
Security testing of SIP implementations
Christian Wieser, Marko Laakso

Department of Electrical and Information Engineering
University of Oulu

Oulu, FIN-90014 University of Oulu
Email: ouspg@ee.oulu.fi

Henning Schulzrinne
Department of Computer Science

Columbia University
1214 Amsterdam Avenue, New York, NY - 10027-7003

Email: hgs@cs.columbia.edu

Abstract— The Session Initiation Protocol (SIP) is a signaling
protocol for Internet telephony, multimedia conferencing and
instant messaging. Although SIP implementations have not yet
been widely deployed, the product portfolio is expanding rapidly.
We describe a method to assess the robustness of SIP implemen-
tation by describing a tool to find vulnerabilities. We prepared
the test material and carried out tests against a sample set of
existing implementations. Results were reported to the vendors
and the test suite was made publicly available. Many of the
implementations available for evaluation failed to perform in a
robust manner under the test. Some failures had information
security implications, and should be considered vulnerabilities.

I. INTRODUCTION

Vulnerabilities in software that endanger confidentiality, ac-
cessibility and integrity (information security) of information
systems are found on a daily basis [1], [2]. One type of
vulnerabilities is introduced during the coding process of the
software. Examples of these implementation level vulnerabili-
ties, are buffer overflows [3], where a program writes beyond
bounds of space allocated for manipulation, and format string
vulnerabilities [4], introduced due to the improper handling of
variable argument lists.

The Session Initiation Protocol (SIP) is an application-layer
control protocol that can establish, modify, and terminate mul-
timedia sessions (conferences) such as Internet telephony calls
[5]. We have chosen SIP for this work because it has matured
from academic interest into a commercially relevant protocol
with the potential for wide deployment. However, field usage
appears to be in the early stages. Furthermore, SIP is being
adopted by the Third Generation Partnership Project (3GPP)
as part of the third generation mobile architecture [6]. The
SIP family of specifications is expanding and some aspects
are under development. The HTTP-like ASCII presentation of
the SIP messages may also attract more script-kiddie level
hostility than rival protocols - such as H.323. H.323 uses
binary (ASN.1) encodings.

The purpose of this paper is to describe a method to assess
the robustness of SIP implementations. The test suite will set
a baseline to determine vulnerabilities in SIP products and can
be used during in-house testing or as part of regression testing.
It gives the consumer the possibility to compare products
during a product evaluation process or it could be set as a
criteria during acceptance testing.

A. Previous work

Different approaches have been taken in testing SIP imple-
mentations. A rough categorisation of the tools can be made:

1) Performance testing tools: Performance testing tools,
like SIPstone [7], measure the performance of SIP entities or
networks.

2) Torture testing tools: SIP interoperability testing events
[8] have been held since April 1999. During these biannual
events, text messages were collected and released as an
(already dated) IETF-draft [9]. It defines 42 valid and invalid
messages, describes them and gives directions on how the SIP
application should react.

3) Conformance and functional testing tools: A fair amount
of work has been invested in the development of conformance
and functional test tools, sometimes combining performance
testing functionality. A list of available tools can be found
at [10]. Also NIST [11] (using XML) and ETSI [12] (using
TTCN-3) have released material for conformance and func-
tional testing.

The testing tools identified above focus on conformance and
performance, with no or only some robustness testing material.
A tool designed for robustness testing would give a baseline
for implementation level security, allowing implementors and
their customers to find vulnerabilities pro-actively.

The paper is organized as follows: initially we describe the
design of the SIP robustness test suite. The results of applying
the test suite are given afterwards. Subsequently, we discuss
the process of reporting our findings. Finally, a discussion of
the findings concludes this paper.

II. TEST SUITE: C07-SIP

The framework for creating robustness test suites has been
developed in the PROTOS project [13]. One result has been
a mini-simulation method [14] and its implementation in a
test design and generation tool. This tool have proven to be
efficient in testing for vulnerabilities by using a black-box
testing method based on syntax testing. In syntax testing,
test cases are generated from the input specification and are
injected via interfaces [15, p.284].

