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Abstract

Many applications in the field of scientific computing -
such as computational biology, computational linguistics,
and others - depend on Machine Learning algorithms to
provide important core functionality to support solutions in
the particular problem domains. However, it is difficult to
test such applications because often there is no “test ora-
cle” to indicate what the correct output should be for arbi-
trary input. To help address the quality of scientific com-
puting software, in this paper we present a technique for
testing the implementations of machine learning classifica-
tion algorithms on which such scientific computing software
depends. Our technique is based on an approach called
“metamorphic testing”, which has been shown to be ef-
fective in such cases. In addition to presenting our tech-
nique, we describe a case study we performed on a real-
world machine learning application framework, and dis-
cuss how programmers implementing machine learning al-
gorithms can avoid the common pitfalls discovered in our
study. We also discuss how our findings can be of use to
other areas of computational science and engineering.

1. Introduction

Many applications in the field of scientific computing -
such as computational physics, bioinformatics, etc. - de-
pend on Machine Learning (ML) algorithms to provide im-
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portant core functionality to support solutions in the partic-
ular problem domains. For instance, [1] lists over fifty dif-
ferent real-world computational science applications, rang-
ing from facial recognition to computational biology, that
use the Support Vector Machines classification algorithm
alone. As these types of applications become more and
more prevalent in society [14], ensuring their quality be-
comes more and more crucial.

Quality assurance of such applications presents a chal-
lenge because conventional software testing processes do
not always apply: in particular, it is difficult to detect subtle
errors, faults, defects or anomalies in many applications in
these domains because there is no reliable “test oracle” to
indicate what the correct output should be for arbitrary in-
put. The general class of software systems with no reliable
test oracle available is sometimes known as “non-testable
programs” [17].

The majority of the research effort in the domain of ma-
chine learning focuses on building more accurate models
that can better achieve the goal of automated learning from
the real world. However, to date very little work has been
done on assuring the correctness of the software applica-
tions that perform machine learning. Formal proofs of an
algorithm’s optimal quality do not guarantee that an appli-
cation implements or uses the algorithm correctly, and thus
software testing is necessary.

To help address the quality of scientific computing soft-
ware, in this paper we present a technique for testing imple-
mentations of the supervised machine learning algorithms
on which such software depends. Our technique is based on



an approach called “metamorphic testing” [3], which uses
properties of functions such that it is possible to predict ex-
pected changes to the output for particular changes to the
input, based on so-called “metamorphic relations” between
sets of inputs and their corresponding outputs. Although the
correct output cannot be known in advance, if the change is
not as expected, then a defect must exist.

In our approach, we first enumerate the metamorphic re-
lations that such algorithms would be expected to demon-
strate, then for a given implementation determine whether
each relation is a necessary property to reveal program cor-
rectness. If it is, then failure to exhibit the relation indicates
a defect. If it is not a necessary property, we demonstrate
that a violation of the property may still lead to a deviation
from the program behavior that the user expected, which
can be just as damaging.

In addition to presenting our technique, we describe a
case study we performed on the real-world machine learn-
ing application framework Weka [18], which is used as
the foundation for such computational science tools as
BioWeka [9] in bioinformatics. We also discuss how our
findings can be of use to other areas of computational sci-
ence and engineering, such as computational linguistics.

2. Background

This section describes some of the basics of machine
learning and the two algorithms we investigated (k-Nearest
Neighbors and Naı̈ve Bayes Classifier) (we previously con-
sidered Support Vector Machines in [15]), as well as the
terminology used. Readers familiar with machine learning
may skip this section.

One complication in our work arose due to conflicting
technical nomenclature: “testing”, “regression”, “valida-
tion”, “model” and other relevant terms have very differ-
ent meanings to machine learning experts than they do to
software engineers. Here we employ the terms “testing”,
“regression testing”, and “validation” as appropriate for a
software engineering audience, but we adopt the machine
learning sense of “model”, as defined below.

