expressed genes. We perform Gene Ontology functional

analysis (See Section 5.5.1.4) on the 16 expression signatures. In most cases, the expression

signatures can be assigned significant functional terms, though in general only a smaller

subset of the genes in a signature belong to the enriched category. Detailed functional

analysis of each of the expression signatures is presented in Appendix E.
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6.4 Learning procedure

We use a two phase procedure to learn a global hypoxia regulatory program using gene

expression data, gene promoter sequences, ChIP chip data and a global set of potential

regulators. The first phase is a de-novo motif discovery phase. We use the MEDUSA

algorithm introduced in Chapter 5 for 450 iterations thus obtaining a set of 450 PSSMs,

their targets and thresholds. We decide on the stopping criterion based on the number of

iterations required for the mean test-loss on cross-validated folds to plateau. In the second

phase of regulatory program learning, we use GeneClass for 450 iterations using all the data

for training and using the 450 MEDUSA PSSMs as well as the ChIP-chip occupancy data

as input.

We use a candidate set of 507 regulators consisting of 240 known and putative transcrip-

tion factors and 267 known and putative signaling molecules such as kinases, phosphatases

and receptors.

For the motif discovery phase in MEDUSA, we use 1000 bp. promoter sequences

upstream of the transcription start site of all S. cerevisiae genes. We scan these sequences for

all occurring k-mers (k = 3 . . . 7) as well as 3-3 and 4-4 dimer motifs allowing a middle gap

of up to 8 bp. We restrict the set of all dimers to those whose two components have specific

relationships, consistent with most known dimer motifs: equal, reversed, complements, or

reverse complements.

We use ChIP-chip data from Harbison et al. [42] for 203 transcription factors in living

yeast cells under 13 diverse environmental conditions. We discretize the data using a p-value

threshold of 0.1.

The resulting alternating decision tree (ADT) consists of 450 splitter-prediction node

pairs. Each splitter node consists of a stabilized set of regulators in combination with

a stabilized set of PSSMs and/or ChIP chip occupancy profiles. The PSSMs learned by

MEDUSA dominate the tree. The earliest ChIP chip feature is observed at iteration 121. It

is the ChIP chip occupancy profile of the Hap1 transcription factor which is a key hypoxia
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regulator. The ADT is at most 3 levels deep. There are 361 single node paths, 87 paths

consisting of 2 nodes and only 2 paths consisting of 3 nodes. This final model is used for all

biological post-processing analysis.

Prediction accuracy using different cross-validation experiments are provided in Sec-

tion 5.6.1. The high prediction accuracy (92%) on held-out data gives us confidence that the

algorithm is not overfitting the small dataset and that our model is reliable.

We introduced the margin score in Section 5.4. The score assesses how significantly an

individual feature contributes to the confidence of predictions over a specific set of target

genes and experiments. We use this score to extract and rank regulators and motifs from the

regulation programs specific to different gene sets and experimental groups.

6.5 Cis regulatory motifs: Comparison to “cluster-first”

motif discovery algorithms

In this section, we show that MEDUSA is able to automatically learn the DNA binding sites

of almost all known hypoxia-related transcription factors and several new cis regulatory

motifs. We also do a global comparison of transcription factor binding motifs attributed

by MEDUSA to those found by AlignACE [53] which is a “cluster-first” motif discovery

algorithm. Since AlignACE [53] is only applicable to clusters of genes we use MEDUSA

and AlignACE to reveal motifs relevant to the 16 expression signatures (Section 6.3) in our

data set.

6.5.1 Global comparison of motifs

Figure 6.2 shows a comprehensive comparison of MEDUSA to AlignACE motif discovery

results across all 16 signatures. We use AlignACE with default settings on 1000 base pair

promoter sequences of genes belonging to each signature and use AlignACE’s maximum a

posteriori (MAP) score [53] to rank the overrepresented motifs by their statistical signifi-
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Figure 6.2: Comparison of motifs learned by MEDUSA and AlignACE for the 16 expression
signatures identified in the hypoxia dataset



CHAPTER 6. CASE STUDY: REGULATION OF HYPOXIA RESPONSE IN YEAST 112

cance. We also define the abundance score for each motif as the fraction of promoters that

were found to have the motif.

Similarly, we use margin scoring to identify significant MEDUSA motifs for each of

the signatures, reporting only those motifs with a positive margin score. For MEDUSA,

we define the abundance score for a motif as the fraction of promoters in each signature

set that are found to have the motif based on the tree structure of the learned model. In

order to compare the two methods, we report in Figure 6.2 only those motifs that match

known transcription factor binding sites’ PSSMs in TRANSFAC, SCPD or YPD (using

Kullback-Leibler divergence to compare motifs) or match consensus sequences found by

Macisaac et al. [74]. If multiple motifs are found to be strong matches to the same known

binding site, we report the one with the highest statistical score. In total, we match 111

motifs found by either one or both methods to known binding sites, and we sort these

motifs into 3 categories based on the difference between the cumulative margin score and

cumulative MAP score across all the signatures.

As seen in Figure 6.2, the first set consists of 67 motifs identified by MEDUSA but not

by AlignACE; the second set consists of 22 motifs that are identified by both MEDUSA

and AlignACE; and the third set consists of 22 motifs that are identified by AlignACE but

not MEDUSA. In Figure 6.2, the motifs highlighted in red are binding sites of transcription

factors known to play a key role in hypoxia-related conditions. MEDUSA is able to identify

a number important hypoxia-related transcription factor binding sites, including Hap1

(CGGnnTAnCGG), Hap2/3/4 (CCAAT), Mga2 (ACTCAACAA), Upc2/Ecm22 (TCGTATA),

Ace2 (TGCTGGT), Mot3 (TTGCCT), Mac1 (TGCGCAAA), Aft2 (RVACCCTD), Msn2/4

(AAGGGGc), Rox1 (AAAGACAAAAAA) and Abf1 (RTCRnnnnnACG). Among these,

AlignACE is able to identify Rox1, Msn4 and Abf1, and it finds the Hap1 and Hap2/3/4

binding sites only for a single signature (signature 16). Moreover, none of the motifs

exclusively identified by AlignACE are known to have any role in the hypoxia-related

conditions. In particular, the top scoring AlignACE motif is a low complexity motif
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(AAAAAAAA) that matches the Azf1 binding site. These results show that MEDUSA

outperforms AlignACE in finding relevant sequence motifs for our data set.

6.5.2 Motifs specific to a functional regulon

We further analyze whether MEDUSA can correctly extract regulatory information about

a known functional regulon, and we compare the results of MEDUSA analysis with Alig-

nACE [53]. A functional regulon is a group of genes experimentally confirmed to be

coregulated by a common set of transcription factors. The functional regulon we examine

is signature 16 (See Figure 6.1), one of the smaller expression patterns consisting of a set

of 34 HAP1-dependent genes that are strongly suppressed in all conditions including the

∆hap1 experiment. These genes (such as the COX and QCR genes) are involved in aero-

bic respiratory processes, electron transport and heme-dependent oxidoreducatase activity.

Starting with the global regulatory program, we extract all sequence motifs and regulators

with positive margin score for this set of genes and further rank them based on the number

of target genes they are predicted to regulate.

We first consider transcription factors that are identified as high ranking regulators and

motifs i.e. they are high scoring regulators based on their mRNA expression profiles and

their binding site motifs are discovered by MEDUSA and ranked as significant and frequent

for the 34 genes in the signature. This set of transcriptional regulators consists of Hap1,

Mot3, Ace2, Mac1, Msn2, Ste12, Gcn4, Pho4 and Hap2/3/4. MEDUSA also ranks the Hap1

and Hap4 ChIP chip occupancy profiles as highly significant features for these genes. By

examining the literature, we find support for many of these transcription factors regulating at

least several of the target genes in this set. For example, CYC1, CYC7 and CYT1 are known

to be directly regulated by Hap1 [114]. Hap2/3/4 are known to directly affect expression

of COX4, COX5, COX6, CYC1 and CYT1 [114]. Mot3 is known to directly regulate CYC1

expression [40]. FRE1 and CTR3 are known to be regulated by Mac1 [64,114]. Upc2 and

Mga2 are also important hypoxia regulators, and MEDUSA identifies their binding sites
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as high scoring motifs for smaller subsets of genes within the signature. MEDUSA also

identifies Abf1 as a significant regulator through its mRNA expression, but the sequence

motif corresponding to the Abf1 binding site and the Abf1 ChIP chip data have low margin

scores. Some of the COX genes are known to be regulated by Abf1 in other conditions [114],

and the Abf1 binding site is present in several of the genes. In this case, our MEDUSA

analysis suggests mixed evidence for Abf1 as a transcriptional regulator of the regulon, and

it is possible that under hypoxia other regulators dominate.

