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ABSTRACT

Metamorphic testing has been shown to be a simple yet ef-
fective technique in addressing the quality assurance of ap-
plications that do not have test oracles, i.e., for which it
is difficult or impossible to know what the correct output
should be for arbitrary input. In metamorphic testing, ex-
isting test case input is modified to produce new test cases
in such a manner that, when given the new input, the ap-
plication should produce an output that can be easily be
computed based on the original output. That is, if input x
produces output f(z), then we create input z’ such that we
can predict f(z’) based on f(z); if the application does not
produce the expected output, then a defect must exist, and
either f(z) or f(z’) (or both) is wrong.

In practice, however, metamorphic testing can be a man-
ually intensive technique for all but the simplest cases. The
transformation of input data can be laborious for large data
sets, or practically impossible for input that is not in human-
readable format. Similarly, comparing the outputs can be
error-prone for large result sets, especially when slight vari-
ations in the results are not actually indicative of errors
(i.e., are false positives), for instance when there is non-
determinism in the application and multiple outputs can be
considered correct.

In this paper, we present an approach called Automated
Metamorphic System Testing. This involves the automation
of metamorphic testing at the system level by checking that
the metamorphic properties of the entire application hold
after its execution. The tester is able to easily set up and
conduct metamorphic tests with little manual intervention,
and testing can continue in the field with minimal impact
on the user. Additionally, we present an approach called
Heuristic Metamorphic Testing which seeks to reduce false
positives and address some cases of non-determinism. We
also describe an implementation framework called Amster-
dam, and present the results of empirical studies in which we
demonstrate the effectiveness of the technique on real-world
programs without test oracles.
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1. INTRODUCTION

Assuring the quality of applications such as those in the
fields of scientific calculations, optimizations, machine learn-
ing, etc. presents a challenge because conventional software
testing processes do not always apply: in particular, it is dif-
ficult to detect subtle errors, faults, defects or anomalies in
many applications in these domains because there is no reli-
able “test oracle” to indicate what the correct output should
be for arbitrary input. The general class of software systems
with no reliable test oracle available is sometimes known as
“non-testable programs” [37]. These applications fall into a
category of software that Weyuker describes as “Programs
which were written in order to determine the answer in the
first place. There would be no need to write such programs,
if the correct answer were known” [37].

One approach to testing such applications is to use a
“pseudo-oracle” [10], in which multiple implementations of
an algorithm process an input and the results are compared;
if the results are not the same, then one or both of the im-
plementations contains a defect. This is not always feasi-
ble, though, since multiple implementations may not exist,
or they may have been created by the same developers, or
by groups of developers who are prone to making the same
types of mistakes [20].

In the absence of multiple implementations, metamorphic
testing [6] can be used to produce a similar effect. Meta-
morphic testing is designed as a general technique for creat-
ing follow-up test cases based on existing ones, particularly
those that have not revealed any failure, in order to try to
find uncovered flaws. Instead of being an approach for test
case selection, it is a methodology of reusing input test data
to create additional test cases whose outputs can be pre-
dicted. In metamorphic testing, if input x produces an out-
put f(z), the function’s so-called “metamorphic properties”
can then be used to guide the creation of a transformation



function ¢, which can then be applied to the input to pro-
duce ¢(z); this transformation then allows us to predict the
output f(t(x)), based on the (already known) value of f(z).
If the output is not as expected, then a defect must exist.
Of course, this can only show the existence of defects and
cannot demonstrate their absence, since the correct output
cannot be known in advance (and even if the outputs are as
expected, both could be incorrect), but metamorphic test-
ing provides a powerful technique to reveal defects in such
non-testable programs by use of a built-in pseudo-oracle.

In practice, however, metamorphic testing can be a man-
ually intensive technique for all but the simplest cases. The
transformation of input data can be laborious for large data
sets, or practically impossible for input that is not in human-
readable format. Similarly, comparing the outputs can be
error-prone for large result sets, especially when slight vari-
ations in the results are not actually indicative of errors (i.e.
false positives), or when there is non-determinism in the re-
sults. Another issue is where the initial input z comes from;
manual creation of test input is challenging for non-trivial
cases, and random input data may not reveal certain defects
[23]. Last, it is time consuming to manually set up the input
data, re-run the program, and compare the results.

Here, we present a solution to these limitations of meta-
morphic testing, describe an implementation, and measure
its effectiveness. This paper makes four contributions:

1. We first describe an approach called Automated Meta-
morphic System Testing, which involves automating
metamorphic testing at the system level by treating
the application as a black box and checking that the
metamorphic properties of the entire application hold
after its execution. In the development/testing envi-
ronment, the tester is able to easily set up and con-
duct metamorphic tests with little manual interven-
tion; this will not require the tester to have access to
the source code, but only to know the system’s meta-
morphic properties. Once the testing is completed in
the development environment, the approach will also
allow for metamorphic testing to be conducted auto-
matically in the deployment environment.

2. The testing approach is supported by an implementa-
tion framework called Amsterdam. This testing frame-
work automates the process by which program input
data is modified, multiple executions of the application
with its different inputs are run in parallel, and the
outputs of the executions are compared to check that
the metamorphic properties are satisfied. When done
in the deployment environment, a “sandbox” must be
created such that the user sees only the results of the
main (original) execution, and not others that are only
for testing purposes.

3. We also present an approach called Heuristic Meta-
morphic Testing. In many cases, the limitations of
floating point calculations may cause results of com-
putations to appear to be different (thus indicating
a defect), even though no defect exists. Addition-
ally, non-deterministic applications make it difficult to
accurately predict what the expected outputs should
be during metamorphic testing. By setting thresh-
olds and allowing for application-specific definitions of
“close enough”, we can reduce the number of false pos-
itives and address some cases of non-determinism.

4. Finally, we provide the results of empirical studies con-
ducted on real-world non-testable programs (from the
domain of machine learning) to demonstrate the effec-
tiveness of our techniques.

