
 1  

 

Masquerade Detection Using a Taxonomy-Based Multinomial 

Modeling Approach in UNIX Systems 

Malek Ben Salem and Salvatore J. Stolfo 

                          Computer Science Department, Columbia University 

500 West 120
th
 Street, New York, NY, 10027 

 

 

Abstract 

 

This paper presents one-class Hellinger 

distance-based and one-class SVM modeling 

techniques that use a set of features to reveal user 

intent. The specific objective is to model user 

command profiles and detect deviations indicating 

a masquerade attack. The approach aims to model 

user intent, rather than only modeling sequences 

of user issued commands.  We hypothesize that 

each individual user will search in a targeted and 

limited fashion in order to find information 

germane to their current task. Masqueraders, on 

the other hand, will likely not know the file system 

and layout of another user's desktop, and would 

likely search more extensively and broadly. Hence, 

modeling a user search behavior to detect 

deviations may more accurately detect 

masqueraders. To that end, we extend prior 

research that uses UNIX command sequences 

issued by users as the audit source by relying upon 

an abstraction of commands. We devised a 

taxonomy of UNIX commands that is used to 

abstract command sequences.  The experimental 

results show that the approach does not lose 

information and performs comparably to or 

slightly better than the modeling approach based 

on simple UNIX command frequencies. 

 

1. Introduction 
The masquerade attack is a class of attacks, 

in which a user of a system illegitimately poses as, 

or assumes the identity of another legitimate user. 

Identity theft in financial transaction systems is 

perhaps the best known example.  Masquerade 

attacks are extremely serious, especially in the case 

of an insider who can cause considerable damage to 

an organization. The insider attack detection 

problem remains one of the more important research 

areas requiring new insights to mitigate against this 

threat.   

A common approach to counter this type of 

attack, which has been the subject of prior research, 

is to develop novel algorithms that can effectively 

identify suspicious behaviors that may lead to the 

identification of imposters.  We do not focus on 

whether an access by some user is authorized since 

we assume that the masquerader does not attempt to 

escalate the privileges of the stolen identity, rather 

the masquerader simply accesses whatever the 

victim can access. However, we conjecture that the 

masquerader is unlikely to know how the victim 

behaves when using a system. It is this key 

assumption that we rely upon in order to detect a 

masquerader. Thus, our focus in this paper is on 

monitoring a user’s behavior in real time to 

determine whether current commands issued by a 

user are consistent with the user’s historical 

behavior. The far more challenging problems of 

thwarting mimicry attack and other obfuscation 

techniques, as well as the use of honeypots or 

honeytokens, are beyond the scope of this paper.   

         Masquerade attacks can occur in several 

different ways. In general terms, a masquerader may 

get access to a legitimate user’s account either by 

stealing a victim’s password, or through a break in 

and installation of a rootkit or keylogger. In either 

case, the user’s identity is illegitimately acquired. 

Another perhaps more common case is laziness and 

misplaced trust by a user, such as the case when a 

user leaves his or her terminal or client open and 

logged in allowing any nearby co-worker to pose as 

a masquerader. In the first two cases, the identity 

thief must log in with the victim’s credentials and 

begin issuing commands within the bounds of one 

user session. We conjecture that legitimate users 

initiate the same repeated commands each time they 

log in to set their environment before using it, 

initiate some set of applications (read email, open a 
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browser, or start a chat session) and similarly, clean 

up and shut down applications when they log off. 

Such repeated behaviors constitute a profile that can 

be modeled and used to check the authenticity of a 

user session early before significant damage is done. 

The case of hijacking a user’s session is perhaps a 

bit more complicated. We presume the preamble 

commands issued by the legitimate user have 

already concluded and have no value in detecting the 

masquerader. In either case, a monitoring system 

ought to detect any significant deviations from a 

user’s typical profiled behaviors in order to detect a 

likely masquerade attack. Ideally, we seek to detect a 

possible masquerader at any time during a session.             

        In an operational monitoring system, one 

naturally would be concerned with the error rate of a 

detector. In a nutshell, we posit that at a minimum a 

challenge/response mitigation strategy may work 

well to prevent significant damage to a system by a 

masquerader. The downside of a false positive is 

essentially annoyance by a legitimate user who may 

be challenged too frequently. However, a false 

positive should do no damage. An interesting 

problem to study is how to calibrate a detector to 

balance its false positive rate to ensure its false 

negative rate is minimized. False negatives in this 

context, i.e., an undetected masquerader, are far 

more dangerous than an annoying false positive. A 

thorough discussion of mitigation strategies is 

beyond the scope of this paper. 

      In this paper we extend prior work on modeling 

user command sequences for masquerade detection. 

