
 1

Masquerade Detection Using a Taxonomy-Based Multinomial

Modeling Approach in UNIX Systems

Malek Ben Salem and Salvatore J. Stolfo

 Computer Science Department, Columbia University

500 West 120
th
 Street, New York, NY, 10027

Abstract

This paper presents one-class Hellinger

distance-based and one-class SVM modeling

techniques that use a set of features to reveal user

intent. The specific objective is to model user

command profiles and detect deviations indicating

a masquerade attack. The approach aims to model

user intent, rather than only modeling sequences

of user issued commands. We hypothesize that

each individual user will search in a targeted and

limited fashion in order to find information

germane to their current task. Masqueraders, on

the other hand, will likely not know the file system

and layout of another user's desktop, and would

likely search more extensively and broadly. Hence,

modeling a user search behavior to detect

deviations may more accurately detect

masqueraders. To that end, we extend prior

research that uses UNIX command sequences

issued by users as the audit source by relying upon

an abstraction of commands. We devised a

taxonomy of UNIX commands that is used to

abstract command sequences. The experimental

results show that the approach does not lose

information and performs comparably to or

slightly better than the modeling approach based

on simple UNIX command frequencies.

1. Introduction
The masquerade attack is a class of attacks,

in which a user of a system illegitimately poses as,

or assumes the identity of another legitimate user.

Identity theft in financial transaction systems is

perhaps the best known example. Masquerade

attacks are extremely serious, especially in the case

of an insider who can cause considerable damage to

an organization. The insider attack detection

problem remains one of the more important research

areas requiring new insights to mitigate against this

threat.

A common approach to counter this type of

attack, which has been the subject of prior research,

is to develop novel algorithms that can effectively

identify suspicious behaviors that may lead to the

identification of imposters. We do not focus on

whether an access by some user is authorized since

we assume that the masquerader does not attempt to

escalate the privileges of the stolen identity, rather

the masquerader simply accesses whatever the

victim can access. However, we conjecture that the

masquerader is unlikely to know how the victim

behaves when using a system. It is this key

assumption that we rely upon in order to detect a

masquerader. Thus, our focus in this paper is on

monitoring a user’s behavior in real time to

determine whether current commands issued by a

user are consistent with the user’s historical

behavior. The far more challenging problems of

thwarting mimicry attack and other obfuscation

techniques, as well as the use of honeypots or

honeytokens, are beyond the scope of this paper.

 Masquerade attacks can occur in several

different ways. In general terms, a masquerader may

get access to a legitimate user’s account either by

stealing a victim’s password, or through a break in

and installation of a rootkit or keylogger. In either

case, the user’s identity is illegitimately acquired.

Another perhaps more common case is laziness and

misplaced trust by a user, such as the case when a

user leaves his or her terminal or client open and

logged in allowing any nearby co-worker to pose as

a masquerader. In the first two cases, the identity

thief must log in with the victim’s credentials and

begin issuing commands within the bounds of one

user session. We conjecture that legitimate users

initiate the same repeated commands each time they

log in to set their environment before using it,

initiate some set of applications (read email, open a

 2

browser, or start a chat session) and similarly, clean

up and shut down applications when they log off.

Such repeated behaviors constitute a profile that can

be modeled and used to check the authenticity of a

user session early before significant damage is done.

The case of hijacking a user’s session is perhaps a

bit more complicated. We presume the preamble

commands issued by the legitimate user have

already concluded and have no value in detecting the

masquerader. In either case, a monitoring system

ought to detect any significant deviations from a

user’s typical profiled behaviors in order to detect a

likely masquerade attack. Ideally, we seek to detect a

possible masquerader at any time during a session.

 In an operational monitoring system, one

naturally would be concerned with the error rate of a

detector. In a nutshell, we posit that at a minimum a

challenge/response mitigation strategy may work

well to prevent significant damage to a system by a

masquerader. The downside of a false positive is

essentially annoyance by a legitimate user who may

be challenged too frequently. However, a false

positive should do no damage. An interesting

problem to study is how to calibrate a detector to

balance its false positive rate to ensure its false

negative rate is minimized. False negatives in this

context, i.e., an undetected masquerader, are far

more dangerous than an annoying false positive. A

thorough discussion of mitigation strategies is

beyond the scope of this paper.

 In this paper we extend prior work on modeling

user command sequences for masquerade detection.

We use one-class support vector machines and

introduce the use of the Hellinger Distance metric to

compute a similarity measure between the most

recently issued commands that a user types with a

model of the user’s command profile. Previous work

has focused on auditing and modeling sequences of

user commands including work on enriching

command sequences with information about

arguments of commands. [1], [3], and [4].

 We propose an approach to profile a user’s

behavior based on a ‘taxonomy’ of UNIX

commands. The taxonomy abstracts the audit data

and enriches the meaning of a user’s profile. Hence,

commands that perform similar types of actions are

grouped together in one category making profiled

sequences more abstract and meaningful.

Furthermore, modeling sequences of commands is

complicated whenever “Never-Before-Seen-

Commands” are observed. A command taxonomy

reduces this complexity, since any distinct command

is replaced by its category, which is very likely to

have been observed in the past. Commands are thus

assigned a type, and the sequence of command types

is modeled rather than individual commands.

 One particular type of command is “information

gathering” commands, i.e. search commands. We

conjecture that a masquerader is unlikely to have the

depth of knowledge of the victim’s machine (files,

locations of important directories, available

applications, etc.), and hence, a masquerader would

likely first perform information gathering and search

commands before initiating specific actions. A

taxonomic command abstraction helps achieve our

goal to model the user’s intent in this specific case.