2. BACKGROUND

Our work to date has primarily focused on the quality as-
surance of machine learning applications. As these types of
applications become more and more prevalent in various as-
pects of everyday life [21], it is clear that the dependability
of machine learning software takes on increasing importance.
The majority of the research effort in the domain of machine
learning focuses on building more accurate models that can
better achieve the goal of automated learning from the real
world. However, to date very little work has been done on
assuring the correctness of the software applications that
perform machine learning. Formal proofs of an algorithm’s
optimal quality do not guarantee that an application im-
plements or uses the algorithm correctly, and thus software
testing is necessary.

Previously we have applied metamorphic testing as part
of a combined approach to testing machine learning ap-
plications [22]. Here, we focus on improving and measur-
ing the metamorphic testing technique itself, and apply our
approach to applications in the domain of machine learn-
ing, since there are extra challenges present in testing “non-
testable programs”. However, the techniques presented in
this paper are applicable to other application domains as
well, including those that do, in fact, have test oracles.

2.1 Metamorphic Testing Examples

A simple example (for expository purposes only, outside
the domain of machine learning) of a function to which meta-
morphic testing could be applied would be one that calcu-
lates the standard deviation of a set of numbers. Certain
transformations of the set would be expected to produce the
same result. For instance, permuting the order of the ele-
ments should not affect the calculation; nor would multiply-
ing each value by -1, since the devation from the mean would
still be the same (think about the numbers being “flipped”
around the zero on the number line).

Furthermore, other transformations will alter the output,
but in a predictable way. For instance, if each value in the set
were multipled by 2, then the standard deviation should be
twice as much as that of the original set, since the values on
the number line are just “stretched out” and their deviation
from the mean becomes twice as great. Thus, given one
set of numbers, we can create three more sets (one with
the elements permuted, one with each multiplied by -1, and
another with each multiplied by 2), and get a total of four
test cases; moreover, given the output of only the first test
case (even if we cannot know whether it was right or wrong),
we can predict what the other three should be.

As a more complex example from the domain of machine
learning, anomaly-based network intrusion detection sys-
tems build up a model of “normal” behavior based on what
has previously been observed; this model may be created, for
instance, according to the byte distribution of incoming net-
work payloads (since the byte distribution in worms, viruses,
etc. may deviate from that of normal network traffic [36]).
When a new payload arrives, its byte distribution is then
compared to that model, and anything deemed anomalous
causes an alert. For a particular input, it may not be possi-



ble to know a priori whether it should raise an alert, since
that is entirely dependent on the model. However, if while
the program is running we take the new payload and ran-
domly permute the order of its bytes, the result (anomalous
or not) should be the same, since the model only concerns
the distribution, not the order. If the result is not the same,
then a defect must exist.

Clearly metamorphic testing can be very useful in the ab-
sence of an oracle: regardless of the values, if the different
outputs for the different inputs are not as expected, then
there must be a defect in the implementation. Although
the use of these simple relationships for testing numerical
functions is not unique to metamorphic testing (e.g., testing
based on algebraic properties [9] or programs that can check
their work [4]), the approach can be used on a broader do-
main of any functions that display metamorphic properties.
Additionally, metamorphic testing can treat the application
under test as a black box, and does not require detailed
understanding of the source code.

2.2 Limitations of Metamorphic Testing

Although it has been demonstrated (e.g., in [25]) that it
is possible to use metamorphic testing to reveal previously-
unknown defects in applications without test oracles, the
process by which the testing is conducted still has some lim-
itations from a practical point of view.

For instance, the manual transformation of the input data
can be laborious and error-prone, especially when the input
consists of large tables of data, rather than just scalars or
small sets. Machine learning applications, for example, can
take input files of thousands or tens of thousands of rows
of data; anything but the simplest transformations would
need to be automated. On a similar note, input data that is
not human-readable (for instance, binary files representing
network traffic) cannot easily be manually modified and thus
a tool is necessary. One-off scripts could be created, but to
date there is no general framework that addresses different
types of transformations and different types of input formats
for purposes of metamorphic testing.

Additionally, the manual comparison of the program out-
puts can also cause problems. As with the input data, many
applications for which metamorphic testing is appropriate
produce large sets of output, and comparing them manually
can be error-prone and tedious. Tools like “diff” are only
useful if the results are expected to be exactly the same, but
cannot be used if the relationship between the outputs is
more complicated, for instance if the result of the modified
input is a set of data that is equal to the result of the original
input, but with each value multiplied by two.

The problem with comparing program outputs - regardless
of how it is done - is exacerbated by the fact that impreci-
sions in floating point operations in digital computers could
cause outputs to appear to deviate, even though the calcu-
lation is actually correct programatically; this could yield
numerous false positives. Similarly, non-deterministic pro-
grams may yield outputs that are expected to deviate, and
thus it may be impossible in practice to know whether the
output is one that is predicted, given the non-determinism.

Last, in order to generate the test cases, metamorphic
testing requires the initial input and output values. These
could be generated using techniques for creating test input,
but these techniques might miss some defects, since they
might not consider a sufficient variety of potential system

states or execution paths in the program. Some defects in
such systems may only be found under certain application
states that may not have been tested: for large, complex
software systems, it is typically impossible in terms of time
and cost to reliably test all possible system states before
releasing the product into the field.

Thus, we require a strategy that addresses these limita-
tions and improves the process by which metamorphic test-
ing is conducted in practice.

3. RELATED WORK

Gotleib and Botella [12] coined the term “automated meta-
morphic testing” to describe how the process can be con-
ducted automatically, but their work focuses more on the
automatic creation of input data that would reveal viola-
tions of metamorphic properties, and not on automatically
checking that those properties hold after execution. Also,
they do not describe any mechanism for addressing perfor-
mance concerns or for ensuring that the additional invoca-
tion of the function or the program is not seen by the user
(i.e., their approach was targeted at the development envi-
ronment, whereas we target both the development environ-
ment and the deployment environment). Additionally, they
only provided means for automating the testing of programs
written in C; our Automated Metamorphic System Testing
framework can be used with programs written in any lan-
guage. And while we recognize that the automation of an
existing manual process is not in itself a contribution, the
work we present here introduces notions of parallelism and
sandboxing to metamorphic testing, which have not previ-
ously been investigated.