In contrast to conformance or functional testing, we are not
evaluating the reply to an input, ie. we have no test oracle.
We ask if the implementation behaves in a secure and robust
manner when it is fed with exceptional input and monitor it
for failures.



The rest of this section presents the steps to create the
test suite and the tests we conducted against available SIP
implementations.

A. Standard survey

RFC 3261 specifies the Session Initiation Protocol [5] and
serves as protocol specification. Due to our interest in the
voice-over-IP usage of SIP, we use RFC 2327 [16] to describe
a multimedia session, although no actual multimedia content
will be transmitted during the testing.

B. Subject survey

A survey of available implementations was conducted. This
includes a diverse selection of implementations in order to
gain a better insight into the applications implementing the
protocol, and gives a hint of the impact of the potential
vulnerabilities.

RFC 3261 identifies several types of SIP entities: the user
agent, e.g., a SIP enabled voice-over-IP phone; redirect server,
i.e., a user agent server to redirects requests; proxy server, that
acts on behalf of other entities; and the registrar, that provides
location services.

A subset of the implementations was chosen as a sample
set to be tested during the test suite creation and pre-release
phases. Reasons for omission of a specific product would be
that we could not get an evaluation copy of a product, the
licensing contracts were too restrictive, we could not buy it,
or we were simply not aware of the product. Altogether we
were able to acquire nine implementations, six user agents and
three proxy servers.

C. Injection vector survey

In injection vector survey, different methods of delivering
the test cases to the implementation are identified and analyzed
in Table I.

TABLE I

INJECTION VECTOR SURVEY

Application Protocol Transport Protocol Port
SIP UDP 5060
SIP TCP 5060
SIP-over-TLS TCP 5061

All RFC 3261 compliant SIP elements must implement
UDP and TCP transports, and in case of UDP the processing of
multicast (including broadcast) requests is supported. This test
suite was developed for SIP-over-UDP, although delivery over
TCP would simplify the session tear-down after each test case.
Preference was given to UDP since earlier versions of SIP
(RFC 2543) required only UDP support and left TCP support
optional. Consequently, not all implementations available to
us supported SIP over TCP.

D. Specifications design

Protocol data unit (PDU) specifications are used as a basis
for generating the test cases. The starting point is machine-
readable representation of the protocol specification. Our test
tool utilizes a custom dialect of the Backus-Naur Form (BNF).
An excerpt from the PROTOS BNF to model SIP can be found
in Figure 1.

The most commonly used SIP implementations are user
agents and proxy server. Both must implement the handling
of SIP-INVITE messages. We focus therefore on SIP-INVITE
messages in the design of the test material.

Fig. 1. SIP BNF excerpt

<SIP-Message> = {
<Request-Line>
<Request-Headers>
<CRLF>
<Message-Body> #set to SDP-format

}
<Request-Line> = {
<Method>
<Sp>
<Request-URI>
<Sp>
<SIP-Version>
<CRLF>

}
<SIP-Version> = "2.0"
<Method> = "INVITE"
<Sp> = 0x20

E. Design of exceptional elements

An exceptional element is an input that has been designed
to provoke undesired behavior in the implementation. It can
violate the protocol specification, but it is often legal or
exploits ambiguities in the specification. In a nutshell, an
exceptional element is an input that might not have been
considered properly when implementing the software.

Exceptional elements are also modeled as BNF. An ex-
ample is given in Figure 2. Their design is based on the
experience gathered from previous test suites and publicly
reported vulnerabilities. Thus, we focus on how well test
cases represent the external pressure against robustness rather
than on complete coverage of the input space. A test case
contains generally one or more exceptional elements, with
other elements being unaltered.

Table II lists the used exceptional elements in the test
material.