A detector may increase its suspicion of an attack in

real time if it detects monitored search command

actions that deviate substantially from the user’s

profile on search commands.

 In Section 2 of this paper, we briefly present the

results of prior research work on masquerade

detection. Section 3 expands on the objective and the

approach taken in this work. The experiments

conducted to evaluate whether a command

taxonomy impacts the efficacy of user behavior

models are presented in Section 4. In section 5, we

evaluate the results of our experiments while section

6 discusses future work needed to improve and

better evaluate our proposed modeling approach.

Section 7 concludes the paper summarizing the

contributions of this paper.

2. Related Work

In the general case of computer user profiling,

the entire audit source can include information from

a variety of sources:

• Command line calls issued by users

• System call monitoring for unusual

application use/events

• Database/file access monitoring

• Organization policy management rules and

compliance logs

The type of analysis used is primarily the

modeling of statistical features, such as the

frequency of events, the duration of events, the co-

occurrence of multiple events combined through

logical operators, and the sequence or transition of

events. However, most of this work failed to reveal

 3

or clarify the user’s intent when issuing commands.

The focus is primarily on accurately detecting

change or unusual command sequences. In this

section, we focus on the approaches reported in the

literature that profile users by the commands they

issue.

Schonlau et al. in [1] applied six masquerade

detection methods to a data set of “truncated” UNIX

commands for 70 users collected over a several

month period. Each user had 15,000 commands

collected over a period of time ranging between a

few days and several months. 50 users were

randomly chosen to serve as intrusion targets. The

other 20 users were used as masqueraders. The first

5000 commands for each of the 50 users were left

intact or “clean”, the next 10,000 commands were

randomly injected with 100-command blocks issued

by the 20 masquerade users. The commands have

been inserted at the beginning of a block, so that if a

block is contaminated, all of its 100 commands are

inserted from another user’s list of executed

commands. The complete data set and more

information about it can be found at

http://www.schonlau.net. The objective was to

accurately detect the “dirty” blocks and classify

them as masquerader blocks.

The first detection method applied by

Schonlau et al. for this task, called “uniqueness”

relies on the fact that half of the commands in the

training data are unique and many more are

unpopular amongst the users. The second method

investigated was the Bayes one-step Markov

approach. It is based on one step transitions from

one command to the next. The approach, due to

DuMouchel (1999), uses a Bayes factor statistic to

test the null hypothesis that the observed one-step

command transition probabilities are consistent with

the historical transition matrix. The two hypotheses

modeled are the null hypothesis, which assumes that

the observed transitions probabilities stem from the

historical transition matrix, and the alternative

hypothesis which assumes that they were generated

from a Dirichlet distribution.

A hybrid multi-step Markov method has also

been used. In order to overcome the high-

dimensionality, inherent in multi-step Markov chain,

a “mixture transition distribution” (MTD) approach

has been used to model the transition probabilities.

When the test data contain many commands

unobserved in the training data, a Markov model is

not usable. Here, a simple independence model w/

probabilities estimated from a contingency table of

users versus commands may be more appropriate.

The method used automatically toggles between a

Markov model and an independence model

generated from a multinomial random distribution as

needed, depending on whether the test data are

“usual”, i.e. the commands have been previously

seen, or “unusual”, i.e. Never-Before-Seen

Commands (NBSCs). We note with interest that the

proposed taxonomy of commands tends to reduce if

not eliminate the problem of modeling “Never-

Before-Seen-Commands” since any command is

likely to be placed in a category with other similar

commands. Hence, although a specific command

may never have been observed, members of its class

probably were.

The compression method, which was also

applied to the Schonlau data set, was based on the

premise that test data appended to historical training

data compress more readily when the test data stems

indeed from the same user rather than from a

masquerader, and was implemented through the

UNIX tool “compress” which implements a

modified Lempel-Ziv algorithm.

IPAM (Incremental Probabilistic Action

Modeling), another method applied on the same

dataset, and used by Davidson & Hirsch in [5] and

[16] to build an adaptive command line interface, is

also based on one-step command transition

probabilities estimated from the training data.

Probabilities are continuously updated using an

exponential updating scheme. With arrival of a new

command, probabilities are aged by multiplying with

alpha and (1-alpha) is added to the most recent

transition.

The sequence-match approach was presented

by Lane & Brodley [6]. For each new command, a

similarity measure between the most 10 recent

commands and a user’s profile is computed. A user’s

profile consists of command sequences of length 10

that the user has previously used. The similarity

measure is a count of the number of matches in a

command-by-command comparison of 2 command

sequences with a greater weight assigned to adjacent

matches. This similarity measure is computed for the

test data sequence paired with each command

sequence in the profile.

Maxion and Townsend applied a naïve Bayes

classifier, which has been widely used in text

classification tasks, to the same data set in [3].

Maxion provides a thorough and detailed

 4

investigation of classification errors [7],

highlighting why some masquerade victims are

more vulnerable than others, and why some

masqueraders are more successful than others.

Maxion and Townsend also designed a new

experiment, which they called the “1v49”

experiment, in order to conduct this error analysis.

A method, that is significantly different from other

intrusion detection technologies, was presented by

Coull et al. [11]. The method is known as semi-

global alignment and is a modification of the Smith-

Waterman local alignment algorithm, with a scoring

system that rewards the alignment of commands in

the user segment but does not necessarily penalize

the misalignment of large portions of the signature

of the user.

