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Abstract. Enterprise networks are ubiquitious and increasingly com-
plex. The mechanisms for defining security policies in these networks
have not kept up with the advancements in networking technology. In
most cases, system administrators must define policies on a per-application
basis, and subsequently, these policies do not interact. For example, there
is no mechanism that allows a firewall to communicate decisions based
on its ruleset to a web server behind it, even though decisions being made
at the firewall may be relevant to decisions made at the web server. In
this paper, we describe a path-based access control system which al-
lows applications in a network to pass access-control-related information
to neighboring applications, as the applications process requests from
outsiders and from each other. This system defends networks against a
class of attacks wherein individual applications may make correct ac-
cess control decisions but the resulting network behavior is incorrect.
We demonstrate the system on service-oriented architecture (SOA)-style
networks, in two forms, using graph-based policies, and leveraging the
KeyNote trust management system.

1 Introduction

Most enterprise networks are distributed structures with multiple administra-
tive domains and heterogeneous components. Defining and enforcing security
policies in such networks is challenging. It is difficult for an individual or group
of individuals to conceptualize the security policy for such a network, let alone
correctly express that policy in the myriad of languages and formats required by
such an environment.

In an ideal system, an oracle would respond to all security-policy requests
from the network. The complete global policy, as defined by the system admin-
istrators, could be stored and evaluated at the oracle. However, such an oracle
is difficult to construct and clearly does not scale well. Therefore, it is com-
mon practice is to derive from the system administrators’ high-level conceptual
policy a set of policy components where each component is applied to a single
application or node. Each policy component is translated into the appropriate
language for the target application and deployed directly at that application. In
most cases, this task is performed by the system administrator by hand, though
there have been some attempts at automating it, as in [22][24].



1.1 Example

Fundamentally, there is a violation of assumptions that comes from taking a
high-level conceptual policy and componentizing it, either manually or mechan-
ically. Consider the simple e-commerce network in Figure 1. There is a firewall
protecting several computers on which are running a web server and some busi-
ness logic, in the form of, e.g., PHP or ColdFusion, and a database.

Consider a high-level conceptual policy for this network where all connections
should arrive at port 80 on the firewall, authenticate at web server with a user-
name and password, and the business logic must authenticate to the database
using a separate username and password.

Web
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Fig. 1. A simple network. A web server and database are connected to the Internet
through a firewall.

The system administrator must take that high-level conceptual policy and
from it derive a set of policy components. One policy component is the firewall
ruleset which blocks traffic to all ports except TCP port 80. Another compo-
nent is the .htaccess file on the web server indicating that only a particular
username/password may access the files containing the business logic. A final
component is the grant table at the database which indicates that only the
username/password used by the business logic may access the tables for that
application. This is the paradigm under which the policy mechanisms in these
applications have been designed, but in the process of generating these policy
components, path information has been lost.

Consider an unknowing or malicious employee who plugs in a wireless access
point, as in Figure 2. An adversary can connect to this wireless access point and,
through it, connect to the web server and database. Such a connection violates
the conceptual policy determined by the system administrator, but not one of the
policy mechanisms in place will detect it. That is, none of the policy mechanisms
allows for governing how a request arrived at the application, but only what
it requests after arrival. Similar network flaws may occur if, for example, the
firewall accidentally fails open due to misconfiguration or routing changes, or if
an adversary attempts to access the business logic through a different path that
was supposed to be disabled but was not.

When a global policy is distributed across an enterprise network, as in [21],
and each component is evaluated and enforced locally, there is a loss of infor-
mation. We contend that local evaluation and enforcement of a globally-defined
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Fig. 2. A vulnerable network.

policy, even when each request is isolated in a virtual service [20], is an incom-
plete methodology. It fails to address a whole class of attacks, thereby leaving
enterprise networks vulnerable to both outsiders and insiders.

Situations where loss of the pathway information may leave an enterprise
network vulnerable to an attack are quite common. A compromised internal
machine may be used to probe the remainder of the network. A misconfigured
router may allow connections to bypass a firewall. A misconfigured firewall may
allow connections directly to arbitrary internal machines.

1.2 Contributions

In this work, we attempt to dynamically model the paths that requests take
as they traverse an enterprise network and use those models as the basis for
informing policy decisions. Requests traversing invalid paths are barred from
penetrating deeper into the network. In a service-oriented architecture (SOA),
the type of enterprise we focus on in this paper, the path of interaction followed
by a request is a tree. The root of the tree is the first point of interaction
with the network (the firewall in the example above) and the branches of the
tree represent the various actions taken by the network in response to that
request. Enforcing policy consists of examining each pathway to determine that
it followed a proscribed route.

