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Abstract

Current NAC technologies implement a pre-connect phase where the status of a device is checked against
a set of policies before being granted access to a network, and a post-connect phase that examines whether the
device complies with the policies that correspond to its role in the network. In order to enhance current NAC
technologies, we propose a new architecture based onbehaviorsrather thanrolesor identity, where the policies
are automatically learned and updated over time by the members of the network in order to adapt to behavioral
changes of the devices. Behavior profiles may be presented asidentity cards that can change over time. By
incorporating an Anomaly Detector (AD) to the NAC server or to each of the hosts, their behavior profile is
modeled and used to determine the type of behaviors that should be accepted within the network. These models
constitute behavior-based policies. In our enhanced NAC architecture, global decisions are made using a group
voting process. Each host’s behavior profile is used to compute a partial decision for or against the acceptance of
a new profile or traffic. The aggregation of these partial votes amounts to the model-group decision. This voting
process makes the architecture more resilient to attacks. Even after accepting a certain percentage of malicious
devices, the enhanced NAC is able to compute an adequate decision. We provide proof-of-concept experiments of
our architecture using web traffic from our department network. Our results show that the model-group decision
approach based on behavior profiles has a 99% detection rate of anomalous traffic with a false positive rate of
only 0.005%. Furthermore, the architecture achieves shortlatencies for both the pre- and post-connect phases.

Keywords. Network Access Control Technologies, Intrusion DetectionSystems.

1 Introduction

Network Access Control (NAC) technologies manage the access of devices to a network and mitigate against inside
threats within a network. This is accomplished by implementing a two-tier strategy: the pre-connection and the
post-connection phases. The pre-connection phase checks whether a device attempting to connect to a network
complies with a set of policies. These policies typically include checking the status of the antivirus (AV) software in
the device and whether or not the required patches for the OS are installed. If the device is not up-to-date, it is either
quarantined or rejected from connecting to the network. Thepost-connection phase controls whether the policies
(AV software, patches) are still being complied with by the network hosts. It may also include traffic monitoring
meant to detect any anomalous traffic using Signature-basedor Anomaly-based Detection Systems (AD).

The current generation of NAC technologies rely on the use offixed roles in the network. A list of roles is
initially declared manually using a pre-determined set of characteristics. Devices are then provided with roles in
the network that can only be changed manually. These roles are not only used to decide what devices are granted
access to the network, but also to monitor what type of actions are allowed for each device. In reality, networks are
very dynamic environments where devices may change roles ornew roles may have to be created. Unfortunately,
updating and defining new roles manually becomes very demanding and highly inefficient as time elapses. Ideally,
we seek a solution that can define and update roles automatically without the inception of a human in the loop.

In this paper we introduce a new Behavior-Based Network Access Control architecture,BB-NAC, in which the
behavior profiles of network hosts modeled by an AD are used toautomatically compute and update behavior-based
policies to enhance security. This new strategy enhances current NAC technologies by accounting for host behavior
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and its changes. The use of behavior profiles allows us to automatically conform to changes in behavior and update
security policies without human intervention. In our proposed architecture, AD sensors are used to model the profile
of the hosts in the network. Profiles are communicated by devices as a representation of their typical behavior.
As behaviors change, updated models computed by the AD are captured as new behavior profiles. These behavior
profiles can be used as a declaration of intent of behavior. Inthis manner, devices that drift from their profile are
either under attack or have lied about their typical behavior.

In terms of deployment, BB-NAC can be implemented either as an agent NAC architecture where the AD is
installed directly on each of the hosts in the network, or alternatively as an agentless NAC architecture using a
unique AD installed on the NAC server. Here a NAC server denotes a server that sits on the edge of the network and
listens to incoming and outgoing traffic. In an agent NAC architecture, each host computes its behavior profile and
communicates it to the NAC server. In an agentless NAC architecture, the NAC server itself models the individual
behavior of each host in the network and stores its profile locally. By modeling each profile individually, rather than
as a group, profiles of similar behavior can be clustered together and differentiated from other types of behavior.
As an aside, we note that our architecture can be applied to networks without a central control like Mobile Ad-hoc
Networks (MANETs) by eliminating the NAC server from the architecture. The latter is beyond the scope of this
paper. In the following sections, we present a generalized description of the architecture that can be implemented
either as an agent or as an agentless version with minor modifications.

