
A MPEG Decoder in SHIM

[CSEE E6901.030 Project Final Report – December 2008]

 Keerti Joshi Delvin Kelleybrew
 kj2217@columbia.edu djk2125@columbia.edu

ABSTRACT
 The emergence of world-wide standards for video
compression has created a demand for design tools and
simulation resources to support algorithm research and
new product development. Because of the need for
subjective study in the design of video compression
algorithms it is essential that flexible yet computationally
efficient tools be developed.
 For this project, we plan to implement a MPEG
standard using the SHIM programming language. The
SHIM is a software/hardware integration language whose
aim is to provide communication between hardware and
software while providing deterministic concurrency.
 The focus of this project will be to emphasize the
efficiency of the SHIM language in embedded applications
as compared to other existing implementations

INTRODUCTION
 MPEG, which stands for Moving Picture Experts
Group, is the name of a family of standards used for
coding audio-visual information. It is a generic means of
compactly representing digital video and audio signals for
consumer distribution.
 The major advantage of MPEG compared to other
video and audio coding formats is that MPEG files are
much smaller for the same quality. This is because MPEG
uses very sophisticated compression techniques.
Conventional compression algorithms can be divided into
a sequence of stages: at best they can run in a parallel
pipeline.
 Implementing in SHIM could provide a good
programming model for the MPEG, allowing it to be
described concurrently and utilize SHIM to produce
efficient parallel code. It follows a C-like syntax that
allows local variable declarations and function calls, much
like using a combination of C and an HDL such as Verilog.
 In this project we plan to implement an existing
algorithm of the MPEG decoder in SHIM and compare its
complexity with other implementations of the video
standard.

RELATED WORK
 Image and video codecs are prevalent in multimedia
devices, ranging from embedded systems, to desktop

computers, to high-end servers such as HDTV editing
consoles. It is not uncommon however that developers
create and customize separate coder and decoder
implementations for each of the architectures they target.
This practice is time consuming and error prone, leading
to code that is neither malleable nor portable. [5] paper
describes an implementation of the MPEG-2 decoder
using the StreamIt programming language, an
architecture-independent stream language that aims to
improve programmer productivity. The paper shows that
MPEG is a good match for the streaming programming
model and illustrates the malleability of the implementation
using a simple modification to the decoder to support
alternate color compression formats.
 Efficient image processing techniques are needed to
make images suitable for use in embedded systems.
Alternatively, [6] describes an implementation of a JPEG
decoder in the SHIM programming language.

MILESTONES

We divided the architecture of what it would take to
perform the MPEG decoding into five modules:

1. MPEG parser
o General Input Parsing
o Variable Length Decoding
o Parser Outputs

2. Decoder split
o “par” mechanism
o Macroblock Decode
o Motion Vector Decode

3. Motion Compensation
4. Scalability
5. Color Space Conversion

MILESTONES ACHEIVED

I.) MPEG Parser: The MPEG Parser performs the
necessary decoding of the MPEG video file bitstream
structure. A video sequence is made up of several main

mailto:kj2217@columbia.edu�
mailto:djk2125@columbia.edu�

layers (sequence, picture, slice, and macro-block layers).
The purpose of the MPEG parser is to 1.) input bits/bytes
from the MPEG bitstream, 2.) use unique identifiers called
startcodes to find and differentiate between the main
layers and there corresponding sub-layers, 3.) decode
pertinent information from each layer and sub-layer, and
4.) output the fundamental elements needed to continue
the MPEG decoding processes (i.e., macro-blocks
containing information for luminance, chrominance, and
motion vectors).

I.A) MPEG Parser – General Input Parsing: Before any
processing of data could be done, a reliable method of
retrieving this data from the MPEG file was devised. As
previously mentioned, there were essentially two types of
bitstream input: input describing the “data type” of the
input to come (i.e., startcodes) and input used in the
actual decoding process.

SHIM Implementation - The 32-bit code startcodes that
are embedded in bitstream are unique and are used for
several purposes including identifying some of the
structures in the coding syntax. They follow a specific
pattern that allows for easy detection of there position in
the bitstream; every startcode is preceded by the 3-byte
buffer of 0x00 0x00 0x01. Knowing this, we were able to
create a SHIM function called get_startcode() that
searches that bitstream for the next startcode and returns
its value:

Because of SHIM’s advantages with parallelism, an
alternate get_startcode() function was also implemented
that utilized the SHIM constructs chan, send, and recv. As
seen in the figure above, these constructs allow for
parallel computation in which send is able to transport
streams of data on a channel (chan) to another module
that contains a receiver (recv). There can only be one
“sender” but theoretically, any number of “receivers”.
Using these constructs, we were also able to code an
alternate get_startcode() function as such:

When it came to retrieving decoder processing input,
unlike with startcodes, there was no set scheme to follow
since this data was not necessarily processed in “byte”
patterns. At any given time during processing, the next 8
bits may be used for one information data point, followed
by, say, the next 13 bits that may be used for another data
point. Given this inconsistency in data processing, we
were able to create a SHIM function call get_bits() which,
given an integer, returns this many bits from the bitstream.
Since bits can only be retrieved in “byte” groups, this
function would retrieve 8 bits at a time and utilized a
sliding window to sort of “mask” out the number of bits
needed:

I.B) MPEG Parser – Variable Length Decoding: A
variable length code is a way to map source symbols to a
variable number of bits, allowing data compression.
Unique Variable Length Code tables are utilized in various
stages of the decoding process, including but not limited
to macroblock addressing, macroblock type decoding,
macroblock pattern detection, motion vectors, and DCT
Co-efficients.

 SHIM Implementation - However, since SHIM does not
support pointers, the plan to implement this module was to
generate a tree equal to the encoding tree and represent it
using an array. Read an input bit and move to the left
subtree if the bit is 0, the right subtree otherwise. . If a leaf
is encountered, the value is returned. This “subtree”
implementation can be seen as follows in a snippet of
code from the macroblock addressing VLC function called
MBAVLC(), which returns a macroblock address
increment value given a VLC code:

The MPEG formal standard (ISO/IEC 13818-2) called for
use of more than fifteen VLC tables in the scope of the
entire decoding process, with some tables containing
more than 200 elements. However, given our project
time-constraints, we were able to implement
approximately five of these tables.

I.C) MPEG Parser – Parser Outputs: Following the
approach of the StreamIt implementation of the MPEG
standard [5], the output of the parsed bitstream leads to
two essential elements needed to further decode the video
file: frequency encoded macroblocks and differentially
coded motion vectors (see Figure below).

II.) Decoding Split: Once the essential outputs of the
MPEG parser are calculated (macroblocks and motion
vectors), the next level of processing begins to take
advantage of the SHIM the mechanism for concurrent
procedure calls known as the par statement. When
utilized incorporation with the next keyword, this
rendezvous-style inter-process communication follows the
same approach as the splitjoin construct in the StreamIt
language [5], allowing data to be distributed on parallel
streams, and only continuing processing once both
streams have returned.

IIA.) Decoding Split – par mechanism: The first use of
the par mechanism could be implemented with the MPEG
parser outputs as seen in the Figure below. Both the
macroblocks and motion vectors have to undergo further
processing that can, and should, be done in parallel.

IIB.) Decoding Split – Macroblock Decode: The
frequency encoded macroblocks undergoe inverse
transformations once passed on from the parser to the par
mechanism.

Zig Zag: Zig zag scanning is a specific sequential
ordering of the DCT coefficients from (approximately) the
lowest spatial frequency to the highest.
Zig-zag descrambling is necessary to reorder the input
stream generated by the run-length encoding of quantized
DCT coefficients. Typically, the zig-zag scan operates on
an 8x8 matrix. In MPEG, there are two possible scan
orders. We represent the input matrix as a uni-
dimensional stream of elements. The elements are then
copied to the output stream in the specified order.

Zig Zag

IQuantization

IDCT

Saturation

M
ac

ro
bl

oc
k

D
ec

od
e

par

Macroblocks Motion

Macroblock

Motion Vector

Motion

Scalability

Color Space

.

Group of Pictures

Input Stream

Picture

.

Slice

.

Slice

.

Macroblock

M
PE

G
 P

ar
sin

g

Macroblocks Motion Vectors

Inverse Discrete Cosine Transform (IDCT): The input
stream is Huffman and run-length decoded, resulting in
quantized DCT matrices. The DCT coefficients are scaled
in magnitude and an inverse DCT (IDCT) is performed.

At this stage of the decoding process is where we began
to see the core benefit of the SHIM language. Identifying
the IDCT as a computation that can be done in parallel
was the first step. However, time constraints did not allow
us to write the code that would actually implement these
parallel units. A description of this future work can be
found the Future Work section of this report.

IDCT Parallelization: The number of parallel units can be
hard-coded to a value k. If there are n blocks and they
can be processed in parallel, then each thread becomes
the owner of approximately n/k blocks. The computational
speed hence expected is k times the speed of a single
threaded system. Also, note that the n/k blocks of each
unit are processed sequentially. At any given time there
can be a maximum of k units running in parallel.

Saturation: Saturation limits a value that exceeds a
defined range by setting its value to the maximum or
minimum of the range as appropriate. The coefficients
resulting from the Inverse Quantization Arithmetic are
saturated to lie in the range
[-2048:+2047].

