
Example application under PRET
environment –

(Programming a MultiMediaCard)

COMS – E6901, Columbia University

Devesh Dedhia (UNI – ddd2121)

Abstract
PRET philosophy proposes the temporal

characteristics to be made predictable. However for
various applications the PRET processor will have to
interact with a non predictable environment. In this
paper an example of one such environment, an
MultiMediaCard(MMC) is considered. This paper
illustrates a method to make the response of the
MMC predictable.

I. Introduction

 PRET processor requires static time predictability.
However the datasheets of an MMC card specify a
time range for the response of the MMC card rather
than the precise time. Hence the time required to
program an MMC card would be variable depending
on exactly when the card responds to the sent
commands. Also the data transfer speeds supported
and Read/ Write access time ranges of an MMC card
are variable and specified by Card Specific Data
(CSD) register. In order to make the response
predictable we wait for the worst case time defined in
the specified time range. The Timing specific data
from the CSD is retrieved and communication is
aborted if the card supports a maximum frequency
less than the 20 MHz

II. Programming an MMC card

The MMC card can be programmed in 2 modes

MMC Mode:
The communication between the host and the

MMC card consists of command, response and data –
block tokens. Every command or data bit stream is
initiated by a start bit and terminated by a stop bit. It
has a 10 wire bus consisting of the following lines.

CLK: Each cycle of this signal directs a one bit
transfer on the command and on all the data lines.
The frequency may vary between zero and the
maximum clock frequency.

CMD: This signal is a bidirectional command
channel used for card initialization and transfer of
commands. Commands are sent from the
MultiMediaCard bus master to the card and responses
are sent from the card to the host.

DAT0-DAT7: These are bidirectional data
channels. By default, after power up or reset, only
DAT0 is used for data transfer. A wider data bus can

be configured for data transfer, using either DAT0-
DAT3 or DAT0-DAT7, by the Multimedia Card
controller.

SPI Mode:
This mode is a subset of the MultiMediaCard

protocol, designed to communicate with a SPI
channel, commonly found in microcontrollers. The
Serial Peripheral Interface standard defines the
physical link and not the complete data transfer
protocol. The MultiMedia-Card SPI implementation
uses a subset of the MultiMediaCard protocol and
command set. Every command or data block is built
of 8–bit bytes and is byte aligned with the Chip select
signal. The bidirectional CMD and DAT lines used in
the MMC mode are replaced by unidirectional dataIn
and dataOut signals. It has a 4 wire bus consisting of
the following lines.

CS: Chip Select signal is driven by the host. The
CS signal must be continuously asserted (Active
Low) for the duration of the SPI transaction.

CLK: Each cycle of the signal causes a one bit
transfer on the DataIn or DataOut line.

DATAIN: The host sends all the commands and
Write Data on this line.

DATAOUT: The host receives read data and
response on this line.

 It is assumed that PRET processor in its later stages
of development shall have a hardware SPI engine.
Therefore in this project SPI mode has been chosen
for communication with the MMC card.

III. Real world model:

Before designing the system model in the PRET
environment it is important to study the Real world
model of the Host- MMC card communication. The
hardware SPI engine inside the microcontroller
consists of an 8 bit buffer called Serial Receive/
Transmit Buffer (SSPBUF). There is buffer full flag
which is set when the SSPBUF is full. The shift
register is used to shift data in and out serially
through pins SDI and SDO respectively. The
microcontroller (Host) selects the MMC card as a
slave by asserting the SS (Slave Select) signal. The
clock line of the SPI bus is driven by the clocking
unit inside the microcontroller through the SCK pin.

Figure 1: Block diagram of communication between MMC card and a microcontroller using SPI

IV. PRET Architecture:

The PRET PROCESSOR component implements
a six-stage thread-interleaved pipeline in which each
stage executes a separate hardware thread. Each
hardware thread has its own register file, local on-
chip Memory, and assigned region of off-chip
memory.

Memory map: Each piece of memory in the system
has a unique global address (main memory and

SPMs), but each thread only has access to part of the
overall memory map. Addresses 0x3F800000 –
0x405FFFFF (14 MB) are main memory, visible to
every thread. This part of the memory can be used for
communication between threads. Peripherals start at
0x80000000; in the Memory-mapped I/O space.

Figure 2: Block diagram of the PRET Architecture

Figure 3: Memory Map

V. System Model in the PRET environment:
The entire system is modeled with two threads.

Thread 0 emulates a processor sending commands
while thread 1 emulates a memory card sending the
desired response. As focus of the project is to study
and simulate the time response of the MMC card all
the timing requirements have to be considered. An
application to read a block on 512 bytes from the
MMC card has been created.

Flags: Flags have been used to prevent

overwriting of data by either of the threads. They are

acting like semaphores to protect the Read/Write
buffers.

Writeflag: It is a byte in the shared memory
address space at memory location 0x3F800001.
Thread 0 after writing a value to the writebuffer
makes the Writeflag =1, while thread 1 reads the
value and makes the Writeflag =0.

Readflag: It is a byte in the shared memory
address space at memory location 0x3F800002.
Thread 1 after writing a value to the Readbuffer
makes the Readflag =1, while thread 0 reads the
value and makes the Readflag=0.

Figure 4: Block diagram of the system model in the PRET environment.

Buffers: Buffers are used to exchange data
between the threads.

Writebuffer: It emulates the DataOut line on the
SPI bus. It is a byte in the shared address space at
memory location 0x3F800003.

Readbuffer: It emulates the DataIn line on the SPI
bus. It is a byte in the shared address space at
memory location 0x3F800004.