 Another approach called a self-consistent naïve

Bayes classifier was proposed by Yung [13] and

applied on the same data set. This method is a

combination of the naïve Bayes classifier and the

EM-algorithm. The self-consistent naïve Bayes

classifier does not have to make a binary decision

for each new block of commands. Rather, it assigns

a score to it that indicates the probability that the

block is a masquerader block. Moreover, this

classifier can change scores of earlier sessions as

well as later sessions

 Oka et al. had the intuition that the dynamic

behavior of a user appearing in a sequence can be

captured by correlating not only connected events,

but also events that are not adjacent to each other

while appearing within a certain distance (non-

connected events). Based on that intuition they have

developed the layered networks approach based on

the Eigen Co-occurrence Matrix (ECM) in [13] and

[14]. The ECM method extracts the causal

relationship embedded in sequences of commands,

where a co-occurrence means the relationship

between every two commands within an interval of

sequences of data. This type of relationship cannot

be reflected through histograms nor through n-

grams.

Forrest et al. proposed a real-time on-line anomaly

detection system [15] that mimicked the mechanisms

used by the natural immune systems. This was done

by monitoring system calls of running privileged

processes (profiles were built using normal runs of

such programs), rather than sequences of user

commands, and therefore used a different data set

than the Schonlau data set. The modeling was

limited to privileged root processes since they have

more access to computer resources than user

processes, and they have a limited range of behavior

that is quite stable and predictable. A separate

database of normal behavior is built for each

privileged process. The database was specific to a

particular architecture, software version and

configuration, local administrative policies, and

usage patterns, providing a unique definition of

“self”.

Table 1 presents the results of all methods

described above, that were applied to the Schonlau

data set and which are based on a two-class training

approach of a self model and a non-self model. In a

real-word setting, it is probably more appropriate to

use a one-class training approach; as users join and

leave the organizations, keeping the non-self model

up-to-date can be really challenging. Wang and

Stolfo tried such an approach in [4] by using both, a

naïve Bayes classifier and a Support Vector Machine

(SVM), to detect masqueraders. With the naïve

Bayes classifier, they have used the multinomial

model, as well as the multivariate Bernoulli event

model. Their work has shown that the difference in

detection accuracy between the two models is not so

obvious in one-class training, especially when the

false positive rate is low, unlike the case of multi-

class training, where the multinomial model

performs better than the Bernoulli one.

 Method False Alarms (%) Missing Alarms (%)

Uniqueness 1.4 60.6

Bayes one-step Markov 6.7 30.7

Hybrid multi-step Markov 3.2 50.7

Compression 5.0 65.8

Sequence Match 3.7 63.2

IPAM 2.7 58.9

Naïve Bayes (Updating) 1.3 38.5

Naïve Bayes (No Upd.) 4.6 33.8

Semi-Global Alignment 7.7 24.2

Eigen Co-occurrence

Matrix

3.0 28.0

Naïve Bayes + EM 1.3 25.0

Table 1: Summary of accuracy performance of Two-Class

Based Anomaly Detectors Using the Schonlau Data Set

Wang and Stolfo have also investigated SVMs using

the binary features and frequency-based features.

The one-class SVM algorithm using binary features

was the best one among all four one-class training

algorithms that were analyzed. It also performed

better than most of the two-class algorithms listed

above, except the two-class multinomial naïve Bayes

 5

algorithm with updating. In summary, Wang and

Stolfo’s experiment confirmed that for masquerade

detection, one-class training is as effective as two

class training. The practical significance of this is

important. In prior work, a masquerade detector is

trained as a classifier by mixing labeled data from a

number of different users. Besides the privacy

implications of this approach, whenever a new user

enters or leaves an organization each detector would

necessarily be retrained in order to maintain its

accuracy. In the case of “one-class” modeling, an

anomaly detector is trained for each user on their

own data. It is this approach that sets the stage for

our subsequent work described next.

3. Objective and Approach

When dealing with the masquerader attack

detection problem, it is important to remember that

the attacker has already obtained credentials to

access a system. When presenting the stolen

credentials, the attacker is then a legitimate user to

any access control system. Ideally, monitoring a

user’s actions after being granted access is required

in order to detect such attacks. Furthermore, if we

can determine the user’s intent, we may

automatically determine if actions of a user are

malicious or not. We have postulated that certain

classes of user commands reveal user intent. For

instance, “search” should be an interesting behavior

to monitor. Hence, we defined a taxonomy of

commands to readily identity and model search

behavior. Another behavior that is interesting to

monitor is remote access to other systems and the

communication or egress of large amounts of data to

remote systems, which may be an indication of

illegal copying or distribution of sensitive

information. Once again, the taxonomy defined

allows a system to automatically audit and model

this behavior as well. However, user behavior

naturally varies from each user. We believe there is

no one model or one easily specified policy can

capture the inherent vagaries of human behavior.

Instead, we aim to automatically learn a distinct

user’s behavior, much like a credit card customer’s

distinct buying patterns.

Our objective is to model the normal pattern

of submitted commands of a certain user in a UNIX

environment assuming that the masquerader will

exhibit different behavior from the legitimate user

and this deviation will be easily noticed. In order to

detect the deviations we compute the Hellinger

distance between the frequencies of recent

commands or command categories that show up in

one block of commands of window size w and a

second block of the same window size shifted by

only one command. Hence, this approach essentially

tracks a user’s behavior and measures any changes

in that behavior. Any significant change will raise an

alarm. In the following we present the command

taxonomy that we have developed as well as the

Hellinger distance applied to blocks of issued

commands.