As a comparison, we also use AlignACE to find overrepresented sequence motifs in

the promoter regions of this gene set. Since the signature is small and represents a true

functional regulon, it provides an ideal case for traditional motif discovery algorithms. Using

the motif discovery program in the most permissive way (that is, without enforcing any

significance threshold on the motifs), AlignACE is only able to find significant hits for the

binding sites of Gcn4, Cha4, Hap1 and Ace2. For Hap2/3/4, the MAP score (3.4) has very

low statistical significance, even though the motif is very abundant in this gene set (46.1%)

and is known to regulate most of these genes [114]. Also, AlignACE is not able to identify

more subtle context-specific regulators such as Mot3, Mac1, and Mga2, which are known to

regulate these genes.

6.6 Post-processing and visualization framework

In this section, we present our post-processing framework and show several interesting

visualizations of the data and features extracted from our learned models. These methods

help answer specific types of biological questions.

We show how our predictive framework can focus on different scales of gene regulation.

We are able to reveal regulators of a single gene OLE1 which we validate using wet-lab

experiments. Further, we are able to segment the context-specific activity of regulators and

motifs in each of the experimental conditions by analyzing massive groups of up and down-
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regulated genes. At the genome-wide scale, we are able to expose the hypoxia regulome

consisting of several known and novel master regulators that mediate the hypoxia response.

6.6.1 Regulation of the OLE1 gene: Biochemical experiments validate

hypotheses

Figure 6.3: Experimental confirmation of the oxygen regulators identified by MEDUSA: MEDUSA
identifies Mdg1, Met28, Upc2, Pig1 and Rme1 as specific regulators of the hypoxia-inducible OLE1 gene. To

detect the effects of these regulators on the OLE1 gene, the full-length OLE1 promoter-lacZ reporter was
transformed into the wild type or mutant cells with one of the indicated genes deleted. β-galactosidase

activities were measured in cells grown in air or in hypoxic chamber. Data plotted here are averages from at
least three independent transformants. The arrows indicate the effects of hypoxia on the expression levels of
Mdg1, Met28, Upc2, Pig1 and Rme1. That is, Mdg1 was downregulated whereas the rest were upregulated in

hypoxic cells.

To experimentally test specific regulators identified by using MEDUSA, we examine

the promoter of the OLE1 gene, because this promoter has been well characterized previ-

ously [21,55,121]. The full-length OLE1 promoter-lacZ reporter activity is strongly induced

by hypoxia [121]. By applying margin-based scoring to a set of previously identified OLE1-

like genes [21,55,121], we extract significant OLE1-specific motifs and regulators under

hypoxia. Among the significant motifs, we find LORE (low oxygen response element),

which has been experimentally determined [121] and is known to be the Mga2 binding

site [55], as well as the binding sites for Hap1 and Aft1/2, which are also known to bind
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OLE1 [74].

Using margin-based scoring for regulators, we identify Mdg1, Met28, Upc2, Pig1 and

Rme1 as potential regulators for the OLE1 promoter. Only Upc2 is previously known to be

involved in oxygen regulation. The expression of these regulators but Mdg1 is upregulated

by hypoxia. Note that the MEDUSA model does not assert that these regulators directly

bind the OLE1 promoter but does predict that they regulate OLE1 expression, perhaps

through indirect interactions. To determine the effects of these regulators on the OLE1

promoter-lacZ reporter activity, we measure β-galactosidase activities in wild type and

mutant cells with one of the regulator genes deleted (Figure 6.3). Except for ∆mdg1 cells,

the reporter activity in hypoxic mutant cells are all reduced, compared to that in wild type

cells (Figure 6.3). Because hypoxia suppresses MDG1 expression, indicating its negative

role in OLE1 induction, it is conceivable that its deletion will not affect the reporter activity

in hypoxic cells. In contrast, because hypoxia induces the expression of other regulators,

indicating their positive role in OLE1 induction, their deletion causes the reporter activity to

decrease in hypoxic cells. Deletion of MET28, UPC2, and PIG1 also significantly reduce

the fold induction of the OLE1 reporter activity by hypoxia (Figure 6.3). These experimental

results strongly support the power of our methods to predict regulators of individual genes.

6.6.2 Context-specific regulators in different experimental conditions

In order to identify the most significant regulators and motifs controlling specific sets

of differentially expressed target genes under specific experimental conditions, we rank

regulators and motifs using the margin score.

We first use margin scoring to identify statistically significant regulators that may

mediate the regulation of various target gene sets. Figure 6.4 provides an example of the

condition-specific regulators and motifs identified by MEDUSA. To clarify the roles of

Hap1 and heme in oxygen regulation, we identify and compare the potential regulators

(Figure 6.4A) and motifs (Figure 6.4B) that may mediate the regulation of hypoxically



CHAPTER 6. CASE STUDY: REGULATION OF HYPOXIA RESPONSE IN YEAST 117

Figure 6.4: Heat maps showing predictive regulators, predictive motifs, and targets induced by
oxygen and heme: (A) A Venn diagram illustrating the regulators involved in controlling hypoxically

suppressed (oxygen-induced) genes in HAP1 and hap1 cells, and heme-induced genes. For each experiment,
the statistically significant regulators associated with the set of downregulated target genes are determined by
use of a margin-based score. (B) Patterns of up (red), down (green), and baseline (black) expression levels for
the statistically significant regulators controlling downregulated target genes across the three experimental
conditions. (C) The top-ranked sequence features learned by MEDUSA, as determined by a margin-based

score, and their hits across the set of target gene promoters. The PSSMs learned by MEDUSA are represented
by their consensus patterns. ChIP-chip occupancy features also occur in the list of most significant features.

For example, SIG1-CH refers to ChIP-chip occupancy by the transcription factor SIG1 and appears as a
highly-ranked promoter sequence feature. (D) Discretized gene expression levels for the full set of target

genes represented in the Venn diagram (total of 1798 genes), given by combining the down-regulated target
gene list from each of the three experimental conditions. Note that the expression patterns include only down

and baseline expression levels across all three conditions.
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suppressed (oxygen-induced) genes in wild type HAP1 or hap1 cells, and heme-induced

(heme deficiency-suppressed) genes. Note that intracellular heme levels are low under

hypoxic growth conditions [50], so hypoxically suppressed (oxygen-induced) genes correlate

with heme deficiency-suppressed (heme-induced) genes. The expression levels of identified

regulators and target genes are indicated in Figure 6.4C and 6.4D, respectively.

MEDUSA analysis identifies a number of known regulators whose predicted condition-

specific role is consistent with previous knowledge of oxygen and heme regulation. For

example, consistent with existing knowledge [139, 143, 144], Hap1 is important for the

regulation of oxygen-induced genes in cells bearing the Hap1 expression plasmid and for

heme induction of target genes (see Figure 6.4A and 6.4C). Likewise, Hap4 is important

for heme induction and for the regulation of oxygen-induced genes in both cells bearing

the Hap1 expression plasmid (HAP1) and the empty vector (∆hap1, Figure 6.4A and 6.4C).

Rox1 appears to be important for the regulation of oxygen-induced genes only in ∆hap1

cells. This is not surprising because Rox1 expression is known to be under the control of

Hap1 [143, 144]. In cells bearing the Hap1 expression plasmid (HAP1), Hap1 would be the

dominant regulator. Another notable case is Mga2, which has been shown to be important

for oxygen regulation of certain genes, such as OLE1 [51, 55]. Here we find that it is indeed

important for oxygen induction of genes in both cells bearing the Hap1 expression plasmid

(HAP1) and the empty vector, but it is not important for heme regulation, as expected.

We also identify and compare statistically significant regulators that may mediate the

regulation of hypoxically induced genes in cells bearing the Hap1 expression plasmid

(HAP1) and the empty vector (∆hap1) and those that mediate heme deficiency-induced

(heme-suppressed) genes (Figure 6.5A). Likewise, we identify and compare regulators that

may mediate the regulation of Co2+-inducible genes with those mediating the regulation

of hypoxically induced genes (Figure 6.5B). The comparison of these regulators mediat-

ing oxygen regulation, heme regulation, and Co2+-inducible regulation provides several

important insights into the regulatory network mediating oxygen sensing and regulation.
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First, more than half of the MEDUSA-identified regulators mediating heme regulation

may also be involved in mediating oxygen regulation both in HAP1 cells (12 out of 20

regulators) and in ∆hap1 cells (15 out of 20 regulators) (Figure 6.4A). Many regulators

predicted to be involved in heme suppression of target genes may also be involved in

oxygen induction in wild type HAP1 cells (13 out of 18) and in ∆hap1 cells (11 out of 18)

(Figure 6.5A). These results are consistent with the previous idea that heme serves as a

secondary messenger of oxygen and plays a major role in mediating oxygen regulation of

target genes.