In terms of execution, the BB-NAC architecture performs pre-connection and post-connection checks based
upon a group decision made by the NAC server using the profilesof the devices already in the network. During
pre-connection, a device attempting to access the network presents its profile to the NAC server that conducts a
voting process among the stored profiles of the hosts alreadyin the network to reach an access control decision.
During post-connection, the validity of the traffic exchanged is similarly voted by the profiles in the network. If
the group decision is positive, the device is granted accessto services. Otherwise, the device is either quarantined
or rejected from accessing a service. Individual hosts do not participate actively in the voting process, but rather
it is the NAC server that conducts the voting among the group of individual models (profiles) stored on the NAC
server. Throughout the paper, we refer to decisions made in this manner asmodel-group decision. Such model-group
decision process increases the survivability of the network by minimizing the influence of malicious profiles. As
mentioned previously, profile clustering is introduced to attain a more fine-grained definition of network behavior. In
this manner, only hosts in clusters with sufficient knowledge participate in the voting process. Below we summarize
the main contributions of this paper:

• A new technique to automatically learn and update access control policies using behavior. This approach
enhances existing NAC technologies by providing, to the best of our knowledge, the firstbehavior-based
network access control.

• A novel access control model based on a model-group decisionprocess. Individual host’s behavior profiles
stored on the NAC server are used to compute partial decisions. The aggregation of these partial votes amounts
to the model-group decision.

• An architecture resilient to attacks. The access control model continues to work even after allowing a certain
number of malicious devices into the network.

• An implementation for agent or agentless NAC technologies.By installing an AD on the NAC server or on
the hosts, the model-group decision process is conducted bythe NAC server in similar fashion.

• An architecture that is independent of the type of AD sensor used: content ADs, volumetric ADs, or others.

In Section 2 we describe related work. Section 3 introduces the BB-NAC architecture. Section 4 shows experi-
mental results and latency analysis of our architecture. Finally, Section 5 covers conclusions and future work.
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2 Related Work

To the best of our knowledge, we are the first to introducebehavior model exchangeas a security feature. Possi-
bly the closest concept to our approach was developed by Necula and Lee [5], [4] and [6] in their Proof-Carrying
Code (PCC). However, our approach differs in the fact that behavior can be automatically learned from observation,
whereas proofs are specified by hand. Furthermore, our architecture proposes the exchange of behavior models
instead of safety proofs.Cooperative Anomaly Detection Sensorshave been explored in WORMINATOR [8], COS-
SACK [7] and CATS [3] where a distributed environment sharesalerts to strengthen each individual local security
capabilities. We implement the concept of cooperation in the model-group decision process by allowing each host
to participate in the access control decision rather than just sharing alerts.

A number of NAC technologies are currently available in the market. TheTrusted Network Connect(TNC) is
an initiative of theTrusted Computing Groupthat proposes a non-proprietary standard to enable the enforcement of
security policies on endpoints.Cisco Network Module for Integrated Services Routersoffers an agentless solution
authenticating, authorizing and remediating devices connected wired or wirelessly to the network. TheCisco Profiler
executes an in-depth control of the endpoint devices of the network by passively monitoring their traffic. The
Network Access Protection(NAP) platform fromWindows, provides a client and server-side platform ( Longhorn) to
implement policy validation, network access limitation, automatic remediation and ongoing compliance. Compared
to all other previous NAC technologies, our architecture uses behavior computed by an AD instead of roles (host
posture) as a security feature.

3 The BB-NAC Architecture

We start with the conjecture that behavior modeled by an AD can be used as a means to enhance and automate
security enforcement in a NAC architecture. We assume that profiles or behavior models represent the typical
behavior of a device. As opposed to roles, profiles can be automatically computed and updated by an AD as a device
changes behavior over time. In our architecture, devices initially present their profiles to the NAC server prior to
entering a network. Devices are also required to present abad modelthat represents a collection of all previously
seen bad attacks modeled using the same AD. The bad model measures the amount of knowledge the device has
about known bad behaviors and might be considered a generalization of the set of rules or signatures used in a
standard AV.