3.1. UNIX Command Taxonomy
 We abstract the set of Linux/Unix

commands into a taxonomy of command categories

as presented in Figure 1. In particular, we are

interested in identifying the specific set of

commands that reveal the user’s intent to search, to

change access control privileges, and to copy or

print information. Once these commands are

identified, we can extract features representing such

behavior while auditing the user’s behavior.

Figure1: Taxonomy of Linux and Unix Commands

 The taxonomy has 14 different categories:

Access Control, Applications, Communications /

Networking, Display / Formatting, Execution /

Program Control, File System, I/O Peripherals,

Information Gathering, Other, Process Management,

System Management, Unknown, and Utilities. Most

categories were further classified into sub-

categories, however some did not require more

granularity, such as the “Resource Management”

category. The “Information Gathering” category

 6

includes commands such as “find” and “fgrep”.

Examples of commands in the “Process

Management” category include “kill”, “nohup”, and

“renice”. “date”, “clock” and “cal” are examples of

commands that fall in the “Utilities” category. The

“Other” category includes commands that have been

recognized but could not be classified under any

other category. However, the “Unknown” category

includes commands that were not identified or script

names that are not recognizable.

3.2. Hellinger Distance
The Hellinger distance computes the change

in two frequency tables, each table is a histogram

representing the frequency of some variable at some

particular moment in time. Here, we measure the

frequency of commands, and thus one can develop a

detector of abnormal behavior by modeling user

command frequencies and the changes in that

frequency. The Hellinger distance is defined as:
21

0
)][][([])[],(∑

−

=

−=
n

i yptp ififffHD

where fp[] is the array of normalized frequencies for

the first set, ft[] the one for the second set, and n the

number of possible commands/ command categories.

This distance metric is applied whenever a user

issues a command. A previous frequency table that

modeled the previous commands is compared to a

newly updated frequency table by modifying the

frequency of the command types. Hence, each

command creates a new Hellinger distance score that

is subjected to threshold logic. Each bin of the

frequency table is any chosen category of command

we wish to model. In the most general case all

command categories would be tracked. The method

is straightforward and efficient to implement. It

remains to me seen how accurate it may be, and

whether modeling categories of command

significantly reduces the information available when

modeling sequences of commands. In other words, is

it more accurate to model sequences of commands or

frequencies of commands’ categories. It is that

question we address next.

3.3. One-Class Support Vector Machines
Support Vector Machines (SVMs) are linear

classifiers used for classification and regression.

They are known as maximal margin classifiers, as

opposed to probabilistic classifiers, thanks to their

ability of minimizing empirical classification error

while maximizing geometric margin.

SVMs are typically used in multi-class

classification tasks. Scholkopf et. al. proposed a way

to adapt SVMs to the one-class classification task

[16]. The one-class SVM algorithm uses examples

from one class only for training. Just like in multi-

class classification tasks, it maps input data into a

high-dimensional feature space suing a kernel

function, such as the linear, polynomial, or Radial

Basis Function (RBF) kernels. The origin is treated

as the only example from other classes. The

algorithm then finds the hyperplane that provides the

maximum margin separating the training data from

the origin in an iterative manner.

The kernel function is defined as:

k(x,y)=(Φ(x).Φ(y)),where x,y∈X, X is the training

data set, and Φ is the feature mapping to a high-

dimensional space X � F. The RBF Kernel is

defined as

k(x,y) =
2

2

2

||||

σ

yx

e

−
−

.

4. Experiments
As mentioned in previous sections, the task here is

to monitor changes in user command behavior, and

detect any deviations from normal behavior. We use

the Schonlau data set presented in section 2,

comprised of sequences of 15,000 commands for 50

users. The first 5,000 have all been issued by the

legitimate user, however the remaining 10,000 have

been injected at random locations with blocks of 100

commands issued by other users (or simulated

masqueraders). For each user, there are between 0

and 24 masquerade blocks. In the first experiment,

we apply the Hellinger distance to detect changes in

user behavior. In the second experiment, we use the

Support Vector Machine (SVM) for detection on the

Schonlau data set, and we call it the SEA

experiment, as in [3]. Finally in the third experiment,

we also use SVMs, but with a different experimental

setup where we train the model using one user’s data

and test on all other 49 users’ data, which is why the

experiment is called the 1v49 experiment.

4.1. Hellinger Distance Experiment
In order to detect the changes in user behavior,

we compute the Hellinger distance between two

blocks of commands of size w. With each new

command, we count the frequencies of the

 7

commands or command categories within the block

of the last w commands. We shift the window of w

commands by one command, and we count the same

frequencies for the new block. Then we compute the

Hellinger distance between the two sets of

commands. However, we need to determine what the

most appropriate window size of w should be. We

describe below how we determined the value of w.

4.1.1. Determining the window size w
We conducted a first experiment where the

profiles of all users have been modeled using several

window sizes. For each user, we divide the first

5000 commands into blocks of size w, and we count

the frequencies of command categories within each

block. Then we calculate the mean and the standard

deviation for each of those frequencies. The results

for users 1 and 2 are shown in Figure 2 for window

sizes of 50, 100, and 200 commands, respectively.

By looking at both profiles, we notice that the two

users have indeed different profiles. This shows the

potential for detection of the command blocks that

have been contaminated by another user’s

commands. The window size has been selected, such

that the standard deviation is not too low, which

allows for differentiation between the user profiles,

and simultaneously not too high, so that an excessive

number of false positives is avoided. This tradeoff

serves as the core “calibration” process for a detector

using this method. The window size w that helped

achieve a tradeoff between these two objectives was

a size of 50 commands.