Applying metamorphic testing to situations in which there
is no test oracle has previously been studied by Chen et
al. [7] [8]. However, this previous work did not consider
the challenges of automating the process, but rather relied
on a tester to manually perform the transformations and
comparisons; in this work, we automate the transformation
of the inputs and the comparison of the outputs, which both
simplifies the process and makes it less error-prone.

Additionally, although some work has been done in inves-
tigating the use of metamorphic testing of non-deterministic
applications [14], the “heuristic metamorphic testing” ap-
proach presented here is unique in considering how to reduce
false positives.

Metamorphic properties are similar in some ways to alge-
braic specifications [9], though algebraic specifications often
declare legal sequences of function calls that will produce a
known result, typically within a given data structure (e.g.
pop(push(X)) == X in a Stack), but do not describe how
an entire application should react when its input is changed.
The runtime checking of algebraic specifications has been
explored in [28] and [32], though neither work considered
the particular issues that arise from testing without oracles.
Even in the cases in which algebraic specifications or for-
mal specification languages (such as Alloy [19], Z [2], etc.)
are used to act as oracles, work to date has focused primar-
ily on consistency checking of abstract data types [33] and
has not sought to create oracles for applications that do not
otherwise have them.

The implementation framework presented here extends
our previous work in “in vivo testing” [24] in which software
tests itself as it runs in the field, and adds to a list of auto-
mated testing tools such as Mercury WinRunner, Korat [5],
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Figure 1: Model of Automated Metamorphic Sys-
tem Testing Framework

etc.; Amsterdam differentiates itself from these others by
explicitly addressing the problems associated with testing
applications without test oracles.

4. APPROACH

To address some of the limitations of metamorphic test-
ing described above, we present a new technique called Au-
tomated Metamorphic System Testing. This automates the
process by which program input data is modified, multi-
ple executions of the application with its different inputs
are run in parallel, and the outputs of the executions are
compared to check that the metamorphic properties are sat-
isfied. Aside from facilitating metamorphic testing in the
development environment, this technique can also be used
to continually test the application as it runs in the deploy-
ment environment, as well. This must be done in such a
manner that the user only sees the results of the main (orig-
inal) execution, and not from any of the others that are only
for testing purposes.

4.1 Model

In the model of this approach (Figure 1), metamorphic
properties of the application are specified by the tester and
then are applied to the program input. The original input
is fed into the application, which is treated completely as a
black box; depending on the metamorphic property, a mod-
ified version of this input data may also be produced. That
data is then fed into a separate invocation of the applica-
tion, which executes in parallel but in a separate sandbox
so that changes to files, screen output, etc. are not seen by
the user. When the two invocations finish, their results are
compared according to the specification; if the results are
not as expected, a defect has been revealed. Although not
reflected in Figure 1, it should be possible to execute more
than two invocations of the program in parallel.

Note that the tester need not write any actual test code
per se, but rather only needs to specify the metamorphic
properties of the application. This can be done by the cre-

ator of the algorithm or by application designer, and does
not assume intricate knowledge of the source code or other
implementation details.

4.2 Implementation

This section describes the architecture of a framework,
called Amsterdam, that will enable an application to be
treated as a black box so that Automated Metamorphic Sys-
tem Testing can be performed without any modification to
the code whatsoever. This framework also allows the appli-
cation to be tested as it runs in the field, using real input
data. As described above, multiple invocations of the ap-
plication are run and their outputs are compared; however,
the additional invocations must not affect the user and must
run in a separate sandbox.

4.2.1 Assumptions

The framework currently assumes that the program under
test can be invoked from the command line, system input
comes from files, and output is either written to a file or
to standard out (the screen). Though this may limit the
generality of this framework, according to our preliminary
investigations, these assumptions are typically not restric-
tive in applications in the domains of interest (particularly,
machine learning). Additionally, when input comes from
database tables, mouse clicks, keystrokes, incoming network
traffic, etc., an analogous unit testing approach such as the
one described in [26] can be used instead, since that inserts
code into the application, and that code can perform meta-
morphic testing at a more granular level.

4.2.2  Specifying Metamorphic Properties

The tester first specifies the metamorphic properties of
the application. In our current implementation of the frame-
work, this can be done in a text file using a syntax similar
to plain English for some simple properties. For instance,
if permuting the input to an application does not affect the
output (i.e., the resulting output is equal to the output of
the initial test case), then the specification would simply be
“if permute (input) then equal (output)”. For more com-
plex properties, an XML file is used for the specification
(described below), and we are investigating other possibili-
ties, such as using a formal specification language like Alloy
[19], or a scripting language like Python or Perl. The exam-
ples in this section assume the specifications are written in
XML (since the plain-English properties are pre-processed
into XML files), though the ideas and principles will remain
the same, regardless of the particular implementation.

The specification of a metamorphic property includes three
parts: how to transform the input, how to execute the pro-
gram (e.g., the command to execute, setting any runtime
options, etc.), and how to compare the outputs. Multiple
metamorphic properties can be specified together in one file.

For input transformation, the tester can describe how
to modify (if modification is needed at all) the entire data set
or only certain parts, such as a particular row or column in
a table of data. In [25], we identified six categories of meta-
morphic properties, and the framework supports out-of-the-
box input modification functions to match each of these cat-
egories: adding a constant to numerical values; multiplying
numerical values by a constant; permuting the order of the
input data; reversing the order of the input data; removing
part of the data; and, adding additional data.



