
The Impact of SCTP on Server Scalability and Performance

Kumiko Ono and Henning Schulzrinne
Dept. of Computer Science, Columbia University.

Email: {kumiko, hgs}@cs.columbia.edu

Abstract

The Stream Control Transmission Protocol (SCTP) is a
relatively recent transport protocol, offering features be-
yond TCP. Although SCTP is an alternative transport pro-
tocol for the Session Initiation Protocol (SIP), we do not
know how SCTP features influence SIP server scalability
and performance. To estimate this, we measured the scal-
ability and performance of two servers, an echo server
and a simplified SIP server on Linux, for both SCTP and
TCP. Our measurements found that using SCTP does not
significantly affect data transfer latency. However, the
number of sustainable associations drops to 17-21% or
to 43% of the TCP value if we adjust the acceptable gap
size of unordered data delivery.

1 Introduction

The Stream Control Transmission Protocol (SCTP) [1]
was originally designed for carrying telephony signaling
protocol, Signaling Systems No.7 (SS7), over IP. Similar
to TCP, SCTP is reliable and connection-oriented, but it
is message-oriented like UDP, and has additional features
such as multi-streaming and multi-homing. SCTP is de-
fined as an alternative transport protocol to UDP or TCP
for the Session Initiation Protocol (SIP) [2] [3], which is a
major Internet telephony signaling protocol. Understand-
ing how SCTP affects scalability and performance is im-
portant for building SIP servers and designing large voice
over IP (VoIP) systems.

Depending on its role in a VoIP network, a SIP proxy
server may connect to a large number of user agents or
to a, typically smaller, number of other proxy servers, as
shown in Figure 1. Proxy servers maintaining connec-
tions to user agents are often called edge proxy servers
Therefore, if a connection-oriented transport protocol is
used, the server is required to manage a large number of
concurrent connections, making server scalability as im-
portant as request throughput and latency. On the other
hand, between proxy servers, the server needs to manage
a smaller number of connections, since connections can
be shared among user agents with the same signaling des-
tination.

Even though SCTP is not as commonly used as TCP
or UDP, it has been implemented as a kernel module in

Figure 1: Two types of connections at SIP proxy servers

Linux, so that it can be easily used between user agents
and a proxy server as well as between proxy servers. This
broad deployment requires a server with enough scalabil-
ity to accommodate a large number of user agents. We
present how SCTP affects scalability and the performance
of an echo server and a simplified SIP server that only
implements the message handling parts of a SIP proxy
server. From our measurements, we estimate the effect
of choosing SCTP as a transport protocol for SIP.

The remainder of this paper is organized as follows.
Section 2 discusses which SCTP features benefit SIP. Sec-
tion 3 describes our measurement objectives and environ-
ment. Section 4 compares socket memory usage between
SCTP and TCP and suggests how to save memory with
SCTP. Section 5 compares the number of sustainable con-
nections and Section 6 compares data transfer latency for
an echo server between SCTP and TCP. Section 7 com-
pares data transfer latency for a simplified SIP server,
namely, SIP front-end server among SCTP, TCP and UDP.
We conclude with a discussion of the influence of SCTP
on SIP server scalability and performance in Section 8.
Appendices describe the metrics, tools and configurations
for our measurements and the data structures used by the
Linux SCTP implementation.

2 SCTP Features

Table 1 compares the features of SCTP, TCP and UDP.
The following SCTP features potentially benefit SIP ap-
plications and server scalability, respectively.