2.1. Machine Learning Fundamentals

In general, input to a supervised machine learning ap-
plication consists of a set of training data that can be rep-
resented by two vectors of size k. One vector is for the k
training samples S = <s0, s1, ..., sk-1> and the other is for
the corresponding class labels C =<c0, c1, ..., ck-1>. Each
sample s ∈ S is a vector of size m, which represents m fea-
tures from which to learn. Each label ci in C is an element
of a finite set of class labels, that is, c ∈ L = <l0, l1, ...,
ln-1>, where n is the number of possible class labels.

Supervised ML applications execute in two phases. The
first phase (called the training phase) analyzes the training
data; the result of this analysis is a model that attempts to
make generalizations about how the attributes relate to the
label. In the second phase (called the testing phase), the
model is applied to another, previously-unseen data set (the
testing data) where the labels are unknown. In a classifi-
cation algorithm, the system attempts to predict the label of
each individual example. That is, the testing data input is an
unlabeled test case ts, and the aim is to predict its class label
ct based on the data-label relationship learned from the set
of training samples S and the corresponding class labels C.
The label ct must be an element li ∈ L.

2.2. Algorithms Investigated

In this paper, we only focus on programs that perform
supervised learning. Within the area of supervised learning,
we particularly focus on programs that perform classifica-
tion, since it is one of the central tasks in machine learn-
ing. The work presented here has focused on the k-Nearest
Neighbors classifier and the Naı̈ve Bayes Classifier, which
were chosen because of their common use throughout the
ML community. However, it should be noted that the prob-
lem description and techniques described below are not spe-
cific to any particular algorithm, and as shown in our previ-
ous work [4] [15], the results we obtain are be applicable to
the general case.

In k-Nearest Neighbors (kNN), for a training sample set
S, suppose each sample has m attributes, <att0, att1, ...,
attm-1>, and there are n classes in S, <l0, l1, ..., ln-1>.
The value of the test case ts is <a0, a1, ..., am-1>. kNN
computes the distance between each training sample and the
test case. Generally kNN uses the Euclidean Distance: for
a sample si ∈ S, the value of each attribute is <sa0, sa1, ...,
sam-1>, and the distance formula is as follows:

dist(si, ts) =

√√√√m−1∑
j

(saj − aj)2.

After sorting all the distances, kNN selects the k nearest
ones and these samples are considered the k nearest neigh-
bors of the test case. Then kNN calculates the proportion of
each label in the k nearest neighbors, and the label with the
highest proportion is predicted as the label of the test case.

In the Naı̈ve Bayes Classifier (NBC), for a training sam-
ple set S, suppose each sample has m attributes, <att0, att1,
..., attm-1>, and there are n classes in S, <l0, l1, ..., ln-1>.
The value of the test case ts is <a0, a1, ..., am-1>. The
label of ts is called lts, and is to be predicted by NBC.

NBC computes the probability of lts belonging to lk,
when each attribute value of ts is <a0, a1, ..., am>. In the
Naı̈ve Bayes method, we assume that attributes are condi-
tionally independent with one another given the class label,



therefore we have the equation:

P(lts = lk | a0a1...am-1) =

P(lk)
∏
j

P(aj | lts = lk)∑
i
P(li)

∏
j

P(aj|lts = li)
After computing the probability for each li ∈ {l0, l1, ...,

ln-1}, NBC chooses the label lk with the highest probability,
which is then predicted as the label of test case ts.

Generally NBC uses a normal distribution to compute
P(aj | lts = lk). Thus NBC trains the training sample set to
establish a distribution function for each attj ∈ {att0, att1,
..., attm-1} in each li ∈ {l0, l1, ..., ln-1}, that is, for all sam-
ples with label li ∈ {l0, l1, ..., ln-1}, it calculates the mean
value µ and mean square deviation σ of attj in all samples
with li. It then constructs the probability density function
for a normal distribution with µ and σ.

For test case ts with m attribute values <a0, a1, ...,
am-1>, NBC computes the probability of P(aj | lts = lk)
using a small interval δ to calculate the integral area. With
the above formulae NBC can then compute the probabil-
ity of lts belonging to each li and choose the label with the
highest probability as the classification of ts.