We use one-class support vector machines and 

introduce the use of the Hellinger Distance metric to 

compute a similarity measure between the most 

recently issued commands that a user types with a 

model of the user’s command profile. Previous work 

has focused on auditing and modeling sequences of 

user commands including work on enriching 

command sequences with information about 

arguments of commands.  [1], [3], and [4]. 

     We propose an approach to profile a user’s 

behavior based on a ‘taxonomy’ of UNIX 

commands. The taxonomy abstracts the audit data 

and enriches the meaning of a user’s profile. Hence,  

commands that perform similar types of actions are 

grouped together in one category making profiled 

sequences more abstract and meaningful. 

Furthermore, modeling sequences of commands is 

complicated whenever “Never-Before-Seen-

Commands” are observed. A command taxonomy 

reduces this complexity, since any distinct command 

is replaced by its category, which is very likely to 

have been observed in the past. Commands are thus 

assigned a type, and the sequence of command types 

is modeled rather than individual commands.  

       One particular type of command is “information 

gathering” commands, i.e. search commands. We 

conjecture that a masquerader is unlikely to have the 

depth of knowledge of the victim’s machine (files, 

locations of important directories, available 

applications, etc.), and hence, a masquerader would 

likely first perform information gathering and search 

commands before initiating specific actions. A 

taxonomic command abstraction helps achieve our 

goal to model the user’s intent in this specific case. 

A detector may increase its suspicion of an attack in 

real time if it detects monitored search command 

actions that deviate substantially from the user’s 

profile on search commands.  

       In Section 2 of this paper, we briefly present the 

results of prior research work on masquerade 

detection. Section 3 expands on the objective and the 

approach taken in this work. The experiments 

conducted to evaluate whether a command 

taxonomy impacts the efficacy of user behavior 

models are presented in Section 4. In section 5, we 

evaluate the results of our experiments while section 

6 discusses future work needed to improve and 

better evaluate our proposed modeling approach. 

Section 7 concludes the paper summarizing the 

contributions of this paper.  

 

2. Related Work 

 
In the general case of computer user profiling, 

the entire audit source can include information from 

a variety of sources:  

• Command line calls issued by users 

• System call monitoring for unusual 

application use/events 

• Database/file access monitoring 

• Organization policy management rules and 

compliance logs 

 

The type of analysis used is primarily the 

modeling of statistical features, such as the 

frequency of events, the duration of events, the co-

occurrence of multiple events combined through 

logical operators, and the sequence or transition of 

events. However, most of this work failed to reveal 
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or clarify the user’s intent when issuing commands. 

The focus is primarily on accurately detecting 

change or unusual command sequences. In this 

section, we focus on the approaches reported in the 

literature that profile users by the commands they 

issue. 

Schonlau et al. in [1] applied six masquerade 

detection methods to a data set of “truncated” UNIX 

commands for 70 users collected over a several 

month period. Each user had 15,000 commands 

collected over a period of time ranging between a 

few days and several months. 50 users were 

randomly chosen to serve as intrusion targets. The 

other 20 users were used as masqueraders. The first 

5000 commands for each of the 50 users were left 

intact or “clean”, the next 10,000 commands were 

randomly injected with 100-command blocks issued 

by the 20 masquerade users. The commands have 

been inserted at the beginning of a block, so that if a 

block is contaminated, all of its 100 commands are 

inserted from another user’s list of executed 

commands. The complete data set and more 

information about it can be found at 

http://www.schonlau.net. The objective was to 

accurately detect the “dirty” blocks and classify 

them as masquerader blocks.  

The first detection method applied by 

Schonlau et al. for this task, called “uniqueness” 

relies on the fact that half of the commands in the 

training data are unique and many more are 

unpopular amongst the users. The second method 

investigated was the Bayes one-step Markov 

approach. It is based on one step transitions from 

one command to the next. The approach, due to 

DuMouchel (1999), uses a Bayes factor statistic to 

test the null hypothesis that the observed one-step 

command transition probabilities are consistent with 

the historical transition matrix. The two hypotheses 

modeled are the null hypothesis, which assumes that 

the observed transitions probabilities stem from the 

historical transition matrix, and the alternative 

hypothesis which assumes that they were generated 

from a Dirichlet distribution. 

A hybrid multi-step Markov method has also 

been used. In order to overcome the high-

dimensionality, inherent in multi-step Markov chain, 

a “mixture transition distribution” (MTD) approach 

has been used to model the transition probabilities. 

When the test data contain many commands 

unobserved in the training data, a Markov model is 

not usable. Here, a simple independence model w/ 

probabilities estimated from a contingency table of 

users versus commands may be more appropriate. 

The method used automatically toggles between a 

Markov model and an independence model 

generated from a multinomial random distribution as 

needed, depending on whether the test data are 

“usual”, i.e. the commands have been previously 

seen, or “unusual”, i.e. Never-Before-Seen 

Commands (NBSCs). We note with interest that the 

proposed taxonomy of commands tends to reduce if 

not eliminate the problem of modeling “Never-

Before-Seen-Commands” since any command is 

likely to be placed in a category with other similar 

commands. Hence, although a specific command 

may never have been observed, members of its class 

probably were.  