1

Figure 2: Message exchanges using
one-to-one style sockets for both a
server and a client

Figure 3: Message exchanges us-
ing a one-to-many style socket for
a server

Figure 4: Message exchanges us-
ing a one-to-many style socket for
a client

2.1 Beneficial Features for SIP Applications

Piggyback setup in four-way handshake: SCTP es-
tablishes a connection with a four-way handshake using
INIT, INIT-ACK, COOKIE-ECHO, andCOOKIE-ACK
messages, as shown in Figure 2. Clearly, this four-way
handshake requires two round trip times (RTTs), which is

Table 1: Comparison of transport protocols

SCTP TCP UDP

Connection-
oriented

Yes: establish
using four-way
handshake in-
cluding cookie
to resist flood
attack

Yes:
establish
using
three-way
hand-
shake

No

Socket style corre-
sponding to con-
nections

one-to-one or
one-to-many

one-to-
one

(one-
to-
many)

Message-oriented Yes No Yes
Message exceed-
ing MTU

Yes Yes No

Reliability Yes Yes No
Flow control Yes Yes No
Congestion control Yes Yes No
Multi-streaming Yes: minimize

HOL blocking
No No

Multi-homing Yes No No

one more than that for the three-way handshake in TCP.
However, the piggyback setup allows to bundle user data
into theCOOKIE-ECHO message, as shown in Figure 4,
so that it reduces the RTTs combined in the handshake
and in sending user data to the same as those of TCP. In a
SIP session using non-persistent connection, where a new
connection is established, a larger RTTs in the handshake
causes a longer setup delay. Thus, the piggyback setup is
expected to mitigate this setup delay.

Message orientation:Similar to UDP, SCTP preserves
message boundaries. Applications can extract a single re-
ceived message and determine if the original message is
fully delivered through the socket API, while they need
to parse received messages over TCP using theContent-
Length header in SIP. However, message parsing is nec-
essary for SIP applications. Thus, we suspect that this
message orientation has a negligible benefit.

Message exceeding MTU size:Similar to TCP, SCTP
supports the delivery of message exceeding Maximum
Transfer Unit (MTU) size by segmentation. Since some
networks or services require SIP extension headers or sig-
natures, the message size of a SIP request may grow be-
yond the Ethernet MTU of 1,500 bytes. For example, an
INVITE request in IP Multimedia System (IMS), which
contains privacy headers and many routing-related head-
ers, is at least 1,550 byte long.

2

2.2 Features improving Server Scalability

Two features of SCTP, one-to-many style sockets and
multi-streaming, potentially help server scale by reducing
memory usage and increasing throughput.

SCTP provides one-to-one and one-to-many socket in-
terfaces. These two interfaces differ in representingas-
sociations, which mean connections in SCTP, as shown
in Figures 5 and 6. While a one-to-one style socket can
represent a single association, a one-to-many style socket
can represent multiple associations, similar to UDP, where
a socket can receive messages from multiple clients.
Other SCTP-related data structures are described in Ap-
pendix C.2.

A server using a one-to-many style socket can receive
messages from different associations at a single listening
socket, i.e., without creating a new socket by calling the
accept() system call to create a new association, as
shown in Figure 3. Thus, using the one-to-many style
socket can drastically reduce the number of sockets at a
server.

sctp_sock assoc.endpoint transport

sctp_sock assoc.endpoint transport

sctp_sock assoc.endpoint transport

Figure 5: One-to-one style socket data for three associa-
tions

sctp_sock

assoc.

endpoint

transport

assoc. transport

assoc. transport

Figure 6: One-to-many style socket data for three associ-
ations

Additionally, a client using a one-to-many style socket
can utilize piggyback setup to reduce the setup delay of
the four-way handshake described in Section 2.1. To use
piggyback setup, a client has to create a one-to-many style
socket and invoke thesendmsg() system call to send a
message without calling theconnect() system call, as
shown in Figure 4.

Thus, we can expect to benefit from one-to-many style
sockets for both server and client, although the socket
style can be set independently to each other. At the same
time, however, using one-to-many style sockets poten-
tially decreases server throughput. By sharing a single
socket buffer, the server receives and sends messages for
all associations and de-multiplexes the messages by four
tuples: source and destination IP addresses and ports.

This is similar to that of UDP, but messages sent are kept
longer than for UDP, since they cannot be removed until
the SCTPACK has been received. Therefore, the send
buffer may be exhausted at high request rates. We will
evaluate the effects of this one-to-many style socket by
comparing three sequences shown in Figure 2, 3 and 4.