3. Approach

Our approach is based on the concept of metamorphic
testing [3], summarized below. To faciliate that approach,
we must identify the relations that the algorithms are ex-
pected to exhibit between sets of inputs and sets of outputs.
Once those relations have been determined, we then ana-
lyze the algorithms to decide whether the relations are nec-
essary properties to indicate correctness during testing; that
is to say, if the implementation does not exhibit that prop-
erty, then there is a defect. If the relation is not a necessary
property, it can still be used for validation; that is, if the im-
plementation does not exhibit that property, there may be a
defect.

3.1. Metamorphic Testing

One popular technique for testing programs without a
test oracle is to use a “pseudo-oracle” [6], in which multiple
implementations of an algorithm process the same input and
the results are compared; if the results are not the same, then
one or both of the implementations contains a defect. This is
not always feasible, though, since multiple implementations
may not exist, or they may have been created by the same
developers, or by groups of developers who are prone to
making the same types of mistakes [11].

However, even without multiple implementations, often
these applications exhibit properties such that if the input
were modified in a certain way, it should be possible to
predict the new output, given the original output. This ap-
proach is what is known as metamorphic testing. Metamor-

phic testing can be implemented very easily in practice. The
first step is to identify a set of properties (“metamorphic re-
lations”, or MRs) that relate multiple pairs of inputs and
outputs of the target program. Then, pairs of source test
cases and their corresponding follow-up test cases are con-
structed based on these MRs. We then execute all these
test cases using the target program, and check whether the
outputs of the source and follow-up test cases satisfy their
corresponding MRs.

A simple example of a function to which metamorphic
testing could be applied would be one that calculates the
standard deviation of a set of numbers. Certain transfor-
mations of the set would be expected to produce the same
result. For instance, permuting the order of the elements
should not affect the calculation; nor would multiplying
each value by -1, since the deviation from the mean would
still be the same.

Furthermore, there are other transformations that will al-
ter the output, but in a predictable way. For instance, if each
value in the set is multipled by 2, then the standard deviation
should be twice as much as that of the original set, since the
values on the number line are just “stretched out” and their
deviation from the mean becomes twice as great. Thus,
given one set of numbers (the source test cases), we can
use these metamorphic relations to create three more sets of
follow-up test cases (one with the elements permuted, one
with each multiplied by -1, and another with each multi-
plied by 2); moreover, given the result of only the source
test case, we can predict the others.

It is not hard to see that metamorphic testing is simple to
implement, effective, easily automatable, and independent
of any particular programming language. Further, since the
most crucial step in metamorphic testing is the identification
of the MRs, we can harness the domain knowledge. This is
a useful feature since in scientific computing the program-
mer may, in fact, also be the domain expert and will know
what properties of the program will be used more heavily or
are more critical. Perhaps more importantly, it is clear that
metamorphic testing can be very useful in the absence of a
test oracle, i.e., when the correct output cannot be known
in advance: regardless of the input values, if the metamor-
phic relations are violated, then there is likely a defect in
the implementation.

3.2. Metamorphic Relations

In previous work [15], we broadly classified six types of
metamorphic relations (MRs) that apply in general to many
different types of machine learning applications, including
both supervised and unsupervised ML. In this work, how-
ever, our approach calls for focusing on the specific meta-
morphic relations of the application under test; we would
expect that we could then create more follow-up test cases



and conceivably reveal more defects than by using more
general MRs. In particular, we define the MRs that we an-
ticipate classification algorithms to exhibit, and define them
more formally as follows.

MR-0: Consistence with affine transformation. The
result should be the same if we apply the same arbitrary
affine transformation function, f(x) = kx + b, (k 6= 0) to
every value x to any subset of features in the training data
set S and the test case ts.

MR-1.1: Permutation of class labels. Assume that we
have a class-label permutation function Perm() to perform
one-to-one mapping between a class label in the set of la-
bels L to another label in L. If the source case result is li,
applying the permutation function to the set of correspond-
ing class labels C for the follow-up case, the result of the
follow-up case should be Perm(li).