F. Design of test material

The test material consists of test cases simulating hostile
input to the implementation. Cases are arranged into 54 test
groups, each group covering a certain part of the PDU.
Details for the package of 4527 SIP-INVITE test messages



Fig. 2. Exceptional element

data <ee-overflow-null> {
() |
0x00 #null in front
0x00 (9x 0x61) |
0x00 (17x 0x61) |
0x00 (33x 0x61) |
0x00 (63x 0x61) |
0x00 (127x 0x61) |
0x00 (255x 0x61) |
0x00 (1024x 0x61) |
0x00 (16383x 0x61) |
0x00 (32000x 0x61) |
0x61 0x00 0x61 | #null in middle
(9x 0x61) 0x00 (9x 0x61) |
(17x 0x61) 0x00 (17x 0x61) |
(33x 0x61) 0x00 (33x 0x61) |
(63x 0x61) 0x00 (63x 0x61) |
(127x 0x61) 0x00 (127x 0x61) |
(255x 0x61) 0x00 (255x 0x61) |
(1025x 0x61) 0x00 (1024x 0x61) |
(16383x 0x61) 0x00 (16385x 0x61) |
(32000x 0x61) 0x00 (32000x 0x61) |
0x61 0x00 (32767x 0x61) |
0x61 (2x 0x00) 0x61 | #many nulls
0x61 (127x 0x00) 0x61 |
0x61 (1025x 0x00) 0x61 |
0x61 (2x 0x00) (32767x 0x61) |
127x (0x61 0x00) |
1025x (0x61 0x00) |
"\" 0x00 | #some escaped nulls
"\" 0x00 0x00 |
1025x ("\" 0x00) |
1025x ("\" 0x00) 0x00 |
(63x 0x61) 0x00 | #null in end
(127x 0x61) 0x00 |
(255x 0x61) 0x00 |
(1024x 0x61) 0x00 |
(16383x 0x61) 0x00 |
(33000x 0x61) 0x00

}

are presented in Table III. The test material was designed
to exercise the SIP and SDP headers, their fields and their
delimiters in isolation (one-by-one).

G. Injection

PDUs were injected by a simple UDP injector. For test
automation, connection teardown to cancel previous INVITE
requests had to be implemented. Otherwise, test execution
against terminals would have required manual intervention to
terminate incoming calls for each test case. Therefore, we
send a CANCEL and ACK message after each test case [17,
Appendix A].

TABLE II

EXCEPTIONAL ELEMENT CATEGORIES

Name Description
empty Omitted (empty) element content
ipv4-ascii Malformed IPv4 addresses in ASCII and

special purpose addresses
overflow-general “a“ (0x61) character overflows up to 128KB
overflow-slash Overflows of “/“ up to 128KB
overflow-colon Overflows of “:“ up to 128KB
overflow-space Overflows of “ “ up to 128KB
overflow-null Overflows of 0x61 and nulls (0x00) mixed
overflow-leftbracket Overflows of “

�
“ up to 128KB

overflow-rightbracket Overflows of “ � “ up to 128KB
overflow-at Overflows of “@“ up to 128KB
overflow-equal Overflows of “=“ up to 128KB
fmtstring Format strings
utf-8 Malformed UTF-8 sequences
integer-ascii Pos/Neg ASCII encoded integers
ansi-escape ANSI escape sequences
sip-version Malformed ”SIP/2.0”
content-type Malformed ”application/sdp”
sip-URI Malformed SIP-URI
sip-tag Malformed SIP-tags
crlf Arrangements of CR (0x0d) and LF (0x0a)

The test case design does not account for maximum payload
limitations of the transport protocol (64 KBytes minus UDP/IP
headers). Thus, almost each group contains a test case that
is silently truncated to a configurable limit. This behavior
may distort the interpretation of test results, i.e., some of
the observed failures may result from the inability to handle
truncated packets rather than what is indicated by the applied
exceptional element or by the exercised field.

H. Instrumentation

The implementation is monitored for undesirable behavior
that could have security implications. Instrumentation methods
can be roughly divided into two categories, out-of-band and
in-band.

Out-of-band instrumentation on the target platform includes
debuggers, resource monitoring or custom-made tools used to
extract information from the implementation. This is often the
preferred form of instrumentation. For in-band instrumenta-
tion, the implementation is monitored via the injection vector,
i.e., the same interface used to deliver the test cases. While
not checked for protocol conformance, absent or malformed
responses can often reveal anomalous conditions such as
denial-of-service. Also, the ability to accept subsequent test
cases is an indicator of the performance on the previous test
case.