Second, Hap1 plays a major role in oxygen regulation. In the absence of Hap1, the

number of regulators mediating oxygen regulation may be significantly increased both for

oxygen-induced genes (Figure 6.4A) and hypoxically induced genes (Figure 6.5A).

Third, relatively few regulators may be involved in mediating the regulation of hy-

poxically induced and Co2+-inducible genes (Figure 6.5B). These results suggest that the

Co2+-inducible oxygen regulatory pathway plays only a minor role in mediating oxygen

sensing and regulation. MEDUSA identifies the regulators that may mediate the regulation

of oxygen-regulated genes that are affected at the early stage (1.5 hours) of anaerobic growth

(Figure 6.5C and D) in cells bearing the Hap1 expression plasmid (HAP1), finding some

regulators common to both time points and some specific to early or late stages. The results

from analysis of both target genes and regulators (Figure 6.5C and 6.5D) suggest that there

is a significant switch in the regulatory and expression programs in the cells as anaerobic

conditions prolong.

6.6.3 The hypoxia regulome

To reveal the statistical importance of various regulators in the global oxygen and heme

regulatory network, we summarize our results by using a global regulatory map (Figure 6.6).

Figure 6.6 illustrates the significance of the regulators for predicting the up or down regula-

tion of target genes under the tested six different experimental conditions, ranked by margin
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Figure 6.5: Venn diagrams showing the statistically significant, high ranking regulators mediating
the regulation of oxygen-regulated, heme-regulated, and Co2+-inducible genes in HAP1 and ∆hap1

cells: . (A) A Venn diagram illustrating the regulators involved in controlling hypoxically induced
(oxygen-suppressed) genes in HAP1 and ∆hap1 cells, and heme-suppressed genes. (B) A Venn diagram

illustrating the regulators involved in controlling hypoxically induced (oxygen-suppressed) genes in HAP1
and ∆hap1 cells, and Co2+-inducible genes. (C) A Venn diagram illustrating the regulators involved in

controlling hypoxically induced (oxygen-suppressed) genes in HAP1 cells at 1.5 or 6 hours after shifting to
anaerobic growth conditions. (D) A Venn diagram illustrating the regulators involved in controlling

hypoxically suppressed (oxygen-induced) genes in HAP1 cells at 1.5 or 6 hours after shifting to anaerobic
growth conditions.
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Figure 6.6: The hypoxia regulome: Our methods reveal a hypoxia regulome of 54 predictive regulators. For each experimental
condition, we show the state of the regulator in red (upregulated) or green (downregulated), where the brightness of the color indicates
the significance of its contribution to up or down predictions for the targets, based on normalized margin score. Regulators are ranked

from top to bottom in order of overall predictive significance across experiments. The functional category for each regulator is
indicated by an annotation given at the right of the figure and explained in the legend.
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score. We identify 54 predictive regulators in the hypoxia regulome. In Figure 6.6, for each

condition, we show the state of the regulator in red (upregulated) or green (downregulated),

where the brightness of the color indicates the significance of its contribution to up or down

predictions for the targets, based on normalized margin score. Significance of the regulators

to the up-regulated targets is shown in the left half of the column, while contribution to the

down-regulated targets is shown in the right half. Some regulators contribute significantly

to the prediction of both up- and down-regulated targets within a condition due to indirect

regulation (e.g. a transcriptional activator that controls a repressor), combinatorial effects,

and promoter sequence information. Regulators are ranked from top to bottom in order of

overall predictive significance across experiments, computed by taking the larger of the

normalized margin scores for up and down targets in each experiment and then averaging

across experiments. The functional category for each regulator is indicated by an annotation

given at the right of the figure and explained in the legend.

Several previously characterized regulators that are known to be important for oxygen

and/or heme regulation, including Upc2, Rox1, Mga2, Hap4, and Hap1 [51,55,56,63,73,109,

143, 144], rank highly in this global regulatory map. Among the most significant regulators,

six are previously known to be important for hypoxia response or oxygen regulation. Seven

regulators known to be involved in cell cycle are identified by MEDUSA in this network.

Intriguingly, six regulators known to be involved in pheromone response are identified

(Figure 6.6). Likewise, several regulators known to regulate osmotic, salt and pseudohyphal

growth are also identified. These results suggest that oxygen and heme regulation may share

many regulators with pheromone and other signaling pathways.

We also predict many new regulators of oxygen and heme regulation, such as Pph3,

Bem2, and Pcl1. In support of the regulation program, several identified regulators are

known to interact with each other. For example, Mbp1 and Ure2 are known to coexist in

one complex, and the MAP kinase kinase kinase Ssk22 acts upstream of Mbp1. Pph3 and

Bem2 are known to coexist in one complex, and both likely mediate the regulation of both
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hypoxically induced genes and oxygen-induced genes in ∆hap1 cells (Figure 6.4A, 6.5, and

6.6). Wtm1 and Afr1, which are known to coexist in one complex, act in concert to promote

oxygen regulation in wild type HAP1 cells (Figures 6.4A and 6.6). Likewise, Ire1, which

acts upstream of Rgs2, may act with Rgs2 to mediate the regulation of heme-suppressed

genes (Figures 6.5A and 6.6.

Our analysis does not identify the regulators that mediate general stress responses, such

as Msn2, Msn4, Tpk1, Usv1, Yap1, and Hsf1 [28, 81, 111], although motifs for some of

these regulators are identified in the promoters of target genes. In some aspects, anaerobic

and heme-deficient conditions exhibit certain characteristics of stress responses. As such,

certain genes induced by stress, such as genes involved in ribosome synthesis, are induced

by anaerobic and heme-deficient conditions. However, the regulatory network mediating

oxygen and heme regulation is clearly different from the general stress response network.

The most significant regulators in the oxygen and heme regulatory network are not those

involved in general stress responses. Interestingly, however, this oxygen and heme regulatory

network shares many regulators with other signaling pathways, such as pheromone signaling

and osmotic responses.

Finally, it is important to note that the number of significant regulators identified by

MEDUSA is much smaller than the number of regulators whose expression is changed in

a specific experiment. For example, in normoxic HAP1 cells, we identify 18 significant

regulators that may mediate the regulation of the oxygen-induced genes (Figure 6.6, first

column), out of 98 regulators whose mRNA levels are significantly altered in the experiment.

This dramatic filtering is achieved by two aspects of our computational approach: First, we

require that regulators control their putative targets through shared motifs in the promoter

sequences. Second, we train on examples from multiple experimental conditions. If a

regulator cannot be associated with a binding site motif through which it contributes to

target gene regulation in a consistent way across multiple conditions, it is not identified as a

significant regulator by the algorithm.



CHAPTER 6. CASE STUDY: REGULATION OF HYPOXIA RESPONSE IN YEAST 124

6.7 Conclusion

MEDUSA’s “cluster-free” approach has the advantage that it can still be effective for small

expression data sets, where clustering only generates large and functionally heterogeneous

gene sets. One of the reasons for the success of methods that explicitly or implicitly rely on

clustering, is their ability to segment the data and provide a visually appealing small-scale

view of the regulatory network. However, as discussed in Section 5.2 forcing a modular

structure on genes is not always a reasonable biological assumption for learning gene

regulation. In this chapter, we show that it is not necessary to model the genome as static

modules of genes to learn context-specific regulation of gene sets. Our methodology involves

learning a single global model of regulation across all genes and experiments in a dataset.

We then use a powerful post-processing framework to extract and visualize context-specific

regulation. We are able to focus on different scales of regulation, ranging from genome-wide

regulomes to regulators of a single gene.

In this study, we apply GeneClass and MEDUSA to learn regulatory programs underlying

oxygen regulation and heme regulation. We identify many DNA sequence motifs important

for oxygen and heme regulation (Figure 6.2). Further, experimental data from measuring

OLE1 promoter activity confirms the specific predictions made by MEDUSA (Figure 6.3).