We use a binary view in the policy-enforcement mechanism. Either a policy-
proscribed node is in a pathway, or it is not. However, we also collect additional
fine-grain details about events in each pathway in order to perform aggregate
analysis. By exposing more information to downstream nodes, it is possible for
the policy engine at each node to make decisions based on historical information
or statistical trends. Note that the statistical analysis is not the focus of this
paper and we do not address it further.

Accumulating path-traversal information benefits an enterprise by providing
a simple, low cost, mechanism for preventing attacks that violate system admin-
istrators’ assumptions about allowed or valid pathways. For example, a rogue



wireless point is no longer the danger it once was. A misconfigured firewall will
be more easily detected and many attacks during the window of vulnerability
will be prevented.

In this paper, we present two solutions. The first is a low-cost, high-performance
system that models incoming requests as graphs, where events are nodes and de-
pendencies are edges. The second provides protection in some situations where
internal nodes are untrusted, and it leverages the KeyNote trust management
system[3][4]. We further show that in both cases, the performance overhead is
low.

The remainder of this paper is organized as follows. In Section 2, we discuss
related work in the field. In Section 3, we describe the general architecture of our
two solutions. In Section 4, we give details on their implementation. We evaluate
the work in Section 5 and conclude in Section 6.

2 Related work

In traditional security policy mechanisms, the access-control engine operates as
a gatekeeper on individual nodes. When a principal makes a request, the access-
control mechanism consults a security policy, makes a decision, and goes inactive.
The access-control mechanism (and hence, the security policy) is not consulted
again, regardless of any future actions taken by that principal. This style of
access control was first described by Lampson [26, 27], and refined by Graham
and Denning [17]. for specifying security policies in the form of the access control
matrix, from which the widely used access control list (ACL) is derived. ACLs
consist of a list of tuples:

< subject, object, access rights >

that define the security policy for the system – which subjects have which access
rights on which objects.

ACLs do not scale well in all cases, so in enterprise networks they are often
replaced by role-based access control (RBAC) [29, 16, 15]. RBAC is now the
predominant model for advanced access control. Each principal is assigned one
or more roles, and each role has an associated list of privileges that are permitted
members in the role. Both ACLs and RBAC are useful tools, and may play
some part in the systems proposed in this paper, but alone they do not solve
the problems we have described. In both cases, there paradigm for interaction
between individual enforcement points.

Most prior work in the policy field can be divided into three major categories:
policy specification [3, 10], resolving policy conflicts [23, 9], and distributed en-
forcement [30, 25].

In their work in the field of trust management, Blaze, et al., [5, 6, 2] built
PolicyMaker, a tool that takes a unified approach to describing policies and
trust relationships in enterprise-scale networks by defining policies based on cre-
dentials. It is based on a policy engine that identifies whether some request r

with credentials c complies with policy p. In PolicyMaker, policies are defined



by programs evaluated at runtime. SPKI [12–14] is a similar mechanism that
uses a formal language for expressing policies. In both cases, the focus is on
trust management rather than policy correctness. Both systems could be used
as component in a solution to the pathway attacks but alone, they are insuffi-
cient.

Bonatti, et al., [7] propose an algebra for composing heterogeneous security
policies. This is useful in networks with multiple policies defined in multiple
languages (i.e., most networks today). However, this system requires that all

policies and supporting information and credentials be available at a single de-
cision point.

When there are multiple policies or multiple users defining policy there is
always the possibility of conflict [9]. The problem is exacerbated in large-scale
networks.

The STRONGMAN trust management system [24] focuses on the problem
of scaling the enforcement of security policies and resolving policy conflicts. In
STRONGMAN, high-level, abstract security policies are automatically trans-
lated into smaller components for each service in the network. STRONGMAN
features no provision for future interaction between components.

Firewalls [8, 28] are one of the most common and most well-known mecha-
nisms for policy enforcement. However, nearly all firewall research has focused on
isolated firewall nodes and the specifics of the enforcement mechanisms, rather
than policy coordination.

The Oasis architecture [19] takes a wider view and uses a role-based system
where principals are issued names by services. A principal can only use a new
service on the condition that it has already been issued a name from a specific
other service. Oasis recognizes the need to coordinate the dependencies between
services, but since credentials are limited to verifying membership in a group or
role, it is necessary to tie policies closely to the groups to which they apply.

The Firmato system [1] is a firewall management toolkit. It provides a portable,
unified policy language, independent of the firewall specifics. Firewall configu-
ration files are generated automatically from the unified global policy. Firmato
is limited to packet filtering, and the complete policy must be available at the
policy-enforcement point so Firmato may not scale well in large networks.