BB-NAC then follows the two-tier strategy commonly used in NAC architectures except that thepre-connectand
post-connectphases are both based on a model-group decision process conducted on the NAC server i.e., an alert is
raised whenever a set of profiles agree on the access control decision being made. Furthermore, the access control
policies in the NAC are computed and updated automatically as the ADs compute new models. Thepre-connect
phasechecks whether a device entering the network has up-to-datemalware knowledge. Devices that do not have
sufficient malware knowledge are quarantined or rejected from entering the network altogether. On the other hand,
the post-connect phaseis responsible for a continuous check of the traffic exchanged by the hosts in the network.
The two-tier strategy is applied on a per-port basis. In the case of multiple ports, the two-tier strategy is executed
separately for each individual port. The device is acceptedonly when it is deemed normal for all ports. Next, we
describe the pre- and post-connect phases in more detail.

3.1 Pre-connect Phase

The pre-connect phase is responsible for checking whether adevice attempting to enter the network has sufficient
malware knowledge. During this phase, a device presents itsbehavior profile as well as its bad model to the NAC
server. If the device is coming from a different network, theprofiles presented are the ones modeled by the AD
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Figure 1: Basic setup of the BB-NAC architecture. The NAC server stores the behavior profiles and bad models of
each host in the network. It also stores the cluster information. Here,Mi = {Pi, Bi}.

during its previous interactions. Otherwise, if the deviceis brand new, we assume that it is equipped with avanilla
profile or that it is given one by the network administrator prior to starting its interaction. Next, the NAC checks
whether the device’s bad profile contains sufficient malwareinformation to be accepted to the network. This step is
similar to conventional NAC approaches where the status of the AV is checked to determine whether it is up-to-date.
However, in our solution the access control decision is based on the group knowledge of malware among the hosts
already in the network. This is unlike current NAC architectures where the amount of malware knowledge required
is manually set up as a policy.

In order to attain a more accurate access control, only hostswith similar profiles to the one attempting to enter the
network will be involved in the access control decision. TheNAC server divides the devices into clusters representing
different behaviors. These individual clusters are then responsible for the access control decision. If the device is
accepted, the NAC server will add its profile to the corresponding cluster. For simplicity, in this paper we assume
that the clusters of behavior are formed based on thedeclaration of natureprovided by the device itself i.e., a device
declares itself to be aclient or aserver. As a rule, it is required that a device of the same type already exists in the
network. Obviously, it may be the case that a device lies about its true nature. However, if a device starts behaving
anomalously, it will be detected in the post-connect phase.

Figure 1 shows the basic setup of our architecture. As can be seen, for any givenPort ’x’ there are two differen-
tiated clusters: one for clients and one for servers. For each cluster, the NAC server stores both the profile and the
bad model of its host members. We useMi to denote the set of behavior profile (Pi) and bad model (Bi) for each
hosti i.e., Mi = {Pi, Bi}. The behavior-based access control policy is determined bywhether or not the device’s
knowledge of malware is considered sufficient by the membersof the cluster of identical nature. In short, each of
the bad profiles in the cluster participates in a voting process to make an access control decision defined as:

V = (

n∑

k=1

vi)/n (1)
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vi = 1, if Bi ⊂ Bdevice

vi = 0, if Bi ⊃ Bdevice (2)

wheren denotes the number of hosts that vote, where each votevi equals 1 when the new device knows at least
as many bad attacks as hosti, andvi = 0 when the new device knows fewer attacks that hosti. V represents the
fraction of hosts in the cluster that consider the device’s bad model has sufficient malware knowledge. The driving
principle behind this calculation is a quantitative measurement that can grant or deny entrance to the network based
on the agreement of a certain percentage of network host profiles. It may be the case that a group of malicious
profiles collude to manipulate the vote. However, our architecture can withstand such attacks as long as the number
of malicious profiles in the network does not dilute the percentage of agreement required among host profiles. In
Section 4, we describe the impact of possible attacks on our architecture.

Figure 2 depicts the voting process. AtStep 1, the NAC server listens to a new server attempting to connect
to the network. This new server presents its profile and bad model to the NAC server. DuringStep 2, the NAC
server conducts the voting process among bad models in the cluster to determine whether the malware knowledge is
sufficient. Finally atStep 3, the accepted server is added to the cluster of servers and its profile and bad model are in
the NAC server. In terms of deployment, the voting process isalways conducted by the NAC server using the stored
host profiles for both the agent and agentless versions of thearchitecture.