4.1.2. Determining a threshold

Once the window size was determined, we needed

to determine the threshold used to classify a block as

a masquerader block or a normal user block. For

that, we have computed the Hellinger distance

between consecutive blocks with a window 50

commands, shifting the window by 1 command

only. We have done this for the first 5000

commands, and determined the maximum Hellinger

distance value for each user. In order to limit the

false positive rate, we scaled the threshold value to

95% of the maximum value for each user. So each

user has a distinct threshold. Note that no inter-user

data is mixed for this process. This constitutes the

‘one-class’ modeling approach over user command

categories, and the method is relatively easy and

efficient to implement. (A fixed size histogram

would be maintained for each user at run-time in an

operational setting.)

User 1: Window Size Comaprison

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

O
th

er

Exe
cu

tio
n/

 P
ro

gra
m

 C
on

tro
l

U
nkn

ow
n

Sys
te

m
 M

an
age

m
en

t

Appl
ic
atio

ns

I/O
 P

er
ip

her
al

s

File
 S

ys
te

m

Util
iti
es

Acc
ess

 C
on

tro
l

D
is
pla

y/
 F

or
m

at
tin

g

R
es

ou
rc

e
M

an
ag

em
en

t

In
fo

rm
at

io
n

G
ath

er
in

g

Pro
ce

ss
 M

ana
ge

m
ent

C
om

m
un

ic
at

io
n

Net
work

in
g

Command Category

D
is

ta
n

c
e

Mean_200 Std. Dev._200 Mean_100 Std. Dev._100 Mean_50 Std. Dev._50

User 2: Window Size Comaprison

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

O
th

er

Exe
cu

tio
n/ P

ro
gra

m
 C

ont
ro

l

U
nkn

ow
n

Sys
te

m
 M

ana
gem

ent

Appl
ic
atio

ns

I/O
 P

erip
hera

ls

File
 S

ys
te

m

U
tili

tie
s

Acc
ess

 C
on

tro
l

D
isp

la
y/

 F
orm

atti
ng

Reso
urc

e M
an

age
m

ent

In
fo

rm
atio

n G
ath

erin
g

Pro
ce

ss
 M

an
agem

ent

Com
m

unic
atio

n N
etw

or
ki
ng

Command Category

D
is

ta
n

c
e

Mean_200 Std. Dev._200 Mean_100 Std. Dev._100 Mean_50 Std. Dev._50

Figure 2: Profile of users 1and 2 using a Mahalanobis distance,

the commands taxonomy, and window sizes of 200, 100, and 50

commands.

4.2. SVM Experiments
We have used the LIBSVM package [19] to

conduct our SVM experiments. LIBSVM is a tool

for support vector classification, regression, and

distribution estimation. It supports both multi-class

classification and one-class classification. The one-

class SVM function provided by this tool uses the

RBF kernel. We have applied this kernel with the

default settings to conduct the SEA and 1v49

experiments. We have created a new version of the

LIBSVM code, so that the one-class prediction

models output the probability that a vector belongs

to the “self” class, rather than output the

classification value “self’ or “non-self”.

We have used two different ways to represent

features. The first is frequency-based where we

count the number of times a simple command or a

 8

command category, retrieved using the command

taxonomy, shows up in the data set. The second

approach is binary where we indicate whether the

command or command category is present in the

data set.

4.2.1. SEA Experiment

In this experiment we follow the methodology

described in [1] and [4], and we show that the

performance of one-class SVMs (ocSVM) using

command categories per our taxonomy is almost the

same as the performance of ocSVM that uses simple

commands. We use the first 5000 commands of a

user as positives examples for training the model.

No negative examples are used for training. Then we

test the classifier using the remaining 10,000

commands of the user, which may have injected

command blocks from other users under a

probability distribution described in [2], which we

will refer to as the “dirty” blocks.

4.2.2. 1v49 Experiment
 The 1v49 was introduced by Maxion and

Townsend to avoid some of the inherent

methodological problems with the Schonlau data set.

One major shortcoming of the experimental setup

that Schonlau used is that each user in the data set

has a different number of “dirty” blocks than the

remaining 49 users. Moreover, these blocks originate

from different users. This may prevent the

comparison of the performances of the classification

algorithms on solid ground. In order to better

evaluate and compare the performance of these one-

class classification algorithms, a different data

configuration is used: the first 5,000 commands of a

user are used as negative training data, no positive

examples are used. The test data is made up of the

remaining 49 users’ first 5,000 commands, which

make the positive test examples, s well as the non-

masquerade data from the additional 10,000

commands of the same user.

5. Evaluation

5.1. Hellinger-Distance Method Evaluation

After computing one classifier for each user, the

detection task includes computing the Hellinger

distance in the same manner as above, but for the

remaining 10,000 commands. It is important to note

that our approach is a one-class modeling approach.

No positive examples of masquerade blocks were

used for training, and no non-self models were

computed for each user. The test of self-recognition

is the same as in the Schonlau et al. paradigm, with

between 76 and 100 blocks of self data presented to

the detector for each user. Since the masquerader

commands have been injected into blocks of 100

commands, we calculate one value out of all

computed Hellinger distances for one block and we

compare it with the classification threshold. Because

the Hellinger distance scores are very noisy, we take

the average score over the 100-command block as

the overall score. We have also experimented with

using the maximum value of those scores. However,

better classification accuracy has been achieved by

using the average scores. If the average score is

above the user threshold, the block is classified as a

masquerader block. We do not use any blocks that

have been classified as normal to update the user

profile or recalculate the threshold.

