
Distributed eXplode: A High-Performance Model Checking Engine to Scale

Up State-Space Coverage

Nageswar Keetha, Leon Wu, Gail Kaiser, Junfeng Yang

Department of Computer Science, Columbia University, New York NY 10027

nk2340@columbia.edu, {leon, kaiser, junfeng}@cs.columbia.edu

Abstract

Model checking the state space (all possible

behaviors) of software systems is a promising

technique for verification and validation. Bugs such as

security vulnerabilities, file storage issues, deadlocks

and data races can occur anywhere in the state space

and are often triggered by corner cases; therefore, it

becomes important to explore and model check all

runtime choices. However, large and complex software

systems generate huge numbers of behaviors leading to

‘state explosion’. eXplode is a lightweight,

deterministic and depth-bound model checker that

explores all dynamic choices at runtime. Given an

application-specific test-harness, eXplode performs

state search in a serialized fashion - which limits its

scalability and performance. This paper proposes a

distributed eXplode engine that uses multiple host

machines concurrently in order to achieve more state

space coverage in less time, and is very helpful to scale

up the software verification and validation effort. Test

results show that Distributed eXplode runs several

times faster and covers more state space than the

standalone eXplode.

1. Introduction

Model checking medium to large programs by

taking the code as the model is challenging because of

exponential growth in dynamic states[4, 5], which

quickly depletes computing resources. Even though it

is practically impossible for model checkers to fully

explore the states of large programs within available

resources of memory and CPU time, several heuristics

in reachability analysis are proposed to confront the

state-explosion problem [3, 4, 5, 10]. While these tools

can get good coverage on selected applications, it is

still an open question whether complete state coverage

can be achieved consistently. Hence, improving

performance of model checkers by reducing memory

requirement and employing multiple processors is

important and is an active research topic. In their

seminal work Stern and Dill [15] reported on

parallelizing murphi verifier, utilizing distributed

memory and multiprocessors on reachable state-space

partitions. Their work is the basis for all other

techniques in the distributed explicit state model

checking literature, e.g., [16, 17, 20].

 eXplode[1] runs in a single-thread of execution

exploring one state at a time with one instance of

eXplode per one application’s state space; hence, it

doesn’t scale up to large programs. To reduce memory,

eXplode takes a light weight snapshot of the state

consisting of state’s signature (a hash compaction of an

actual state), the trace (the sequence of return values

from its path decision function). To restore the state, it

replays the sequence of choices from the initial state,

however, reconstructing states is a slow and CPU

intensive process, especially when traces are deeper.

By designing an engine to reduce runtime using

parallel processing, we propose a fast performing

distributed eXplode that supports multiple eXplode

instances in parallel, each instance exploring unvisited

states or subset of the generated state-space.

Distributed eXplode has the following advantages 1)

We can employ several hosts on demand to reconstruct

and clone the states from their traces concurrently and

explore them on different hosts, 2) Checkpoint of an

actual application state is also distributable around

other hosts, in addition, it paves a way to distribute

high overhead checkpoints as live OS processes using

thin virtualization systems[12], 3) In addition, it

facilitates the use of distributed hash tables[7] treating

the light weight states as network objects to achieve

fair load balancing when hosts join and leave on the

fly.

The rest of the paper is organized as follows.

Section II provides an overview on eXplode, section III

Provides detailed description of proposed solution and

its implementation. Section IV Provides the feasibility

evaluation on an example, Section V provides related

work and section VI provides future work and

concludes.

2. eXplode Overview

Let a system model M be a state transition graph

(typically a Kripke Structure) on environment E, then

given a property P, the model checking problem is to

verify if M in E satisfies P.

eXplode is easier to setup and verifies real programs

by performing stateful search. It treats code as a

transition system and provides a choose(N) operation

as shown in figure 1, a serialized simulation of a N-way

fork, that allows the model checker to fork at every

decision point during the exploration of every possible

operation. Users can code a lightweight test harness in

which definition of guarded transitions are provided.

eXplode can perform more invasive white box

checks if we have access to source code by

instrumenting the code without modifying it, if no

source code is available then it can attach to live

applications at runtime through the test harness and

perform black box tests. It attempts to explore as many

behaviors as possible by focusing on precision and

determinism, if the tool reports an error property, then

it is a real error and can’t be a false positive. Once an

error is found, it reports/logs the trace leading to the

error.