Hale, et al., [18] propose a ticket-based authorization model to manage dis-
tributed policies. In this architecture, each network is managed by a controlling
mediator communicating with a central policy repository. The mediator serves
as a middleware layer, facilitating communication between disparate objects and
principals.

Vandenwauver, et al., [31] use a combination of mail, web and script-based
attacks to show that any intranet protected solely by firewalls and intrusion
detections systems cannot be made completely secure.

In [21], the authors use KeyNote to distribute firewall rulesets, allowing end-
point nodes to perform enforcement independently. The path-based access con-
trol mechanism can be viewed as an extension of the distributed firewall system,
allowing each endpoint node to incorporate the path of the request into its policy



evaluation. The path-based system can further be viewed as an instantiation of
the virtual private services described in [20]. Each request is presented a view
of the network (a “private service”) that is customized, based on the path the
request has taken up to that point.

3 Architecture

In this section, we describe our two mechanisms for implementing path-based
access control. The systems differ primarily in the mechanism by which the
policy is evaluated. In the first system, we model policies and incoming requests
as graphs, and we evaluate the policies by comparing the graphs representing
actual requests with the policy graphs. The second system extends the first by
modeling incoming requests and policies as KeyNote assertion chains.

Both systems are designed for use in SOA-style networks, so policy definition
consists of defining trees representing valid requests. The policy distributed to
each node is a list representing the path from the root to that node in the policy
graph. This technique is simple and can be performed quickly, making it a good
fit for dynamic networks where request patterns change quickly.

In both systems, the threat we consider is one where an adversary is attempt-
ing to access the network through unauthorized pathways. That is, pathways
which have not been explicitly allowed by the system administrator.

3.1 Graph-based access control

Firewall

Web server Business logic

Database

File server

Fig. 3. The tree of applications handling a request.

The goal of this system is to forward information about access control-related
events at each application to subsequent applications. The accumulated infor-
mation is used by a policy engine co-located with the application to detect
pathway-violation attacks.

At each application, a small program called a sensor observes information
regarding access-control events and forwards that data to downstream nodes.
We packetize this data and call each packet an event. Sensors are situated such
that they can observe their target applications and report on the access-control
decisions made therein. These can often be very simple. For example, the sensor
for the Apache web server parses the Apache log and error files for reports on
authorization attempts. Each entry for an authorization attempt in the log files
is an event.



Second-order sensors, called correlation sensors, use additional information
reported by the sensors to correlate events on a hop-by-hop basis. For example
the events generated by the Apache sensor are correlated based on the time,
the source port, and the IP address, with packets departing the firewall. The
complete data set received by a downstream node is a chain, linking the incoming
request with the source principal and all intermediate hops in the network. Thus,
the policy decision made by Apache can be re-evaluated based on the additional
information obtained from the firewall’s access control decision.

Reactive systems like this, as with most intrusion detection systems, depend
on the inviolability of the sensor network. This requires particular attention
be spent designing and securing the sensors. In this paper, we do not address
attacks wherein the sensor network itself is compromised, though we do note that
the KeyNote-based system will alleviate some of those attacks. Sensors may be
further protected by lifting them into a hypervisory role, or by isolating sensors
and applications through virtual machines, as in [11].

Note that the overall path taken by a request as it traverses a network is a
tree, as in Figure 3. However, the path taken by a request from its arrival in the
network to a given node can be viewed as a tree-traversal from the root to a
leaf. This path is necessarily linear. As a request passes through a network, the
events generated by the sensors associated with it represent the linear path of
that request.

By situating correlation sensors between hosts and between applications, the
graph is propagated across the network. Each node in the graph receives the
access control decisions made by all its upstream nodes, and this is used to
inform future access control decisions.

To enact the access control mechanism, we define the policy at each node as
a graph, as shown in Figure 4. The graph representing an incoming connection
must match a policy graph in order for the connection to be accepted. However,
since the graph is always linear, the policy takes the form of a list of applications
over which the request must traverse. Any request taking an unexpected pathway
will necessarily be detected and rejected in this manner.

Firewall Web server

Firewall Web server Business logic

Firewall

Web server Business logic

Database

(a)

(b)

(c)

Fig. 4. A graphical representation of the policy at (a) the web server (b) the business
logic and (c) the database.



For example, the policy evaluation at the business logic consists of a traversal
of the graph delivered from the upstream node to verify that each node from
Figure 4b appears, and is in the correct order.