A typical means to visualize the performance

of any classification algorithm is the Receiver

Operating Characteristic (ROC) curve which plots

the sensitivity rate against 1- specificity rate. In order

to build the ROC curve, we need to count the

number of true positives (TP), true negative (TN),

false positives (FP), and false negatives (FN) for a

set of cutoffs according to a classification rule. A

true positive is a masquerader command block that

has been correctly identified by our algorithm. A

false positive is a normal user’s command block that

was misclassified as a masquerader block. Similarly

a true negative is a normal user’s block that our

algorithm classifies as normal, and a false negative

is a masquerader block that our algorithm fails to

detect, the latter being perhaps the worst case of

failure. Then we can calculate the specificity

defined as
FPTN

TN

nn

n

+

and the sensitivity defined

as
FNTP

TP

nn

n

+

where nTN, nFP, nTP, nFN are the

numbers of true negatives, false positives, true

positives, and false negatives respectively. Figure 3

displays the ROC curves for users 2 and 6 for the

Hellinger distance-based approach using the

frequencies of simple commands and the same

approach using the frequencies of command

categories.

 9

The Area Under Curve (AUC), also known as

the ROC score, which is a measure of the area under

the ROC curve, reflects the performance of the

detection method used. The higher the AUC is, the

better the performance of the method.

1 - Specificity

1.00.80.60.40.20.0

S
en

si
tiv

ity

1.0

0.8

0.6

0.4

0.2

0.0

Reference Line

mean_cmd

mean_cat

Source of the Curve

ROC Curve

Diagonal segments are produced by ties.

1 - Specificity

1.00.80.60.40.20.0

S
en

si
ti

vi
ty

1.0

0.8

0.6

0.4

0.2

0.0

mean_cmd

mean_cat

Source of the Curve

ROC Curve

Figure 3: ROC curves for users 18 and 36 respectively using the

Hellinger distance metric. mean_cat represents the model where

the Hellinger distance is computed using frequencies of

command categories. mean_cmd stands for the model where the

distance computed using frequencies of simple commands.

AUC Comparison

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

User

A
U

C

hellinger w/ taxonomy hellinger w/o taxonomy

Figure 4: User-by-user comparison of ROC scores (AUCs)

The AUCs displayed in Figure 3 of the

taxonomy-based model for user 18 and 36 are 0.865

and 0.913 and those of the command-based model

are 0.862 and 0.905 respectively. For some users the

taxonomy-based model performed better than the

command-based one, for others it did not. Figure 4

shows a user-by-user AUC comparison or all users

whose files have been contaminated. Some users had

no masquerader blocks injected, and therefore it was

not possible to build a ROC curve for them.

Comparing the average AUC for those scores, the

taxonomy-based modeling method achieves more

than a 1.8% improvement over the command-based

one, with less information.

Figure 5 shows a comparison of the total

number of users whose files have been contaminated

and whose AUC’s are higher than a certain AUC x

versus the value of x. The taxonomy-based approach

outperforms the simple-commands-based

approaches in most cases, and it only underperforms

the other approach for very small AUC values.

Number of users w/ AUC > a certain AUC value

0

5

10

15

20

25

30

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

AUC

#
 o

f
u

s
e
rs

w/ taxonomy w/o taxonomy
Figure 5: Number of users with ROC scores higher than x

versus x

5.2. One-class SVM Evaluation

5.2.1. SEA Experiment Evaluation

Table 2 shows the results achieved by the one-

class SVM classifiers. The ocSVMs that use the

command taxonomy achieve better false alarm in

both cases, when using the frequency-based model

and when using the binary model. With the

frequency-based model, the ocSVM using the

command taxonomy also achieves comparable

results with the ocSVM using simple commands.

This is not true for the ocSVM using the binary

feature. This can be explained by the difficulty to

build representative models for the users based on a

 10

binary vector that only has 14 components, since the

taxonomy is only made up of 14 different categories,

particularly when the training data set includes 5,000

commands. With such a number of commands, the

chances that all 14 categories of commands are

represented are relatively high, and therefore the

binary models built for the users will be very

similar, i.e. the classifier will be unable to correctly

decide whether a test command block is a self block

or a masquerader block.

Method Hit Rate False Positive Rate

ocSVM using simple

cmds (freq.-based model)

98.7% 66.47%

ocSVM using taxonomy

(freq.-based model)

94.8% 60.68%

ocSVM using simple

commands (binary model)

99.13% 66.8%

ocSVM using taxonomy

(binary model)

86.58% 56.9%

Table 2: SEA experiment results

As mentioned earlier, we have modified the

LIBSVM code so that the one-class prediction

models output a probability that a vector belongs to

the “self” class, rather than output the classification

value “self’ or “non-self”. We have used these

prediction values to build ROC curves for each

model/user, and we show the corresponding AUC

scores in figure 6. We have averaged out the

performance of all user models to build a single

ROC curve for each method in figures 7-10. The

ROC curves and corresponding AUC values confirm

that, when using the frequency-based model to build

the feature vectors, using the command taxonomy

achieves comparable results to those achieved when

modeling simple commands.