MR-1.2: Permutation of the attribute. If we permute
the m attributes of all the samples and the test data, the result
should not change.

MR-2.1: Addition of uninformative attributes. An
uninformative attribute is one that is equally associated with
each class label. For the source input, suppose we get the
result ct = li for the test case ts. In the follow-up input, we
add an uninformative attribute to S and respectively a new
attribute in st. The choice of the actual value to be added
here is not important as this attribute is equally associated
with the class labels. The output of the follow-up test case
should still be li.

MR-2.2: Addition of informative attributes. For the
source input, suppose we get the result ct = li for the test
case ts. In the follow-up input, we add an informative at-
tribute to S and ts such that this attribute is strongly asso-
ciated with class li and equally associated with all other
classes. The output of the follow-up test case should still
be li.

MR-3.1: Consistence with re-prediction. For the
source input, suppose we get the result ct = li for the test
case ts. In the follow-up input, we can append ts and ct to
the end of S and C respectively. We call the new training
dataset S’ and C’. We take S’, C’ and ts as the input of the
follow-up case, and the output should still be li.

MR-3.2: Additional training sample. For the source
input, suppose we get the result ct = li for the test case ts.
In the follow-up input, we duplicate all samples in S and L
which have label li. The output of the follow-up test case
should still be li.

MR-4.1: Addition of classes by duplicating samples.
For the source input, suppose we get the result ct = li for
the test case ts. In the follow-up input, we duplicate all
samples in S and C that do not have label li and concatenate
an arbitrary symbol “*” to the class labels of the duplicated
samples. That is, if the original training set S is associated
with class labels <A, B, C> and li is A, the set of classes in

S in the follow-up input could be <A, B, C, B*, C*>. The
output of the follow-up test case should still be li.

MR-4.2: Addition of classes by re-labeling samples.
For the source input, suppose we get the result ct = li for
the test case ts. In the follow-up input, we re-label some
of the samples in S and C which do not have label li and
concatenate an arbitrary symbol “*” to their class labels.
That is, if the original training set S is associated with class
labels <A, B, B, B, C, C, C> and c0 is A, the set of classes
in S in the follow-up input may become <A, B, B, B*, C,
C*, C*>. The output of the follow-up test case should still
be li.

MR-5.1: Removal of classes. For the source input, sup-
pose we get the result ct = li for the test case ts. In the
follow-up input, we remove one entire class of samples in S
of which the label is not li. That is, if the original training
set S is associated with class labels <A, A, B, B, C, C> and
li is A, the set of classes in S in the follow-up input may be-
come <A, A, B, B>. The output of the follow-up test case
should still be li.

MR-5.2: Removal of samples. For the source input,
suppose we get the result ct = li for the test case ts. In the
follow-up input, we remove part of some of the samples in
S and C of which the label is not li. That is, if the original
training set S is associated with class labels <A, A, B, B, C,
C> and li is A, the set of classes in S in the follow-up input
may become <A, A, B, C>. The output of the follow-up
test case should still be li.

3.3. Analysis of Relations for Classifiers

Due to space limitations, we do not formally prove here
that all of these properties hold for both the k-Nearest
Neighbors and Naı̈ve Bayes Classifiers. Rather, we demon-
strate here that some of the relations are not, in fact, neces-
sary properties of the applications of interest. That is, that
although these properties would still be expected to hold in
the classification algorithms we investigate, some of them
could conceivably be violated without indicating a defect in
the implementation, and thus may not be suitable for test-
ing (for instance, if the property would only be expected
under certain conditions, like for certain inputs). However,
as these relations are anticipated and typically indicative of
an implementation that is working correctly, they can in-
stead be used for validation: a violation of the property may
or may not indicate a defect, but still represents a deviation
from “expected” behavior.

For kNN, five of the above metamorphic relations are
not necessary properties but can instead be used for valida-
tion purposes. MR-1.1 (Permutation of class labels) may
not hold because of tiebreaking between two labels for pre-
diction that are equally likely: permuting their order may
change which one is chosen by the tiebreaker.