The other feature, multi-streaming, can minimize head-
of-line (HOL) blocking, as evaluated by Camarillo, Kan-
tola and Schulzrinne [4]. The HOL blocking occurs in
TCP when a segment is lost and a subsequent segment
arrives out of order. The receiving application needs to
wait for the lost segment to read the arrived segment. In
SCTP, however, by breaking multi-session streams into
separate streams, the HOL blocking can be minimized,
even though it occurs in the same stream. This multi-
streaming feature is effective especially for inter-proxy
servers, where multiple SIP sessions can share an asso-
ciation. We can expect this multi-streaming feature to im-
prove throughput especially in a congested network, but
do not discuss this feature here.

3 Measurements

We measured the effects of three SCTP features, namely,
one-to-many style sockets, piggyback setup and message
orientation. To evaluate the effect of the one-to-many
style sockets, we first identified the data structures of the
two styles of SCTP sockets, then we compared memory
usage among these two styles of SCTP sockets and TCP
sockets. Then, to evaluate its effect on server scalability,
we compared the number of sustainable associations for
an echo server between two SCTP socket styles. To eval-
uate its effect on server performance, we compared the
setup time and transaction time. By comparing the setup
time, we identified the effect of the piggyback setup. By
comparing the transaction time, we identified the effect
of the SCTP message orientation using a SIP front-end
server, which simply receives a SIP request and responds
with a 200 OK response without any substantial SIP op-
eration.

3.1 Measurement Environment

We use two servers, an echo server and a SIP front-
end server using a single process and single thread. Ta-
ble 2 compares them with a SIP server, which usually use
multi process and/or multi threads. The servers under test
(SUT) for both run on a dedicated host with Pentium IV
3 GHz 32-bit dual-core CPU and 4 GB of memory. The
SUT runs Linux 2.6.23 configured with the default vir-
tual memory split of 1G/3G, where the kernel space is 1
GB and the user space is 3 GB. When the server needs
to wait for events on more than 1,024 sockets, it uses the
epoll() system call.

For the echo clients or SIP user agents, we use six hosts
with Pentium IV 3 GHz 32-bit CPUs and 1 GB of mem-

3

Table 2: Comparison of servers

Echo
server

SIP
front-
end
server

SIP server

Receive/Send
msg.

Yes Yes Yes

Forward msg. No No No for registrar,
yes for proxy

Msg. parsing No Yes Yes
SIP operation No No Yes
Database ac-
cess

No No Yes

Number of
msg. per
request

2 2 2 for registrar,
14 for proxy

Number of
transactions

1 1 1 for registrar, 6
for proxy

Process/ThreadSingle/
Single

Single/
Single

(Multi/ Multi)

ory running Redhat Linux 2.6.9, except the measurement
applying a patch in Section 6.1, where we use two hosts
which have the same hardware and software specification
with the echo server. These hosts communicate over a
100 Mb/s Ethernet connection at light load. The round
trip time measured by theping command is roughly 0.1
ms. Appendix A details measurement tools and configu-
rations.

4 SCTP Data Structures
We first identified the data structures for establishing and
maintaining an SCTP socket and calculated the memory
usage. Then, we evaluated server scalability by measuring
the number of sustainable associations at the SUT.

4.1 Comparison of the Data Size of SCTP and TCP
Sockets

Table 3 itemizes the sizes of socket-related data structures
and those allocated from cache objects called slab cache
in Linux. The slab cache is implemented for frequent al-
locations and deallocations of data. The socket-related
data structures detail used in both two transport proto-
cols, which are listed in Appendix C.1, and for SCTP-
specific in Appendix C.2. SCTP requires larger proto-
col specific data including the 5120-bytesctpassociation
which stores data linked to an association, while TCP re-
quires only the 1096-bytetcp socket. Table 3 also shows
that the amount of memory using one-to-many style sock-
ets significantly increases as a function of the number of
associations. The amount of memory using multi-streams
increases slightly as a function of the number of streams.