AUC Comparison

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 3 4 7 9 10 12 15 16 18 23 24 25 26 28 29 30 34 35 36 37 38 41 42 43 44 45 46 48

User

Bernoulli w/o Taxonomy Bernoulli with Taxonomy

Freq.-based w/o Taxonomy Freq.-based with Taxonomy
Figure 6: Comparison of AUC scores achieved using the 4

models in the SEA experiment

Figure 7: ROC curve for ocSVM with binary model using

simple commands (AUC=0.925)

Figure 8: ROC curve for ocSVM with binary model using

command taxonomy (AUC=0.756)

 11

Figure 9: ROC curve for ocSVM with frequency-based model

using simple commands (AUC=0.905)

Figure 10: ROC curve for ocSVM with frequency-based model

using command taxonomy (AUC=0.89)

5.2.2. 1v49 Experiment Evaluation

The results of the 1v49 experiment shown in

table 3 and in figure 11 confirmed the results of the

SEA experiment. In particular, it proved that high

hot rates can be achieved with the taxonomy, and

that when using the frequency-based modeling

approach, building features while using of the

taxonomy allows for comparable results to those

achieved when the features are extracted just from

simple commands.

Method Hit Rate False Positive Rate

ocSVM using simple

cmds (freq.-based model)

96.56% 66.47%

ocSVM using taxonomy

(freq.-based model)

87.54% 60.66%

ocSVM using simple

commands (binary model)

97.81% 67.03%

ocSVM using taxonomy

(binary model)

81.91% 57.11%

Table 3: 1v49 experiment results

AUC Comparison (Users 1-25)

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

User

Bernoulli w/o Taxonomy Bernoulli with Taxonomy

Freq.-based w/o Taxonomy Freq.-based with Taxonomy

AUC Comparison (Users 26-50)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

262728293031 32333435363738394041424344 454647484950

User

Bernoulli w/o Taxonomy Bernoulli with Taxonomy

Freq.-based w/o Taxonomy Freq.-based with Taxonomy

Figure 11: Comparison of AUC scores achieved using the 4

models in the 1v49 experiment

6. Discussion and future work

Unlike a modeling approach based on

frequencies of simple commands, the taxonomy-

based approach should not raise an alarm for a

masquerader if, for instance, the same legitimate

user starts running a different C compiler than what

he/she normally uses. Both compilers used should be

under the “Applications” category. So if the user

continues doing the same things he has been doing

before, except for the change of compilers, the user

model does not change if we use our taxonomy-

 12

based approach. However, using the simple

commands approach might raise an alarm for a

masquerade. Therefore, our approach is expected to

limit the occurrences of false positives. Moreover,

the taxonomy-based approach tends to reduce the

problem of modeling “Never-Before-Seen-

Commands” since any command is likely to be

placed in a category with other similar commands,

i.e., although a specific command may never have

been observed, members of its class probably were.

The results shown above confirm that the

information that is lost by compressing the different

user shell commands into a few categories does not

affect the masquerader detection ability

significantly. We expect our modeling approach to

achieve even better results when using real

masquerader data. This is a crucial observation. The

Schonlau datasets are not “true Masquerader” data

sets. The data from different users were randomly

mixed standing as a simulation of a masquerader

attack. A willful act of malfeasance after identity

theft is yet to be tested, albeit there is no generally

available data set of this nature for scientific study.

Hence, Schonlau resorted to simulating this

malfeasance in as simple a fashion as possible,

monitoring different users and mixing their data. The

specific test to determine whether modeling search

command behavior is, thus, not possible with this

dataset. Figure 12 clearly shows that the distribution

of the categories of commands for normal users and

for masqueraders are very similar. Moreover,

“information gathering” or “search” commands only

make up between and 10 and 12% of all the

commands for both sets. This suggests that the

Schonlau data set is not good enough for evaluating

our hypothesis that masqueraders exhibit unusual

amounts of search behavior that deviates

substantially from their victim’s behavior. .

In our future work, we plan to tackle specific

areas of work: a) developing a “capture the flag”

exercise in our lab with user volunteers serving as

masqueraders to create suitable datasets for

experimentation and evaluations, and b) using other

approaches for classification other than one-class

support vector machines and averaging of Hellinger

distance scores within one block of commands.

These may include the rate of change of the

Hellinger distance or the quantiles of the empirical

distribution of the scores, as well as other one-class

anomaly detection methods. Moreover, we will

conduct an analysis of why the taxonomy achieved

better results for certain users and not for others, and

will enhance our Hellinger distance-based approach

with an incremental update feature in order to adapt

to concept drift. Intuitively, this is achieved by

adjusting the frequency table by decrementing the

frequency entry of the oldest command type, and

incrementing the category of the most recently

issued command and incrementally updating the

average and standard deviation.

Category Distribution Comparison

0

2

4

6

8

10

12

14

16

18

20

O
th

er

Exe
cu

tio
n/

 P
ro

gr
am

 C
on

tro
l

File
 S

ys
te

m

Acc
es

s
C
on

tro
l

U
nk

no
w
n

Sys
te

m
 M

an
ag

em
en

t

A
pp

lic
at

io
ns

I/O
 P

er
ip

he
ra

ls

D
is
pl
ay

/ F
or

m
at

tin
g

In
fo

rm
at

io
n

G
at

he
rin

g

Pro
ce

ss
 M

an
ag

em
en

t

C
om

m
un

ic
at

io
n

N
et

w
or

ki
ng

U
til
iti
es

R
es

ou
rc

e
M

an
ag

em
en

t

Category

D
is

tr
ib

u
ti

o
n

Normal Users Masqueraders
Figure 12: Distribution of command categories for normal

user and for masquerader commands

7. Conclusion
Masquerade attacks are a serious computer

security problem. In this paper, we have presented a

taxonomy of Unix and Linux commands developed

to improve upon previous user modeling approaches

based upon sequences of commands. The proposed

approach aims to capture the intent of a user more

accurately. We have used the taxonomy for one-

class modeling of user behavior in order to detect

masquerades in UNIX environments using a

standard benchmark dataset. Even though the data

set used is not the most suitable data for the

masquerade detection problem, the command

taxonomy-based modeling achieved results

comparable or slightly better than modeling the

behavior with simple commands for this dataset.