3.2 KeyNote-based access control

This system can be viewed as an extension of the graph-based access-control
system. In the graph-based system, we build a linear graph representing the path
a request took from its entry on the network to a given host. In this system,
we leverage the cryptographic tools and trust-management capabilities of the
KeyNote system to build a certificate chain representing the path taken by a
request from its entry to a given host.

Like all reactive, sensor-based systems, the previously-described graph-based
system is vulnerable to malicious internal nodes. That is, a compromised or
otherwise malicious intermediate node on the path between an application and
the entry point for a request can modify the graph dataset before forwarding it.
The addition of the KeyNote system protects from some classes of such attacks.

In the KeyNote system, events in the network (e.g., login attempts, file re-
quests) are reported in the form of KeyNote credentials, and policy is evaluated
locally at each node by the KeyNote compliance checker. Traditional KeyNote
credentials allow principals to delegate authorization to other principals, while
in the path-based access control scheme, KeyNote credentials delegate autho-
rization for handling a request from a given application to the next downstream
application.

When an event is generated at a host A and the request processing then
moves on to some second host B, a correlation sensor generates an event in the
form of a KeyNote credential. That is, it is a signed assertion describing the
form of the event, with authorizer A and licensee B. For example, the following
credential might be issued by a firewall when it redirects an incoming request to
a web server.

KeyNote-Version: 2

Comment: Forward request to web server

Local-Constants: FW_key = "RSA:acdfa1df1011bbac"

WEB_key = "RSA:deadbeefcafe001a"

Authorizer: FW_key

Licensees: WEB_key

Signature: "RSA-SHA1:f00f2244"

KeyNote provides an additional field Conditions. Here, that field is unused.
Credentials are chained such that the licensee for each event is designated as
the next hop in the graph. In the e-commerce example, an event generated at
the web server and passed to the database would include the previous credential
along with the following.

KeyNote-Version: 2

Comment: Send SQL SELECT statement to the DB



Local-Constants: WEB_key = "RSA:deadbeefcafe001a"

DB_key = "RSA:101abbcc22330001"

Authorizer: WEB_key

Licensees: DB_key

Signature: "RSA-SHA1:baba3232"

The first link of the credential chain is created by the firewall. This credential
binds the principal to the first hop in the chain. The key for the principal is
randomly generated, and then cached, at the firewall. Such a credential takes
the following form:

KeyNote-Version: 2

Comment: New principal at the firewall

Local-Constants: P_key = "RSA:ffeedd22eecc5555"

FW_key = "RSA:acdfa1df1011bbac"

Authorizer: P_key

Licensees: FW_key

Conditions: hop0 == "PRINCIPAL"

Signature: "RSA-SHA1:ceecd00d"

As a request progresses through the network, the result is a chain of creden-
tials that link the incoming request at a given node back through each interme-
diate node to the principal.

The policy at each node then is a list of keys, in order, that must be in
the credential chain. It is similar in concept to the policy definitions shown in
Figure 4, but with each node is also associated a key. As the set of credentials
arrives at each node, the local KeyNote compliance checker verifies that the set
comprises a chain. If successful, the policy engine then traverses the chain to
verify that the keys occur in the order expressed in Figure 4. If either step fails,
the request is blocked.

4 Implementation

Each of these systems were implemented in the Python programming language.
Sensors were written and deployed for the OpenBSD PF firewall, Apache, PHP,
and MySQL, among other applications. These sensors parse the log files and
observe other behavior of each application in order to generate events describing
the access control behavior of each. The correlation sensor engine, an instance of
which is deployed between each pair of neighboring sensors, maintains a cache
of recently-observed events and generates correlation events based on runtime-
configurable fields from the event descriptions. Each time a correlation between
two events is made, the two events and an event describing the correlation be-
tween them is forwarded to the next-hop application, along with all previously
accumulated events and correlations associated with the request.

At each application, requests are intercepted by a local firewall and redirected
to the local policy engine. This engine delays the request in until the graph arrives
from the upstream node. The policy engine traverses the graph and verifies that it



conforms to the administrator-defined policy. If the graph validates, the request
is allowed to continue to the application, and the graph information is passed to
the application sensor.

The KeyNote implementation is similar, but where the graph-based system
generated events with arbitrary fields, this implementation generates KeyNote
credentials using the KeyNote credential format. The policy for the credential
chain is evaluated using the KeyNote compliance checker, through the pykeynote
module.

5 Evaluation

PF

Internet

10.0.0.3

10.0.0.2

10.0.0.1 MySQL

Apache

Fig. 5. Testbed network. The OpenBSD PF firewall protects an Apache web server
and MySQL database.