The compression method, which was also 

applied to the Schonlau data set, was based on the 

premise that test data appended to historical training 

data compress more readily when the test data stems 

indeed from the same user rather than from a 

masquerader, and was implemented through the 

UNIX tool “compress” which implements a 

modified Lempel-Ziv algorithm. 

IPAM (Incremental Probabilistic Action 

Modeling), another method applied on the same 

dataset, and used by Davidson & Hirsch in [5] and 

[16] to build an adaptive command line interface, is 

also based on one-step command transition 

probabilities estimated from the training data. 

Probabilities are continuously updated using an 

exponential updating scheme. With arrival of a new 

command, probabilities are aged by multiplying with 

alpha and (1-alpha) is added to the most recent 

transition.  

The sequence-match approach was presented 

by Lane & Brodley [6]. For each new command, a 

similarity measure between the most 10 recent 

commands and a user’s profile is computed. A user’s 

profile consists of command sequences of length 10 

that the user has previously used. The similarity 

measure is a count of the number of matches in a 

command-by-command comparison of 2 command 

sequences with a greater weight assigned to adjacent 

matches. This similarity measure is computed for the 

test data sequence paired with each command 

sequence in the profile.  

Maxion and Townsend applied a naïve Bayes 

classifier, which has been widely used in text 

classification tasks, to the same data set in [3]. 

Maxion provides a thorough and detailed 
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investigation of classification errors [7], 

highlighting why some masquerade victims are 

more vulnerable than others, and why some 

masqueraders are more successful than others. 

Maxion and Townsend also designed a new 

experiment, which they called the “1v49” 

experiment, in order to conduct this error analysis.  

A method, that is significantly different from other 

intrusion detection technologies, was presented by 

Coull et al. [11]. The method is known as semi-

global alignment and is a modification of the Smith-

Waterman local alignment algorithm, with a scoring 

system that rewards the alignment of commands in 

the user segment but does not necessarily penalize 

the misalignment of large portions of the signature 

of the user. 

   Another approach called a self-consistent naïve 

Bayes classifier was proposed by Yung [13] and 

applied on the same data set. This method is a 

combination of the naïve Bayes classifier and the 

EM-algorithm. The self-consistent naïve Bayes 

classifier does not have to make a binary decision 

for each new block of commands. Rather, it assigns 

a score to it that indicates the probability that the 

block is a masquerader block. Moreover, this 

classifier can change scores of earlier sessions as 

well as later sessions 

   Oka et al. had the intuition that the dynamic 

behavior of a user appearing in a sequence can be 

captured by correlating not only connected events, 

but also events that are not adjacent to each other 

while appearing within a certain distance (non-

connected events). Based on that intuition they have 

developed the layered networks approach based on 

the Eigen Co-occurrence Matrix (ECM) in [13] and 

[14]. The ECM method extracts the causal 

relationship embedded in sequences of commands, 

where a co-occurrence means the relationship 

between every two commands within an interval of 

sequences of data. This type of relationship cannot 

be reflected through histograms nor through n-

grams.  

Forrest et al. proposed a real-time on-line anomaly 

detection system [15] that mimicked the mechanisms 

used by the natural immune systems. This was done 

by monitoring system calls of running privileged 

processes (profiles were built using normal runs of 

such programs), rather than sequences of user 

commands, and therefore used a different data set 

than the Schonlau data set. The modeling was 

limited to privileged root processes since they have 

more access to computer resources than user 

processes, and they have a limited range of behavior 

that is quite stable and predictable. A separate 

database of normal behavior is built for each 

privileged process. The database was specific to a 

particular architecture, software version and 

configuration, local administrative policies, and 

usage patterns, providing a unique definition of 

“self”.  

Table 1 presents the results of all methods 

described above, that were applied to the Schonlau 

data set and which are based on a two-class training 

approach of a self model and a non-self model. In a 

real-word setting, it is probably more appropriate to 

use a one-class training approach; as users join and 

leave the organizations, keeping the non-self model 

up-to-date can be really challenging.  Wang and 

Stolfo tried such an approach in [4] by using both, a 

naïve Bayes classifier and a Support Vector Machine 

(SVM), to detect masqueraders. With the naïve 

Bayes classifier, they have used the multinomial 

model, as well as the multivariate Bernoulli event 

model. Their work has shown that the difference in 

detection accuracy between the two models is not so 

obvious in one-class training, especially when the 

false positive rate is low, unlike the case of multi-

class training, where the multinomial model 

performs better than the Bernoulli one. 
 