For our tests, we use a variant of in-band instrumentation,
called valid-case instrumentation. A valid PDU (valid-case),
that should result in a valid reply, is sent to the subject between
test cases until a response is received. Hence, if no response
from the subject is detected, it has failed.

Figure 3 shows an implementation passing a test case.
Normally, replies are discarded. There is one exception: after
sending the valid-case the injector requires a reply from the
implementation before continuing to the next test case. In



Figure 4, the test case ’crashes’ the implementation. The
subsequent valid-case does not receive a response and the
injector resends the valid-case.

I. Results

Results from the test runs are given in Table IV1. Results
are presented in a tabular form with test cases divided into

1Product name and respective vendor of the actual implementation are - in
accordance to our policy - omitted.

TABLE III

TEST GROUPS

Name Exceptional Elements Test Cases
valid n/a 1
SIP-Method overflow-general, overflow-space, overflow-null, fmtstring, utf-8, ansi-escape 193
SIP-Request-URI sip-URI 61
SIP-Version sip-version 75
SIP-Via-Host ipv4-ascii 106
SIP-Via-Hostcolon overflow-colon 16
SIP-Via-Hostport integer-ascii 46
SIP-Via-Version sip-version 75
SIP-Via-Tag sip-tag 57
SIP-From-Displayname overflow-general, overflow-space, overflow-null, fmtstring, utf-8, ansi-escape 193
SIP-From-Tag sip-tag 57
SIP-From-Colon overflow-colon 16
SIP-From-URI sip-URI 61
SIP-Contact-Displayname overflow-general, overflow-space, overflow-null, fmtstring, utf-8, ansi-escape 193
SIP-Contact-URI sip-URI 61
SIP-Contact-Left-Paranthesis overflow-leftbracket 16
SIP-Contact-Right-Paranthesis overflow-rightbracket 16
SIP-To overflow-general, overflow-space, overflow-null, fmtstring, utf-8, ansi-escape 193
SIP-To-Left-Paranthesis overflow-leftbracket 16
SIP-To-Right-Paranthesis overflow-rightbracket 16
SIP-Call-Id-Value overflow-general, overflow-space, overflow-null, fmtstring, utf-8, ansi-escape 193
SIP-Call-Id-At overflow-at 16
SIP-Call-Id-Ip ipv4-ascii 106
SIP-Expires integer-ascii 46
SIP-Max-Forwards integer-ascii 46
SIP-Cseq-Integer integer-ascii 46
SIP-Cseq-String overflow-general, overflow-space, overflow-null, fmtstring, utf-8, ansi-escape 193
SIP-Content-Type overflow-general, overflow-space, overflow-null, fmtstring, utf-8, ansi-escape, content-type 247
SIP-Content-Length integer-ascii 46
SIP-Request-CRLF crlf 10
CRLF-Request crlf 10
SDP-Attribute-CRLF crlf 10
SDP-Proto-v-Identifier overflow-general, overflow-space, overflow-null, fmtstring, utf-8, ansi-escape 193
SDP-Proto-v-Equal overflow-equal 16
SDP-Proto-v-Integer integer-ascii 46
SDP-Origin-Username overflow-general, overflow-space, overflow-null, fmtstring, utf-8, ansi-escape 193
SDP-Origin-Sessionid integer-ascii 46
SDP-Origin-Networktype overflow-general, overflow-space, overflow-null, fmtstring, utf-8, ansi-escape 193
SDP-Origin-Ip overflow-equal 106
SDP-Session overflow-general, overflow-space, overflow-null, fmtstring, utf-8, ansi-escape 193
SDP-Connection-Networktype overflow-general, overflow-space, overflow-null, utf-8, fmtstring 188
SDP-Connection-Ip ipv4-ascii 106
SDP-Time-Start integer-ascii 46
SDP-Time-Stop empty 1
SDP-Media-Media overflow-general, overflow-space, overflow-null, fmtstring, utf-8, ansi-escape 193
SDP-Media-Port integer-ascii 46
SDP-Media-Transport overflow-general, overflow-space, overflow-null, fmtstring, ansi-escape 118
SDP-Media-Type integer-ascii 46
SDP-Attribute-Rtpmap overflow-general, overflow-space, overflow-null, fmtstring, ansi-escape 118
SDP-Attribute-Colon overflow-colon 16
SDP-Attribute-Payloadtype integer-ascii 46
SDP-Attribute-Encodingname integer-ascii 118
SDP-Attribute-Slash overflow-slash 16
SDP-Attribute-Clockrate integer-ascii 46