 Figure 1

3. Proposed Solution Architecture

Tools like VeriSoft [4], CHESS [10] employ

stateless techniques and have low in-memory overhead

but demand more CPU time. Whereas, stateful model

checkers like eXplode [1], FiSc [2], CMC [6], Java

Path Finder(JPF) have high in-memory overhead as

states have to be check pointed. eXplode defines a

lightweight state S consisting of {signature,

trace},where a signature is an hash compaction of

current snapshot of state data and is a unique fixed size

bit string obtained by MD4/MD5 hashing, capturing

the signature can be overridden in the test harness by

the user if needed. Trace is the transition sequence

consisting of returned values from eXplode’s Choose

(N) at every decision point. Hence, by using this

lightweight state, we can distribute it with less

communication overhead and re-compute the actual

state to its clone from the trace of choices made when

the original state was constructed. This is expensive,

however, we can reconstruct large states which

otherwise would be difficult to be sent across network

in original form. In other techniques[15], whole data of

state(even if the state is large) needs to be sent across

the network as expanding states from (hash) signature

is not possible anyway, however, in distributed

eXplode due to the availability of state’s trace it is

possible to reconstruct the state from the trace and

handle large states as well.

 Optionally, explode takes checkpoints of actual

state data as well. A checkpoint CP consists of

{signature, data}; where data = {v1, v2, vn} is an

instance of actual state variables and signature is the

hash value of data digest. Hence, a state can be

represented either as an actual checkpoint or as a light

weight object. Hashing each state is also expensive;

however, this effort is also implicitly distributed.

Distributed eXplode is developed on Linux as well

as on Windows. On windows we have implemented it

using Microsoft Messaging Queuing (MSMQ) /COM+

application server. Each host maintains a local queue

which is publicly visible to other hosts. Seen-set is

deployed as a COM+ process on each host. When a

host picks a new state, if it’s not seen, then it will

update its seen set and processes the state by running

all reachable transitions defined in the test harness from

that state, if transitions run with no bugs and generate

new reachable states, it will assign the states among

participating hosts based on a hash function and

forward the states to respective hosts. To trigger the

state space generation, a designated master host

captures the initial state and sends it to its hash mapped

host.

If an eXplode instance finds violations or bugs

while exploring transitions from the current state it

would place its trace in a log and either continues to

explore other states in the queue until preset maximum

number of bugs (violations) are found or its depth-

bound is reached. The generated workload on a host is

a function of exploration time, network overhead, and

state partitioning techniques. Hence, workload

balancing is desired among participating nodes but that

needs the knowledge of the state space which is the

very problem we’re trying to solve. However, there are

several techniques which can be employed such as

caching, dynamic partitioning functions to reduce

network overhead and achieve fair distributions [16].

In addition, distributed eXplode can be integrated with

chord DHT[7] for state distribution to achieve fair load

balancing as the state is a lightweight object in eXplode

that can be treated like a low overhead network object.

The proposed conceptual architecture of distributed

eXplode is shown in Figure 2. Each host has a local

state queue, seen-set (hash-map/distributed hash map),

and a local service to manage eXplode instances.

Figure 2

 We have implemented a lightweight and independent

local service, shown in figure 2, installed on each host

for the following reasons 1) to manage eXplode clients

based on the generated workload in local queues and

the underlying resources available on the host so that

thrashing on the system can be avoided by limiting

maximum number of clients per host. This service

senses the workload and resizes number of eXplode

instances on the host, this is useful because if host has

multiple processors with shared memory then service

can scale-up model checking instances on the host. The

seen-set is maintained per host, so if we increase the

parallel instances the lock on local seen set reduces the

scalability on the host to some degree, 2) Model

checking instances can be automatically restarted

gracefully by the local service after every time a bug is

found or their preconfigured time span expires by

doing so the new instances are clean and reliable with

no resource leak issues and can start exploring new

states in an incremental fashion. In other words,

instantiating the processes on the fly or instructing the

model checking processes to live only for a particular

period of time improves the reliability.