 Method False Alarms (%) Missing Alarms (%) 

Uniqueness 1.4 60.6 

Bayes one-step Markov 6.7 30.7 

Hybrid multi-step Markov 3.2 50.7 

Compression 5.0 65.8 

Sequence Match 3.7 63.2 

IPAM 2.7 58.9 

Naïve Bayes (Updating) 1.3 38.5 

Naïve Bayes (No Upd.) 4.6 33.8 

Semi-Global Alignment 7.7 24.2 

Eigen Co-occurrence 

Matrix 

3.0 28.0 

Naïve Bayes + EM 1.3 25.0 

 

Table 1: Summary of accuracy performance of Two-Class 

Based Anomaly Detectors Using the Schonlau Data Set 

 

 

Wang and Stolfo have also investigated SVMs using 

the binary features and frequency-based features. 

The one-class SVM algorithm using binary features 

was the best one among all four one-class training 

algorithms that were analyzed. It also performed 

better than most of the two-class algorithms listed 

above, except the two-class multinomial naïve Bayes 
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algorithm with updating. In summary, Wang and 

Stolfo’s experiment confirmed that for masquerade 

detection, one-class training is as effective as two 

class training. The practical significance of this is 

important. In prior work, a masquerade detector is 

trained as a classifier by mixing labeled data from a 

number of different users. Besides the privacy 

implications of this approach, whenever a new user 

enters or leaves an organization each detector would 

necessarily be retrained in order to maintain its 

accuracy. In the case of “one-class” modeling, an 

anomaly detector is trained for each user on their 

own data. It is this approach that sets the stage for 

our subsequent work described next.   

 

3. Objective and Approach 

 
When dealing with the masquerader attack 

detection problem, it is important to remember that 

the attacker has already obtained credentials to 

access a system. When presenting the stolen 

credentials, the attacker is then a legitimate user to 

any access control system. Ideally, monitoring a 

user’s actions after being granted access is required 

in order to detect such attacks. Furthermore, if we 

can determine the user’s intent, we may 

automatically determine if actions of a user are 

malicious or not. We have postulated that certain 

classes of user commands reveal user intent. For 

instance, “search” should be an interesting behavior 

to monitor. Hence, we defined a taxonomy of 

commands to readily identity and model search 

behavior. Another behavior that is interesting to 

monitor is remote access to other systems and the 

communication or egress of large amounts of data to 

remote systems, which may be an indication of 

illegal copying or distribution of sensitive 

information. Once again, the taxonomy defined 

allows a system to automatically audit and model 

this behavior as well. However, user behavior 

naturally varies from each user. We believe there is 

no one model or one easily specified policy can 

capture the inherent vagaries of human behavior. 

Instead, we aim to automatically learn a distinct 

user’s behavior, much like a credit card customer’s 

distinct buying patterns.  

Our objective is to model the normal pattern 

of submitted commands of a certain user in a UNIX 

environment assuming that the masquerader will 

exhibit different behavior from the legitimate user 

and this deviation will be easily noticed. In order to 

detect the deviations we compute the Hellinger 

distance between the frequencies of recent 

commands or command categories that show up in 

one block of commands of window size w and a 

second block of the same window size shifted by 

only one command. Hence, this approach essentially 

tracks a user’s behavior and measures any changes 

in that behavior. Any significant change will raise an 

alarm. In the following we present the command 

taxonomy that we have developed as well as the 

Hellinger distance applied to blocks of issued 

commands.  

 

3.1. UNIX Command Taxonomy 
 We abstract the set of Linux/Unix 

commands into a taxonomy of command categories 

as presented in Figure 1. In particular, we are 

interested in identifying the specific set of 

commands that reveal the user’s intent to search, to 

change access control privileges, and to copy or 

print information. Once these commands are 

identified, we can extract features representing such 

behavior while auditing the user’s behavior. 

 

 
 

Figure1: Taxonomy of Linux and Unix Commands 

 

 The taxonomy has 14 different categories: 

Access Control, Applications, Communications / 

Networking, Display / Formatting, Execution / 

Program Control, File System, I/O Peripherals, 

Information Gathering, Other, Process Management, 

System Management, Unknown, and Utilities. Most 

categories were further classified into sub-

categories, however some did not require more 

granularity, such as the “Resource Management” 

category. The “Information Gathering” category 
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includes commands such as “find” and “fgrep”. 

Examples of commands in the “Process 

Management” category include “kill”, “nohup”, and 

“renice”. “date”, “clock” and “cal” are examples of 

commands that fall in the “Utilities” category.  The 

“Other” category includes commands that have been 

recognized but could not be classified under any 

other category. However, the “Unknown” category 

includes commands that were not identified or script 

names that are not recognizable. 