Legend:
� Name: of the test group and reflects the header and field name in the protocol specification
� Exceptional Elements: integrated exceptional element categories
� Test Cases: number of test cases



Fig. 3. Passed test case with teardown

Test case n

CANCEL

ACK

nnn Response

nnn Response

nnn Response

CANCEL

nnn Response

ACK

Test tool Software under Test

INVITE (valid-case)

Legend:
� nnn Response: any response send by the implementation

Fig. 4. Failed test case

�
��
�

Test case n

CANCEL

ACK

Test tool

INVITE (valid-case)

Software under Test

INVITE (valid-case)

INVITE (valid-case)

test groups. Each failed test case represents, at minimum, a
denial-of-service mechanism of exploiting the vulnerability.

TABLE V

RESULTS SUMMARY

Category Test run Failed test cases Failed groups
User Agent tr-001 N 52
User Agent tr-002 N 12
User Agent tr-003 129 9
User Agent tr-004 0 0
User Agent tr-005 N 3
User Agent tr-006 N 45
Proxy tr-007 N 49
Proxy tr-008 N 10
Proxy tr-009 33 4

Legend:
� N: we were unable to determine the exact number of failures

In Table IV, the failed status is given if any of the following
criteria are met and at least one test case in the test group can
be identified as being responsible for one of the following
failure modes.

� Software under test suffers a fatal failure and stops
functioning normally.

� Software crashes or hangs and needs to be restarted
manually.

� Software spontaneously restarts itself.
� Software is not respond to a valid message after 16

seconds.
Sometimes, an implementation gets so badly corrupted that

there is no way to collect accurate test results for the whole test
run. This constitutes a permanent denial-of-service. Untested
regions are marked as unknown.

Otherwise, the status is passed. The results are further
summarized in Table V.

Implementation failing in the majority of test groups are
likely to have a bug in input parsing common to all header
fields, instead of separate bugs for handling each field. We
also found that none of the embedded devices passed the test
runs.

In most cases, failures represent memory corruption, stack
corruption or other fatal error conditions. Some of these may
lead to exposure to typical buffer overflow exploits, allowing
running of arbitrary code [3] or modification of the target
system.

J. Limitations

Our approach has limitations. The principal limitations of
software testing, as pointed out by Dijkstra, that ‘Program
testing can be used to show the presence of bugs, but never
their absence’ [18], exist, our tool covers just a miniscule
portion of the input space. The provided instrumentation leaves
open questions about the actual bugs behind the observed
failure modes.

III. REPORTING PROCESS

We applied the constructive vulnerability disclosure model
as proposed in [19] to handle this multi-vendor, multi-
vulnerability case. We aimed to distribute the test suite and
inform vendors on this issue. Communication with all parties



was done via email. We describe the different phases during
the release of the test suite and discuss the process.

A. Development phase

We described this phase in the previous section. During this
phase internal testing was conducted against available products

and the test material and documentation were prepared.

B. Pre-release phase

Next, the Computer Emergency Response Team / Coor-
dination Center (CERT/CC), acting as the coordinator in
handling this vulnerability case was informed of our test