This establishes some evidence that our conjecture

that a taxonomy should help in detecting

masqueraders while decreasing the number of false

positives is correct. Future larger scale studies in our

lab using volunteer masqueraders will be reported

upon in future work. We expect to see better results

using real data where the masquerader is expected to

perform extensive search while exploring the new

environment that he/she has access to.

 13

Acknowledgements

This material is based upon work supported by the

US Department of Commerce, National Institute of

Standards and Technology under Grant Award

Number 60NANB1D0127. The I3P is managed by

Dartmouth College. The views and conclusions

contained in this document are those of the authors

and should not be and should not be interpreted as

necessarily representing the official policies, either

expressed or implied, of the U.S. Department of

Homeland, the I3P, or Dartmouth College.

References

[1] M. Schonlau, W. DuMouchel, W.-H Ju, A. F.

Karr, M. Theus, and Y. Vardi, “Computer

Intrusion: Detecting Masquerades”, Statistical

Science, 16(1):58-74, Feb. 2001.

[2] http://www.schonlau.net

[3] R. A. Maxion and T. N. Townsend,

“Masquerade Detection Using Truncated

Command Lines”, International Conference on

Dependable Systems & Networks (DSN-02), pp.

219-228, Washington D.C., June 2002.

[4] K. Wang and S. J. Stolfo, “One-Class Training

for Masquerade Detection”, 3rd IEEE Workshop

on Data Mining for Computer Security, Nov.

2003.

[5] B. D. Davison, and H. Hirsh, “Predicting

Sequences of User Actions”, Working Notes of

the Joint Workshop on Predicting the Future: AI

Approaches to Time Series Analysis, Fifteenth

National Conference on Artificial Intelligence

(AAAI98)/Fifteenth International Conference on

Machine Learning (ICML98), AAAI Press,

1998.

[6] T. Lane and C. Brodley, “Sequence Matching

and Learning in Anomaly Detection for

Computer Security”, Proceedings of the AAAI-

97 Workshop on AI Approaches to Fraud

Detection and Risk Management, pp. 43-49,

1997.

[7] R. A. Maxion and T. N. Townsend,

“Masquerade Detection Augmented with Error

Analysis”, IEEE Transactions on Reliability,

Vol. 53, No. 1, March 2004

[8] R. A. Maxion, “Masquerade Detection Using

Enriched Command Lines”, International

Conference on Dependable Systems & Networks

(DSN-03), pp. 5-14, San Francisco, California,

June 2003. IEEE Computer Society Press, 2003.

[9] K. S. Killourhy, and R. A. Maxion,

“Investigating a Possible Flaw in a Masquerade

Detection System”, Technical Report, School

of Computing Science, Newcastle

University, CS-TR N
o
 869, Nov 2004.

[10] B.K. Szymanski and Y. Zhang, “Recursive

Data Mining for Masquerade Detection and

Author Identification”, 2004 Information

Assurance Workshop, Proceedings of the 5
th

annual IEEE conference on Systems, Man and

Cybernetics, 2004.

[11] S. Coull, J. Branch, B. Szymanski, and E.

Breimer, “Intrusion Detection: A

Bioinformatics Approach”, Proceedings of

the 19
th

 Annual Computer Security

Applications Conference, 2003.

[12] K. H. Yung, “Using Self-Consistent Naïve-

Bayes to Detect Masqueraders”, PAKDD

2004, pp 329-340.
[13] M. Oka, Y. Oyama, and K. Kato, “Eigen Co-

occurrence Matrix Method for Masquerade

Detection”, Publications of the Japan Society for

Software Science and Technology, 2004.

[14] M. Oka, Y. Oyama, H. Abe, and K. Kato,

“Anomaly Detection Using Layered Networks

Based on Eigen Co-occurrence Matrix”,

Proceedings of the 7
th
 International Symposium

on Recent Advances in Intrusion Detection,

2004.

[15] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T.

A. Longstaff, “A Sense of Self for Unix

Processes”, Proceedings of 1996 IEEE

Symposium on Computer Security and Privacy,

1996.

[16] B. D. Davison and H. Hirsh, “Toward An

Adaptive Command Line Interface”,

Proceedings of the Seventh International

Conference on Human-Computer Interaction

(HCI97), Elsevier Science Publishers, 1997.

[17] H. S. Teng, K. Chen, and S. C-Y Lu, “Adaptive

real-time anomaly detection using inductively

generated sequential patterns”, Proceedings of

the 1990 IEEE Symposium on Security and

Privacy, 1990.

[18] B. Scholkopf, J. C. Platt, J. Shawe-Taylor, A. J.

Smola, and R. C. Williamson, “Estimating the

support of a high-dimensional distribution”,

 14

Technical Report, Microsoft Research, MSR-

TR-99-87, 1999.

[19] http://www.csie.ntu.edu.tw/~cjlin/libsvm/