Additionally, MR-5.1 (Removal of classes) is not a nec-
essary property. Suppose the predicted label of the test case
is li. MR-5.1 removes a whole class of samples without la-
bel li. Consequently this will remove the same samples in
the set of k nearest neighbors, and thus some other samples
will be included in the set of k nearest neighbors. These
samples may have any labels except the removed one, and
so the likelihood of any label (except the removed one) may
increase. Therefore there are two situations: (1) If in the k
nearest neighbors of the source case, the proportion of li is
not only the highest, but also higher than 50%, then in the
follow-up prediction, no matter how the k nearest neighbors
change, the predication will remain the same, because no
matter which labels increase, the proportion of li will still
be higher than 50% as well. Thus the prediction remains li.
Now consider situation (2), in which in the k nearest neigh-
bors of the source case, the proportion of li is the highest but
lower or equal to 50%. Since the number of each survived
label may increase, and the original proportion of li is lower
or equal to 50%, it is possible that the proportion of some
other label increases and becomes higher than li: thus, the
prediction changes.

Similar logic can be used to show that MR-2.2 (Addi-
tion of informative attributes), MR-4.1 (Addition of classes
by duplicating samples), and MR-5.2 (Removal of samples)
also may not hold if the predicted label has a likelihood of
less than 50%.

For the Naı̈ve Bayes Classifier, three of the metamor-
phic relations are not considered necessary properties, but
can still be used for validation: MR-3.1 (Consistence with
re-prediction), MR-4.2 (Addition of classes by re-labeling
samples), and MR-5.2 (Removal of samples). The first of
the three could not be proven as a necessary property, and
thus is considered not necessary; the other two introduce
noise to the data set, which could affect the result.

4. Experimental Setup

To demonstrate the effectiveness of metamorphic test-
ing in validating machine learning applications, we applied
the approach to Weka 3.5.7 [18]. Weka is a popular open-
source machine learning package that implements many
common algorithms for data preprocessing, classification,
clustering, association rule mining, feature selection and vi-
sualization. Due to its large range of functionality, it is typ-
ically used as a “workbench” for applying various machine
learning algorithms. Furthermore, Weka is widely used as
the back-end machine learning engine for various applica-
tions in computational science, such as BioWeka [9] for ma-
chine learning tasks in bioinformatics.

The data model in our experiments is as follows. In one
source suite, there are k inputs. Each input i consists of
two parts: tr i and t i, in which tr i represents the training

sample set, and t i represents the test case. In each training
sample set tr i and test case t i, there are four attributes:
<A0, A1, A2, A3>, and a label L. In our experiments, there
are three labels in all, that is, <L0, L1, L2>. The value for
each attribute is within [1, 20]. We generate the tr i and t i
values randomly, both in the value of the attribute and the
label. Additionally, the number of samples in tr i is also
randomly generated with a maximum of n.

This randomly generated data model does not encap-
sulate any domain knowledge, that is, we do not use any
meaningful, existing training data for testing: even though
those data sets are more predictable, they may not be sensi-
tive to detecting faults. Random data may, in fact, be more
useful at revealing defects [8].

For the source suite of k inputs, we perform a transfor-
mation according to the MRs and get k follow-up inputs
for each MR-j. From running the k follow-up inputs and
comparing the results between the source and the follow-
up cases for the each MR-j, we try to detect faults in Weka
or find a violation between the classifier under test and the
anticipated properties of the classifier.

For each MR-j, we conducted several batches of exper-
iments, and in each batch of experiments we changed the
value of k (size of source suite) and n (max number of
training samples). Intuitively the more inputs we tried (the
higher is k), the more likely we are to find violations. Also,
we would expect that with fewer samples in the training data
set (the less is n), the less predictable the data are, thus the
more likely we are to find faults.