 

 

 

3.2. Hellinger Distance 
The Hellinger distance computes the change 

in two frequency tables, each table is a histogram 

representing the frequency of some variable at some 

particular moment in time. Here, we measure the 

frequency of commands, and thus one can develop a 

detector of abnormal behavior by modeling user 

command frequencies and the changes in that 

frequency. The Hellinger distance is defined as: 
21

0
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where fp[] is the array of normalized frequencies for 

the first set, ft[] the one for the second set, and n the 

number of possible commands/ command categories. 

This distance metric is applied whenever a user 

issues a command. A previous frequency table that 

modeled the previous commands is compared to a 

newly updated frequency table by modifying the 

frequency of the command types. Hence, each 

command creates a new Hellinger distance score that 

is subjected to threshold logic. Each bin of the 

frequency table is any chosen category of command 

we wish to model. In the most general case all 

command categories would be tracked. The method 

is straightforward and efficient to implement. It 

remains to me seen how accurate it may be, and 

whether modeling categories of command 

significantly reduces the information available when 

modeling sequences of commands. In other words, is 

it more accurate to model sequences of commands or 

frequencies of commands’ categories. It is that 

question we address next.  

 

3.3. One-Class Support Vector Machines 
Support Vector Machines (SVMs) are linear 

classifiers used for classification and regression. 

They are known as maximal margin classifiers, as 

opposed to probabilistic classifiers, thanks to their 

ability of minimizing empirical classification error 

while maximizing geometric margin. 

SVMs are typically used in multi-class 

classification tasks. Scholkopf et. al. proposed a way 

to adapt SVMs to the one-class classification task 

[16]. The one-class SVM algorithm uses examples 

from one class only for training. Just like in multi-

class classification tasks, it maps input data into a 

high-dimensional feature space suing a kernel 

function, such as the linear, polynomial, or Radial 

Basis Function (RBF) kernels. The origin is treated 

as the only example from other classes. The 

algorithm then finds the hyperplane that provides the 

maximum margin separating the training data from 

the origin in an iterative manner.  

The kernel function is defined as: 

k(x,y)=(Φ(x).Φ(y)),where x,y∈X, X is the training 

data set, and Φ is the feature mapping to a high-

dimensional space X � F. The RBF Kernel is 

defined as  

k(x,y) = 
2
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4. Experiments 
As mentioned in previous sections, the task here is 

to monitor changes in user command behavior, and 

detect any deviations from normal behavior. We use 

the Schonlau data set presented in section 2, 

comprised of sequences of 15,000 commands for 50 

users. The first 5,000 have all been issued by the 

legitimate user, however the remaining 10,000 have 

been injected at random locations with blocks of 100 

commands issued by other users (or simulated 

masqueraders). For each user, there are between 0 

and 24 masquerade blocks. In the first experiment, 

we apply the Hellinger distance to detect changes in 

user behavior. In the second experiment, we use the 

Support Vector Machine (SVM) for detection on the 

Schonlau data set, and we call it the SEA 

experiment, as in [3]. Finally in the third experiment, 

we also use SVMs, but with a different experimental 

setup where we train the model using one user’s data 

and test on all other 49 users’ data, which is why the 

experiment is called the 1v49 experiment. 

 

4.1. Hellinger Distance Experiment 
In order to detect the changes in user behavior, 

we compute the Hellinger distance between two 

blocks of commands of size w. With each new 

command, we count the frequencies of the 
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commands or command categories within the block 

of the last w commands.  We shift the window of w 

commands by one command, and we count the same 

frequencies for the new block. Then we compute the 

Hellinger distance between the two sets of 

commands. However, we need to determine what the 

most appropriate window size of w should be. We 

describe below how we determined the value of w. 

 

4.1.1. Determining the window size w 
We conducted a first experiment where the 

profiles of all users have been modeled using several 

window sizes. For each user, we divide the first 

5000 commands into blocks of size w, and we count 

the frequencies of command categories within each 

block. Then we calculate the mean and the standard 

deviation for each of those frequencies. The results 

for users 1 and 2 are shown in Figure 2 for window 

sizes of 50, 100, and 200 commands, respectively. 

By looking at both profiles, we notice that the two 

users have indeed different profiles. This shows the 

potential for detection of the command blocks that 

have been contaminated by another user’s 

commands. The window size has been selected, such 

that the standard deviation is not too low, which 

allows for differentiation between the user profiles, 

and simultaneously not too high, so that an excessive 

number of false positives is avoided. This tradeoff 

serves as the core “calibration” process for a detector 

using this method. The window size w that helped 

achieve a tradeoff between these two objectives was 

a size of 50 commands. 