For program execution, the tester needs to specify the
command used to execute the program. The program is
completely treated as a black box, so the particular imple-
mentation language does not matter, as long as the program
is executable from the command line. Some metamorphic
properties may call for different runtime options to be used
for the different invocations; those would be specified here.

For output comparison, the tester describes what the
expected output should be in terms of the original output.
In the simplest case, the outputs would be expected to be
exactly the same. In other cases, the same transformations
described above (adding, multiplying, etc.) for the input
may need to be applied to the output before checking for
equality. Additionally, the framework also supports checking
for inequality if a change to the input is expected to cause a
change to the output, even if that output cannot be precisely
predicted. Last, if the output is non-deterministic, heuristic
metamorphic testing can be used, as described in Section 5.

<TESTDESCRIPTOR>
<EXECUTION>java NaiveBayes @parameters</EXECUTION>
<PARAMETERS>-t Q@input.training_data -d Qoutput.model</PARAMETERS>
<INPUT>
<VAR TYPE="arff_file" NAME="training_data" />
</INPUT>
<OUTPUT>
<VAR TYPE="text_file" NAME="model" />
</0UTPUT>
<POST_TEST>
<BRANCH OPTION="main" />
<BRANCH OPTION="parallel" NAME="test1">
@op_permute (@input.training_data)
</BRANCH>
<PROPERTY>
<ASSERT> Qop_equal (@main.output.model, Otestl.output.model) </ASSERT>
</PROPERTY>
</POST_TEST>
</TESTDESCRIPTOR>

Figure 2: Example of specification of metamorphic
property for system-level testing

Figure 2 demonstrates an example of a metamorphic prop-
erty for system testing as specified in an XML file. The
input and output are given names, and the “post_test” spec-
ifies that there are to be two parallel executions and how to
modify the inputs and compare the outputs. In particular,
this file specifies that the NaiveBayes program (a machine
learning classifier) has the property that, if the input (“train-
ing data”) is perumuted, the output (“model”) should still
be the same. With minimal modification, the metamorphic
properties specified in this XML file could also be applied
to any other program that exhibits the same property.

If the framework does not support a specific transforma-
tion or comparison feature as required by the tester, func-
tionality can be added by creating a separate component
that can be invoked by the framework, according to a specific
programming interface (currently implemented in Java). This
would also allow the tester to automate the transformation
of other input formats not currently supported by the tool,
or to compare other output formats.

4.2.3 Configuration

After specifying the metamorphic properties, the tester
then configures the Amsterdam framework to specify how
the multiple invocations of the program should be executed.
The framework is designed to be used in either the produc-
tion environment (executed by the system’s end users) or in
the development environment (during pre-release testing).
In the latter case, parallel execution of the additional invo-
cations and/or the use of a separate sandbox may not be

required; thus, parallelism and sandboxing can be disabled,
which may ease the process of debugging (if, for instance,
the tester wants to see the traces of debugging statements
printed to standard out). The tester may also want to spec-
ify whether or not the additional invocations should run on
separate processors or cores, if supported by the underlying
hardware.

The configuration also includes declaring what action to
take if a metamorphic test fails. Because the test can only
complete once all invocations of the program have com-
pleted, it would be too late to “interrupt” program execution
as soon as a defect is discovered, but the user can still be
notified that the test revealed unexpected behavior, either
through an entry in a log file or a pop-up window; in these
cases, the user can know that the results of the program
execution may be flawed. Likewise, the results of the test
(including the input data that caused the failure) can be sent
back to the development team for use in regression testing
and program evolution.

4.2.4  Execution of Tests

When using Amsterdam to test an application as it runs
in the field, it is assumed that the application vendor would
ship the application including the configured testing frame-
work as part of the software distribution. However, the cus-
tomer organization using the software would not need to do
anything special at all, and ideally would not even notice
that the tests were running.

When the application is executed, the testing framework
first creates temporary files to use for the additional invoca-
tions of the program and then invokes the original applica-
tion with the command line arguments specified in the prop-
erty specification, so that the startup delay of the framework
is minimal from the user’s perspective. While the applica-
tion is running, Amsterdam then applies the specified trans-
formations to the input files. This is done after invoking the
original application because modifying large files can take a
long time, and there is no need for the original application
to wait. The framework provides out-of-the-box support
for the transformation of four different file formats: XML,
comma-separated value (CSV), an attribute/value pair for-
mat for “sparse” data, and the attribute-relation file format
(ARFF). These file formats are commonly used in the do-
mains of interest. Other file formats can be supported by
building custom transformation components.

The framework then starts additional invocations with the
newly-generated inputs. The sandbox for the parallel pro-
cesseses is currently provided by creating isolated copies of
all the files used by the test processes, and by redirecting
screen output to a file so that the user does not see the re-
sults of the additional invocations of the program. To make
the sandbox more robust, we have begun to investigate in-
tegration with a virtualization layer called a “pod” (PrOcess
Domain) [29], which creates a virtual environment in which
the process has its own view of the file system and process
ID space and thus does not affect any other processes. At
this time the framework sandbox does not include external
entities such as the network or databases.

Once all processes are complete, the output files are then
compared according to the specification of the metamorphic
properties. If the output files are not as expected, then a
defect has been detected, and the appropriate action can be
taken according to the configuration.



4.3 Performance Overhead

To demonstrate that the Amsterdam framework incurs
limited overhead on the application being tested, we con-
ducted performance tests on a quad-core 3GHz CPU run-
ning Ubuntu 7.10. We tested four applications from the
Weka 3.5.8 [38] toolkit for machine learning in Java. Our ex-
periments showed that the performance impact on the main
application process (the one seen by the user) comes only
from the creation of the sandbox and copying the files for
the input: this was measured at about 400ms for a 10MB
input file. After that, all other test processes execute on
separate cores and do not interfere with the original process
(assuming that there are fewer test processes than cores, of
course). Thus, the tests can be run with minimal perfor-
mance impact from the user’s perspective.