5. Findings

Our investigation into the kNN and Naı̈ve Bayes imple-
mentations in Weka revealed that some Naı̈ve Bayes test
cases caused violations in the necessary properties, indicat-
ing defects. In other cases, for both algorithms, metamor-
phic relations that could be used for validation were also
violated, perhaps not indicating an actual defect but show-
ing that the implementations could yield unexpected results
and deviate from the behavior anticipated by scientific com-
puting users.

5.1. k-Nearest Neighbors

None of the necessary properties of kNN were violated
by our testing, but we did uncover violations in some of the
other properties used during validation. Although these are
not necessarily indicative of defects per se, they do demon-
strate a deviation from what would normally be considered
the expected behavior.

1. Calculating distribution. In the Weka implementa-
tion of kNN, a vector distance[numOfSamples] is used to
record the distance between each sample from the training



data and the test case to be classified. After determining
the values in distance[], Weka sorts it in ascending order,
to find the nearest k samples from the training data, and
then puts their corresponding labels into another vector k-
Neighbor[k].

Weka traverses k-Neighbor[], computes the proportion
of each label in it and records the proportions into a vector
distribution[numOfClasses] as follows: For each i, distribu-
tion[i] is initialized as 1/numberOfSamples. It then traverses
the array k-Neighbor[], and for each label in k-Neighbor[],
it adds the weight of its distribution value (in our experi-
ments, the weight is 1), that is, for each j, distribution[k-
Neighbor[j].label] + 1. Finally, Weka normalizes the whole
distribution[] array.

Figure 1. Sample data sets

@attribute Attr0 numeric @attribute Attr0 numeric
@attribute Attr1 numeric @attribute Attr1 numeric
@attribute Attr2 numeric @attribute Attr2 numeric
@attribute Attr3 numeric @attribute Attr3 numeric
@attribute Label {0,1,2,3,4,5} @attribute Label {0,1,2,3,4,5}

@data @data
11,3,9,4,0 9,5,8,15,0
4,8,10,11,2
18,12,4,8,0
1,11,6,18,0
10,13,10,5,0
7,2,10,14,1

Figure 1 shows two data sets, with the training data on
the left, and the test case to be classified on the right. For
the test case to be classified, the (unsorted) values in the ar-
ray distance[] are {11.40, 7.35, 12.77, 10.63, 13, 4.24}, and
the values in k-Neighbor are {1, 2, 0}, assuming k = 3. The
array distribution[] is initialized as {1/6, 1/6, 1/6, 1/6, 1/6,
1/6}. After traversing the array k-Neighbor[], we get dis-
tribution[] = {1+1/6, 1+1/6, 1+1/6, 1/6, 1/6, 1/6} = {1.167,
1.167, 1.167, 0.167, 0.167, 0.167}. After the normalization,
distribution[] = {0.292, 0.292, 0.292, 0.042, 0.042, 0.042}.

The issue here, as revealed by MR-5.1 (Removal of
classes), is that labels that were non-existent in the train-
ing data samples have non-zero probability of being chosen
in the array distribution[]. Ordinarily one might expect that
if a label did not occur in the training data, there would be
no reason to classify a test case with that label. However,
by initializing the distribution[] array so that all labels are
equally likely, even non-existent ones become possible. Al-
though this is not necessarily an incorrect implementation,
it does deviate from what one would normally expect.

2. Choosing labels with equal likelihood. Another is-
sue comes about regarding how the label is chosen when

there are multiple classifications with the same probability.
Our testing indicated that in some cases, this method may
lead to the violation in some MR transformations, partic-
ularly MR-1.1 (Permutation of class labels), MR-2.2 (Ad-
dition of informative attributes), and MR-4.1 (Addition of
classes by duplicating samples).

Consider the example in Figure 1 above. To perform the
classification, Weka chooses the first highest value in distri-
bution[], and assigns its label to the test case. For the above
example, l0, l1, and l2 all have the same highest proportion
in distribution[], so based on the order of the labels, the final
prediction is l0, since it is first.