Frequency variable: The MMC card is required

to be programmed at a frequency less than 400 KHz
before power up. After power up the frequency can
be increased to 20MHz. Hence to use these two
frequencies, the frequency variable is set to LOW
(400 KHz) or HIGH (20MHz).

Implementation of frequency: As Clock is not
used; delays have been used to realize the required
read/write frequencies. In a Real time SPI system the
data written in and read from the buffer (SSPBUF) in
terms of bytes, the time required to write a single
byte is considered. An SPI system working at a
frequency of 400 KHz will write a byte at a
frequency of 50 KHz. Therefore a read write
frequency of 50 KHz is achieved as follows.

if (Frequency_MMC=LOW){
 DEAD (864);
 DEAD (0);
}

 The value of the DEAD instruction is calculated

as follows. The PRET processor working at a
frequency of 250MHz allocates a frequency of 41.66
MHz to each thread. The delay required is 41.66
MHz/50 KHz ≈864.

Similarly to achieve a frequency of 20MHz (i.e.
byte frequency of 2.25Mz) the delay required is
41.66MHZ/2.25MHz≈17.

if (Frequency_MMC=HIGH){
 DEAD (17);
 DEAD (0);
}

VI. Sequence of Instructions:

Commands:
CMD0: Go to Idle state command
CMD1: Send O/P conditions
CMD9: Send Card Specific Data
CMD16: Set Block Length
CMD 17: Read Block

a) Initialization Sequence:
When powered up the MMC wakes up in MMC

mode. Every time CMD 0 is sent the card samples the
CS signal. It enters SPI mode when the CS signal is
asserted during the reception of the reset command
CMD0 and sends a response.

On receiving the response for CMD 0, CMD 1 is
sent. CMD1 is a special synchronization command
used to negotiate the operation voltage range and to
poll the card until it is out of its power-up sequence.
The card responds with the busy bit in its response
cleared once it is out of its power up sequence.

b) Reading the Card Specific Data (CSD)

register:
Every MMC card has a CSD register which is

hardcoded with values by the manufacturer.
It is 16 byte register which provides information

about the transfer speed, card size, read block size,
write block size and various other parameters. We
read the CSD register to retrieve timing related
information.

Register Width CSD Slice

TAAC 8 [119:112]
NSAC 8 [111:104]
TRANS_SPEED 8 [103:96]
R2W factor 3 [28:26]

TAAC: Defines the asynchronous part of the data

access time.
NSAC: Defines the typical case for the clock

dependent factor of the data access time.
Worst case Read Access time= 10 * (TAAC *FOP

+ 100 * NSAC)
TRANS_SPEED: Defines the clock frequency

supported by the card. For cards supporting version
4.0, and higher, of the specification, the value shall
be 20MHz. Therefore we do not communicate with
cards that support a maximum frequency less than
20MHz.

R2W_FACTOR: Defines the typical Write block
time in multiples of the Read access time.

c) Reading a block

The procedure starts by setting the required block
length with the SET_BLOCKLEN (CMD16)
command. If the card accepts this setting, the data
block is transferred via command
READ_SINGLE_BLOCK (CMD17), starting at the
given address

VII. Timing specification:

• CMD 0 and CMD 1
After power is applied thread 0 needs to wait for

the supply ramp up time before sending CMD 0.
After the card enters idle state, thread 0 can send
CMD1. The worst case response time for CMD1 is 1
second. Therefore thread 0 polls for the response till
1 second. Once a valid response is received from the
MMC card (thread 2) the MMC card is said to be
initialized.

• CMD 9

After sending the SEND_CSD command the

response is received after time NCR and the data block
is received after time NCX.

• CMD 16

The MMC card responds to the

SET_BLOCK_LEN command after time NCR.

• CMD 17

The card responds to the block read command by

sending a response after time NCR followed by the
required after time NAC.

 Time NCS is not considered as the CS signal is
kept asserted (Low) all the while.

Symbol Min Max Unit
NCR 1 8 8
NCX 0 8 8
NAC 1 (10/8) * (TAAC *FOP

+ 100 * NSAC)
8

For every command thread 1 polls the Readbuffer

for response or data from thread 2. In order to have
time predictability we poll for the response till the
worst case time (i.e. the Max values in the above
table).

VIII. Implementation:

int get_response (volatile unsigned char buff, int
count) {

int i;
 int Responseflag=1;
 for (i=0;i<count;i++) // poll for worst case time
 { delay ();
 if (*Readflag==0)
 {
 if ((char)*Readbuffer!=Bus_high)
 {
 if (*Readbuffer== (char)buff){
 printf ("DESIRED RESPONSE RECEIVED \n");
 Responseflag=0;
 }

 }
 *Readflag=1;
 }
 }
 return Responseflag;
}

IX. Problems Faced:

As software models of the MMC card are not
available, MMC response was generated by using
one of the threads of the PRET processor. As no SPI
hardware engine is currently present in the PRET
processor, the SPI module has been abstracted
keeping in mind the timing of the MMC response for
various commands.

X. Conclusion:

An application for reading a block of 512 bytes
from an MMC card with time predictability was
simulated. As we wait for the worst case time delay
in the response, predictability is achieved at cost of
performance.

XI. References:
[1] B. Lickly, I. Liu, S. Kim, H. Patel, S. Edwards
and E. Lee. Predictable Programming on a
Precision Timed Architecture. In Proceedings for
Conference on Compliers, Architecture and
Synthesis of Embedded Systems (CASES ’08),
Atlanta, Georgia,USA, October, 2008.
[2] JEDEC standard MultiMediaCard (MMC)
Electrical Standard, Standard Capacity (MMCA,
4.1).
[3] PIC18FXX8 Data Sheet