S. HEURISTIC METAMORPHIC TESTING

During the implementation of our Amsterdam framework,
it became immediately apparent that false positives could
be a problem if there were small deviations in the results
of calculations that were expected to yield the same result.
Additionally, many applications without test oracles rely on
non-determinism, which limits the effectiveness of metamor-
phic testing since it makes it more difficult to predict the ex-
pected outputs. To address this, we introduce a technique
called heuristic metamorphic testing, based on the concept
of “heuristic test oracles” [18]. This variant of metamorphic
testing permits slight differences in the outputs, in a mean-
ingful way according to the application being tested.

5.1 Reducing False Positives

False positives are likely to come up in metamorphic test-
ing whenever floating point calculations are involved. Con-
sider the simple case of the sine function, and the metamor-
phic property sin(a) = sin(a + 27). In practice, a defect-
free implementation may cause a failure of the metamorphic
test, due to imprecision in floating point calculations and the
representation of 7. For instance, the Math.sin function in
Java computes the sine of 6.02 radians and the sine of (6.02
+ 2 * Math.PI) radians as having a difference on the order
of 10'*®, which in most applications is probably negligible,
but is not exactly the same when checking for equality; thus,
a metamorphic property based on checking that the results
are equal would lead to a false positive.

In heuristic metamorphic testing, output values that are
“close enough” are considered equal, where the definition of
“close enough” is dependent on the application or function
being tested. For instance, when the output is numeric (as
in the above example), a threshold can be set to check that
the values are suitably close. More complex cases may call
for heuristics to check for semantic similarity. For example,
consider an application that executes in two phases, where
the output of the first is used as part of the input to the
second. That is, the final output of the program is the out-
put of the second phase S(F(z), y), where z is the initial
input, F(z) is the output from the first phase, and y is in-
put used only in the second phase. Consider a case in which
F(z) is expected to equal F(z’), where z’ is the input used
in metamorphic testing. In heuristic metamorphic testing,
even if F(z) is not exactly equal to F'(z’), the results may be
considered “close enough” if S(F(z), y) still equals S(F(z’),
y) (or is acceptably close).

The Amsterdam framework for Automated Metamorphic
System Testing supports such techniques for considering such
heuristics and setting thresholds in the comparison of out-
puts, with the intent of reducing false positives. However, in
[39], it was argued that although the failure of a metamor-
phic test in such cases may not necessarily indicate a defect
per se, it does reflect a deviation from expected behavior
(albeit a very slight one), and thus it is useful to warn the
user. Therefore, Amsterdam can be configured to generate
such a warning if so desired.

5.2 Addressing Non-Determinism

Non-deterministic applications present a particular chal-
lenge to metamorphic testing because it may not always
be possible to know what the expected output should be,
and then check whether the new test output is as predicted.
Statistical metamorphic testing [14] has been suggested as a
solution in some cases, though it is somewhat limited to out-
puts that consist of a set of numbers whose statistical values,
such as mean and variance, can be calculated. Statistical
metamorphic testing is not necessarily applicable in the ap-
plications of interest presented here, for instance where the
output could be a set in which the ordering is of prime con-
cern, and the values of the set elements are not important.

For example, ranking algorithms in machine learning take
sets of data and try to order the elements according to some
learned relationship. Such algorithms may rely on random-
ness, for instance to permute the order of the input data set
so that initial ordering does not influence the results, and
then take the average ranking over a set of runs. Depending
on these permutations, though, the final result may not be
deterministic.

In heuristic metamorphic testing, the results of a ranking
algorithm can still be compared using some basic metrics,
such as the quality (measured using the Area Under the
Curve, or AUC [16], a common metric for comparing ma-
chine learning results) for each ranking, the number of dif-
ferences between the rankings (elements ranked differently),
the Manhattan distance (sum of the absolute values of the
differences in the rankings), and the Euclidean distance (in
N-dimensional space). Another metric is the normalized
Spearman Footrule Distance, which explains how similar the
rankings are (1 means exactly the same, 0 means completely
in the opposite order) [34].

Furthermore, in practice the user of the system may only
be concerned with a small number of elements in the rank-
ing, presumably selected from the top (or possibly the bot-
tom) of the list. For a parameterized value X, it may be
suitable to calculate the quality of only the top and bottom
X% of each ranking, or calculate the “correspondence” be-
tween the top and bottom X% of both rankings, where the
correspondence is simply the number of elements that ap-
pear in the top (or bottom) X % of both rankings, divided by
the number of elements in the top (or bottom) X%. These
metrics, along with the other distance metrics described pre-
viously, can help decide whether a pair of rankings is similar
in the ranges that are most important, and thus be used
even when the result is non-deterministic.

Likewise, similar measurements can be used for calculat-
ing the similarity of results of machine learning classification
algorithms, such as the number of elements with equivalent
classifications, or the total number of elements in each class.

As with the examples aboved aimed at reducing the num-



ber of false positives, the Amsterdam framework supports
heuristics related to non-determinism, but also can alert the
user when the heuristics need to be used, so as to avoid
possible false negatives.

6. EMPIRICAL STUDIES

To demonstrate the effectiveness of our technique and de-
termine how well it can detect defects in software with-
out test oracles, we conducted empirical studies on three
real-world “non-testable programs” from the domain of ma-
chine learning. The first is the classification algorithm Sup-
port Vector Machines (SVM) [35], as implemented in the
Weka [38] 3.5.8 toolkit for machine learning in Java. The
second is C4.5 [31] release 8, which is also a classification
algorithm but uses a decision tree. The last is the rank-
ing algorithm MartiRank [13], developed by researchers at
Columbia University’s Center for Computational Learning
Systems (CCLS).