However, if the labels are permuted (as in MR-1.1, for
instance), then one of the other labels with equal probabil-
ity might be chosen if it happens to be first. This is not a
defect per se (after all, if there are three equally-likely clas-
sifications and the function needs to return only one, it must
choose somehow) but rather it represents a deviation from
expected behavior (that is, the order of the data set shall not
affect the computed outputs), one that could have an effect
on an application using this functionality.

5.2. Näıve Bayes

Our investigation into Naı̈ve Bayes revealed a number
of violations of MRs that indicate defects and could lead to
unexpected behavior.

1. Loss of precision. Precision can be lost due to the
treatment of continuous values. In a pure mathematical
model, a normal distribution is used for continuous values.
However, it is impossible to realize true continuity in a dig-
ital computer. To implement the integral function, for in-
stance, it is necessary to define a small interval δ to calcu-
late the area. In Weka, a variable called precision is used as
the interval. The precision for attj is defined as the average
interval of all the values. For example, suppose there are 5
samples in the training sample set, and the values of attj in
the five samples are 2, 7, 7, 5, and 10 respectively. After
sorting the values we have {2, 5, 7, 7, 10}. Thus precision
= [(5-2) + (7-5) + (10-7)] / (1 + 1 + 1) = 2.67.

However, Weka rounds all the values x in both the train-
ing samples and test case with precision pr by using round(x
/ pr) * pr. These rounded values are used for the compu-
tation of the mean value µ, mean square deviation σ, and
the probability P(lts = lk | a0a1...am-1). This manipulation
means that Weka treats all the values within ((2k-1)* pr/2,
(2k+1)* pr/2] as k*pr, in which k is any integer.

This may lead to the loss of precision and our tests re-
sulted in the violation of some MR transformations, partic-
ularly MR-0 (Consistence with affine transformation) and
5.1 (Removal of classes). Since both of these are necessary
properties, they demonstrate defects in the implementation.

There are also related problems of calculating integrals



in Weka. A particular calculation determines the integral
of a certain function from negative infinity to t = x - µ /
σ. When t > 0, a replacement is made so that the calcula-
tion becomes 1 minus the integral from t to positive infinity.
However, this may raise an issue because in Weka, all these
values are of the Java datatype “double”, which only has a
maximum of 16 bits for the decimal fraction. It is very com-
mon that the value of the integral is very small, thus after the
subtraction by 1.0, there may be a loss of precision. For ex-
ample, if the integral I is evaluated to 0.0000000000000001,
then 1.0 - I =0.9999999999999999. Since there are 16 bits
of the number 9, in Java the double value is treated as 1.0.
This also contributed to the violation of MR-0 (Consistence
with affine transformation).

2. Calculating proportions of each label. In NBC,
to compute the value of P(lts = lk | a0a1...am-1), we need
to calculate P(lk). Generally when the samples are equally
weighted, P(lk) = {number of samples with lk} / {number
of all the samples}. However, Weka uses Laplace Accuracy
by default, that is, P(lk) = {number of samples with lk + 1}
/ {number of all the samples + number of classes}.

For example, consider a training sample with six classes
and eight labels as follows: { l0, l0, l1, l1, l1, l2, l3,
l3 }. In the general way of calculating the probability,
the proportion of each label is {2/8, 3/8, 1/8, 2/8, 0/8,
0/8} = {0.25, 0.375, 0.125, 0.25, 0, 0}. However in
Weka, using Laplace Accuracy, the proportion of each la-
bel is {(2+1)/(8+6), (3+1)/(8+6), (1+1)/(8+6), (2+1)/(8+6),
(0+1)/(8+6), (0+1)/(8+6)} = {0.214, 0.286, 0.143, 0.214,
0.071, 0.071}. This difference caused a violation of MR-
2.1 (Addition of uninformative attributes), which was also
considered a necessary property.

3. Choosing labels. Last, there are problems in the
principle of “choosing the first label with the highest pos-
sibility”, as seen above for kNN. Usually the probabilities
are different among different labels. However in Weka,
since the non-existent labels in the training set have non-
zero probability, those non-existent labels may conceivably
share the same highest probability. This caused a violation
of MR-1.1 (Permutation of class labels), which was consid-
ered a necessary property.