TABLE IV

OBSERVED FAILURES FOR TEST GROUPS

Implementation
test group 001 002 003 004 005 006 007 008 009
valid - - - - - - - - -
SIP-Method X - - - - X - - -
SIP-Request-URI X - - - - X - X -
SIP-Version X - - - - X - - -
SIP-Via-Host X - X - X X X X -
SIP-Via-Hostcolon X - X - - - - - -
SIP-Via-Hostport X X X - - X - - -
SIP-Via-Version X - X - - X - - -
SIP-Via-Tag X ? ? - - X - - -
SIP-From-Displayname X X X - - X - - X
SIP-From-Tag X X - - - X - - -
SIP-From-Colon X X - - - X - X X
SIP-From-URI X X X - X X - X -
SIP-Contact-Displayname X - - - - X - - -
SIP-Contact-URI X - - - - X - X -
SIP-Contact-Left-Paranthesis X - - - - X - - -
SIP-Contact-Right-Paranthesis X - - - - X - - -
SIP-To X - - - - X X X -
SIP-To-Left-Paranthesis X - - - - X - - X
SIP-To-Right-Paranthesis X - - - - X - - X
SIP-Call-Id-Value X X ? - - X - X -
SIP-Call-Id-At X X - - - X - - -
SIP-Call-Id-Ip X X - - - X X X -
SIP-Expires X - - - - X - - -
SIP-Max-Forwards X X ? - - X - - -
SIP-Cseq-Integer X - - - - X - - -
SIP-Cseq-String X X X - - X - - -
SIP-Content-Type X - - - - X - - -
SIP-Content-Length X X - - - X - X -
SIP-Request-CRLF X - - - X - - X -
CRLF-Request X - - - - - - - -
SDP-Attribute-CRLF X - - - - - - - -
SDP-Proto-v-Identifier X - X - - X - - -
SDP-Proto-v-Equal X - - - - - - - -
SDP-Proto-v-Integer X - - - - X - - -
SDP-Origin-Username X X - - - X - - -
SDP-Origin-Sessionid X - - - - X - - -
SDP-Origin-Networktype X - - - - X - - -
SDP-Origin-Ip X - X - - X X - -
SDP-Session X - - - - X - - -
SDP-Connection-Networktype X - - - - X - - -
SDP-Connection-Ip X - - - - X X - -
SDP-Time-Start X - - - - X - - -
SDP-Time-Stop - - - - - - - - -
SDP-Media-Media X - - - - X - - -
SDP-Media-Port X - - - - X - - -
SDP-Media-Transport X - - - - X - - -
SDP-Media-Type X - - - - X - - -
SDP-Attribute-Rtpmap X - - - - X - - -
SDP-Attribute-Colon X - - - - - - - -
SDP-Attribute-Payloadtype X - - - - X - - -
SDP-Attribute-Encodingname X - - - - X - - -
SDP-Attribute-Slash X - - - - - - - -
SDP-Attribute-Clockrate X - - - - X - - -

Legend:
� X: failed
� -: passed
� ?: unknown



results. The coordinator acts as a neutral third party between
us, the originator, and the affected vendors. The coordinator
distributed the material to individual vendors. On our part the
access to the material was limited to these parties.

C. Release phase

After a grace period of 121 days, the suite was released to
the public [17]. The release followed the advisory CA-2003-06
[20] by CERT/CC on this vulnerability.

IV. DISCUSSION

The feedback on the test suite and the release was positive
and the test suite achieved a fair amount of public and
community interest. During the communication with vendors
we got the impression that the methodology used was not
widely known. While this paper describes the use of robustness
testing for SIP, the method applies to all network protocols.
Some vendors had not been contacted by CERT/CC before,
which added extra value to the communication process as a
preparatory exercise.

We visited the interoperability testing SIPit11 and discussed
our approach with participants. The test suite was not released
at that time, we distributed the test suite via the coordinator
CERT/CC. We received a report of some vendors believing
that we had released test results to the public, which never
happened [21]. Our intention was to included as many par-
ticipants as possible during the pre-release phase, which gave
early access to the test suite.

CERT/CC lists 92 vendors in their vulnerability note [22].
51 (55%) have not provided a vendor statement, 32 vendors
(35%) said that they are not vulnerable and 9 vendors (10%)
claimed to be vulnerable to the test suite. The high rate of
non-responders was in line with similar cases like SNMP [23]
(53%). The high rate of invulnerable vendors appears to be
mostly due to CERT/CC’s practice of listing all contacted
vendors, not just vendors with SIP products. Therefore, we see
no contradiction with our vulnerability rate of 88% gathered
during the development phase.

Some of the vendors prepared patches during the pre-release
phase. Some reacted late, or not at all.