6.1 Machine Learning Background

In supervised machine learning, data sets consist of a col-
lection of examples, each of which has a number of attribute
values and, in some cases, a label. The examples can be
thought of as rows in a table, each of which represents one
item from which to learn, and the attributes are the columns
of the table. The label, if it exists, indicates how the exam-
ple is categorized. Supervised machine learning applications
execute in two phases. The first phase (called the learning
phase) analyzes a set of training data; the result of this anal-
ysis is a model that attempts to make generalizations about
how the attributes relate to the label. In the second phase
(called the classification phase), the model is applied to an-
other, previously-unseen data set (called the testing data)
where the labels are unknown. In a classification algorithm,
the system attempts to predict the label of each individual
example; in a ranking algorithm, the output of this phase
is a ranking such that, when the labels become known, it is
intended that the highest valued labels are at or near the
top of the ranking, with the lowest valued labels at or near
the bottom.

6.1.1 Support Vector Machines

The Support Vector Machines (SVM) algorithm [35] is one
of the more common classification algorithms used in real-
world applications, ranging from facial recognition to com-
putational biology [1]. In the learning phase, SVM treats
each example from the training data as a vector of N di-
mensions (since it has N attributes), and attempts to seg-
regate examples from different classes with a hyperplane of
N-1 dimensions. In the learning phase, the goal is to find
the hyperplane with the maximum margin (distance) be-
tween the “support vectors”, which are the examples that lie
closest to the surface of the hyperplane; the resulting hyper-
plane is the model. In the classification phase, examples in
the testing data are classified according to which “side” of
the hyperplane they fall on.

The Weka implementation of SVM uses the Sequential
Minimal Optimization (SMO) technique [30], which breaks
the large quadratic programming optimization problem into
smaller problems that can be solved analytically and thus
avoids a large matrix computation with limited loss of qual-
ity in the results.

6.1.2 C4.5

C4.5 [31] is a very popular algorithm for building decision
trees, in which branches represent decisions based on at-
tribute values and leaves represent how the example is to be
classified. Like other decision tree classifiers, it takes advan-
tage of the fact that each attribute in the training data can
be used to make a decision that splits the data into smaller
subsets. During the training phase, for each attribute, C4.5
measures how effective it is to split the data on a particular
attribute value, and the attribute with the highest “informa-
tion gain” (a measure of how well similar labels are grouped
together) is the one used to make the decision. The al-
gorithm then continues recursively on the smaller sublists.
During classification, the tree is applied to each example,
which is classified once it reaches a leaf of the tree.

6.1.3 MartiRank

MartiRank [13] is a ranking algorithm that is used as
part of a prototype application for predicting electrical de-
vice failures: the examples in the data sets have labels of
0 (“negative example”) or 1 (“positive example”), indicating
whether the device failed during a particular time period.

In the learning phase, MartiRank executes a number of
“rounds”. In each round the set of training data is broken
into sub-lists; there are N sub-lists in the Nth round, each
containing 1/Nth of the total number of positive examples.
For each sub-list, MartiRank sorts that segment by each at-
tribute, ascending and descending, and chooses the attribute
that gives the best “quality”. The quality is assessed using a
variant of the Area Under the Curve (AUC) [16] calculation
that is adapted to ranking rather than binary classification.
The model, then, describes for each round how to split the
data set and on which attribute and direction to sort each
segment for that round. In the second phase, MartiRank
applies the segmentation and sorting rules from the model
to the testing data set to produce the final ranking.

6.2 Methodology

In our experiments, we used mutation testing to systemat-
ically insert defects into the source code and then determined
whether or not the mutants could be killed (i.e., whether
the defects could be detected) using our approach. Muta-
tion testing has been shown to be a suitable technique for
measuring the effectiveness of a test data suite or, in our
case, a testing approach [3]. These mutations fell into three
categories: (1) comparison operators were switched to their
logical opposites, e.g. “less than” was switched to “greater
than or equal”; (2) mathematical operators were switched to
their opposites, e.g. addition was switched to subtraction;
and (3) off-by-one errors were introduced for loop variables,
array indices, and other calculations that required adjust-
ment by one. Each variant that we created had exactly one
mutation inserted.

To determine which mutations were suitable for our test-
ing, the output of each variant was compared to the output
of the application with no mutants, which was considered the
“gold standard”. To obtain this initial output, for SVM and
C4.5, we used the “iris” data set from the UC-Irvine reposi-
tory [27] (150 examples, five attributes); for MartiRank, we
used a real-world data set used by the device failure appli-
cation described above (10,000 examples, 119 attributes). If
the outputs of the gold standard and the variant were the
same, then we considered the mutation unsuitable for test-



Mutation Mutants | Permute | Multiply | Add | Negate | Total
Comparison | 30 17 2 0 0 17 (57%)
operators

Math 24 13 0 11 16 18 (75%)
operators

Off-by-one 31 27 0 7 9 31 (100%)
Total 85 57 2 18 25 66 (77%)

Table 1: Results of Mutation Testing for SVM

Mutation Mutants | Permute | Multiply | Add | Negate | Total
Comparison | 8 8 0 1 7 8 (100%)
operators

Math 15 2 3 1 13 14 (93%)
operators

Off-by-one 5 2 0 0 5 5 (100%)
Total 28 12 3 2 25 27 (96%)

Table 2: Results of Mutation Testing for C4.5

ing (since the mutation may not have been on the execution
path, or may have been a “weak mutant” that did not affect
the overall output). Additionally, if the mutation yielded a
fatal error (crash), an infinite loop, or an output that was
clearly wrong (for instance, being nonsensical to someone
familiar with the application, or simply being blank), that
variant was also discarded since our approach would not be
needed to detect such defects.

Once we deteremined which variants could be used for
our experiment, we conducted metamorphic testing using
the following properties. Each property was verified with
the “gold standard” version to make sure that the property
was, in fact, expected to hold. Because of slight variations,
the properties used for each application are listed separately:

For SVM: (1) Permuting the order of the examples in
the training data should not affect the model; (2) Multi-
plying each attribute value in the training data by a posi-
tive constant (in our case, two) should not affect the model;
(3) Adding a positive constant (in our case, one) to each
attribute value in the training data should not affect the
model; (4) Negating each attribute value in the training
data, followed by negating each attribute value in the testing
data, should result in the same classification.