Distributed eXplode has an option to checkpoint the

states and distribute the original state data via

messaging. A checkpoint is a high overhead object, so

currently we have implemented in-memory data of

variables to be check pointed, not the state of the

environment (such as opened files or connection

sessions). User can choose whether a state can be

check-pointed or not in the test-harness.

State space of a program is equivalent to a Graph

that captures all possible behaviors whether it’s

generated by one instance or several instances of the

program. So the power of proposed distributed engine

can be exploited fully by attaching an image of

application to each instance of eXplode to model check

subsets of the targeted state space. Model checking

centralized applications service in a black box

approach may not scale up if the service itself is the

bottleneck and is not scalable. In that case, we can

install a copy of service on each host and test them on

pre-production scenarios. If centralized services under

verification are scalable, then distributed eXplode

performs better when checking the applications on

production environment

 In Distributed eXplode only the model checking

effort is concurrent, it can’t test multithreaded

applications with heavy global data inter-leavings.

However, by building the Lamport’s [9] happens

before graph, we can convert multi-threaded

application into an inter-leavings graph which can be

searched serially, and then we can apply distributed

eXplode to model check this graph in parallel to scale

up checking the multi threaded applications as well.

However, as is eXplode’s model checking engine

doesn’t address multi threaded applications directly.

4. Feasibility and Evaluation

 In this study we have used a simple example to

prove the feasibility of the distributed eXplode. As

shown in figure 3, let’s say x and y be integer variables

and each can take values up to a MAX number. By

creating a transition as shown in the code below in the

test harness, using choose (2) that returns random

values either 0 or 1. This transition increments x if the

random choice is 0 else increments y if choice is 1,

then on every choice made it calls a test function which

dependent on x, y. Test function has some memory

related operations such as malloc and memory checks

based on values of x and y, and consumes Memory and

CPU cycles to simulate the test. If a choice of x and y

produces error then explode reports the error. By just

modifying MAX we can change the size of state space

in order to test the performance of standalone eXplode

vs. Distributed eXplode with several instances.

 void run_one_transition(void)

{

 int op = choose(2);

 switch (op) {

 case 0:

 x += 1;

 x = x% MAX;

 break;

 case 1:

 y += 1;

 y =y% MAX;

 break;

 }

if(!RunMemoryFunctions(x,y)

 {

 LogErrorTrace;

 }

}

 Figure 3
 We have used three Dell PowerEdge 2650 servers

each with two Intel® Xeon™ processors at 2.4GHz,

4GB DDR SDRAM running windows 2000 server.

There are 6 parallel processors in total in this

configuration.

 We ran one instance of eXplode on 20000 states for

the transition in Figure 3 and the results are shown in

the Figure 4. If number of states increase, the

performance degrades for two reasons 1) the seen-set

size increases 2) State trace depth increases.

Figure 4: #Processed States vs. Time taken by one instance

We ran multiple instances up to 6 instances as there 6

CPUs and obtained the results in Figure 5. Performance

is improved several times. If there are 2 instances in

parallel each processed roughly 10000 states in 3

minutes 43 seconds and is consistent with Figure 4

where one instance took 3 minutes 28 seconds to

process 10000 states.

 Figure 5: Searching time with #instances

Explosive population of states would still challenge the

system, as we’ll be limited by maximum number of

clients we can instantiate dynamically at some point in

the testing process. However, eXplode does depth

bound search so we can manage the state space

explosion to some extent, by limiting the depth,

number of states per process, or total time to explore.