A comprehensive comparison with a traditional “cluster-first” motif discovery approach

demonstrates that MEDUSA is more successful at identifying binding site motifs relevant to

oxygen regulation.

Our analyses suggest a remarkable flexibility of the oxygen and heme regulatory network.

Another feature of the oxygen and heme regulation network is its complexity. Although

several previously known oxygen and heme regulators are confirmed to be important in

oxygen and heme regulation by our analysis, many other regulators appear to play important

roles in global oxygen and heme regulation. Through biochemical validation of the predicted

regulators for the OLE1 promoter, we have taken the first step in confirming the novel

components of the oxygen regulatory network. While much experimental work remains
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to be done, we are encouraged by our success in generating condition- and target-specific

hypotheses that we validate experimentally.



Chapter 7
Conclusion

In this chapter, we provide a summary of the main contributions in the thesis. We discuss

some of the limitations of our framework and future challenges and extensions.

7.1 Summary

In this thesis, we present a predictive modeling framework, based on boosting algorithms for

learning details of transcriptional regulation from heterogenous sources of high-throughput

genomic data. We integrate regulatory sequence data, DNA-binding data and microarray

expression data into a unified model that is based on biologically meaningful assumptions.

We introduce a novel algorithm called GeneClass to learn gene regulation programs

from gene expression data and regulatory sequence data. Specifically, we model the problem

as a classification task in which we predict the up-regulation and down-regulation of genes in

different sets of experimental conditions. We avoid gene clustering assumptions and instead

learn a single global model of gene regulation for all genes and experiments. We develop

methods to extract context-specific predictive regulators and motifs from our models. We

specifically apply GeneClass to learn regulation programs relevant to environmental stress

responses and DNA damage stress responses in yeast. Many of the inferred relationships

are supported in the literature.

126
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We extend GeneClass to learn cis regulatory motifs ab initio from promoter sequence

data and gene expression data. In MEDUSA, we simultaneously learn regulation programs

and regulatory sequence motifs. We search through all possible subsequences (k-mers) and

gapped elements (dimers) in the promoter sequences of all genes to identify probabilistic

motifs that allow us to predict up/down expression of target genes. We apply MEDUSA

to various datasets of different sizes in yeast, worm and human B-cells. We learn yeast

motifs whose ability to predict differential expression of target genes outperforms motifs

from a compendium of known binding sites and from a previously published candidate set

of learned motifs. We also show that MEDUSA retrieves many experimentally confirmed

transcription factor binding sites.

Typically, we need to work with very high dimensional feature spaces and limited

amounts of noisy training data. This makes the learning task computationally and statistically

challenging. We develop efficient algorithms that use domain specific knowledge to learn

prediction functions that are both accurate and qualitatively interpretable. Our models are

quantitatively and qualitatively predictive. We use rigorous statistical validation procedures

such as cross-validation and randomization experiments to objectively evaluate the predictive

performance of our algorithms. We also show that our methods outperform other standard

approaches such as nearest neighbor algorithms.

We introduce a post-processing framework to extract and display interesting biological

information and generate testable hypotheses. In order to test the usefulness of our algorithms

in the field, we use GeneClass and MEDUSA to rigorously analyze a small gene expression

dataset that probes the response of yeast to the hypoxia stress response. Using our framework,

we are able to learn the hypoxia regulome. We not only identify several known regulators

and sequence motifs but also discover several new ones. We validate some of our hypotheses

using wet-lab experiments. Thus, we show that our methods are able to decipher novel

regulatory relationships even in the presence of limited amounts of noisy data.
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7.2 Limitations and Future directions

In this thesis, we have shown that our algorithms are capable of learning models of gene

regulation that can accurately predict gene expression. However, we make several simplify-

ing assumptions and do not model some important aspects of gene regulation. Below, we

present some of the limitations of our models and how we plan to address them in future

work.

7.2.1 Representing other modes of regulation

There are several other modes of gene regulation that our current models fail to capture.

The steady state mRNA expression level of a gene, measured by microarrays, is deter-

mined by the transcription rate and the mRNA decay rate. Decay rates can be modulated by

various RNA binding proteins that bind to sequence motifs in the 3’-untranslated regions of

genes. GeneClass and MEDUSA do not model the regulation of decay rates.

MicroRNAs (miRNA) are single-stranded RNA molecules of about 21-23 nucleotides in

length, which regulate gene expression. In animals, miRNAs bind specific complementary

sites in the 3-untranslated regions of mRNAs leading to an inhibition of protein translation

or facilitation of mRNA cleavage. While microRNAs are not present in yeast, they have

been found to be critical for repression of gene expression in higher eukaryotes. Hence, it is

critical to extend our methods to model microRNA regulation.

In higher eukaryotes, cis regulatory sequences also exist in distal regulatory regions such

as enhancers and silencers. In our current models, we only account for proximal regulatory

sequence (promoters). Moreover, a single gene can encode for multiple gene products

(RNAs and proteins). Alternative splicing is a mechanism whereby different sections of

a gene’s primary transcript are separated. Some sections are spliced out and others are

reconnected to produce alternative transcripts. The process of alternative splicing is carefully

regulated. Our current feature space is unable to account for regulation of alternative gene
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transcripts.

Another limitation of our current models is the reliance on mRNA expression levels

of regulators, which might not always represent regulator activity due to post-translational

modifications. This issue is at least partially addressed in two ways. First, we include signal

transducers, whose mRNA expression levels (due to various feedback mechanisms) are

often found by GeneClass and MEDUSA to be predictive of the targets of the transcription

factors that they phosphorylate. Second, while the mRNA expression levels of transcription

factors are sometimes not predictive – their mRNA expression level can be constant over a

set of experiments – we still identify the binding sites for these transcription factors. Thus, a

regulator’s activity can be represented in two ways, through its mRNA expression level or

through its binding site or the binding site of a transcription factor related to it. This dual

representation helps to address another problem, which is that a transcription factor might

sometimes regulate a target without binding DNA, for example by forming a complex with

other DNA-binding factors. Our model can represent this situation; our only assumption is

that some factor is binding the DNA, so that some binding site might identify the appropriate

target genes. Ultimately, we envision protein expression data becoming available in a wide

range of conditions and collected in parallel to microarray expression experiments. At that

point, one could use protein expression levels of regulators to predict differential mRNA

expression of targets in our models.

7.2.2 Discretization of expression data

Another current limitation is the discretization of gene expression data, which results in

the loss of more subtle differences in expression. Our algorithms uses binary prediction of

significantly up versus significantly down examples as a practical way of dealing with noisy

expression measurements and also to leverage state-of-the-art binary prediction algorithms.

We also discretize the gene expression levels of potential regulators. In several biological

contexts such as developmental, subtle changes in the gene expression levels of a regulator
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can cause small but significant changes in the expression of its targets. Our binary classifica-

tion framework will fail to model such systems. Other learning problem formulations such

as multiclass classification, ranking and regression can lead to more refined predictions.

We can extend our current framework to include these formulations. For example, we

can consider a ranking problem, where we want to correctly rank two measurements if

the difference in their expression levels is larger than the systemic noise, i.e. if example

a is significantly more highly expressed than b, we want our prediction function f to

correctly rank f (a) > f (b). Fortunately, there has been considerable recent work on

learning rankings in the machine learning literature (see e.g. [98] for an approach related to

boosting). Similarly, handling real-valued regulator expression levels and using boosting-

like algorithms for regression involve standard extensions to our learning algorithm [59,101].

The primary question to investigate is whether the high level of noise in mRNA expression

data allows us to effectively learn these more detailed output functions.

7.2.3 Integration of other high-throughput data sources

An important extension to our methods is to tie the predictive modeling approach more

tightly to the underlying biological mechanisms of activated signaling pathways and binding

interactions between regulators (which may act as a complex of proteins) and regulatory

DNA. While this mechanistic information is represented indirectly in the features (and

therefore in the regulatory programs) learned by MEDUSA, we often saw pieces of this

underlying biology — for example, sometimes all components of a regulatory protein

complex were associated by MEDUSA with the same transcription factor occupancy feature,

or all components of a known signaling pathway were retrieved as regulators for a particular

set of target genes [62]. We can better represent these interactions by incorporating new

high-throughput data sources.

In the last year, the high throughput determination of kinase-substrate interactions [75]

has provided a new and highly relevant source of interaction data. So far, this data has
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established a partial “kinome” network for yeast, mapping out all potential phosphorylation

reactions for a large proportion of kinases. We anticipate that kinome data will soon be

available for other model organisms as well. By incorporating kinome network data into

the regulatory program learning algorithm, we can hope to discover signaling pathways and

their context-specific activation. In addition, we can represent protein-protein interaction

data from high throughput assays like yeast two-hybrid (e.g. [38] as well as interaction

databases (e.g. MIPS, KEGG) in order to infer protein complexes that act as regulators in a

regulatory program.