For C4.5: (1) Permuting the order of the examples in
the training data should not affect the model; (2) Multiply-
ing each attribute value in the training data by a positive
constant (in our case, two) should yield a model in which
the values at each decision point have also been multiplied
by two; (3) Adding a positive constant (in our case, one)
to each attribute value in the training data should yield a
model in which the values at each decision point have also
been increased by one; (4) Negating each attribute value in
the training data, followed by negating each attribute value
in the testing data, should result in the same classification.

For MartiRank: (1) Permuting the order of the exam-
ples in the training data should not affect the model; (2)
Multiplying each attribute value in the training data by a
positive constant (in our case, two) should not affect the
model; (3) Adding a positive constant (in our case, one) to
each attribute value in the training data should not affect
the model; (4) Negating each attribute value in the train-
ing data, followed by negating each attribute value in the
testing data, should result in the same ranking.

For each variant, the application’s metamorphic proper-
ties were specified using the Amsterdam testing framework
and the tests were conducted to see whether the outputs
were as expected (compared to the variant’s original out-
put). If not, then the mutant was considered to be killed,
and the defect had been detected.

6.3 Findings

The goal of the experiment is to demonstrate that the
metamorphic testing technique is effective in revealing the
defects in these applications, by measuring what percentage
of the mutants can be killed.

Tables 1, 2, and 3 summarize the results of our testing
of SVM, C4.5, and MartiRank, respectively. In each table,
we specify the type of mutation and the number of mutants
that were suitable for use in the testing (i.e., that resulted
in a different output compared to the gold standard, and
that did not produce an obvious error). We then list the
number of mutants that were killed by metamorphic test-
ing with the four different types of properties: permuting
the input, adding a constant to each attribute, multiplying
each attribute by a positive constant, and negating the at-
tribute values. The last column shows the total number of
distinct mutants killed by the tests (a mutant may be killed
by multiple different metamorphic properties), and the over-
all percentage.

6.4 Discussion

For SVM, permuting the input was the most powerful
metamorphic property in terms of revealing defects. Al-
though we already demonstrated in [25] that permuting the
input for SVM would cause this property to be violated,
even in an implementation without defects, we avoided false
positives in this case by using heuristic metamorphic testing
and considering model values that were within 98% of each
other to be considered “equal” (since this was the maximum
margin of error in the gold standard version). Even with
that buffer, 57 of the 85 mutants (67%) were killed.

Permuting the input was particularly effective in killing
the off-by-one mutants in SVM (27 out of 31, or 87%). In
these mutations, for-loops omitted either the first or last
value in an array, thus the mathematical calculations would
yield different results because different permutations meant



Mutation Mutants | Permute | Multiply | Add | Negate | Total
Comparison | 20 16 1 1 16 18 (90%)
operators

Math 23 9 0 0 10 15 (65%)
operators

Off-by-one 26 12 0 0 9 17 (65%)
Total 69 37 1 1 35 50 (72%)

Table 3: Results of Mutation Testing for MartiRank

that different elements were being left out. For instance,
consider a function f(A) = Z A;, where A is an array of

values. One would expect that permuting the order of the
elements in A would not affect the result. But clearly if,
say, the first element of A is not included in the sum, then
permuting the elements will put a different one first, and
thus the result will change, in violation of the metamorphic
property.

On the other hand, because MartiRank is based on sort-
ing, it follows that defects related to comparison operators
would be most likely to be detected using the approach, par-
ticularly if the values are permuted or negated (these two
properties each killed 16 of the 20 comparison operator mu-
tations). Both types of metamorphic transformations affect
the way in which the numbers are compared during sorting,
and thus the results would be more likely to be different,
indicating a defect.

For instance, consider a function to determine the max-
imum of three integers. One would expect that permuting
the input should not affect the result, so that if maz(z, vy,
z) = z, then maz(z, y, ) should still be z. However, if there
were an error with one of the comparison operators, then
permuting the order of the inputs could yield a different
result, revealing the defect. Consider, for example, the erro-
neous implementation in Figure 3. Here, maz (2, 3, 4) would
correctly return 4, but maz(4, 3, 2) would incorrectly return
2, indicating the defect. Although this (and the ones that
follow) can be regarded as a trivial example, it demonstrates
in a simple manner that the metamorphic property based on
permutation is effective in applications like MartiRank that
depend on comparisons.

max(a, b, c) {
if (a < b)
if (b < ¢) return c;
else return b;
else
if (a < c) return a;
else return c;

0 ~NO U WN -

}

Figure 3: Mutated function to find maximum of
three numbers with error on line 6

The testing approach was most effective for C4.5, par-
ticularly negating the input, which proved to be the most
reliable means of killing the C4.5 mutants (25 of 28, or 89%),
and was more or less equally effective for all three types of
mutations. This is because the nodes of the decision tree
contain clauses such as “if attrp > « then class = C”, where
attrp is some attribute, « is some value, and C' is the clas-
sification. If all the training data were negated, then the
clause is expected to become “if attrp < -a then class = C”,
which requires both the comparison operator and the sign

of a to be switched. However, in most of the cases, only
one or the other was switched, so that in the classification
phase, elements in the testing data were not correctly clas-
sified. Because C4.5 also involves calculations (to determine
which splitting of data provides the best information gain),
other mutations caused the value of a to be changed when
the training data values were negated.

For all applications, the metamorphic property based on
multiplication was not effective for revealing the types of
defects that we had injected. The explanation is that for
the operations that were changed by the mutations, they
would still yield the same results because of the distributive
properties of multiplication. Consider, for an example, a
function f(z, y) = z + y. We would expect it to have the
metamorphic property f(2z, 2y) = 2f(z, y). Now consider
a mutation of this function in which the plus sign has been
replaced with a minus sign: f’(z, y) = = - y. Although there
is an defect in the code, clearly the metamorphic property
72z, 2y) = 2f’(z, y) still holds; thus, the metamorphic
property based on multiplication would not show a violation.