We evaluated these two systems on a testbed network consisting of an OpenBSD
PF firewall, an Apache web server running PHP 5.2.3, and a MySQL 5.0.45
server. The network is deployed as shown in Figure 5. The only unblocked in-
coming port on the firewall is port 80. The firewall also performs network address
translation (NAT) so the internal machines have IP addresses in the 10.0.0.0 net-
block. The testbed application consists of a PHP application which loads and
displays a 1MB image from the MySQL database.

The high-level conceptual policy for this network, that is, the policy as it
might be expressed informally by the system administrator, is that all connec-
tions into this network must be vetted by the firewall to guarantee that they are
arriving on the correct port, then processed by the web server and PHP engine,
and finally passed to the database. In the attack scenario, a wireless access point
is attached to the network as shown in Figure 6. This opens the potential for
incoming connections to access the web server or database without first being
processed by the upstream nodes – an assumption-violation attack.

We evaluate the system on two fronts: performance and effectiveness. Perfor-
mance is measured by timing batch requests made on the system. Effectiveness
is analyzed by attempting to detect previously-unseen assumption-violating at-
tacks.

The graph-based access control system is deployed on the testbed network as
follows. Sensors are deployed on the network interfaces of all machines, including
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Fig. 6. Vulnerable testbed network. A wireless access point has been connected to the
network, allowing traffic to the web server that has not traversed the firewall.

both network interfaces of the firewall, and at the firewall, web server, PHP
engine, and database themselves. Correlation sensors are placed between each
neighboring pair of nodes. When a request arrives from an external host, it
is processed by the firewall and the sensor on the external network interface.
As the request is subsequently processed by the firewall engine itself, and then
forwarded out through the internal network interface, the sensors generate events
which are linked by correlation sensors. The graph thus generated is collected
and forwarded from node to node as the request progresses through the network.

The conceptual policy for this network is that all requests must pass, in order,
from the firewall to the web server to the database. We derive the actual policy
for each node from the conceptual policy by determining the path that a request
must travel in order to reach that node. Thus, the policy at the database is that
it will only handle requests that have traversed the firewall and web server. The
policy at the web server is that it will only handle requests that have traversed
the firewall. The policy definition for each application consists of an ordered list
of nodes. Policy evaluation is simply a matter of traversing the linear graph built
by the sensors and correlation sensors to verify that the nodes occur and are in
the correct order.

One test of the effectiveness of this system consists of attempting to connect
to the web server and database directly, through a wireless access point. As the
request does not pass through the firewall, in the case of the web server and the
case of the database, the requests are denied.

The KeyNote-based system is deployed on the same network. In KeyNote,
the policy, rather than being a list of nodes, is a list of keys. The credential chain
have have signed credentials, in the correct order, from each of those nodes. E.g.,
the policy at the database is that the credential chain must have credentials
signed by the web server and firewall, in that order. Policy evaluation consists
of verification that the credential chain is, in fact a chain, and then a search of
that chain for the policy key list.

One test of the effectiveness of the KeyNote system is similar to the tests for
the graph-based system. Requests on the firewall are handled as expected, and



requests through the wireless access point are blocked as the credential chains
thus generated are incorrect.

We analyzing the performance of these systems by determining the overhead
incurred by the additional network traffic and processing over the vanilla net-
work. The test application deployed in this network loads files stored in a table
in the MySQL database. The test file was 1 megabyte of binary data, and the
time for the vanilla system to return that file, from request arrival to completion
of the file transfer 162ms, averaged over 25 trials. The average handling time for
the graph-based system was 317ms, averaged over 25 trials. The average han-
dling time for the graph-based system was 1.12s, averaged over 25 trials. It is
important to note that the overhead is independent of the size of the file being
transferred.

The overhead in these systems is due primarily to the intentional delay on
each incoming request, until the associated graph information catches up, and
then by the policy engine performing a linear-time check on that graph.

Thus, we find that in the graph-based system the overhead for a three-node
network is 155ms, or approximately 50ms per node. In the KeyNote system,
the overhead is 958ms, or approximately 320ms per node. The additional over-
head in the KeyNote-based system comes from the substantial cryptographic
requirements of the KeyNote architecture.

6 Conclusion

In this work, we have described a mechanism for enhancing the current class
of access control mechanisms to protect against a new class of attacks. These
attacks take advantage of the fact that, in the process of converting a security
policy from its conceptual, high-level, format to its distributed, low-level, form,
information is lost. We describe two systems for defending against this new class
of attacks, and show that the overhead incurred in these systems is relatively
low.
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