In order to represent the interaction network structure in our learning algorithm, we can

replace the expression levels of single regulators with that of subgraphs from the interaction

network. To do this, one could use efficient graph mining algorithms [16, 132] to explore

the exponential search space of subgraphs to find the ones that are predictive. At each

boosting round, we can look for the most predictive kinome or interactome subnetwork

and the transcription factor occupancy or sequence motif through which it regulates targets

relative to the current weighting of the training data.

High throughput protein-protein interaction datasets tend to be very noisy. Our boosting

approach will be robust to false positives in the interaction data, since including these edges

in subgraphs will not improve prediction of target gene regulation. In order to handle

missing edges we plan to use two strategies. First, we plan an interolog strategy [135],

where known interactions from one organism are transferred via sequence homology to

infer a putative interaction between the orthologous proteins in another organism. Second,

we plan a random sampling strategy, where we randomly add edges between regulators

with correlated expression signatures to the base network, and we see if any of these edges

contribute optimally predictive subgraphs.
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7.2.4 Motif discovery in higher eukaryotes: cis regulatory modules

A key issue in developing more realistic gene regulation models and scaling up these models

to higher organisms such as mammals is the representation of greater complexity in the

regulatory DNA. In the MEDUSA algorithm, we discover putative binding site patterns that

can individually help to predict differential regulation, when paired with the activity level of

a particular regulator. However, in various contexts in higher eukaryotes, binding of trans

acting factors appears to be less specific, and regions containing spatial clusters of binding

sites, called cis regulatory modules (CRMs), are considered to be the irreducible functional

elements [13, 95]. MEDUSA does not explicitly model motif combinatorics or CRMs.

We could extend our predictive modeling approach to model and learn CRMs directly

from regulatory sequences, without requiring that individual binding site patterns be known

ahead of time.

We consider two cases: homotypic and heterotypic CRMs. Homotypic CRMs consist

of spatial regions in the regulatory DNA with multiple hits for the transcription factor; het-

erotypic CRMs are clusters of binding sites for different transcription factors. We anticipate

that homotypic CRMs can be learned using a similar boosting and sequence agglomeration

technique that MEDUSA uses: first we find all k-mers with multiple (approximate) hits

within some window in a promoter sequence, and then we agglomerate predictive k-mers to

learn PSSMs that define homotypic CRMs.

For heterotypic CRMs, we can leverage state-of-the-art pattern mining techniques from

the data mining community within our boosting framework. We can start by finding seed

k-mers or PSSMs using the same strategy as in the homotypic case. Then we can mine for

patterns of motif combinations that are predictive of target expression, when associated with

the corresponding set of regulators. We have many options for the type of pattern mining,

reflecting different possible statistical definitions of a CRM: itemset mining [123, 136],

where we represent a regulatory sequence region by the sets of motifs it contains and look

for predictive motif subsets; sequential pattern mining [133], where we view regulatory DNA
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as sequences of motif hits and find predictive susbsequence patterns; graph mining [16,132],

where we define a graph on the motif set for a sequence, joining two motif instances with

an edge if they are proximal (a directed edge if we also want a partial order), and mine

predictive subgraphs, i.e. proximal (partially ordered) motif hits.

In most cases, computational approaches to CRM discovery use sequence only and

rely on a database of known motifs [91, 108]; in cases where motifs as well as CRMs are

returned, usually only a small set of closely related genes is modeled [95, 141]. In our

planned approach, we will not need to start with known motifs (though these can be added

if available), and we learn CRMs across all differentially expressed genes by integrating

efficient pattern mining algorithms with boosting to learn regulatory programs. We believe

that this algorithmic approach has not been tried before and would constitute an innovative

contribution to the field; if successful in our goals, we would also advance the current state

of knowledge of metazoan gene regulation.

7.2.5 Comparative genomic approaches for learning conserved regu-

lation

A common approach to searching for cis acting sequences that control transcriptional

regulation — both at the level of individual transcription factor binding sites and CRMs

— is to compare genome sequences of related species and look for conserved regions in

the non-coding sequence flanked by regions of lower conservation (reviewed in e.g. [12]).

While these conservation-based approaches are often quite simple, they have been successful

in identifying cis regulatory elements in yeast [60] and regulatory sequences in the fly

Drosophila melanogaster [11] and in mammalian genomes [43, 88, 130]. Other efforts have

been made to combine information about conserved non-coding sequence with conserved

expression patterns of target genes to locate functional sequence [12].

This prior work suggests that a comparative strategy in the our framework should

improve motif and CRM discovery for higher eukaryotes. In the current implementation of
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MEDUSA, k-mer occurrences in the promoter sequences of target genes serve as seeds for

an agglomerative hierarchical clustering algorithm that is used, at each round of boosting, to

produces candidate motifs in the form of PSSMs. If aligned promoter sequences from one

or more related species are available, we can restrict these seed k-mers to those found in

conserved regions in the original genome; to avoid using an alignment, we can simply use

k-mer occurrence from all the orthologous sequences as seeds and require that the learned

motifs have hits across multiple genomes. These simple strategies extend naturally to the

case of learning CRMs.

7.2.6 Use of epigenomic data to improve identification of cis regula-

tory elements

A major problem in discovering cis regulatory elements in higher eukaryotes is the length of

regulatory sequences such as promoters. In yeast, the average promoter stretches approxi-

mately 1000 base pairs upstream of a gene’s transcription start site (TSS). In sharp contrast,

human promoter sequences are estimated to have regulatory signals upto 10000 base pairs

away from the TSS. Just this 10 fold increase in search space alone leads to serious statistical

and computational problems for ab initio motif discovery. The problem is futher exacerbated

by the importance of potentially position-independent unidentified enhancer and silencer

elements that can exist several 10000s of base pairs away from the genes they regulate. We

plan to use epigenomic information such as information about nucleosome positioning and

histone modifications to filter and reweight various sequence chunks in order to amplify

regulatory signals in sequence data.

The dynamics of chromatin structure are tightly regulated through multiple mechanisms

including histone modification, chromatin remodeling, histone variant incorporation, and

histone eviction. The position of nucleosomes is critical in regulating access of transcrip-

tional activators, repressors and RNA polymerase to naked DNA. Recent high throughput

experiments [107] and subsequent computational analysis have identified weak sequence
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specific signals in genomic sequences that are correlated with nucleosome positioning. We

plan to use this data to reweight various sequence k-mers based on their positional overlap

with observed and predicted nucleosome occupancy patterns.

Regulatory proteins tend to bind specific regions in the genome such as promoters

and enhancers and recent ChIP chip studies of histone modifications in the ENCODE

regions [45] of the human genome show the presence of strong discriminative histone-

modification patterns that characterize promoters, enhancers and other regulatory sequence

chunks. We plan to use this data to narrow down the search space for regulatory motifs.

Other recent studies [14, 26] have revealed large scale tissue-specific DNA methylation

patterns distinguishing active euchromatin from silenced heterochromatin. This data can also

be used to distinguish between context-specific active and inactive regulatory sequences.

7.3 End note

Building computational models of biological systems is both an art and a science. The art of

modeling involves identifying the problem, using domain knowledge to make key model-

ing assumptions, choosing an appropriate modeling approach, and developing innovative

methods to extract relevant information from the models. The science of modeling involves

converting domain knowledge both quantitative and qualitative into efficient and flexible

mathematical abstractions.

As Samuel Karlin [57] puts it: “The purpose of models is not to fit the data but to

sharpen the questions.” Computational biology is a strange marriage of two fields that

employ very different philosophies of exploration. The computational field tends to be more

theoretical while biology is a more empirical science. It is thus important to have constant

communication across the border in order to build useful biological models. The ultimate

utility of a computational approach, no matter how elegant and theoretically sound it might

be, is in its ability to contribute something new to the field of biology. It is a challenge
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to build models that are both statistically reliable and empirically useful. Overly complex

methods run the risk of overfitting to data. Other algorithms might learn from data. But,

the models produced might be irrelevant and provide meaningless hypotheses. Similarly,

a model is relatively useless if it statistically sound but unable to provide any interesting

insight into the underlying mechanism. Our hope is that in this thesis, we have shown that it

is possible to effectively integrate heterogenous sources of high-throughput data to build

accurate, predictive models that can provide interesting insights into regulatory biology. We

hope to extend our framework and develop new algorithms capable of handling the massive

amounts and different types of high-throughput data that will be available in the near future.
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Appendix A
Stabilization criteria for GeneClass

Let us consider two different weak rules h1, h2. Let Ahi = {x|hi(x) = 1} be the set of

examples x on which learner hi predicts one. We define the symmetric difference of two sets

of examples as the set of examples for which one but not both rules predict one i.e. the set

of all examples xi for which h1(xi) + h2(xi) = 1 holds. The two weak rules h1 and h2 then

have a highly correlated prediction if the total weight of the symmetric difference Ah1 	 Ah2

is small. We denote this weight by W(Ah1 	 Ah2).