However, this is not necessarily the case for addition,
which does not have similar distributive properties. Con-
sider the same function f(z, y) = z + y. We would expect it
to have the metamorphic property f(z + 2,y + 2) =z + 2
+ 9y 4+ 2= f(z, y) + 4. Now consider the same mutation of
this function in which the plus sign has been replaced with a
minus sign: f’(z, y) = = - y. Now the metamorphic property
iz + 2,y +2) = f(z, y) + 4 no longer holds, because
fa+2,y+2)=2+2-(y+2)=2-y=[(zy); thus,
the metamorphic property based on addition would show a
violation. As can be seen in Tables 1 and 3, though, this
property is more effective in applications based on calcula-
tion and computation (like SVM) than it is in applications
based on comparison and sorting (like MartiRank).

6.5 Additional Results

As part of our study, we also investigated an anomaly-
based intrusion detection system called PAYL [36]. For
PAYL, which is an example of unsupervised machine learn-
ing, the training data simply consists of a set of TCP/IP
network packets (streams of bytes), without any associated
labels or classificiation. During its learning phase, it com-
putes the mean and variance of the byte value distribution
for each payload length in order to produce a model of what
is considered “normal” network traffic. During the second
(“detection”) phase, each incoming packet is scanned and
its byte value distribution is computed. This new payload
distribution is then compared against the model (for that
payload length); if the distribution of the new payload is
above some threshold of difference from the norm, PAYL
flags the packet as anomalous and generates an alert. PAYL
may also raise an alert in other circumstances, for instance
if the payload length had not been seen in the training data.



In our experiments with PAYL, we created 40 mutants for
testing, but only two were killed using our approach. One
reason for this poor performance is that we were only able to
automate two metamorphic properties for PAYL: permuting
the order of the packets in the training data set; and permut-
ing the order of the bytes within the payload (“message”) in
each packet. Although permutation of the input proved to
be an effective technique for detecting defects in SVM and
MartiRank, PAYL is purely concerned with distribution of
values and not at all with their ordering or relationship to
each other; thus, it follows that permuting the input would
have very little effectiveness at killing the types of mutants
that we introduced.

‘We mention this result here to demonstrate that metamor-
phic testing is not a silver bullet for applications that have
no test oracle, and that its effectiveness relies heavily on
a combination of the types of metamorphic properties, the
types of defects being targeted, and the nature of the appli-
cation itself. Although we have demonstrated effectiveness
for some types of defects and some types of applications, fur-
ther work is required to more precisely categorize the defects
and applications for which the approach is most suitable.

7. LIMITATIONS AND FUTURE WORK

Aside from the limitations described above, other chal-
lenges remain. Once a defect has been revealed, fault local-
ization techniques need to be used to find the errant code.
However, localizing faults during system testing is quite dif-
ficult because the fault could come from anywhere in the
code. Thus, this particular approach may be more suit-
able for detecting defects than for localizing them. How-
ever, we foresee an approach that combines coarse-grained
Automated Metamorphic System Testing with fine-grained
testing at the unit level (such as [26]), such that defects de-
tected by the former can be localized with the latter. At
this point, though, automated fault localization is outside
the scope of work.

Our current implementation of the Amsterdam frame-
work only supports metamorphic properties that deal with
comparing the outputs of independent executions in some
prescribed way. The framework does not currently sup-
port metamorphic properties such as “ShortestPath(a, b) =
ShortestPath(a, c¢) + ShortestPath(c, b) where ¢ is some
point in the path from a to b”, i.e., properties that depend
on the result of the initial execution of the program, since
the executions are meant to run in parallel. We leave this
as future work.

Another limitation of the framework comes from the var-
ious output formats that such applications may produce.
For instance, even though many machine learning classifi-
cation applications use a standard set of input file formats
(typically CSV or ARFF), the formats of the outputs vary
greatly, since each algorithm represents its model differently.
Thus, it will likely be the case that the tester needs to cre-
ate a custom utility to compare outputs. However, this does
not obviate the need for a testing framework, which still pro-
vides substantial out-of-the-box functionality with respect to
transforming inputs and executing the code, and the notion
of a heuristic oracle for use with metamorphic testing.

Additional future work may also include the automatic de-
tection of metamorphic properties, similar to the work that
has been done in discovering likely program invariants [11]
[15] and algebraic properties [17]. It could be argued that

static analysis of the code may be able to determine whether
these properties hold, and we have begun preliminary inves-
tigations, though such an approach would more likely be
useful at the unit level than at the system level, because of
the size of the code segments to be analyzed. Further re-
search will be required to determine what are the limits for
such approaches when detecting and checking these meta-
morphic properties.

Finally, further investigation should explore the applica-
tion of these techniques to other domains of non-testable
programs, such as simulation, optimization, and scientific
computing.

8. CONCLUSION

In this paper, we have presented an approach called Auto-
mated Metamorphic System Testing, which addresses some
of the limitations of metamorphic testing so that it can be
an efficient technique for testing applications that deal with
large, complex data sets. We have also presented a tool
called Amsterdam that facilitates the manner in which Au-
tomated Metamorphic System Testing is conducted, and al-
lows metamorphic testing to continue in the deployment en-
vironment with minimal impact on the user.

Aside from the approach and the implementation, our con-
tributions also include a variant called Heuristic Metamor-
phic Testing that seeks to reduce the number of false posi-
tives and address non-determinism. Last, we have presented
the results of empirical studies of various real-world machine
learning applications, and demonstrated the effectiveness of
our testing approaches. We hope that our work helps to
increase the quality of the “non-testable programs” being
developed in machine learning and other fields as well.
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