3.2 Post-connect Phase

The post-connect phase performs a continuous check on the traffic being exchanged by the hosts in the network.
The goal is to guarantee normalcy of behavior in the network.In our architecture, this is achieved by using the
profiles of each individual host in the network that are stored in the NAC server. Armed with these profiles, BB-
NAC determines whether or not the traffic is considered anomalous using a model-group decision process. The
post-connect phase makes use of the clusters computed in thepre-connect phase. Profiles of similar behavior are
clustered together so that only profiles akin to the source ordestination of the traffic participate in the decision of
traffic normalcy. Our architecture conducts a voting process where each profile votes for or against the normalcy of
the observed traffic. The voting process is defined as:

V = (

n∑

k=1

Pk,d(t))/n (3)

wherePk,d represents the behavior profile of hostk for directiond (ingress or egress) in a cluster withn hosts.
Because the traffic can be analyzed either at a packet or flow level, t denotes the granularity (packet or flow) at which
the traffic is tested against the AD profiles. The output ofPk,d(t) equals 1 if the traffic unit is considered normal by
Pk,d and otherwise 0 if it is considered anomalous.V represents the fraction of hosts in the network that consider
the traffic unit to be normal. In Section 4, we discuss the impact of malicious devices trying to manipulate the
voting process. Another key ingredient of the post-connectphase is that the observed traffic is used to compute new
behavior profiles for each of the hosts as time elapses. If theobserved traffic is considered normal by the cluster, it is
used to compute a new profile for the members involved in the exchange. On the other hand, if the traffic is deemed
anomalous, it is used to update the bad models of the hosts in the cluster. These new computationsautomatically
update the pre-connect and post-connect security policies. Issues concerning concept drift are addressed in Section
4.3. In terms of deployment of the agent version of the architecture, new profiles are computed by the hosts and
communicated to the NAC server which stores them locally. Inan agentless version, on the other hand, the NAC
server itself computes the new profiles and stores them locally. In both versions, the voting process is always
conducted by the NAC server among the profiles stored locally.
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(c) Step 3: New server is accepted and NAC status is updated.

Figure 2: Schematics of the Pre-connect Phase.

Figure 3 depicts a possible scenario during the post-connect phase. In this setting, traffic is exchanged from host
1 to host 5 (Step 1). DuringStep 2, the NAC server implements two checks. First, it checks whether the output traffic
of host 1 is considered normal by host 1 and all the other profiles in its cluster. Second, it checks whether the input
to host 5 is considered normal by host 5 and all the other profiles in its cluster. In this instance, the second check
reveals an attack. As presented, this two-layer check makesthe architecture more resilient to insider threats. Next,
in Step 3, the source is placed into quarantine to determine whether or not it is infected. Lastly inStep 4, the NAC
server updates the malware knowledge of the bad models and updates the queue with the hosts in quarantine.

4 Experiments and Evaluation of the Architecture

For initial evaluation of our architecture, we collected web traffic from the Computer Science department network
of our institution (anonymized for this submission) for a period of three weeks. We only considered IPs within the
local network and divided them into two clusters:serversandclients. The nature of the machines is known from the
collection of local IPs kept by the department. Since the pre- and post-connect phases are executed separately for
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Figure 3: Schematics of the Post-connect phase.

each individual port, we chose port 80 to validate our architecture. Experiments for other ports would be executed
in a similar fashion.

For our proof-of-concept experiments, we modeled the profiles of all the webservers (a total of four) in the
department using the anomaly detection sensor Anagram [11]. Anagram is a content anomaly sensor that models a
mixture of n-grams to detect suspicious network packet payloads. The profile content models are saved as Bloom
filters [1] which are space and privacy preserving data structures consisting of a vector of 0s and 1s. In general,
Bloom filters suffer from false positives but not from false negatives. Furthermore, Bloom filters can be exchanged
among devices and NAC servers minimizing the risk of privacyviolation. Although we only used Anagram, it is
important to note that our architecture is flexible enough toallow any AD to be used.