 

4.1.2. Determining a threshold 

Once the window size was determined, we needed 

to determine the threshold used to classify a block as 

a masquerader block or a normal user block. For 

that, we have computed the Hellinger distance 

between consecutive blocks with a window 50 

commands, shifting the window by 1 command 

only. We have done this for the first 5000 

commands, and determined the maximum Hellinger 

distance value for each user. In order to limit the 

false positive rate, we scaled the threshold value to 

95% of the maximum value for each user. So each 

user has a distinct threshold. Note that no inter-user 

data is mixed for this process. This constitutes the 

‘one-class’ modeling approach over user command 

categories, and the method is relatively easy and 

efficient to implement. (A fixed size histogram 

would be maintained for each user at run-time in an 

operational setting.) 

 

User 1: Window Size Comaprison
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User 2: Window Size Comaprison
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Figure 2: Profile of users 1and 2 using a Mahalanobis distance, 

the commands taxonomy, and window sizes of 200, 100, and 50 

commands. 
 

4.2. SVM Experiments 
We have used the LIBSVM package [19] to 

conduct our SVM experiments. LIBSVM is a tool 

for support vector classification, regression, and 

distribution estimation. It supports both multi-class 

classification and one-class classification. The one-

class SVM function provided by this tool uses the 

RBF kernel. We have applied this kernel with the 

default settings to conduct the SEA and 1v49 

experiments. We have created a new version of the 

LIBSVM code, so that the one-class prediction 

models output the probability that a vector belongs 

to the “self” class, rather than output the 

classification value “self’ or “non-self”. 

We have used two different ways to represent 

features. The first is frequency-based where we 

count the number of times a simple command or a 
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command category, retrieved using the command 

taxonomy, shows up in the data set. The second 

approach is binary where we indicate whether the 

command or command category is present in the 

data set. 

 

4.2.1.  SEA Experiment 

In this experiment we follow the methodology 

described in [1] and [4], and we show that the 

performance of one-class SVMs (ocSVM) using 

command categories per our taxonomy is almost the 

same as the performance of ocSVM that uses simple 

commands. We use the first 5000 commands of a 

user as positives examples for training the model. 

No negative examples are used for training. Then we 

test the classifier using the remaining 10,000 

commands of the user, which may have injected 

command blocks from other users under a 

probability distribution described in [2], which we 

will refer to as the “dirty” blocks. 

 

4.2.2.  1v49 Experiment 
 The 1v49 was introduced by Maxion and 

Townsend to avoid some of the inherent 

methodological problems with the Schonlau data set. 

One major shortcoming of the experimental setup 

that Schonlau used is that each user in the data set 

has a different number of “dirty” blocks than the 

remaining 49 users. Moreover, these blocks originate 

from different users. This may prevent the 

comparison of the performances of the classification 

algorithms on solid ground. In order to better 

evaluate and compare the performance of these one-

class classification algorithms, a different data 

configuration is used: the first 5,000 commands of a 

user are used as negative training data, no positive 

examples are used. The test data is made up of the 

remaining 49 users’ first 5,000 commands, which 

make the positive test examples, s well as the non-

masquerade data from the additional 10,000 

commands of the same user. 

 

5. Evaluation 

 

5.1. Hellinger-Distance Method Evaluation 

 

After computing one classifier for each user, the 

detection task includes computing the Hellinger 

distance in the same manner as above, but for the 

remaining 10,000 commands. It is important to note 

that our approach is a one-class modeling approach. 

No positive examples of masquerade blocks were 

used for training, and no non-self models were 

computed for each user. The test of self-recognition 

is the same as in the Schonlau et al. paradigm, with 

between 76 and 100 blocks of self data presented to 

the detector for each user. Since the masquerader 

commands have been injected into blocks of 100 

commands, we calculate one value out of all 

computed Hellinger distances for one block and we 

compare it with the classification threshold. Because 

the Hellinger distance scores are very noisy, we take 

the average score over the 100-command block as 

the overall score. We have also experimented with 

using the maximum value of those scores. However, 

better classification accuracy has been achieved by 

using the average scores. If the average score is 

above the user threshold, the block is classified as a 

masquerader block. We do not use any blocks that 

have been classified as normal to update the user 

profile or recalculate the threshold.  

A typical means to visualize the performance 

of any classification algorithm is the Receiver 

Operating Characteristic (ROC) curve which plots 

the sensitivity rate against 1- specificity rate. In order 

to build the ROC curve, we need to count the 

number of true positives (TP), true negative (TN), 

false positives (FP), and false negatives (FN) for a 

set of cutoffs according to a classification rule. A 

true positive is a masquerader command block that 

has been correctly identified by our algorithm. A 

false positive is a normal user’s command block that 

was misclassified as a masquerader block. Similarly 

a true negative is a normal user’s block that our 

algorithm classifies as normal, and a false negative 

is a masquerader block that our algorithm fails to 

detect, the latter being perhaps the worst case of 

failure.  Then we can calculate the specificity 

defined as 
FPTN

TN

nn

n

+

and the sensitivity defined 

as
FNTP

TP

nn

n

+

where nTN, nFP, nTP, nFN are the 

numbers of true negatives, false positives, true 

positives, and false negatives respectively. Figure 3 

displays the ROC curves for users 2 and 6 for the 

Hellinger distance-based approach using the 

frequencies of simple commands and the same 

approach using the frequencies of command 

categories.  
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The Area Under Curve (AUC), also known as 

the ROC score, which is a measure of the area under 

the ROC curve, reflects the performance of the 

detection method used. The higher the AUC is, the 

better the performance of the method.  