5. Related Work

 Software Model Checking and Reachability

Analysis: Model checkers [1, 2, 5, 9] are used to find

errors in software systems code. VeriSoft [4], CHESS

[10] employ stateless techniques require low in-

memory where as SPIN[5], eXplode [1], FiSc [2],

CMC [6], Java Path Finder(JPF) are explicit state

model checkers and have high in-memory overhead

and some of these are more concerned with solving the

reachability, depth or context bounding and state

reduction techniques. eXplode[1] in particular is a

lightweight and generalized model checker because it

has reduced memory requirement by defining a

lightweight state, hence these objects can be

distributed and load balanced with low communication

overhead. In addition, eXplode checks user space

applications and can be easily ported to several

environments. eXplode runs in a single thread of

execution and its N-Way decision fork is actually a

serialized execution where it explores one state at a

time, hence would not scale well for very large

systems. However, the version proposed in this paper

would improve the performance of model checking via

parallelized eXplode.

 Parallelized Software Model Checking: This

category attacks the state space with distributed

memory and multiprocessors via available parallelism.

In their work Stern and Dill [15] reported on

parallelizing murphi verifier to check protocols,

distributing reachable state-space partitions on parallel

processors. Their work is the basis for all other

techniques in the distributed explicit state model

checking research, e.g., [16, 17, 20]. Distributing the

actual checkpoints as large states (in terms of several

MBs in size) of user space applications is still a

challenge due to communication overhead involved.

However, in distributed eXplode, we can distribute the

workload by creating traces and reconstructing the

states maintaining low communication overhead.

Hence, states of any size can even be distributed over

HTTP on the Internet. As search time increases, so is

the size of the local seen-set and locking and updating

the seen-sets limits the scalability to some degree if

several eXplode instances are run per host. The

technique proposed in [20] is implemented using JPF

which avoids the lock on seen-set but is randomized

possibly leading to redundant work.

6. Conclusion and Future Work

The main advantage of model checking is that we

can capture system's behavior at any point in time as a

'State' then try to search the whole state space to hit

interesting states(possibly with deviating properties as

bugs). If we're lucky to exhaust the state space then we

verify the system and find issues if exist, if not, we can

check suboptimal state space, by bounding the search.

Further, by Distributed eXplode presented in this

paper, we have attempted to scale up the performance

to several folds. Distributed eXplode can not only work

for bug identification for user space applications but

also can be used for design verifications, protocol

verifications and module level contract verifications.

Checkpointing a live process as a state is a daunting

task because of environment issues and high overhead

involved in migration, and distribution; so yet another

interesting direction for our work is to incorporate

process virtualization techniques such as live process

check pointing and migration via low overhead thin

virtualization techniques [12]. We have integrated the

local seen-set with OpenDHT [18] service that works

for feasibility study with no lock on seen-set, however,

we plan to study and evaluate the performance with

local installation of Chord [7]. We plan to incorporate

DHT techniques to load balance, to avoid lock on the

local seen-set, to avoid idling, and to handle leaving

and joining hosts gracefully.

7. Acknowledgments

The authors thank Jason Nieh for his assistance.

Keetha, Wu, and Kaiser are members of the

Programming Systems Laboratory, funded in part by

NSF CNS-0717544, CNS-0627473, CNS-0426623 and

EIA-0202063, and NIH 1 U54 CA121852-01A1. Yang

is a member of the Reliable Computer Systems

Laboratory.

7. References

[1] Junfeng Yang, Can Sar, and Dawson Engler.

EXPLODE: a lightweight, general system for finding

serious storage system errors. In Proceedings of the

Seventh Symposium on Operating Systems Design and

Implementation (OSDI), Seattle, CA, November 2006.

[2] Junfeng Yang, Paul Twohey, Dawson Engler, and

Madanlal Musuvathi. Using model checking to find

serious file system errors. ACMTransactions on

Computer Systems (TOCS), 24(4):393–423, 2006.

[3] Patrice Godefroid. Partial-Order Methods for the

Verification of Concurrent Systems: An Approach to the

State-Explosion Problem. LNCS 1032. Springer-Verlag,

1996.

[4] Patrice Godefroid. Model checking for programming

languages using Verisoft. In POPL 97: Principles of

Programming Languages, pages 174–186. ACM Press,

1997.