In order to test the statistical significance of W(Ah1 	 Ah2) > ε, we need to consider the

distribution of the weights wi of the examples in the two sets Ah1 and Ah2 . If the distribution

is very skewed, small changes in the symmetric difference set can cause large changes in the

corresponding weight. If the distribution is more uniform, then fluctuations in the size of the

symmetrical difference set will cause appropriately scaled fluctuations in the weight of the

symmetric difference set.

The theorem below is based on Chernoff bounds.

Theorem: Let Xi ∈ {0, 1} (i = 1, . . . ,m) be m indicator random variables drawn i.i.d.

from the distribution p(Xi = 1) = p and p(Xi = 0) = (1 − p). To every Xi is associated a

real-valued weight wi, such that
∑

i wi = 1. Let W be the random variable W =
∑

i Xiwi.

Then, for ε > 0

Pr[W > E(W)(1 + ε)] ≤ e
− 1

2 ε
2 p

1−p
1∑
i w2

i
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Proof: For any t > 0, κ > 1, using Markov’s inequality we get

Pr[W > κE(W)] = Pr[etW > etκE(W)] ≤
E(etW)
etκE(W) = e−(tκE(W)−ln E(etW )) (A.1)

Let h(t) ≡ tκE(W) − ln E(etW) and using E(W) =
∑

i pwi = p we have

h(t) = tκp − ln E(et
∑

i wiXi) (A.2)

= tκp − ln E(ΠietwiXi) (A.3)

= tκp − ln ΠiE(etwiXi) , (independence) (A.4)

= tκp −
∑

i

ln (petwi + (1 − p)) (A.5)

We now optimize the inequality by maximizing h(t) for the case where wi << 1 (usually the

case if m large). Taylor expansion up to second order in wi gives

h(t) ≈ tκp −
∑

i

ptwi +
1
2

(1 − p)pt2w2
i (A.6)

= tκp − pt −
1
2

(1 − p)pt2
∑

i

w2
i (A.7)

dh(t)
dt

= κp − p − (1 − p)pt
∑

i

w2
i (A.8)

then

dh(t)
dt
|t∗ = 0 (A.9)

⇔ t∗ =
κp − p

(1 − p)p
∑

i w2
i

(A.10)
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so

h(t∗) =
(κp − p)2

(1 − p)p
∑

i w2
i

−
1
2

(κp − p)2

(1 − p)p
∑

i w2
i

(A.11)

h(t∗) =
1
2

(κp − p)2

(1 − p)p
∑

i w2
i

(A.12)

substituting into equation A.1 gives

Pr[W > E(W)κ] = exp
(
−

1
2

(κp − p)2

(1 − p)p
∑

i w2
i

)
(A.13)

and setting ε = κ − 1

Pr[W > E(W)(1 + ε)] = exp
(
−

1
2
ε2 p

(1 − p)
1∑
i w2

i

)
(A.14)

�

This bound suggests that to use a parameter η to test the statistical significance of

W > E(W)(1 + ε) where

exp
(
−

1
2
ε2 p

(1 − p)
1∑
i w2

i

)
= η (A.15)

ε =

√
ln

(
1
η2

)
1 − p

p

∑
i

w2
i (A.16)

Hence, values of W are statistically significant for

W
E(W)

− 1 >

√
ln

(
1
η2

)
1 − p

p

∑
i

w2
i (A.17)

= η′
√∑

i

w2
i (A.18)

where η′ absorbs parameters p and η.
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While the theorem does not directly map to the GeneClass algorithm it suggests the term√∑
i w2

i to test the statistical significance for a sum of weighted random variables. Therefore,

for a pair of weak rules h1 and h2, we average them if

W(Ah1 	 Ah2) ≤ η1

√∑
i

w2
i (A.19)

where η1 is an empirically determined parameter and the summation of weights is over all

examples that reach the prediction node to which we want to add the stabilized weak rule.

For unnormalized weights we use

W(Ah1 	 Ah2) ≤ η1

√ ∑
i w2

i

(
∑

i wi)2 (A.20)



Appendix B
GeneClass pseudocode

We start with a candidate set of M motifs {µ} representing known or putative transcription

factor binding sites and a candidate set of R regulators {π}. Let Mµg ∈ {1, 0} represent the

presence or absence of a motif µ in the regulatory sequence of a gene g. Each gene g can

then be represented by a vector {Mµg} of motif occurrences. Let Pπe ∈ {−1, 0, 1} represent

the state of regulator π in an experiment e. The experimental context can then be represented

by a vector {Pπe} of the expression states of all the candidate regulators in that experiment.

The feature vector for each training example xge is given by {{Mµg}, {Pπe}}. The hypothesis

space (set of weak rules) on which the prediction function is defined can be written as

χ = {−1, 0, 1}R × {0, 1}M. Each weak rule is a pairing of a motif µ with a regulator π in state

s represented by [µ, π, s]. GeneClass uses the Adaboost algorithm to learn an alternating

decision tree (ADT). An ADT consists of alternate rows of splitter nodes and prediction

nodes. At each iteration t = 1 . . . T , a splitter node and its corresponding prediction node

are added to the tree. The splitter node contains the weak rule ht output by the weak learner

and the prediction node contains the coefficient for the weak rule αt. The weak learner

selects the weak rule that minimizes boosting loss L at each iteration. This means picking

a motif-regulator pair [µ, π, s] and its position in the tree i.e the prediction node to which

the new splitter node is to be added. A prediction node can be followed by multiple splitter

nodes.
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Definitions: For training set {(xge, yge) : (g, e) is differentially expressed} of size N:

xge = feature representation for (g, e) = motif/ChIP chip profile for g, regulator expression levels in e

yge = label of (g, e) ∈ {±1}

c1 = precondition corresponding to existing path in ADT

c2(µ, π, s) = new condition corresponding to motif µ, regulator π in state s,

wge = weight of example (g, e),

W(c) =
∑

(g,e):c=1 wge

W+(c) =
∑

(g,e):c=1,yge=+1 wge

W−(c) =
∑

(g,e):c=1,yge=−1 wge

h[c] = weak rule for condition c, i.e h[c](xge) = 1(0) exactly when c = 1(0)

αt = coefficient of weak rule at iteration t

F(xge) = prediction value for (g, e)

Parameters:

T = number of boosting iterations,

η1 = parameter deciding how “similar” the stabilized features should be (η1 > 0),

η2 = parameter deciding whether to stabilize at a given iteration (η2 > 0),

Initialization: Set root of tree to be single prediction node corresponding to a constant weak rule:

h0 = 1

α0 = 1
2 log W+(1)

W−(1)

Initialize weights: wge ←
1
N exp (−ygeα0)

Main Loop:

for t = 1 . . . T

L(c1, c2) = W(¬c1 ∨ ¬c2) + 2
√

W+(c1 ∧ c2)W−(c1 ∧ c2)

(c∗1, c
∗
2(µ∗, π∗, s∗)) = argminc1,c2 (L1(c1, c2(µ, π, s))),

Calculate stabilization criterion γ

γ(c∗1 ∧ c∗2) = 1
2 |W+(c∗1 ∧ c∗2) −W−(c∗1 ∧ c∗2)|
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if γ(c∗1 ∧ c∗2) ≥ η2

√ ∑
(g,e),c∗1=1 w2

(g,e)

(
∑

(g,e),c∗1=1 w(g,e))2

for µ = 1 . . . M, for π = 1 . . . P, for s = 1 . . . S ,

do ∆(µ, π, s) =
∑

c∗1=1,(c∗2=1∧c2(µ,π,s)=0)∨(c∗2=0∧c2(µ,π,s)=1) wi

end for

Obtain set C of weak rules to be averaged

C := {c2(µ, π, s)| ∆(µ, π, s) ≤ η1

√ ∑
(g,e),c∗1=1 w2

(g,e)