6. Discussion

6.1. Addressing Violations of Properties

Our testing discovered the violation of four MRs in kNN;
however, none of these were necessary properties and are
mostly related to the fact that the algorithm must return one
result when it is possible that there is more than one “cor-
rect” answer. However, in NBC, we uncovered violations
of some necessary properties, which indicate defects; the

lessons learned here serve as a warning to others who are
developing similar applications.

To address the issues in NBC related to the precision of
floating point numbers, we suggest using the BigDecimal
class in Java rather than the “double” datatype. A BigDeci-
mal represents immutable arbitrary precision decimal num-
bers, and consists of an arbitrary precision integer unscaled
value and a 32-bit integer scale. If zero or positive, the scale
is the number of digits to the right of the decimal point. If
negative, the unscaled value of the number is multiplied by
ten to the power of the negation of the scale. The value of
the number represented by the BigDecimal is therefore (un-
scaledValue * 10-scale). Thus, it can help to avoid the loss
of precision when doing “1.0 - x”.

The use of Laplace Accuracy also led to some of the vi-
olations in the NBC implementation. Laplace Accuracy is
used for the nominal attributes in the training data set, but
Weka also treats the label as a normal attribute, because it is
nominal. However, the label should be treated differently:
as noted, the side effect of using Laplace Accuracy is that
the labels that never show up in the training set also have
some probability, thus they may interfere with the predic-
tion, especially when the size of the training sample set is
quite small. In some cases the predicted results are the non-
existent labels. We suggest that the use of Laplace Accuracy
should be set as an option, and the label should be treated
as a special-case nominal attribute, with the use of Laplace
Accuracy disabled.

6.2. More General Application

Our technique has been shown to be effective for these
two particular algorithms, but the MRs listed above hold
for all classification algorithms, and [15] shows that other
types of machine learning (ranking, unsupervised learning,
etc.) exhibit the same properties classification algorithms
do; thus, the approach is feasible for other areas of ML be-
yond just kNN and NBC.

More importantly, the approach can be used to validate
any application that relies on machine learning techniques.
For instance, computational biology tools such as Medusa
[13] use classification algorithms, and some entire scientific
computing fields (such as computational linguistics [12])
rely on machine learning; if the underlying ML algorithms
are not correctly implemented, or do not behave as the user
expects, then the overall application likewise will not per-
form as anticipated. As long as the user of the software
knows the expected metamorphic relations, then the ap-
proach is simple and powerful to validate the implemen-
tation.



7. Related Work

Although there has been much work that applies machine
learning techniques to software engineering in general and
software testing in particular (e.g., [2]), we are not currently
aware of any other work in the reverse sense: applying soft-
ware testing techniques to machine learning applications.
ML frameworks such as Orange [7] provide testing func-
tionality but it is focused on comparing the quality of the
results, and not evaluating the “correctness” of the imple-
mentations. Repositories of “reusable” data sets have been
collected (e.g., [16]) for the purpose of comparing result
quality, i.e., how accurately the algorithms predict, but not
for the software engineering sense of testing (to reveal de-
fects).

Applying metamorphic testing to situations in which
there is no test oracle was first suggested in [3] and is further
discussed in [5]. Metamorphic testing has previously been
shown to be effective in testing different types of machine
learning applications [15], and has recently been applied to
testing specific scientific computation applications, such as
in bioinformatics [4]. The work we present here seeks to
extend the previous techniques to scientific computation do-
mains that rely on machine learning.

8. Conclusion

As noted in [10], “scientists want to do science” and do
not want to spend time addressing the challenges of soft-
ware development. Thus, it falls upon those of us in the soft-
ware engineering community to develop simple yet power-
ful methods to perform testing and validation. Our contri-
bution is a set of metamorphic relations for classification
algorithms, as well as a technique that uses these relations
to enable scientists to easily test and validate the machine
learning components of their software; this technique is also
applicable to problem-specific domains as well. We hope
that our work helps to increase the quality of the software
being developed in the fields of computational science and
engineering.
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