 

1 - Specificity

1.00.80.60.40.20.0

S
en

si
tiv

ity

1.0

0.8

0.6

0.4

0.2

0.0

Reference Line

mean_cmd

mean_cat

Source of the Curve

ROC Curve

Diagonal segments are produced by ties.

 
 

1 - Specificity

1.00.80.60.40.20.0

S
en

si
ti

vi
ty

1.0

0.8

0.6

0.4

0.2

0.0

mean_cmd

mean_cat

Source of the Curve

ROC Curve

 
 
Figure 3: ROC curves for users 18 and 36 respectively using the 

Hellinger distance metric. mean_cat represents the model where 

the Hellinger distance is computed using frequencies of 

command categories. mean_cmd stands for the model where the 

distance computed using frequencies of simple commands. 
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Figure 4: User-by-user comparison of ROC scores (AUCs) 

 

The AUCs displayed in Figure 3 of the 

taxonomy-based model for user 18 and 36 are 0.865 

and 0.913 and those of the command-based model 

are 0.862 and 0.905 respectively. For some users the 

taxonomy-based model performed better than the 

command-based one, for others it did not. Figure 4 

shows a user-by-user AUC comparison or all users 

whose files have been contaminated. Some users had 

no masquerader blocks injected, and therefore it was 

not possible to build a ROC curve for them. 

Comparing the average AUC for those scores, the 

taxonomy-based modeling method achieves more 

than a 1.8% improvement over the command-based 

one, with less information. 

Figure 5 shows a comparison of the total 

number of users whose files have been contaminated 

and whose AUC’s are higher than a certain AUC x 

versus the value of x. The taxonomy-based approach 

outperforms the simple-commands-based 

approaches in most cases, and it only underperforms 

the other approach for very small AUC values. 
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Figure 5: Number of users with ROC scores higher than x 

versus x 

 

5.2. One-class SVM Evaluation 

 

5.2.1. SEA Experiment Evaluation 

Table 2 shows the results achieved by the one-

class SVM classifiers. The ocSVMs that use the 

command taxonomy achieve better false alarm in 

both cases, when using the frequency-based model 

and when using the binary model. With the 

frequency-based model, the ocSVM using the 

command taxonomy also achieves comparable 

results with the ocSVM using simple commands. 

This is not true for the ocSVM using the binary 

feature. This can be explained by the difficulty to 

build representative models for the users based on a 
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binary vector that only has 14 components, since the 

taxonomy is only made up of 14 different categories, 

particularly when the training data set includes 5,000 

commands. With such a number of commands, the 

chances that all 14 categories of commands are 

represented are relatively high, and therefore the 

binary models built for the users will be very 

similar, i.e. the classifier will be unable to correctly 

decide whether a test command block is a self block 

or a masquerader block. 

 
Method Hit Rate False Positive Rate 

ocSVM using simple 

cmds  (freq.-based model) 

98.7% 66.47% 

ocSVM using taxonomy 

(freq.-based model) 

94.8% 60.68% 

ocSVM using simple 

commands (binary model) 

99.13% 66.8% 

ocSVM using taxonomy 

(binary model) 

86.58% 56.9% 

Table 2: SEA experiment results 

 

As mentioned earlier, we have modified the 

LIBSVM code so that the one-class prediction 

models output a probability that a vector belongs to 

the “self” class, rather than output the classification 

value “self’ or “non-self”. We have used these 

prediction values to build ROC curves for each 

model/user, and we show the corresponding AUC 

scores in figure 6. We have averaged out the 

performance of all user models to build a single 

ROC curve for each method in figures 7-10. The 

ROC curves and corresponding AUC values confirm 

that, when using the frequency-based model to build 

the feature vectors, using the command taxonomy 

achieves comparable results to those achieved when 

modeling simple commands. 
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Figure 6: Comparison of AUC scores achieved using the 4 

models in the SEA experiment 

 

 
 

Figure 7: ROC curve for ocSVM with binary model using 

simple commands (AUC=0.925) 

 

  
 

Figure 8: ROC curve for ocSVM with binary model using 

command taxonomy (AUC=0.756) 
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Figure 9: ROC curve for ocSVM with frequency-based model 

using simple commands (AUC=0.905) 

 

  
Figure 10: ROC curve for ocSVM with frequency-based model 

using command taxonomy (AUC=0.89) 

 

5.2.2. 1v49 Experiment Evaluation 
 

The results of the 1v49 experiment shown in 

table 3 and in figure 11 confirmed the results of the 

SEA experiment. In particular, it proved that high 

hot rates can be achieved with the taxonomy, and 

that when using the frequency-based modeling 

approach, building features while using of the 

taxonomy allows for comparable results to those 

achieved when the features are extracted just from 

simple commands. 