(
∑

(g,e),c∗1=1 w(g,e))2 }

for all c2(µ, π, s) ∈ C do α(µ, π, s) = 1
2 log W+(c∗1∧c2(µ,π,s))

W−(c∗1∧c2(µ,π,s))

c(θ) =
(∑
C |α1(µ, π, s)hc∗1∧c(µ,π,s)| > θ

)
∈ {0, 1}

θ∗ = 1
2 (

∑
C |α(µ, π, s)| −minC |α(µ, π, s)|)

αt = 1
2 log W+(c∗1∧c(θ∗))

W−(c∗1∧c(θ∗))

ht = h[c∗1 ∧ c(θ∗)]

else

αt = 1
2 log W+(c∗1∧c∗2)

W−(c∗1∧c∗2)

ht = h[c∗1 ∧ c∗2]

end if

Update weights of all examples:

w(g,e) ← w(g,e) exp (−y(g,e)αtht(x(g,e)))

end for

Output final prediction function: F(x(g,e)) =
∑T

t=0 αtht(x(g,e))



Appendix C
MEDUSA pseudocode

The inputs to the algorithm are (i) the promoter sequences of target genes and (ii) the

discretized expression levels of a set of candidate regulator genes. The sequence data is

represented only via occurrence or non-occurrence of motifs represented by all possible

length-k words known as k-mers and gapped homodimers. We restrict the set of all dimers to

those whose two components (monomers) have specific relationships, consistent with most

known dimer motifs: equal (e.g. ACG ACG), reversed (e.g. ACG GCA), complements

(e.g. ACG TGC), or reverse complements (e.g. ACG CGT). Let {µd} represent the set of

deterministic motifs i.e. all k-mers and dimers. Let Mµdg indicate the presence (Mµdg = 1) or

absence (Mµdg = 0) of a motif µd in the promoter sequence of gene g, and let Ps
πe indicate

the up-regulation (s = +1) or down-regulation (s = −1) of a regulator π in experiment e

(Ps
πe = 1, if regulator π is in state s in experiment e, and Ps

πe = 0,otherwise). Hence, the

feature vector for a gene g in an experiment e is given by {{Mµdg}, {Ps
πe}}. MEDUSA uses

the Adaboost algorithm to learn an alternating decision tree (ADT). An ADT consists of

alternate rows of splitter nodes and prediction nodes. At each iteration t = 1 . . . T , a splitter

node and its corresponding prediction node are added to the tree. The splitter node contains

the weak rule ht output by the weak learner and the prediction node contains the coefficient

for the weak rule αt. Each weak rule is a pairing of a motif µ with a regulator π in state s

represented by [µ, π, s]. The motif µ can be a deterministic sequence motif µd or a PSSM µp
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which is obtained using hierarchical sequence agglomeration at each iteration. The weak

learner selects the weak rule that minimizes boosting loss L at each iteration. This means

picking a motif-regulator pair [µ, π, s] and its position in the tree i.e the prediction node to

which the new splitter node is to be added. A prediction node can be followed by multiple

splitter nodes.

Definitions: For training set {(xge, yge) : (g, e) is differentially expressed} of size N:

xge = feature representation for (g, e) = promoter sequence for g, regulator expression levels in e

yge = label of (g, e) ∈ {±1}

c1 = precondition corresponding to existing path in ADT

c2(µ, π, s) = new condition corresponding to motif µ, regulator π in state s,

µd = deterministic motif (k-mer or gapped homodimer)

µp = probabilistic motif (PSSM)

wge = weight of example (g, e),

W(c) =
∑

(g,e):c=1 wge

W+(c) =
∑

(g,e):c=1,yge=+1 wge

W−(c) =
∑

(g,e):c=1,yge=−1 wge

h[c] = weak rule for condition c, i.e h[c](xge) = 1(0) exactly when c = 1(0)

L(c1, c2) = loss for h[c1 ∧ c2] = W(¬c1 ∨ ¬c2) + 2
√

W+(c1 ∧ c2)W−(c1 ∧ c2)

αt = coefficient of weak rule at iteration t

Initialization: Set root of tree to be single prediction node corresponding to a constant weak rule:

h0 = 1

α0 = 1
2 log W+(1)

W−(1)

Initialize weights: wge ←
1
N exp (−ygeα0)

Main Loop:

for t = 1 . . . T

Minimize boosting loss over preconditions c1 already in ADT and choices of deterministic motif-regulator

conditions c2:

(c∗1, c2(µ∗, π∗, s∗)) = argminc1,c2 L(c1, c2(µd, π, s))
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Learn best PSSM from best deterministic motif:

Take top K motifs µ1
d = µ∗, µ2

d, . . . , µ
K
d with lowest boosting loss L(c∗1, c2(µd, π

∗, s∗))

Apply hierarchical agglomerative clustering to {µ j
d} j=1...K

Obtain optimal probabilistic motif µ∗p and threshold Θ∗

If loss is smaller than best deterministic motif, set µ∗ ← (µ∗p,Θ
∗) Add new splitter node and prediction

node to the ADT corresponding to new weak rule:

ht = h[c∗1 ∧ c∗2(µ∗, π∗, s∗)]

αt = 1
2 log W+(c∗1∧c∗2)

W−(c∗1∧c∗2)

Update weights of all examples:

wge ← wge exp (−ygeαtht(xge))

end for

Output final prediction function: F(xge) =
∑T

t=0 αtht(xge)

Hierarchical Agglomeration:

Given deterministic motifs µ1
d = µ∗, µ2

d, . . . , µ
K
d associated to (c∗1, c2(µ∗, π∗, s∗)):

Convert each µ j
d into a PSSM µ

j
p using small pseudocounts

Perform hierarchical clustering agglomeration:

For a pair of PSSMs µ1
p and µ2

p, we obtain a new PSSM µ12
p

that minimizes the symmetrized KL-divergence

d(µ1
p, µ

2
p) ≡ minoffsets

[
b1DKL(p||b1µ

1
p + b2µ

2
p) + b2DKL(q||b1µ

1
p + b2µ

2
p)
]

where b1,2 = G1,2/(G1 + G2), G1, G2 are the numbers of target genes

for µ1
p and µ2

p

At each step, agglomerate pair with minimal d(µ1
p, µ

2
p) to obtain µ12

p

Set PSSM threshold θµ12
p
← argminθ(L1(c∗1, c2(µ12

p , π
∗, s∗)))

Obtain K − 1 candidate PSSMs from agglomeration

Return µ∗p = argmin{candidates µp}L(c∗1, c2(µp, π
∗, s∗)), corresponding Θ∗



Appendix D
Yeast samples and microarray data

generation for the hypoxia dataset

In this section, we describe details of data generation and microarray data processing for the

hypoxia dataset. The data is generated in the laboratory of our collaborator Dr. Li Zhang.

D.1 Yeast cell growth and treatment

Yeast strains used are L51 (MATa, ura3-52, leu2-3, 112, his4-519, ade1-100, trp1::HisG,

hap1::LEU2) and MHY100 (MATa, ura3-52, leu2-3, 112, his4-519, ade1-100, hem1-

∆100) [139]. L51 is used for studies of oxygen regulation, and MHY100 is used for

studies of heme regulation. To avoid variations from the differences accumulated after many

generations of growth of strains, we transform the L51 strain with the HAP1 gene deleted

for studies of Hap1 function. Hap1 protein is expressed in L51 cells by transforming an

ARS-CEN plasmid bearing the complete HAP1 genomic sequence [89]. For comparison

with cells without Hap1 expressed, an empty vector is transformed into L51 cells. The

use of Hap1 expression plasmid generates much more reproducible results than the use of

different strains. Yeast cells with or without Hap1 expressed grow at similar rates under

both anaerobic and aerobic conditions.
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We choose to use a low oxygen level ( 10 ppb) in this study, in order to identify oxygen-

regulated genes. Previous studies have shown that most, if not all, oxygen-regulated genes

are affected at low concentrations, but some genes are not affected at higher oxygen levels

(for example, > 1 ppm) [19, 50]. Anaerobic (∼10 ppb O2, measured by using an oxygen

monitor and confirmed by CHEMetrics oxygen kits) growth condition is created by using

an anaerobic chamber (Coy Laboratory, Inc.) and by filling the chamber with a mixture

of 5% H2 and 95% N2 in the presence of palladium catalyst [50]. The oxygen level in the

chamber is monitored by using the Model 10 gas analyzer (COY laboratory Inc). H2 is

filled to keep the measured oxygen level at zero. The precise level of oxygen is further

measured by using rhodazine kit (K-7511) with MDL at 1 ppb, and a range of 0-20 ppb

(http://www.envco.info/prod.php?product_id=469). L51 cells bearing the Hap1

expression or empty vector are grown under normoxic or anaerobic conditions for 1.5 or

6 hours. The UAS1/CYC1-lacZ reporter plasmid [41] is transformed into yeast cells to

confirm the expression of Hap1 and the oxygen levels. Cells are grown in yeast synthetic

complete media. Co2+-induced cells are grown in the presence of 400 µM cobalt chloride for

6 hours, as described previously [55, 56]. MHY100 cells are grown in medium containing

2.5 µg/ml (heme-deficient) or 250 µg/ml (heme-sufficient) 5-aminolevulinic acid [139]. For

RNA preparations, yeast cells are inoculated so that the optical density of yeast cells is in

the range of 0.8-1.0 immediately before the collection of cells.