V. CONCLUSION

We applied the PROTOS approach to SIP. The systematic
testing for implementation level vulnerabilities gives vendors
the possibility to harden their implementations against this
kind of attacks. Only one from the sample of nine imple-
mentations survived the test material as it is. Vendors were
informed during the prerelease phase. After a grace period
the material was made publicly available. By applying this
approach we hope to give implementors and their customers
a tool to improve the robustness of SIP implementations.

ACKNOWLEDGMENT

We wish to express our gratitude to individual vendors who
worked with us to protect their customers. We are grateful to
CERT/CC for their patient help, advice and active role during
the vulnerability process.

REFERENCES

[1] (2001-) SANS security alert consensus - archive. [Online]. Available:
http://www.sans.org/newsletters/sac/

[2] (2002) CERT/CC statistics 1988-2002. cert stats.html. [Online].
Available: http://www.cert.org/stats/

[3] Aleph One. (1996, Nov.) Smashing the stack for fun and profit.
BugTraq and r00t and Underground.Org. [Online]. Available: http:
//www.shmoo.com/phrack/Phrack49/p49-14

[4] scut. (2001, Sept.) Exploiting format string vulnerabilities. formatstring-
1.2.tar.gz. team teso. [Online]. Available: http://teso.scene.at/releases/

[5] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler, “SIP: session initiation proto-
col,” RFC 3261, June 2002.

[6] (2003) 3GPP home page. [Online]. Available: http://www.3gpp.org/
[7] H. Schulzrinne, S. Narayanan, J. Lennox, and M. Doyle, “SIPstone -

benchmarking SIP server performance,” sipstone 0402.pdf, Apr. 2002.
[Online]. Available: http://www.sipstone.org/files/

[8] “SiPit - SIP interoperability test event,” 2003. [Online]. Available:
http://www.sipit.net/

[9] A. Johnston, J. Rosenberg, and H. Schulzrinne. (2002, August) Session
Initiation Protocol Torture Test Messages. IETF Draft.

[10] (2003) The SIP center - testing and measurement. vsts testing.html.
[Online]. Available: http://www.sipcenter.com/vsts/

[11] M. Ranganathan, O. Deruelle, and D. Montgomery. (2002, Oct.) Testing
SIP call flows using XML protocol templates. 100 Bureau Drive,
Gaithersburg, MD 20899, USA.

[12] (2003) Using TTCN to test VoIP. ptccsip osp.htm. [Online]. Available:
http://www.etsi.org/ptcc/

[13] PROTOS - security testing of protocol implementations. [Online].
Available: http://www.ee.oulu.fi/research/ouspg/protos/

[14] R. Kaksonen, A Functional Method for Assessing Protocol
Implementation Security. VTT Publication series, 2001. [Online].
Available: http://www.inf.vtt.fi/pdf/publications/2001/

[15] B. Beizer, Software Testing Techniques, 2nd ed., 1990.
[16] M. Handley and V. Jacobson. (1998, April) SDP: session description

protocol. RFC 2327.
[17] “PROTOS test-suite: c07-sip.” [Online]. Available: http://www.ee.oulu.

fi/research/ouspg/protos/testing/c07/sip/
[18] E. W. Dijkstra, “Structured programming,” Aug. 1969, circulated

privately. [Online]. Available: http://www.cs.utexas.edu/users/EWD/
ewd02xx/

[19] M. Laakso, A. Takanen, and J. Röning, “Introducing constructive
vulnerability disclosures,” 2001. [Online]. Available: http://www.ee.
oulu.fi/research/ouspg/protos/sota/FIRST2001-disclosures/

[20] CERT/CC. (2003, February) CERT advisory CA-2003-06 multiple
vulnerabilities in implementations of the session initiation protocol
(SIP). CA-2003-06.html. [Online]. Available: http://www.cert.org/
advisories/

[21] R. Sparks, private communication, Nov. 2002.
[22] CERT/CC. (2003, February) Vulnerability note VU#528719 -

multiple implementations of the session initiation protocol (SIP)
contain vulnerabilities. [Online]. Available: http://www.kb.cert.org/vuls/
id/528719

[23] “PROTOS test-suite: c06-snmpv1.” [Online]. Available: http://www.ee.
oulu.fi/research/ouspg/protos/testing/c06/snmpv1/