[5] G. J. Holzmann. The model checker spin. IEEE Trans.

Softw. Eng., 23(5):279–295, 1997

[6] Madanlal Musuvathi, David Y.W. Park, Andy Chou,

Dawson R. Engler, David L. Dill. CMC: A pragmatic

approach to model checking real code, Proceedings of

the Fifth Symposium on Operating Systems Design and

Implementation (OSDI 2002), Boston, MA, December

2002

[7] Ion Stoica, Robert Morris, David Karger, M. Frans

Kaashoek, and Hari Balakrishnan., Chord: A Scalable

Peer-to-peer Lookup Service for Internet Applications,

In the Proceedings of ACM SIGCOMM 2001, San

Deigo, CA, August 2001

[8] E. Clarke, O. Grumberg, and D. Peled. Model

Checking.MIT Press, 1999.

[9] LAMPORT, L. Time, clocks, and the ordering of events

in a distributed system. Communications of the ACM

21, 7 (1978), 558– 565.

[10] Madanlal Musuvathi, Shaz Qadeer, Tom Ball, Gerard

Basler, P. Arumuga Nainar, Iulian Neamtiu. Finding

and Reproducing Heisenbugs in Concurrent Programs,

OSDI ’08.

[11] Madanlal Musuvathi, Shaz Qadeer.Iterative Context

Bounding for Systematic Testing of Multithreaded

Programs,. In ACM SIGPLAN Conference on

Programming Language Design and Implementation

(PLDI ’07), June 2007.

[12] Steven Osman, Dinesh Subhraveti, Gong Su, and Jason

Nieh. The Design and Implementation of Zap: A System

for Migrating Computing Environments, Proceedings

of the Fifth Symposium on Operating Systems Design

and Implementation (OSDI 2002), Boston, MA,

December 2002.

[13] U. Stern and D. L. Dill. Improved Probabilistic

Verification by Hash Compaction. In Correct Hardware

Design and Verification Methods, volume 987, pages

206–224, Stanford University, USA, 1995. Springer-

Verlag.

[14] F. Allen Emerson and A. Prasad Sistla. Symmetry and

model checking. FormalMethods in System Design,

9(1/2):105–131, August 1996.

[15] U. Stern and D. L. Dill. Parallelizing the Murphi

verifier. pages 256–278, 1997

[16] R. Kumar and E. G. Mercer. Load balancing parallel

explicit state model checking. In Proceedings of the 3rd

International Workshop on Parallel and Distributed

Methods in Verification, pages 19–34, Apr. 2005.

[17] R. Kumar, M. Jones, J. Lesuer, and E. Mercer.

Exploring dynamic partitioning schemes in hopper.

Technical Report 3, Verification and Validation

Laboratory, Computer Science Department, Brigham

Young University, Provo, Utah, September 2003.

[18] OpenDHT: A Public DHT Service and Its Uses", Sean

Rhea, P. Brighten Godfrey, Brad Karp, John

Kubiatowicz, Sylvia Ratnasamy, Scott Shenker, Ion

Stoica, and Harlan Yu, In Proceedings of ACM

SIGCOMM'05, Philadelphia, PA, August 2005.

[19] Alex Groce, Rajeev Josh. Random Testing and Model

Checking: Building a Common Framework for

Nondeterministic Exploration, ACM WODA –

Workshop on Dynamic Analysis, July, 2008.

[20] Matthew B. Dwyer, Sebastian Elbaum, Suzette Person,

Rahul Purandare, Parallel Randomized State-space

Search.29th International Conference on Software

Engineering (ICSE'07)

[21] Xiaoying Bai, Wei-Tek Tsai. WSDL-Based Automatic

Test Case Generation for Web Services Testing,

Proceedings of the 2005 IEEE International Workshop

on Service-Oriented System Engineering (SOSE’05).

[22] Jeff Offutt, Wuzhi Xu. Generating Test Cases for Web

Services Using Data Perturbation, In TAV-WEB

Proceedings/ACM. SIGSOFT SEN, vol. 29, number 5,

September, 2004.