D.2 RNA preparation and microarray gene expression pro-

filing

RNA is extracted from yeast cells exactly as previously described [4]. RNA samples are

prepared from 8 different experimental conditions:

Normoxic (HAP1): L51 yeast cells bearing the Hap1 expression plasmid maintained under

aerobic conditions.
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Normoxic (∆hap1): L51 yeast cells bearing the empty expression plasmid maintained

under aerobic conditions.

Anaerobic, early (HAP1): L51 yeast cells bearing the Hap1 expression plasmid main-

tained under anaerobic conditions for 1.5 hours.

Anaerobic, late (HAP1): L51 yeast cells bearing the Hap1 expression plasmid maintained

under anaerobic conditions for 6 hours.

Anaerobic, late (∆hap1): L51 yeast cells bearing the empty expression plasmid maintained

under anaerobic conditions for 6 hours.

Normoxic, +Co2+ (HAP1): L51 yeast cells bearing the Hap1 expression plasmid in the

presence of 400 µM cobalt chloride for 6 hours.

Heme sufficient (Heme): MHY100 cells grown in medium containing 250 µg/ml (heme-

sufficient) 5-aminolevulinic acid.

Heme deficient (∆Heme): MHY100 cells grown in medium containing 2.5 µg/ml (heme-

deficient) 5-aminolevulinic acid.

For each condition, three replicates are generated by preparing RNA samples from three

batches of independently grown cells. Microarray expression analyses are performed by

using three batches of replicate RNA samples. The quality of RNA is high as assessed by

measuring absorbance at 260 and 280 nm, by gel electrophoresis, and by the quality of

microarray data (see below).

The synthesis of cDNA and biotin-labeled cRNA are carried out exactly as described

in the Affymetrix GeneChip Expression Analysis Technical Manual (2000). The yeast

Saccharomyces cerevisiae genome 2.0 arrays were purchased from Affymetrix, Inc. Probe

hybridization and data collection are carried out by the Columbia University Affymetrix

GeneChip processing center. Specifically, the Affymetrix GeneChip Hybridization Oven
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640 and the next generation GeneChip Fluidics Station 450 are used for hybridization and

chip processing. Chip scanning is performed by using the GeneChip scanner 3000. Initial

data acquisition, analysis is performed by using the Affymetrix Microarray suite. By using

GCOS1.2 with the PLIER (probe logarithmic intensity error) algorithm, we calculate and

examine the parameters reflecting the image quality of the arrays. Arrays with a high

background level in any region are discarded and replaced. The average noise or background

level is limited to less than 5%. The average intensity for those genes judged to be present is

at least 10-fold higher than those judged to be absent. Also, arrays that deviate considerably

in the percentage of present and absent genes from the majority of the arrays are replaced.

Arrays with a β-actin 3’/5’ ratio greater than 2 are replaced.

D.3 Normalization and discretization of microarray data

For each microarray, we convert the .DAT image files into .CEL files using the Affymetrix

GCOS software. These raw .CEL files are further processed into expression values using

the RMA express software by Bolstad et al. [15]. This software uses the robust multiarray

average method by Irizarry et al. [54], which involves a background correction and a

quantile-based normalization scheme.

Each of the knockout, stress or perturbation microarray experiments is compared to a

corresponding reference microarray. The expression fold-changes are converted to p-values

using an intensity-specific noise model obtained from replicate data (See Section 5.5.1.1).

The fold-changes are then discretized into +1, 0 or -1 labels using a p-value threshold of

0.05. A label of +1 (-1) indicates up-regulation (down-regulation) beyond the threshold

level of noise.



Appendix E
Functional annotations for the hypoxia

expression signatures

As shown in Figure 6.1, we identify 16 distinct discretized co-expression signatures in the

hypoxia dataset. We perform Gene Ontology functional analysis (See Section 5.5.1.4) on the

16 expression signatures. In most cases, the expression signatures can be assigned significant

functional terms, though in general only a smaller subset of the genes in a signature belong

to the enriched category.

Signature 1 (sig1) consists of 70 genes that are strongly upregulated 6 hours into

anaerobosis independent of Hap1 deletion. They are also upregulated in response to heme

deletion, as opposed to the 267 genes in signature 3 (sig3) which are exclusively upregulated

in the late hypoxia experiments. Sig1 genes are mainly involved in cell wall biogenesis

(5.9e-07) and stress response (2.6e-06). The biotin biosynthesis gene cassette (BIO3/4/5) is

also part of this group.

Sig3 on the other hand is enriched for genes involved in carbohydrate and alcohol

metabolism (2.4e-07).

Signature 15 (sig15) shows strong induction in late hypoxia similar to Sig3. However,

Sig15 genes are also significantly downregulated in early hypoxia. This set is also weakly

enriched for genes involved in carbohydrate metabolism (1.4e-05).
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Signature 2 (sig2) is enriched for several essential transcription factors (1e-14) and

rRNA/ribosome processing genes (1e-14). These 207 genes are induced in early hypoxia

but suppressed at the 6 hour time point independent of Hap1 deletion. These genes are also

significantly downregulated in the heme deletion experiment.

Signature 5 (Sig5) is diametrically opposite to Sig1 but functionally similar to sig2. It

consists of typical stress suppressed genes involved in ribosome biogenesis (2.5e-10).

Signature 6 (sig6) consists of 160 genes several of which are involved in ATP synthesis

dependent proton transport and respiration (3.1e-10). These genes are strongly suppressed

in all but the ∆hap1 condition, indicating that they might not be regulated by Hap1.

However, signature 16 (sig16) consists of 34 Hap1-dependent genes that are strongly

suppressed in all conditions including the ∆hap1 experiment. These genes (such as the COX

and QCR genes) are involved in aerobic respiratory processes (1.0e-14) , electron transport

(4.4e-14) and heme-dependent oxidoreducatase activity (5.8e-14).

Signature 8 (sig8) shows strong downregulation in ∆heme and late hypoxia (∆hap1)

experiments and weak suppression in the other conditions. It is mainly made up of structural

constituents of ribosomes (1.4e-06) and other genes involved in protein synthesis and

metabolism (5.8e-06).

Signature 9 (sig9) and 10 (sig10) consist of genes significantly downregulated in the late

hypoxia conditions. However, sig9 also shows weak induction in early hypoxia. Sig9 is

made up of several cell cycle genes (5.6e-12). The histone genes (3.0e-07) are part of sig10.

Genes in signature 11 (sig11) and signature 14 (sig14) appear to be strongly regulated

by heme. Sig11 genes are exclusively induced by heme deletion whereas sig14 genes are

suppressed in the same experiment. The ergosterol biosynthesis genes which are part of

sig14 are known to be heme regulated. Sig11 is an intriguing set of genes made up of 500

genes of which 354 are functionally uncharacterized (3.2e-13). These could be an important

class of heme-regulated genes.

Signature 13 (sig13) consists of 276 genes many of which are transcription factors
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(3.15e-14) and signal transduction factors (7.23e-08). These genes are exclusively induced

in early hypoxia and seem to represent an early regulatory response.



Appendix F
Downloadable source code and data

GeneClass MATLAB source code for the GeneClass algorithm described in Chapter 4 -

http://www.ccls.columbia.edu/compbio/robust-geneclass

MEDUSA MATLAB source code for the MEDUSA algorithm described in Chapter 5 -

http://www.ccls.columbia.edu/compbio/medusa

Hypoxia dataset Datasets and source code for the analysis of the response of yeast to hy-

poxia as described in Chapter 6 - http://cbio.mskcc.org/leslielab/projects/

medusa
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