In order to compute the profiles, we used between 370K and 700Kclean training packets obtained from the first
two weeks of the collected traffic. These profiles were trained until stability was reached i.e., the point in time when
the ratio of observed n-grams divided by the total number of n-grams was below a threshold. In addition, thebad
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modelsfor each webserver were computed following the technique described by Wang et al. [11]. Each profile was
trained with signature content from Snort rules [9] and with600 virus samples collected fromvxheavens[10]. In
terms of actual deployment in a network, the BB-NAC architecture would have to be installed in a NAC server at
the edge of the network. In addition, the NAC server would have to store the profiles and bad models of each of the
webservers in theserver cluster.

4.1 Evaluation of the Pre-connect phase

In order to add artificial diversity to our network and createa more meaningful proof-of-concept experiment, we
compute a bad model for each of the four webservers in such a way that each bad model contains 10% less malware
knowledge than its previous model. Such computation is meant to simulate the behavior of users that have forgotten
to update their AVs one or multiple times. Therein,server1’s bad model contains all the collection of Snort rules and
virus samples,server2’s bad model contains 10% less thanserver1randomly excluded from the collection,server3’s
bad model contains 10% less thanserver2randomly excluded from the collection, andserver4’s bad model contains
10% less thanserver3randomly excluded from the collection. While in a real network percentages may vary from
server to server, a value of 10% was arbitrarily chosen for this proof-of-concept experiment to validate that the access
control policy functions properly.

In our setup, we assume that three out of the four webservers are members of the network and that the fourth
device (self declared as a server) attempts to enter the network. This configuration allows us to evaluate three
different scenarios: (i) Only one server agrees on the acceptance of the new server (one out of three, 33%), (ii) Two
servers (66%) agree on the acceptance of the new server, and (iii) All three (100%) servers agree to accept the new
server to the network. Given the fact that the bad models are represented as Bloom filters, each vote in the voting
process is calculated as follows:

vi = 1, if |Bi ∧ Bdevice| / |Bi| = 1

vi = 0, if |Bi ∧ Bdevice| / |Bi| < 1 (4)

wherevi is the vote of serveri, Bi is the bad model of serveri, andBdevice is the bad model of the device
attempting to enter to the network. Here,∧ represents the bitwise AND between two Bloom filters and|| denotes
the number of 1s of the resulting AND. Equation 4 calculates the fraction of 1s in common between a network host
bad model and a new device bad model with respect to the numberof ones in the network host’s bad model. In other
words, the cardinality of the AND measures how different or similar two models are to each other. If the device’s
bad model is equal to or it is a superset of serveri bad model, its final vote isvi = 1. Otherwise, if the new device’s
bad model is a subset of the serveri bad model its final vote isvi = 0. The final group vote is represented by the
percentage of devices that agree on the decision, as expressed in equation 1.

In order to avoid attacks in which the new device presents a Bloom filter filled with all 1s as its bad model, or one
computed with good and bad traffic meant to trick the vote in equation 4, the presented bad model is also checked
against all normal profiles already in the network. If normaltraffic is detected as part of the bad model, the device
is rejected. This process is accomplished by calculating the AND cardinality of the presented bad model with each
of the host profiles. Any cardinality above the false positive rate of the Bloom filter (which means that common
n-grams exist) will reject the device.

Table 1 shows the pre-connect results after conducting the voting process for the three different scenarios pre-
viously described. The top entry in each column represents the server attempting to get connected to the network.
The remaining three servers represent the devices making the decision. For instance, in Column 2 we assume that
the hosts already in the network areserver1, server2andserver3while server4is attempting to enter the network.
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Scenario server4in server3in server2in server1in

(i) 33% REJ ACC ACC ACC
(ii)66% REJ REJ ACC ACC

(iii) 100% REJ REJ REJ ACC

Table 1: Voting process results for the Pre-connect phase.ACCdenotes a device accepted to the network andREJ
denotes a device rejected from entering to the network.

In Column 3,server1, server2andserver4are considered to be the network hosts andserver3is the one attempting
to access the network. Similar reasonings apply to the remaining columns.

As can be seen in Column 2,server4is rejected in all cases since its bad model is the one with theleast malware
knowledge of all. Whenserver3attempts to enter the network, its malware knowledge is a superset ofserver4.
Therefore, it is only accepted when one device needs to agreeon the pre-connect decision. However, becauseserver3
is only a subset of the bad models ofserver2andserver1, it is not accepted for higher rates of required agreement.
Similar reasonings apply forserver2andserver1. Note that different specific percentages in the voting process result
in a more or less strict access control. More importantly, the results show that as long as the specific percentage of
clean profiles is kept in the network, the voting process willbe resilient to attacks by malicious devices that lied
about its bad profile in order to manipulate access control. Future work will focus on applying control-theoretic
concepts in a feed-back loop to provide an automated means ofcalibrating the sensitivity of the decision process. In
case of failure, a network manager may fine tune the decision process to impose a predefined policy.

Devices rejected during this phase are placed in quarantinewhere the device’s bad model is tested against a
group of known attacks, so that a new reinforced bad model (Bloom filter) can be computed. The main advantage
of having the malware knowledge in a model (Bloom filter), as opposed to having a list of signatures, is the fast
processing time. AND-ing Bloom filters and calculating cardinalities is a much faster process that comparing signa-
tures. Finally, we emphasize the importance of balancing the strictness of the access control with the latency of the
system. Obviously, very demanding access control policiestypically result in longer latencies due to quarantines.
However, less demanding access control policies risk further attacks to the network.

4.2 Evaluation of the Post-connect phase

We used the third week of collected traffic to test the post-connect phase in the BB-NAC architecture. For every
incoming packet to any of the webservers, each server votes on the normalcy of the packet using its model or
behavior profile. The evaluation of the post-connect phase is achieved by computing the false positive (FP) and
detection rates (DR) of the voting process. In this context,FP represents the percentage of normal traffic falsely
identified as anomalous by the group of network hosts, while DR denotes the percentage of bad traffic deemed as
anomalous by the group of hosts. In order to measure the FP andDR of the voting process, we poisoned the collected
traffic with the following known worms and viruses captured from real traffic: three versions of CodeRed, CodeRed
II, WebDAV, a php forum attack, Mirela and the nsiislog.dll buffer overflow vulnerability (MS03-022) which exploits
the IIS Windows media service.

We explore four different scenarios for the voting process:(i) A 25% of agreement among webservers is required.
Since we are only considering four webservers this translates to a voting process in which only one vote is needed
for an anomalous designation. (ii) A 50% of agreement among webservers is required, which means that at least
two webservers have to agree on the anomalous nature of the observed traffic. (iii) 75% of the webserver’s profiles
have to agree on the decision (3 webservers in our network) and (iv) A 100% agreement, in which all profiles have
to agree on the decision. These percentages represent quitea large spread designed to reveal the trend of the FP and
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Percentage DR FP

(i) 25% 100% 0.032%
(ii) 50% 99% 0.02%
(iii) 75% 99% 0.005%
(iv) 100% 83% 0.001%

Table 2: DR and FP: Group rates.

Server DR FP

server1 100% 0.02%
server2 83% 0.009%
server3 99% 0.015%
server4 99% 0.01%

Table 3: DR and FP: Individual rates.

DR in the voting process. Because we are using the content-based sensor Anagram as the AD, each profile votes
based on whether the content of the packet (n-grams) being tested was seen during the training of the AD.

Table 2 summarizes the group FP and DR rates for the four scenarios described. As can be seen, when only
one server vote is sufficient to decide whether the traffic is anomalous (25% row), the DR is 100% and the FP is
0.032%. As the percentage of servers that need to agree increases, the DR decreases since it becomes more difficult
for the four profiles to agree on the identification of anomalous traffic. On the other hand, the FP rate decreases
considerably as the percentage of servers that have to agreeincreases. Obviously, with more servers involved in the
vote there is a greater amount of information about normal traffic and hence it is less probable for normal packets to
be mistakenly classified as anomalous. Given that high DR andlow FP are the objectives of a good sensor, it appears
that choosing an agreement of the 75% of the servers providesthebest collaborative solutionfor the architecture.
Such policy guarantees a very low FP of 0.005% and a DR of 99%. Other percentages translate into either smaller
DR or larger FP rates. As in the pre-connect phase, the results also show that as long as the specific percentage of
clean profiles is met (e.g., 75% in our example), the voting process will be robust to attacks by groups of malicious
profiles trying to manipulate the vote. For example, in a network with 100 initial clean profiles, a group attack would
need to introduce at least 35 malicious profiles in order to dilute the 75% agreement (75% of 135 profiles is 101 and
the network would only have 100 clean profiles).

To test our theory that collaborating ADs are more powerful than individual ADs, we ran an experiment where
only the server-specific AD’s tests a packet without taking into account the decision of other devices with similar
behavior. In this setting, only the server that is the destination of the traffic votes on the normalcy of the packets. As
in the previous experiment, the third week of collected traffic was used together with real worms to poison the traffic.
Table 3 shows the FP and DR for each of the servers when they runtheir own individual AD. The main conclusion
drawn from comparing thebest collaborative solutionin Table 2 with Table 3 is that groups of ADs collaborating
on the decision of normalcy or anomalous nature of the traffic, typically enhance the FP, the DR or both global rates
when compared to individual ADs. For instance, in the case ofserver2, its individual DR is 83% and its individual
FP rate is 0.009%. In contrast, thebest collaborative solutionresults in an improved DR of 99% and a lower FP
rate of 0.005%. While one may argue that in some instances theindividual DR improves and the FP rate worsens
(e.g.,server1), the sum of all the individual ADs will always be worse off than thebest collaborative solution. We
conclude that the collaborative voting process improves the security enforcement of our architecture.

4.3 NAC Security Enforcement Over Time: Concept Drift

We present a preliminary analysis on how our architecture conforms toconcept drifti.e., the automatic update of
security enforcement policies over time. The motivation isto account for and distinguish changes in the normal
behavior of users from changes in behavior generated by an attack. Previous works such as FLORA [12] and
STAND [2] considered algorithms in which the sensor only trusted the latest observed samples. In both, new
samples were added to a set as they arrived, subsequently deleting the old samples. Furthermore, STAND detected
anomalous behavior by comparing continuous models over time. We borrow these ideas in order to show how the
voting process implemented in BB-NAC conforms to concept drift. As it is structured, Anagram considers a model
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Figure 4: Group Detection Rate for two alternative concept drift algorithms: ANDModelsandAllModels.

stable whenever the amount of new, unseen n-grams is below a certain threshold [11]. If we assume a first approach
where new models are computed keeping the information from previous models, the DR rate will eventually start
to decrease. This corresponds to the expectation that the longer the training period goes, the more likely that bad
data will be used in the modeling. To show this directly, we collected traffic in the Computer Science department
at our institution (anonymized for this submission) for a period of two weeks. Using Anagram, new models were
computed until they reached stability whilekeeping all the information in the Bloom filter from the previous models.
We refer to this technique asAllModels. In Figure 4 we plot the DR for a group of four webservers with the best
collaborative solutioni.e., a packet is considered anomalous if 75% of the servers agree. Units in the x axis represent
each moment in time (epoch) when one or more servers in the network computed a new behavior profile. Initially,
the group DR for the four webservers starts at 99%. Next,server1computes a new model (epoch 1) and the group
DR remains constant. We then proceed to poison the training traffic for server1andserver2and have both compute
new models (epoch 2). As a result, at epoch 2 the group detection rate decreases to 84% due to the fact that two
profiles are poisoned and thus fail to correctly classify thetraffic. Subsequent epochs involve the computation of
new models by all the servers. However, the group anomaly detection is permanently damaged and does not vary
from DR of 84%. The explanation behind this damage is that thetraining process just adds n-grams to the previous
old models but still keeps the content of the attacks. Therefore, we conclude that a different approach is needed.

An alternative approach is one where we start new clean models every time a model is trained. In such a case, the
profiles erase previously seen information that may be repeated in the future. A direct consequence of this approach
is an expensive increase of the FP rate. Thus, the elimination of previously seen information does not appear to be a
viable alternative. Instead, we opt for a solution where every time a new Bloom filter profile is computed, the new
profile is AND-ed with all its previousq profiles keeping only common data seen in continuous training sets such
that: Pi = Pi ∧ Pi−1 ... ∧ Pi−q. We refer to this technique asANDModels. This process allows us to detect and
eliminate anomalous content that may have poisoned the models while they were being trained as shown by [2]. By
keeping only the common data observed inq consecutive models, we guarantee that as long as we have one initial
clean model, future models will also be clean. Obviously, the moment a device acquires a new different behavior,
the resultingANDModelmay be almost empty since old and new profiles might not have much content in common.
This situation would generate a very high FP rate because theBloom filter contains very fewnormaln-grams. As a
solution, we repeat the AND processs times and OR the results as shown in Equation 5. EachANDModelrepresents
a clean model in the past, and by OR-ing them we stitch together the lasts old and new behaviors [12].

Pi = OR(t=0,s−1) (Pi−s∗q ∧ Pi−1−s∗q ... ∧ Pi−q−s∗q) (5)
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The higher the value ofq in Equation 5, the more difficult it will be for the enemy to attack the architecture since
all q models would have to be poisoned. Similarly, the higher the value ofs, the moreold behaviors are kept in the
model. Going back to our previous example in Figure4 whereserver1andserver2had permanently damaged the
DR of the architecture, we appliedANDModelswith valuesq=2, s=0 and repeated the simulation (Figure 4). With
the new algorithm, the DR retains its initial value along thevarious epochs. In our experiments, we also note an
increase in the FP rate of the sensor, probably due to the factthatANDModelsis eliminating content seen only in the
last training period. The approach introduced here demonstrates that our architecture conforms to concept drift.

4.4 BB-NAC Latency Analysis

We estimate the latency of the pre-connect phase as follows:

l = la + (1 − ρ) × lq (6)

wherela represents the latency of the AND-ing between Bloom filters,variableρ represents the probability that a
device has an up-to-date bad model, andlq represents the latency of the quarantine. For every AND operation, we
estimatedla ≈ 18ms1. In case the AND operations cannot be run in parallel,la should be multiplied by the number
of hosts in the cluster. For devices with up-to-date bad models, ρ = 1 and Equation 6 becomesl = la. On the other
hand, if a device does not have an up-to-date bad model, it is quarantined and provided with a new bad model that
represents the bad knowledge from all the other hosts. This new bad model is computed by OR-ing the host’s bad
models, where each OR operation is completed in approximately 18ms. As an example,l ranges from 180ms to
342ms for a cluster of 10 devices andρ = 0.

The latency per packet during the post-connect phase is calculated as presented by Wang et al. in [11]:

l = ((1 − FP ) × lBF ) + (FP × lq) (7)

wherelBF is the latency to check whether a certain n-gram is found in the profile’s Bloom filter, andFP stands for
false positive rate. A typical value forlBF corresponds to about 5ms. If the checks cannot be performed in parallel
for all profiles,lBF would translate ton × lBF wheren stands for the number of hosts in the cluster responsible for
the access control decision. For a cluster of 10 devices and aFP = 0.005, l ≈ 5.785ms–50.56ms.

5 Conclusions and Future Work

In this paper, we have introduced a novel NAC architecture, BB-NAC, which enforces security based on the exchange
of behavior profiles. Each host in the network is representedwith a profile and a bad model which are then used
during pre-connect and post-connect phases to detect up-to-date malware knowledge and zero-day attacks. Our
architecture enhances previous NAC technologies by automatically updating the behavior-based security policies
according to the hosts’ behavior evolution on a per-port basis. The experiments serve as a proof-of-concept for the
novel behavior-based network access control presented here. We have shown that ADs collaborating through a voting
process offer a more powerful approach to enforce security over individual ADs. Furthermore, our experiments
confirm that BB-NAC is resilient to attacks even after accepting a percentage of malicious hosts into the network.

Future work will include evaluating the two-tier strategy for additional ports. We are also investigating the
clustering of devices based on their profiles instead of aself declaration of nature. Lastly, we plan to evaluate the
performance of BB-NAC when using non-content anomaly sensors. For this purpose, we are currently designing
a non-content AD that we plan to use in order to reproduce similar pre-connect and post-connect tests for the
architecture.

1The numerical values discussed in this subsection were obtained using a 1.73GHzIntel Pentium M Processorand a set of Bloom filters
of size 16MB.
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