 

 

 
Method Hit Rate False Positive Rate 

ocSVM using simple 

cmds  (freq.-based model) 

96.56% 66.47% 

ocSVM using taxonomy 

(freq.-based model) 

87.54% 60.66% 

ocSVM using simple 

commands (binary model) 

97.81% 67.03% 

ocSVM using taxonomy 

(binary model) 

81.91% 57.11% 

Table 3: 1v49 experiment results 
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Figure 11: Comparison of AUC scores achieved using the 4 

models in the 1v49 experiment 

 

6. Discussion and future work 

Unlike a modeling approach based on 

frequencies of simple commands, the taxonomy-

based approach should not raise an alarm for a 

masquerader if, for instance, the same legitimate 

user starts running a different C compiler than what 

he/she normally uses. Both compilers used should be 

under the “Applications” category. So if the user 

continues doing the same things he has been doing 

before, except for the change of compilers, the user 

model does not change if we use our taxonomy-
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based approach. However, using the simple 

commands approach might raise an alarm for a 

masquerade. Therefore, our approach is expected to 

limit the occurrences of false positives. Moreover, 

the taxonomy-based approach tends to reduce the 

problem of modeling “Never-Before-Seen-

Commands” since any command is likely to be 

placed in a category with other similar commands, 

i.e., although a specific command may never have 

been observed, members of its class probably were.  

The results shown above confirm that the 

information that is lost by compressing the different 

user shell commands into a few categories does not 

affect the masquerader detection ability 

significantly. We expect our modeling approach to 

achieve even better results when using real 

masquerader data. This is a crucial observation. The 

Schonlau datasets are not “true Masquerader” data 

sets. The data from different users were randomly 

mixed standing as a simulation of a masquerader 

attack. A willful act of malfeasance after identity 

theft is yet to be tested, albeit there is no generally 

available data set of this nature for scientific study. 

Hence, Schonlau resorted to simulating this 

malfeasance in as simple a fashion as possible, 

monitoring different users and mixing their data. The 

specific test to determine whether modeling search 

command behavior is, thus, not possible with this 

dataset.  Figure 12 clearly shows that the distribution 

of the categories of commands for normal users and 

for masqueraders are very similar. Moreover, 

“information gathering” or “search” commands only 

make up between and 10 and 12% of all the 

commands for both sets. This suggests that the 

Schonlau data set is not good enough for evaluating 

our hypothesis that masqueraders exhibit unusual 

amounts of search behavior that deviates 

substantially from their victim’s behavior. . 

In our future work, we plan to tackle specific 

areas of work: a) developing a “capture the flag” 

exercise in our lab with user volunteers serving as 

masqueraders to create suitable datasets for 

experimentation and evaluations, and b) using other 

approaches for classification other than one-class 

support vector machines and averaging of Hellinger 

distance scores within one block of commands. 

These may include the rate of change of the 

Hellinger distance or the quantiles of the empirical 

distribution of the scores, as well as other one-class 

anomaly detection methods. Moreover, we will 

conduct an analysis of why the taxonomy achieved 

better results for certain users and not for others, and 

will enhance our Hellinger distance-based approach 

with an incremental update feature in order to adapt 

to concept drift. Intuitively, this is achieved by 

adjusting the frequency table by decrementing the 

frequency entry of the oldest command type, and 

incrementing the category of the most recently 

issued command and incrementally updating the 

average and standard deviation.  
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Figure 12: Distribution of command categories for normal 

user and for masquerader commands 

 

7. Conclusion  
Masquerade attacks are a serious computer 

security problem. In this paper, we have presented a 

taxonomy of Unix and Linux commands developed 

to improve upon previous user modeling approaches 

based upon sequences of commands. The proposed 

approach aims to capture the intent of a user more 

accurately. We have used the taxonomy for one-

class modeling of user behavior in order to detect 

masquerades in UNIX environments using a 

standard benchmark dataset. Even though the data 

set used is not the most suitable data for the 

masquerade detection problem, the command 

taxonomy-based modeling achieved results 

comparable or slightly better than modeling the 

behavior with simple commands for this dataset. 

This establishes some evidence that our conjecture 

that a taxonomy should help in detecting 

masqueraders while decreasing the number of false 

positives is correct. Future larger scale studies in our 

lab using volunteer masqueraders will be reported 

upon in future work. We expect to see better results 

using real data where the masquerader is expected to 

perform extensive search while exploring the new 

environment that he/she has access to. 
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