IIC.) Decoding Split – Motion Vector Decode: During
the par split, the differentially coded motion vectors are is
decoded to produce absolute motion vectors. The
compression in MPEG is achieved largely via motion
estimation, which detects and eliminates similarities
between macroblocks across pictures.

For each macroblock, the motion estimator calculates a
motion vector that represents the horizontal and vertical
displacement of that macroblock from a similar matching
macroblock-sized area in a reference picture. The
matching macroblock is removed (subtracted) from the
current picture on a pixel by pixel basis, and a motion
vector is associated with the macroblock describing its
displacement relative to the reference picture.

Future Work

I.) Continued Parser Output Processing: Completing
the par mechanism usage for the “MacroblockDecode”
and “MotionVectorDecode” splits; rejoining these units
when complete for further processing.

II.) Motion Compensation: The motion compensation
filter uses the motion vectors to find a corresponding
macroblock in a previously decoded reference picture
.The reference macroblock is added to the current
macroblock to recover the original picture data. If the

current macroblock is part of an I or P picture, then the
decoder stores it for use as a future reference picture.

In the compensation stage, we plan to parallelize the
processing of color channels The first handles the
luminance color channel(Y), and the other two handle the
chrominance channels (Cb and Cr)

III.) Scalability: This module pertains to the ability of the
decoder to decode an ordered set of bitstreams to
produce a reconstructed sequence. Useful video is output
when subsets are decoded. The minimum subset that can
be decoded is the first bitstream in the set, which is called
the base layer. Each of the other bitstreams in the set are
called an enhancement layer. When addressing a specific
enhancement layer, “lower layer” refers to the bitstream
which precedes the enhancement layer.

• Different forms of scalability tools offered include
data partitioning, SNR scalability, spatial
scalability, temporal scalability, and hybrid
scalability.

III.) Color Space Conversion: MPEG is targeted for a
set of specific applications; therefore there is only one
color space that corresponds to it – 4:2:0 YCbCr. This
module, which is the last stage of the MPEG decoding
process, is responsible for a linear transform from the
YCbCr color space to the R0G0B0) color space. That is,
gamma-corrected red, green, blue are computed from a
luminance-related quantity called luma (Y), and two color
difference components called chroma (Cb and Cr).

IV.) Future Work Overview: Below is a depiction of a
top-level view of the MPEG decoding sequence,
illustrating what the final SHIM model of the decoder looks
like once all milestones are achieved and modules
implemented.

Conclusion

With this project, we encountered a few SHIM language
constraints that dictated many of our approaches in design
and coding. These constraints included no use of global
variables, pointers, or dynamic allocation. There was
even a limit on the integrity of data structures since SHIM
currently does not allow an individual element of an array
or a struct to be passed by reference (e.g., the entire array
or struct has to be passed by reference).

However, despite these limitations, we did come across
beneficial aspects to using SHIM versus other streaming
languages. When it came to employing any of the parallel
constructs of SHIM, it was easier transporting data across
different modules, as well as controlling this data and its
manipulation during processing in different layers.
Particularly, chan, send, and recv constructs allowed for
reassurance that a new stream of bits would not be

transported to until the receiving modules “unlocked” their
hold on the previous stream.

Convenient file handling was another benefit of other
languages so no hard coding file names or pointers was
necessary; instead, all file streaming can be handled at
runtime in the command prompt.

At the milestone reached MPEG decoder, we have
approximately 5200 lines of SHIM code, whereas the
current corresponding SHIM JPEG decoder has
approximately 1000 lines of SHIM code. This comparison
shows the SHIM compiler and language seems to be
robust and reliable. Overall, the project helped to get a
good understanding of the capabilities of SHIM and its
usage.

REFERENCES
[1] SHIM: A Deterministic Concurrent Language for
 Embedded Systems Presented at Princeton

 University, New Jersey, May 10th, 2007
[2] “SHIM: A Scheduling-Independent Concurrent
 Language for Embedded Systems.”Presented at
 the University of California, Berkeley, Berkeley, CA,
 November 8th, 2006.
[3] Didier Le Gall “MPEG: A Video Compression
 Standard for Multimedia Applications” Trans. ACM,
 April 1991.
[4] ISO/IEC 13818-3:1998. Information technology –
 Generic coding of moving pictures and associated
 audio information. Available at http://www.iso.org.
[5] Amarasinghe, Saman, Matthew Drake, Hank
 Ho_Mann, and Rodric Rabbah. “MPEG-2
 Decoding in a Stream Programming Language.”
 Computer Science and Artificial Intelligence
 Laboratory. Massachusetts Institute of Technology
[6] Stephen A. Edwards and Nalini Vasudevan. “A
 JPEG Decoder in SHIM.” Department of
 Computer Science. Columbia University

http://www.iso.org/�

