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Abstract

We study d-variate L2-approximation for a weighted unanchored Sobolev space having smoothness
m ≥ 1. Folk wisdom would lead us to believe that this problem should become easier as its smoothness
increases. This is true if we are only concerned with asymptotic analysis: the nth minimal error is of
order n−(m−δ) for any δ > 0. However, it is unclear how long we need to wait before this asymptotic
behavior kicks in. How does this waiting period depend on d and m? We prove that no matter how the
weights are chosen, the waiting period is at least md , even if the error demand ε is arbitrarily close to 1.
Hence, for m ≥ 2, this waiting period is exponential in d, so that the problem suffers from the curse of
dimensionality and is intractable. In other words, the fact that the asymptotic behavior improves with m
is irrelevant when d is large. So, we will be unable to vanquish the curse of dimensionality unlessm = 1,
i.e., unless the smoothness is minimal. We then show that our problem can be tractable ifm = 1. That is,
we can find an ε-approximation using polynomially-many (in d and ε−1) information operations, even
if only function values are permitted. When m = 1, it is even possible for the problem to be strongly
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tractable, i.e., we can find an ε-approximation using polynomially-many (in ε−1) information operations,
independent of d. These positive results hold when the weights of the Sobolev space decay sufficiently
quickly or are bounded finite-order weights, i.e., the d-variate functions we wish to approximate can be
decomposed as sums of functions depending on at most ω variables, where ω is independent of d.

1 Introduction

It is widely believed that as a problem becomes smoother, the easier it is to solve. In this paper, we show
that this belief is not always well-founded, by providing a natural counterexample.

We first consider the problem of approximating a real function defined over the unit interval, with error
to be measured in the L2-sense. Suppose that the functions f to be approximated have m derivatives for
some m ≥ 1, satisfying ∫ 1

0
f 2(x) dx +

∫ 1

0

(
f (m)(x)

)2
dx ≤ 1.

This class of functions is the unit ball of a reproducing kernel Hilbert space (RKHS) H1,m studied in [7]. For
m = 1, the reproducing kernel has an intriguing explicit representation, see (39) in Section 4.2.

Let us consider the nth minimal error e(n,H1,m) for this approximation problem, which is defined to be
the minimal worst case error of any algorithm using at most n linear functionals (or function values) of the
function to be approximated. It is well-known that the nth minimal error for this approximation problem is

e(n,H1,m) =

{
1 if n < m,

2(n−m) as n→∞,

where the2-factor depends onm and is independent of n. Note that this asymptotic error behavior improves
as the smoothness m increases. So smoothness helps for univariate approximation.

What happens in the multivariate L2-approximation problem? We now assume that the functions f to be
approximated belong to the unit ball of a Sobolev space Hd,m (defined as the d-fold tensor product of H1,m,
see §2), so that ∫

[0,1]d
f 2(x) dx+

∑
u⊆[d]
u 6=∅

∫
[0,1]d

(
∂m|u|

∂mxu
f (x)

)2

dx ≤ 1.

Here, [d] := {1, 2, . . . , d} and xu denotes the vector whose components are those components xj of x for
which j ∈ u. That is,

∂m|u|

∂mxu
=

∏
j∈u

∂m

∂mxj
.

It is easy to see that the nth minimal error e(n,Hd,m) of this approximation problem satisfies1

e(n,Hd,m) = O(n−(m−δ)) ∀ δ > 0, (1)

where the O-factor depends on d , m, and δ and is independent of n. Hence the exponent of n improves as
m increases, and so smoothness helps asymptotically for the multivariate approximation problem as well.

1For d = 1, the space H1,m is equivalent to the standard Sobolev space Hm([0, 1]), for which it is known that the nth minimal
error is2(n−m), regardless of whether continuous linear functionals or function values are used. For d ≥ 2, we can use Smolyak’s
algorithm as in [9] to see that the nth minimal error is O(n−m(log n)c(m−1)), where c is independent of both d and n.
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How long do we need to wait until we see the asymptotic behavior of (1) in action? We already know
that for d = 1, we have to wait for n to be at least as big as m. For general d , we have

e(n,Hd,m) = 1 if n < md .

So our wait period is exponentially large in d for m ≥ 2. In this case, one might blame the long wait period
on the fact that the space Hd,m is too big. To shrink Hd,m, we introduce a family 0 = {γd,u} of non-negative
weights, and we consider functions f belonging to the unit ball of a space Hd,m,0 (also defined in §2), so
that ∫

[0,1]d
f 2(x) dx+

∑
u⊆[d]
u6=∅

1
γd,u

∫
[0,1]d

(
∂m|u|

∂mxu
f (x)

)2

dx ≤ 1.

(If γd,u = 0 for some u, then we will require that (∂m|u|/∂mxu)f (x) ≡ 0, and interpret 0/0 as 0.) Clearly if
all γd,u ≤ 1, we shrink the class of functions that we are trying to approximate. The most extreme case is
when all the weights γd,u are zero, in which case the spaceHd,m,0 is now the space of polynomials of degree
at most m− 1 in each variable; this space has dimension md .

The weights 0 cannot worsen the asymptotic behavior of the nth minimal error, and so we again have

e(n,Hd,m,0) = O(n−(m−δ)) ∀ δ > 0. (2)

Once again, it is natural to ask how long we must wait for this asymptotic behavior to take hold. It is
relatively easy to prove that

e(n,Hd,m,0) = 1 if n < md, (3)

see Theorem 3.1. We stress that this result holds for any family 0 of weights, even if the weights are all zero.
The reason for this is that the norms in the source and target spaces are the same over the md-dimensional
subspace of polynomials mentioned previously; that is, the Hd,m,0 and L2([0, 1]d) norms coincide on this
polynomial subspace.

Let card(ε, d,Hd,m,0) be the smallest number of information operations needed to guarantee that the
worst case error of an approximation is at most ε. By an information operation, we mean either the evaluation
of a linear functional or the evaluation of a function at some point in its domain. Our approximation problem
is properly normalized, in the sense that we have the sharp a priori bound ‖f ‖L2([0,1])d ≤ 1 for all f in the
unit ball of Hd,m,0. This implies that

card(ε, d,Hd,m,0) = 0 for ε = 1.

From (3), we see that
card(ε, d,Hd,m,0) ≥ md for ε < 1.

(Note that this cardinality is discontinuous at ε = 1.) We emphasize that this result holds for any set
of weights, and for ε arbitrarily close to 1. Hence for m ≥ 2, our problem suffers from the curse of
dimensionality, and is intractable.

So, the only possibility of a positive tractability result occurs whenm = 1. By tractability, we mean one
of the following:

• strong polynomial tractability, i.e., card(ε, d,Hd,m,0) is bounded by a polynomial in 1/ε, independent
of d ,

• polynomial tractability, i.e., card(ε, d,Hd,m,0) is bounded by a polynomial in 1/ε and d , or
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• weak tractability, i.e., card(ε, d) does not depend exponentially on 1/ε + d .

We show such positive results in §4; these results depend on our assumptions about the weights, as well as
on whether we allow the class 3all of arbitrary continuous linear functionals or the class 3std of function
values as information operations:

• For equal weights γd,u ≡ 1, we have

Class 3all Class 3std

polynomially intractable polynomially intractable

weakly tractable not weakly tractable

• For bounded product weights γd,u =
∏
j∈u γd,j , we have

Class 3all Class 3std

always weakly tractable weakly tractable iff

lim
d→∞

1
d

d∑
j=1

γd,j = 0

polynomially tractable iff polynomially tractable iff

∃ τ > 0 such that lim sup
d→∞

1
ln d

d∑
j=1

γ τd,j <∞ lim sup
d→∞

1
ln d

d∑
j=1

γd,j <∞

strongly polynomially tractable iff strongly polynomially tractable iff

∃ τ > 0 such that lim sup
d→∞

d∑
j=1

γ τd,j <∞ lim sup
d→∞

d∑
j=1

γd,j <∞

• For bounded finite order weights γd,u = 0 for |u| > ω, we have

Class 3all Class 3std

always polynomially tractable always polynomially tractable

In summary, this multivariate approximation problem suffers from the curse of dimensionality when the
smoothness m is at least 2; however, this curse may be lifted when m = 1. This leads us to the counter-
intuitive realization that increasing smoothness m ≥ 2 always makes our problem intractable, whereas the
problem is tractable for the smallest smoothness m = 1, under properly decaying weights.

For m = 1, the space Hd,1,0 is an RKHS, whose reproducing kernel has the form

Kd,1,0(x, y) =
∑
k∈Nd

2|{ j∈[d]:kj>1 }

1+
∑

u⊆[d]
u 6=∅

γ−1
d,u

∏
j∈u[π(kj − 1)]2

d∏
j=1

cos[π(kj − 1)xj ] cos[π(kj − 1)yj ]. (4)
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For product weights γd,u =
∏
j∈u γd,j , this formula simplifies to

Kd,1,0(x, y) =
d∏
j=1

(
1+ 2

∞∑
k=1

γd,j

γd,j + π2k2
cos(πkxj ) cos(πkyj )

)

=

d∏
j=1

√
γd,j

sinh
√
γd,j

cosh[
√
γd,j (1−max{xj , yj })] cosh[

√
γd,j min{xj , yj }] ,

where the last equality follows from [7]. Note that this reproducing kernel has a form that is different than
that previously studied in [12, 13]. This means that we cannot use the results of [12, 13] for our problem.

We stress that this counterintuitive result holds for the specific space Hd,m,0. There are other function
spaces for which increasing smoothness may help. For example, suppose that our functions f belong to the
unit ball of the usual Sobolev space Hm([0, 1]), so that

m∑
j=0

∫ 1

0

(
f (j)(x)

)2
dx ≤ 1.

Letting e(n,Hm) denote the nth minimal error for this space, we find that e(n,Hm+1) ≤ e(n,Hm) for all
m and n, and that the same asymptotic behavior e(n,Hm) = 2(n−m) holds as before. So if we take the
d-variate version of this approximation to be over the d-fold tensor product (Hm)⊗d of Hm, then the nth
minimal errors e(n, (Hm)⊗d) satisfy

e(n, (Hm+1)⊗d) ≤ e(n, (Hm)⊗d) for all m and n,

as well as
e(n, (Hm)⊗d) = O(n−(m−δ)) ∀ δ > 0.

Hence we find that smoothness definitely helps in this case. More precisely, the general results of [5] tell us
that the L2-multivariate approximation problem over (Hm)⊗d for the class 3all is weakly tractable, but not
polynomially tractable, for any m.

The tractability of L2-multivariate approximation for the weighted version of (Hm)⊗d remains to be
studied. However, suppose that we choose a weighted space (Hm

0 )
⊗d that is a subset ofHd,m,0. For example,

suppose that 0 consists of product weights and that we take (Hm
0 )
⊗d
= ⊗

d
j=1H

m
γd,j

, where the space Hm
γ is

equipped with the norm

‖f ‖2
Hm
γ
=

∫ 1

0
f 2(x) dx +

1
γ

m∑
j=1

∫ 1

0

(
f (j)(x)

)2
dx.

Then sufficient conditions for L2-approximation to be tractable over Hd,m,0 will also be sufficient for
tractability over (Hm)⊗d .

2 The approximation problem

In this section, we define the approximation problem to be studied and recall some basic concepts of
information-based complexity.
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First, we establish some notational conventions. We let N denote the strictly positive integers. Moreover,
we will let I denote the closed unit interval [0, 1]. Finally, we will use a slightly more elaborate notation
than we used in the Introduction, in which we stress how the results depend on the problem to be solved.

As we mentioned in the Introduction, we consider the L2-approximation of functions belonging to a
0-weighted reproducing kernel Hilbert space Hd,m,0 of functions over I d , having smoothness m. We shall
define this space in several stages.

Let us first start with the unweighted case:

• First, suppose that d = 1. The space H1,m consists of real functions defined on I , whose (m − 1)st
derivatives are absolutely continuous and whose mth derivatives belong to L2(I ), under the inner
product

〈f, g〉H1,m =

∫ 1

0
f (x)g(x) dx +

∫ 1

0
f (m)(x)g(m)(x) dx ∀ f, g ∈ H1,m.

Note that H1,m is simply the standard Sobolev space Hm(I ), under a different norm ‖ · ‖H1,m that is
equivalent to the standard norm ‖ · ‖Hm(I ).

Since m ≥ 1, we see that function evaluation δx : f ∈ H1,m 7→ f (x) is a continuous linear functional
for x ∈ I . Hence, H1,m is a reproducing kernel Hilbert space.

• We now consider the case of general d ∈ N. We define Hd,m = H⊗d1,m as a d-fold tensor product
of H1,m, under the inner product

〈f, g〉Hd,m =

∫
I d
f (x)g(x) dx+

∑
u⊆[d]
u 6=∅

∫
I d

∂m|u|

∂mxu
f (x)

∂m|u|

∂mxu
g(x) dx ∀ f, g ∈ Hd,m.

Here, |u| denotes the size of u ⊆ [d] := {1, 2, . . . , d}, and xu denotes the vector whose components
are those components xj of x for which j ∈ u.

We now move on to the weighted case. Let

0 = { γd,u ≥ 0 : nonempty u ⊆ [d], d ∈ N }

be a given set of non-negative weights γd,u.

Remark 2.1. Although some of our results hold for any family 0 of weights, we will pay special attention
to several particularly important specific families:

1. If γd,u > 0 for all d and all nonempty u ⊆ [d], then 0 is a set of positive weights, which will be
denoted as 0 > 0.

2. If γd,u = 1 for all d and all nonempty u ⊆ [d], then 0 is a set of equal weights, which will be denoted
as 0 = 1.

3. If γd,u = 0 for all d and all nonempty u ⊆ [d], then 0 is a set of zero weights, which will be denoted
as 0 = 0.

4. If γd,u =
∏
j∈u γd,j for all d and all nonempty u ⊆ [d], where γd,j ≥ 0 for j ∈ [d], then 0 is a set of

product weights.
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5. If there exists ω such that for all d , we have γd,u = 0 whenever u ⊆ [d] and |u| > ω, then 0 is a set
of finite-order weights introduced in [1]. The smallest value of ω such that this relation holds is said
to be the order of 0. Note that if 0 is a set of finite-order weights of order ω, then 0 contains at most

ω∑
j=0

(
d

j

)
=
dω

ω!

(
1+ o(1)

)
≤ 2 dω. (5)

nonzero weights, see [13].

6. If there exists ω such that for all d, we have γd,u = 0 whenever u ⊆ [d] and diam u ≥ ω, then 0 is a
set of finite-diameter weights. Here, the diameter of a set u is defined to be diam u = maxi,j∈u |i− j |,
as usual. The smallest value of ω such that this relation holds is said to be the order of 0. Note that if
0 is a set of finite-diameter weights of order ω, then 0 contains at most

2min{ω,d}−1
− (min{ω, d} − 2)2min{ω,d}−1

= 2(d)

nonzero weights. (This concept was introduced by J. Creutzig, see [5, §5.3].) Clearly, finite-diameter
weights are always finite-order weights; however, the converse is not true.

We are now finally ready to define our weighted reproducing kernel Hilbert space Hd,m,0 to be

Hd,m,0 =

{
f ∈ Hd,m :

∂m|u|

∂mxu
f ≡ 0 whenever γd,u = 0

}
,

under the inner product

〈f, g〉Hd,m,0 =

∫
I d
f (x)g(x) dx+

∑
u⊆[d]
u6=∅
γd,u>0

1
γd,u

∫
I d

∂m|u|

∂mxu
f (x)

∂m|u|

∂mxu
g(x) dx ∀ f, g ∈ Hd,m,0.

Note that the norms ‖ · ‖Hd,m and ‖ · ‖Hd,m,0 are equivalent when the weights are positive, with

min

1, min
u⊆[d]
u 6=∅

γ
−1/2
d,u

 ‖ · ‖Hd,m ≤ ‖ · ‖Hd,m,0 ≤ max

1,max
u⊆[d]
u 6=∅

γ
−1/2
d,u

 ‖ · ‖Hd,m .
However when the weights 0 are not necessarily positive, the space Hd,m,0 might be a proper subspace
of Hd,m. In the most extreme case 0 = 0, we see that Hd,m,0 is the space [Pm−1(I )]⊗d of polynomials of
degree at most m− 1 in the variables x1, x2, . . . , xd , with ‖ · ‖Hd,m,0 = ‖ · ‖L2(I d ).

We wish to approximate functions belonging to the unit ball BHd,m,0 ofHd,m,0, measuring the quality of
an approximation in the L2(I

d)-norm. This approximation problem is described by the embedding operator
Appd : Hd,m,0 → L2(I

d), which is defined as

Appd f = f ∀f ∈ Hd,m,0.

Such an approximation is given by an algorithm Ad,n using at most n information operations from a class3
of linear functionals on Hd,m,0. Here, 3 will be either 3all

= [Hd,m,0]∗ of all continuous linear functionals
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on Hd,m (continuous linear information) or the class3std consisting of function evaluations on I d (standard
information). The worst case error of Ad,n is given by

e(Ad,n,3) = sup
f∈BHd,m,0

‖f − Ad,nf ‖L2(I d ).

We define the nth minimal error as

e(n,Appd,3) = inf
Ad,n

e(Ad,n,3), (6)

the infimum being over all algorithms using at most n information operations from 3. An algorithm Ad,n
using at most n operations from 3 and for which e(Ad,n,3) = e(n,Appd,3) is said to be an nth minimal
error algorithm.

There is a well-known explicit formula for e(n,Appd,3
all). Let Wd = (Appd)

∗(Appd), which is a
compact self-adjoint positive definite linear transformation on Hd,m,0. Let αd,1 ≥ αd,2 ≥ · · · > 0 be the
ordered eigenvalues of Wd . Then

e(n,Appd,3
all) =

√
αd,n+1 . (7)

Moreover, the algorithm

A∗d,n(f ) =

n∑
j=1

〈f, ed,j 〉Hd,m,0ed,j ∀f ∈ BHd,m,0

is an nth minimal error algorithm. For further discussion, see (e.g.) [8, §4.5].
If ε ∈ (0, 1], we say that the algorithm Ad,n provides an ε-approximation to if

e(Ad,n,3) ≤ ε. (8)

Let
card(ε,Appd,3) = min{ n ≥ 0 : e(n,Appd,3) ≤ ε } (9)

denote the ε-cardinality number, i.e., the minimal number of information operations from 3 needed to
compute an ε-approximation. From (7), we see that

card(ε,Appd,3
all) = min{ n ≥ 0 : αd,n+1 ≤ ε

2
}. (10)

We are now ready to describe various notions of tractability, see (e.g.) [5] for discussion. The approxi-
mation problem is said to be weakly tractable in the class 3 if

lim
ε−1+d→∞

ln card(ε,Appd,3)
ε−1 + d

= 0. (11)

Note that the approximation problem is weakly tractable iff the cardinality number grows subexponentially
in ε−1 and d . We say that this problem is intractable if it is not weakly tractable.

The problem is said to be (polynomially) tractable in the class3 if there exist non-negative numbers C,
p, and q such that

card(ε,Appd,3) ≤ C
(

1
ε

)p
dq ∀ ε ∈ (0, 1), d ∈ N. (12)
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Numbers p = p(App,3) and q = q(App,3) such that (12) holds are called ε- and d-exponents of tractabil-
ity; these need not be uniquely defined. Finally, the problem is said to be strongly (polynomially) tractable
in the class 3 if q = 0 in (12); in this case, we define

p(3) = inf
{
p ≥ 0 : ∃C ≥ 0 such that card(ε,Appd,3) ≤ C

(
1
ε

)p
∀ ε ∈ (0, 1), d ∈ N

}
to be the exponent of strong tractability.

Remark 2.2. Note that we are formally using an absolute error criterion in (8). There has also been a stream
of work using a normalized error criterion

e(Ad,n,3) ≤ ε · e(0,Appd,3)

to define an ε-approximation (once again, see [5] and the references cited therein). Here, e(0,Appd,3) is
the initial error that can be obtained by algorithms using no information operations whatsoever. For the
spaces used in this paper, it is easy to see that the absolute and normalized error criteria coincide. Indeed,
we have e(0,Appd,3) = 1; this follows from the fact that ‖f ‖L2(I d ) ≤ ‖f ‖Hd,m,0 for any f ∈ Hd,m,0, with
equality holding for f ≡ 1. Hence e(0,Appd,3) = ‖Appd ‖Lin[Hd,m,0,L2(I d )] = 1, which implies that the
absolute and normalized error criteria coincide, as claimed.

3 Intractability for m ≥ 2

In this section, we prove that our approximation problem is intractable whenever m ≥ 2.

Theorem 3.1. For any weights 0 and any ε ∈ [0, 1), we have

card(ε,Appd,3
std) ≥ card(ε,Appd,3

all) ≥ md .

Hence multivariate approximation Appd suffers from the curse of dimensionality and is intractable whenever
m ≥ 2.

This result could be easily obtained from general results of information-based complexity. However, we
prefer the short direct proof presented below.

Proof of Theorem 3.1. Since 3std
⊆ 3all, it suffices to prove the result for 3all. So let 0 be any set of

weights. Note that [Pm−1(I )]⊗d is an md-dimensional subspace of Hd,m,0, with equality when 0 = 0.
Furthermore, the L2(I

d)- and Hd,m,0-norms coincide on [Pm−1(I )]⊗d .
Suppose that n < md , and consider any algorithm using at most n functionals from 3all. For f ∈

BHd,m,0, such an algorithm produces an approximation

Ad,n(f ) = φ(λ1(f ), λ2(f ), . . . , λn(f )),

where λj = λj (·; λ1(f ), . . . , λj−1(f )) are adaptively-chosen continuous linear functionals (i.e., λj ∈
H ∗d,m,0) for j ∈ {1, 2, . . . , n}. We want to find a nonzero g ∈ [Pm−1(I )]⊗d such that

λ1(g) = 0

λ2(g; 0) = 0
...

λn(g; 0, . . . , 0) = 0.

(13)
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Since (13) is a system of n homogeneous linear equations in at least n + 1 unknowns, such a function g
exists. We can normalize g by requiring that ‖g‖Hd,m,0 = ‖g‖L2(I d ) = 1. Observe that−g also satisfies (13),
so that Ad,n(±g) = a = φ(0, . . . , 0) ∈ L2(I

d). Hence

e(Ad,n,3
all) ≥ max

θ∈{−1,1}
‖θg − a‖L2(I d )

≥
1
2

(
‖g − a‖L2(I d ) + ‖g + a‖L2(I d )

)
≥ ‖g‖L2(I d )

= 1.

Since An,d can be any arbitrary algorithm using n operations from3all, we conclude that e(n,Appd,3
all) ≥

1 if n < md . Hence to obtain an algorithm with error ε < 1, we must use at leastmd information operations.
This means that card(ε,Appd,3

all) ≥ md , as claimed.

4 Tractability results for m = 1

Since our approximation problem is intractable for m ≥ 2, we shall restrict our attention to the case m =
1 in the rest of this paper. We will study two classes of information: 3all and 3std. As we shall see,
the approximation problem can be intractable, weakly tractable, polynomially tractable, or even strongly
polynomially tractable; the level of tractability will depend on properties of the weight sequence 0.

4.1 Results for 3all

Recall that for the class 3all, the minimal errors and cardinality numbers are determined by the ordered
eigenvalues of Wd , and that we can use the eigenvectors of Wd to construct minimal error algorithms, see
(7)–(10). So, it behooves us to determine the eigensystem of Wd . We do this in several steps.

First, suppose that d = 1. For γ > 0, the inner product in H1,1,γ is given by

〈f, g〉H1,1,γ =

∫ 1

0
f (x)g(x) dx + γ−1

∫ 1

0
f ′(x)g′(x) dx ∀ f, g ∈ H1,1,γ .

We now have

Lemma 4.1. Suppose that γ > 0. For k ∈ N, let

ek(x) = cos[π(k − 1)x] ∀x ∈ [0, 1]

and
αk =

γ

γ + π2(k − 1)2
. (14)

Then
W1ek = αkek ∀ k ∈ N. (15)

Moreover {ek}k∈N is an orthogonal basis for H1,1,γ , with

‖ek‖H1,1,γ =

(
δ1,k +

1
2

√
2(1− δ1,k)

) (√
1+ γ−1[π(k − 1)2]

)
∀ k ∈ N.

10



Proof. We first show that the eigenpairs of W1 are {(ek, αk)}k∈N. Since W1 = (App1)
∗(App1) : H1,1,γ →

H1,1,γ , we see that (e, α) is an eigenpair of W1 iff e is a nonzero element of H1,1,γ for which W1e = αe, the
latter holding iff

〈e,w〉L2(I ) = 〈W1e,w〉H1,1,γ = α〈e,w〉H1,1,γ = α
[
〈e,w〉L2(I ) + γ

−1
〈e′, w′〉L2(I )

]
∀w ∈ H1,1,γ .

Setting w = e in this equation and using the fact that e 6= 0, we see that α > 0. Collecting terms and
multiplying by γ , we see that the previous equation can be rewritten as

〈e′, w′〉L2(I ) = β〈e,w〉L2(I ) ∀w ∈ H1,1,γ , (16)

where
β =

γ (1− α)
α

so that α =
γ

γ + β
. (17)

From (16), we see that (e, β) is the variational solution of the classical eigenproblem

e′′(x)+ βe(x) = 0 ∀ x ∈ (0, 1),

subject to the boundary conditions
e′(0) = e′(1) = 0.

Note that
〈e′k, w

′
〉L2(I ) = [π(k − 1)]2

〈ek, w〉L2(I ).

Hence the kth eigenpair of this eigenproblem is given by (ek, βk), where βk = π2(k − 1)2. From (17), we
see that (15) holds with αk given by (14). Hence the eigenpairs of W1 are as claimed.

Clearly, the set {ek}k∈N is orthogonal in H1,1,γ , the formula for each ‖ek‖H1,1,γ being given by a straight-
forward calculation. Since {ek}k∈N are the eigenvectors of a compact self-adjoint positive definite linear
transformation on H1,1,γ , they form an orthogonal basis for H1,1,γ .

Remark 4.1. One of our hypotheses in Lemma 4.1 is that γ > 0. What can we say about the eigensystem
of W1 when γ = 0? In Section 2, we saw that if γ = 0, then H1,1,0 = P0(I ), the one-dimensional space of
constant functions over the unit interval. In this case, we only have the eigenvalue α = 1.

Next, we consider the case of general d . We need to find the eigenpairs of the operatorWd = (Appd)
∗(Appd)

on Hd,1,0.

Lemma 4.2. Suppose that 0 > 0. Let d ∈ N. For k ∈ Nd , let

ed,k(x) =
d∏
j=1

cos[π(kj − 1)xj ] ∀ x ∈ [0, 1]d

and

αd,k =

(
1+

∑
u⊆[d]
u6=∅

γ−1
d,u

∏
j∈u

[π(kj − 1)]2
)−1

. (18)

Then
Wded,k = αd,ked,k ∀ k ∈ Nd .

11



Moreover {ed,k}k∈Nd is an orthogonal basis for Hd,1,0, with

‖ed,k‖Hd,1,0 = 2−|{j∈[d] : kj>1}|/2
(

1+
∑
u⊆[d]
u6=∅

γ−1
d,u

∏
j∈u

[π(kj − 1)]2
)1/2

. (19)

Proof. Note that since 0 > 0, the space Hd,1,0 is algebraically and topologically equivalent to the space
Hd,1,1 = H

⊗d
1,1,1, for which 0 = 1. Hence we may use Lemma 4.1, along with the tensor-product structure

of Hd,1,0, to see that {ed,k}k∈Nd is an orthogonal basis for Hd,1,0. Furthermore, a straightforward calculation
shows that the given formula for ‖ed,k‖Hd,1,0 holds. So, we only need to check that the eigensystem of Wd is
as claimed.

Observe that
〈v,w〉L2(I d ) = 〈v,Wdw〉Hd,1,0 ∀ v,w ∈ Hd,1,0.

Taking v = ed,j and w = ed,k for arbitrary j, k ∈ Nd and using the fact that {ed,k}k∈Nd is an orthogonal
sequence in L2(I

d), we conclude that Wded,k is orthogonal to ed,j whenever j 6= k. Hence, ed,k is an
eigenvector of Wd whose eigenvalue αd,k is given by αd,k = ‖ed,k‖2

L2(I d )
/‖ed,k‖

2
Hd,1,0

. Since ‖ed,k‖2
L2(I d )

=

2−|{j⊆[d] : kj>1}|, we see that αd,k has the given formula.

It is known that the reproducing kernel of any separable RKHS H has the form

K(x, y) =

∞∑
j=1

bj (x)bj (y),

where {bj }j∈N is an arbitrary orthonormal basis of H . In our case H = Hd,1,0, we therefore have

Kd,1,0(x, y) =
∞∑
j=1

ed,k(x)ed,k(y)
‖ed,k‖

2
Hd,1,0

,

which yields the formula (4) in the Introduction.

Remark 4.2. One of our hypotheses in Lemma 4.2 is that 0 > 0. What can we say about the eigensystem
of Wd when some weight is zero? In Section 2, we saw that Hd,1,0 is now only a subspace of the tensor
product space Hd,1,1, rather than the full space itself. The results of Lemma 4.2 remain true, provided that
the multi-index k is restricted by requiring that kj = 1 for some j ∈ u whenever if γd,u = 0. .

The most extreme example occurs when 0 = 0. In this case, we see that Hd,1,0 = P0(I
d), the one-

dimensional space of constant functions over the unit cube. The only surviving multi-index is k = 1. The
resulting eigenvalue is α = 1.

Now suppose we have finite-order weights of order ω ≥ 1, so that γd,u = 0 whenever |u| > ω. We
claim that there are at most 2ω − 1 positive terms in the sums (18) and (19). Indeed, let

uk = {j ⊆ [d] : kj > 1} = {kj1, kj2, . . . , kjs }, (20)

where sk = |uk|. Note that if |uk| > ω then γd,uk = 0, so that the norm ‖ed,k‖Hd,1,0 would be infinite. Since
sk ≤ ω, this means that at most ω components of k can be greater than 1, i.e., at least d − ω components of
k are 1. So we cannot have a positive term in the sum (19) unless u ⊆ uk. Since |uk| ≤ ω, we know that
uk has at most 2ω − 1 nonempty subsets. Hence we can have at most 2ω − 1 terms in the sum above, as
claimed.
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From equation (10), we see that

card(ε,Appd,3
all) = |{k ∈ Nd : αd,k > ε2

} = |{k ∈ Nd : α−1
d,k < ε−2

}|.

Hence using Lemma 4.2, we now have

card(ε,Appd,3
all) =

∣∣∣∣ { k ∈ Nd : 1+
∑
u⊆[d]
u6=∅

γ−1
d,u

∏
j∈u

[π(kj − 1)]2 < ε−2
} ∣∣∣∣ . (21)

We are now ready to talk about tractability for various kinds of weights.

4.1.1 Equal weights

First, we consider equal weights 0 = 1. In this case,Hd,1,0 is a tensor product space whose eigenvalues αd,k
are of the form

αd,k =

d∏
j=1

1

1+
[
π(kj − 1)

]2 for all k ∈ Nd .

Hence the eigenvalues αd,k are products of the eigenvalues αk = α1,k for the univariate case. Clearly we
have α1 = 1 and α2 = (1+ π2)−1, i.e., the largest eigenvalue is simple. Moreover, αn = 2(n−2). From [5,
Theorem 5.5], we find that

• the approximation problem is not polynomially tractable, but

• the approximation problem is weakly tractable

for equal weights.

4.1.2 Bounded product weights

We now consider bounded product weights, i.e., γd,u =
∏
j∈u γd,j for all nonempty u ⊆ [d], with

M := sup
d∈N

max
1≤j≤d

γd,j <∞. (22)

Hence Hd,1,0 = ⊗dj=1H1,1,γd,j . Once again, we see that Hd,1,0 is a tensor product space whose eigenvalues
now have the form

αd,k =

d∏
j=1

γd,j

γd,j +
[
π(kj − 1)

]2 for all k ∈ Nd . (23)

Weak tractability: Note that

αd,k ≤

d∏
j=1

M

M + [π(kj − 1)]2

and so [5, Theorem 5.5] applies. Hence approximation is weakly tractable whenever (22) holds.
This boundedness condition (22) is also necessary in some sense, since there exist sequences 0 for
which (22) does not hold and for which the approximation problem is intractable. One such sequence

13



is given by γd,j = d . Since the second-largest eigenvalue for the d-dimensional case is now 1/(1 +
π2/d), it follows that card(ε,Appd,3

all) ≥ 2d for

ε ≤ εd :=
1
2

1
(1+ π2/d)d/2

=
1
2 exp(− 1

2π
2)(1+ o(1)).

Hence the approximation problem, subject to this specific set of unbounded weights, suffers from the
curse of dimensionality.

Strong tractability: Using [5, Theorem 5.2] and standard proof techniques, we will show that approxima-
tion is strongly tractable iff there exists τ > 0 for which

lim sup
d→∞

d∑
j=1

γ τd,j <∞. (24)

Note that we may assume that τ > 1
2 without loss of generality, since if (24) holds for some τ = τ0,

it also holds for any τ > τ0. Moreover, [5, Theorem 5.2] also tells us that the exponent of strong
tractability is given by

p(3all) = 2τ ∗, (25)

where τ ∗ is the infimum of all τ > 1
2 for which (24) holds.

Indeed, [5, Theorem 5.2] tells us that that our problem is strongly tractable and that (25) holds iff
there exists τ > 0 such that

6d,τ :=
(∑
k∈Nd

ατd,k

)1/τ

=

d∏
i=1

(
1+

∞∑
j=1

(
γd,i

γd,i + π2j 2

)τ)1/τ

(26)

is uniformly bounded over all d ∈ N. If 0 is not a set of zero weights, it is clear that the condition
τ > 1

2 is necessary and sufficient for the last sum to converge. For

c =
π2

π2 +M
, (27)

we see that
c
γd,i

π2j 2
≤

γd,i

γd,i + π2j 2
≤

γd,i

π2j 2
. (28)

Letting ζ denote the Riemann zeta function, we use the upper bound of (28) to see that

6d,τ ≤

d∏
i=1

(
1+

∞∑
j=1

γ τd,i

π2τj 2τ

)1/τ

=

d∏
i=1

(
1+ γ τd,i

ζ(2τ)
π2τ

)1/τ

,

and so

ln6d,τ ≤
1
τ

d∑
i=1

ln
(

1+ γd,i
ζ(2τ)
π2τ

)
≤
ζ(2τ)
τπ2τ

d∑
i=1

γ τd,i . (29)

Hence (24) implies strong tractability. To prove the reverse implication, simply start with the lower
bound of (28) and proceed as above, noting that ln(1 + x) ≥ c̃x for all x ∈ [0, cτ ] with c̃ = ln(1 +
cτ )/cτ and cτ = (Mc/π2)τ ζ(2τ), where c is given by (27).
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Polynomial tractability: Again using [5, Theorem 5.2] and standard proof techniques, we find that the
approximation problem is tractable iff there exists τ > 0 for which

lim sup
d→∞

1
ln d

d∑
j=1

γ τd,j <∞. (30)

As before, we can assume that τ > 1
2 . To obtain the exponents of tractability, define

Aτ = lim sup
d→∞

1
ln d

d∑
j=1

min
{

1, γ τd,j
ζ(2τ)
π2τ

}
<∞. (31)

Note that (30) and (31) are equivalent. When Aτ is finite, then for any qτ > Aτ , we have

card(ε,Appd,3
all) = O(dqτ ε−2τ ),

where the O-factor is independent of d and ε. Hence we we may take

p(App,3all) = 2τ and q(App,3all) = qτ

for any qτ > Aτ and any τ satisfying (31).

Indeed, [5, Theorem 5.2] tells us that our problem is tractable iff there exist positive numbers q and τ
such that d−q6d,τ is uniformly bounded over all d ∈ N, where 6d,τ is given by (26). Using the fact
that ξ = d ln ξ/d and the inequality

c
γd,i

π2j 2
≤

γd,i

γd,i + π2j 2
≤ min

{
1,
γd,i

π2j 2

}
,

the proof is analogous to that of the strongly tractable case.

Of course, strong tractability always implies tractability. What about the reverse implication?

1. Suppose that our weights are independent of d , i.e., γd,j = γj for j ∈ {1, . . . , d} and d ∈ N.
From [10], we find that (24) and (30) are equivalent. Hence in this case, tractability implies strong
tractability.

2. Suppose that for some q > 0, we have weights

γd,j =

{
1 for j ∈ {1, . . . , dln deq},
0 for j ∈ {dln deq + 1, . . . , d}.

j ∈ {1, . . . , d}, d ∈ N.

Then the approximation problem is never strongly tractable. However, this problem is tractable iff
q ≤ 1. To wit:

• If q < 1, then Aτ = 0 for all τ > 1
2 . This implies that the exponent of d can be arbitrarily small

and the exponent of ε−1 can be arbitrarily close to 1.
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• If q = 1, then

Aτ = min
{

1,
ζ(2τ)
π2τ

}
.

This means that as limτ→1/2+Aτ = ∞. Hence, when the exponent of ε−1 goes to 1, the exponent
of d goes to infinity. On the other hand, if we choose τ .

= 0.635564 to be the solution of

ζ(2τ) = π2τ ,

then the exponent of ε−1 is approximately 1.27113 and the exponent of d takes its minimal value
of 1. This illustrates the tradeoff between the exponents of ε−1 and d.

4.1.3 Bounded finite-order and finite-diameter weights

Since finite-diameter weights are a special case of finite-order weights, we will consider them together.
Our main result is that the approximation problem is tractable if a boundedness condition (similar to (22)
above) holds. Moreover, this boundedness condition is necessary, since there exist unbounded families of
finite-diameter weights for which approximation is intractable. Our first positive result is

Theorem 4.1. Suppose that
M = sup

d∈N
max
u⊆[d]
u6=0
|u|≤ω

γd,u <∞ . (32)

1. Let 0 be a family of finite-order weights of order ω. Then for any τ > 1, there exists Cτ,ω > 0 such
that

card(ε,Appd,3
all) ≤ Cτ,ωM

τ/2dωε−τ ∀ ε ∈ (0, 1], d ∈ N.

The multiplicative factor Cτ,ω is independent of M , d , and ε.

2. Let 0 be a family of finite-diameter weights of order ω. Then for any τ > 1, there exists Cτ,ω > 0
such that

card(ε,Appd,3
all) ≤ Cτ,ωM

τ/2dε−τ ∀ ε ∈ (0, 1], d ∈ N.

The multiplicative factor Cτ,ω is independent of M , d , and ε.

Proof. We first consider finite-order weights. It suffices to consider d > ω. For k ∈ Nd , we have

1
αd,k
= 1+

∑
u⊆[d]
u6=∅

γ−1
d,u

∏
j∈u

[π(kj − 1)]2,

using the fact that for γd,u = 0, there exists j ∈ u such that kj = 1 and interpreting 0/0 as 0. From
Remark 4.2, we see that this sum may be rewritten as

1
αd,k
= 1+

∑
u⊆uk
u6=∅

γ−1
d,u

∏
j∈u

[π(kj − 1)]2,
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where uk is given by (20). Letting sk = |uk| and using the fact that γd,u ≤ M , we have

1
αd,k
≥ 1+

1
M

∑
u⊆uk
u6=∅

∏
j∈u

[π(kj − 1)]2

= 1+
1
M

[ sk∏
i=1

[1+ π2(kji − 1)2]− 1
]

≥ 1+
1
M

[
π2sk

sk∏
i=1

(kji − 1)2 − 1
]
.

Since α−1
d,k < ε−2, this inequality implies that

sk∏
i=1

(kji − 1)2 <
M(ε−2

− 1)+ 1
π2sk

,

which may be rewritten as
sk∑
i=1

ln(kji − 1) < σk := ln

√
M(ε−2 − 1)+ 1

π2sk
. (33)

Let ` = [`1, `2, . . . , `s] with `i = kji − 1 ≥ 1. From Remark 4.2, we see that the number of sets uk for
which γd,uk > 0 is at most equal to the cardinality of the nonzero finite-order weights, which is at most 2 dω

by (5). Hence we may use (21), along with (33), to see that

card(ε,Appd,3
all) ≤

∑
k∈Nd
γd,uk>0

∣∣∣∣{ ` ∈ Nsk :
sk∑
i=1

ln `i < σk

}∣∣∣∣
≤

∑
k∈Nd
γd,uk>0

∣∣∣∣{ ` ∈ Nω :
ω∑
i=1

ln `i < σ

}∣∣∣∣ ,
(34)

where
σ := ln

√
M(ε−2 − 1)+ 1 .

Using this last inequality and (5), we have

card(ε,Appd,3
all) ≤ 2 dω

∣∣∣∣{ ` ∈ Nω :
ω∑
i=1

ln `i < σ

}∣∣∣∣ .
From [2], we know that for any τ > 1, there exists C(τ, ω) > 0 such that∣∣∣∣{ ` ∈ Nω :

ω∑
i=1

ln `i < σ

}∣∣∣∣ ≤ C(τ, ω)eστ .
Hence

card(ε,Appd,3
all) ≤ 2 dωC(τ, ω)eστ = O(dωMτ/2ε−τ ).

The O-factor is independent of M , d , and ε, depending only on τ and ω.
We now turn to finite-diameter weights. In this case, we find that the previous analysis applies, noting

that the last sum in (34) is over a set of terms having cardinality O(d).
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We finally show that the boundedness condition (32) is necessary for approximation to be tractable for
finite-diameter (and thus finite-order) weights. Consider the following simple example. Choose

γd,u =


1 if u = ∅,

2d if u = {1},
0 otherwise.

Then ω = 1, but M = ∞. Then Appd reduces to the univariate approximation problem, so that

card(ε,Appd,3
all) = |{ ` ∈ N : `2 < 2d(πε−1)2 }| = π2d/2ε−1(1+ o(1)).

Hence this approximation problem suffers from the curse of dimensionality, and is intractable.

4.2 Results for 3std

We now examine tractability when only standard information3std is available. In particular, we will consider
the same three families of weights studied in §4.1.

4.2.1 Equal weights

We first consider equal weights 0 = 1. For this case, we claim that multivariate approximation is intractable
for 3std. To see this, consider the integration problem Intd : Hd,1,0 → R defined by

Intd f =
∫
I d
f (x) dx ∀ f ∈ Hd,1,0.

Since | Intd f | ≤ ‖f ‖L2(I d ) for any f ∈ Hd,1,0, with equality for f ≡ 1, we know that ‖ Intd ‖ = 1.
Since we already know that ‖Appd ‖ = 1, the two problems of multivariate approximation and integration
have the same initial error. It is easy to see that multivariate integration is at least as hard as multivariate
approximation, i.e., that

card(ε,Appd,3
std) ≥ card(ε, Intd,3std) ∀ ε ∈ (0, 1), d ∈ N. (35)

So, it suffices to show that multivariate integration is intractable.
From [6, pp. 492–493], we know that we may make a rank-one modification to the reproducing ker-

nel K1,1,γ for H1,m,γ , with the resulting kernel K̃1,1,γ being decomposable at the point 1
2 , i.e., that

K̃1,1,γ (x, y) = 0 if 0 ≤ x ≤ 1
2 ≤ y ≤ 1.

We may now use [4, Theorem 4]. This theorem requires several conditions to hold, which are established
in [6]. Part (4) of [4, Theorem 4] tells us that there exists b > 1 such that

lim
d→∞

e(bbdc, Intd,3all) = 1.

This means that for any ε < 1, we must have

card(ε, Intd,3std) ≥ bbdc

for large d . Hence the integration problem is intractable, which implies that the approximation problem is
also intractable.
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4.2.2 Bounded product weights

We now consider bounded product weights, i.e., γd,u =
∏
j∈u γd,j for all nonempty u ⊆ [d], with the γd,j

satisfying (22).

Weak tractability: We claim that the approximation problem is weakly tractable for 3std iff

lim
d→∞

1
d

d∑
j=1

γd,j = 0. (36)

To see that this condition is necessary, we can use the proof techniques of [2, Theorem 1] and [6,
pg. 492 ff.] to conclude that (36) is necessary for multivariate integration to be weakly tractable.
Since multivariate approximation is at least as hard as multivariate integration, see (35), we see that
that (36) is also necessary for weak tractability of multivariate approximation.

We now show that (36) is sufficient for multivariate approximation to be weakly tractable. Using (23),
we see that for any n ∈ N, we have

nαd,n ≤
∑
k∈Nd

αd,k =

d∏
j=1

(
1+ γd,j

∞∑
i=1

1
γd,j + π2i2

)
≤

d∏
j=1

(
1+min{1, 1

6γd,j }
)
,

and so

e2(n,Appd,3
all) ≤ αd,n ≤

1
n

d∏
j=1

(
1+min{1, 1

6γd,j }
)
. (37)

Now [11, Theorem 1] tells us that

e(n,Appd,3
std) ≤ min

l≥0

(
e2(l,Appd,3

all)+
Md l

n

)1/2

, (38)

where
Md =

∫
I d
Kd,1,0(x, x) dx

with Kd,1,0 being the reproducing kernel of Hd,1,0. Since Hd,1,0 = ⊗dj=1H1,1,γd,j , we have

Kd,1,0(x, y) =
d∏
j=1

Kd,1,γj (xj , yj ) ∀ x, y ∈ I d,

where the reproducing kernel Kd,1,0 for the univariate case is given by

Kd,1,0(x, y) =

√
γ

sinh
√
γ

cosh[
√
γ (1−max{x, y})] cosh[

√
γ min{x, y}] ∀ x, y ∈ [0, 1], (39)

see [7]. It can be checked that

Md =

d∏
j=1

[
1
2

(
1+

√
γd,j

cosh
√
γd,j

sinh
√
γd,j

)]
≤

d∏
j=1

(
1+min{1, 1

6γd,j }
)
. (40)
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Setting l =
⌈√
n
⌉

in (38) and using (37), we see that

e2(n,Appd,3
std) ≤

1
√
n

d∏
j=1

(
1+ 1

6γd,j
)
+

2
√
n

d∏
j=1

(1+ 1
6γd,j ) =

3
√
n

d∏
j=1

(1+ 1
6γd,j ).

Hence

card(ε,Appd,3
std) ≤

9
ε4

d∏
j=1

(1+ 1
6γd,j )

2
+ 1.

Since ln(1+ ξ) ≤ ξ for ξ ≥ 0, we may now use (36) and the previous inequality to see that that (11)
holds, and so the approximation problem is weakly tractable, as claimed.

Strong tractability: We will show that the approximation problem is strongly tractable for 3std iff

lim sup
d→∞

d∑
j=1

γd,j <∞. (41)

To see that this condition is necessary, we note that [6, Theorem 1] tells us that (41) is necessary for
the integration problem to be strongly tractable.2 Since multivariate integration is at least as hard as
multivariate approximation, we see that (41) is also necessary for multivariate approximation to be
strongly tractable.

To see that (41) implies that approximation is strongly tractable for3std, first note that we may use (29)
with τ = 1, along with (41), to see that 6d,1 is uniformly bounded in d . This implies that approxima-
tion is strongly tractable for 3all, with p(3all) ≤ 2, so that

e(n,Appd,3
all) = O

(
1
n1/2

)
,

with the O-factor being independent of both d and n, see § 4.1.2. From (40), we see that Md is also
uniformly bounded in d . If we once again let l =

⌈√
n
⌉

in (38), we now find that

e(n,Appd,3
std) = O

(
1
n1/4

)
, (42)

with the O-factor being independent of both d and n. Hence the problem is strongly tractable, as
claimed.

Now that we have shown that (41) is necessary and sufficient for strong tractability, let us say more
about the strong exponent p(3std). We claim that

p(3all) ≤ p(3std) ≤ p(3all)
(
1+ 1

2p(3
all)
)
. (43)

Indeed, since the left-hand inequality is a consequence of the trivial inclusion 3std
⊆ 3all, it only

remains to prove the right-hand inequality. First, suppose that p(3all) = 2; then (42) immediately
tells us that p(3std) ≤ 4, which is the value of p(3all)

(
1 + 1

2p(3
all)
)

when p(3all) = 2. Hence, we

2The paper [6] only considers product weights γd,u =
∏
j∈u γj . However, all the results of [6] hold for product weights of the

form γd,u =
∏
j∈u γd,j that we are using in this paper.
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need only consider the case p(3all) < 2. Choose δ > 0 such that rδ = 1/(p(3all)+ δ) > 1
2 . We see

that

e(n,Appd,3
all) = O

(
1
nrδ

)
,

with the O-factor being independent of both d and n. Since rδ > 1
2 , we may now use [3, Theorem 8]

to see that

e(n,Appd,3
std) = O

(
(ln ln n)2rδ/(2rδ+1)+1/2

nrδ ·2rδ/(2rδ+1)

)
,

with the O-factor being independent of both d and n. Letting δ → 0, we immediately obtain the
right-hand inequality in (43), as required.

Polynomial tractability: We now show that the approximation problem is polynomially tractable for 3std

iff

lim sup
d→∞

1
ln d

d∑
j=1

γd,j <∞. (44)

To see that this condition is necessary, we note that [6, Theorem 1] tells us that (44) is necessary for
the integration problem to be tractable. Since multivariate integration is at least as hard as multivari-
ate approximation, we see that (41) is also necessary for multivariate approximation to be strongly
tractable.

To prove the reverse implication, suppose that (44) holds. Recalling the definition of Aτ from (31),
we see that A1 is finite. From our tractability results for 3all, we see that

card(ε,Appd,3
all) = O(dqε−2)

for any q > A1, where the O-factor is independent of both d and ε. Equivalently, we have

e(n,Appd,3
all) = O(dq/2n−1/2),

where the O-factor is independent of both d and n. Using (38) with l =
⌈√
n
⌉

, along with (40), we
see that

e(n,Appd,3
std) = O(n−1/4dA1/2+δ)

for any δ > 0, where the O-factor is independent of both d and n, but may depend on δ. It now
follows that for any δ > 0, we have

card(ε,Appd,3
std) = O(d2A1+δε−4),

where the O-factor is independent of both d and ε, but may depend on δ. Hence our approximation
problem is tractable, as claimed.

4.2.3 Bounded finite-order and finite-diameter weights

Recall from §4.1.3 that the boundedness of finite-order (or finite-diameter) weights (32) is needed for
tractability in the class 3all. Since 3std

⊆ 3all, we see that this condition is also needed for tractability
in the class 3std. So without loss of generality, we shall assume that (32) holds.
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As we did for the class 3all, we now prove that if our finite-order (or finite-diameter) weights are uni-
formly bounded, then the approximation problem is tractable. The proof technique is analogous as that
of §4.1.3, and relies on the relation between the approximation problem for both classes.

Let

ω =

{
ω for finite-order weights of order ω,
1 for finite-diameter weights.

From part (1) of Theorem 4.1, we conclude that the ordered eigenvalues {αd,k}k∈N satisfy

αd,k = O

(
C

2/τ
τ,ωMd

2ω/τ

k2/τ

)

for all τ > 1. If we take τ < 2, then [3, Theorem 3] applies, and we have

e(n,Appd,3
std) = O

(
dω/τ

(ln ln n)2/(τ+2)+1/2

n2/(τ 2+2τ)

)
,

with the O-factor being independent of both d and n, and depending only on τ . This implies that

card(ε,Appd,3
std) = O

(
dω(1+τ/2)

ετ(1+τ/2)

)
, (45)

for any τ > 1, with the O-factor being independent of both d and ε−1, and depending only on τ . Hence the
approximation problem is polynomially tractable, as claimed.

It may be possible to improve the d- and ε−1-exponents in (45) by using a modified version of the results
found in [6] and [13], but we do not pursue this issue here.
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