Furthermore, each socket-related data object consumes

more than the data size when allocated from slab cache
objects, since the slab cache object size is a power of two.
For example, the dominant object,sctpassociationis al-
located from a 8,192 byte slab object. As a result, main-
taining an SCTP socket statically consumes 10,812 bytes,
approximately five times of the amount needed for a TCP
socket, even in the simplest case, that is, with a one-to-
one style socket and a single stream each. The dominant
data is association-related data, which consumes approxi-
mately 80% of the total memory usage. Even when using
one-to-many style sockets, a server needs to allocate the
same number of associations with when using one-to-one
style sockets. Therefore, we cannot expect drastic mem-
ory saving by using one-to-many style sockets, although
we expected that in Section 2.2. Section 4.2 will inves-
tigate how to reduce association-related data in order to
increase the effect of one-to-many style sockets on mem-
ory saving.

4.2 Memory-conscious Usage of Association Data

To cut down the memory footprint of association-related
data, it is crucial to reduce the size of the dominant
sctpassociationdata. Although the size of this data struc-
ture is 5,120 bytes, it grows to 8,192 bytes when it is al-
located from the slab cache objects. This is because the
smallest slab cache object to store more than 4,096 bytes
is 8,192 bytes. This means that the memory footprint will

Table 3: Itemized memory usage for an SCTP and a TCP
socket at a server

Data Structure Slab
Name Size Size # of objects

(B) (B) SCTP TCP

dentry 128 128 1 1
file 136 192 1 1
inode 328 384 1 1
socket 40
sock(tcpsocket) 1,096 1,152 0 1
sock(sctpsocket) 772 896 1 0

eppoll entry 36 36 1 1
epitem 80 128 1 1

sctpendpoint 176 256 1 0
sctpbind addr 40 64 1 0

Subtotal for a socket (bytes) 2,044 2,020

sctpassociation 5,120 8,192 1 or na 0
sctp transport 284 512 1 or na 0
sctpssnmap 60 64 1 or mb 0

Subtotal for an association (bytes) 8,768 0

Total memory usage (bytes) 10,812 2,020

aone-to-many
bmulti-streaming

4

be halved if we can reduce 5,120 bytes to 4,096 bytes.
Appendix C.2 lists the members of the

sctpassociation structure. The total size is
5,120 bytes and the dominant sub-member is
map[sctptsnmapstoragesize(SCTPTSNMAP SIZE)],
which accounts for 4,096 bytes. This is a byte mapping
array, namely, TSN (Transmission Sequence Num-
ber) map, each byte of which indicates the number
of chunks for each TSNs to trace received TSNs for
unordered data delivery. The TSN map size, i.e., the
SCTP TSN MAP SIZE, is set to allow a gap of 2,048
segments between the cumulative ACK and the highest
TSN by default. This mapping array is twice the size of
the TSN map to allow an overflow map. Therefore, if we
do not need to handle such large gap, we can reduce the
TSN map size.

Figure 7 shows how memory usage for a socket can de-
crease by adjusting the TSN map size. When we adjust it
to 512, the mapping array would decrease to 1,024 bytes,
and thesctpassociationwould decrease to 2,048 bytes.
This reduced data could then be allocated from a 2,048
byte slab object. As a result, the total amount of mem-
ory for an SCTP socket could be reduced to less than half,
4,668 bytes, although the amount is still more than twice
the size of a TCP socket. Adjusting the TSN map size to
256 does not affect the data size of thesctpassociation,
since the size of mapping array is still larger than 1,024
bytes. Therefore, if we need to support unordered data
delivery, adjusting the TSN map size to 512 is most ef-
fective to reduce the size of thesctpassociation. If we
do not need to support any unordered data delivery, which
is unrealistic though, we could adjust the TSN map size
to zero. The data size of thesctpassociationwould then
decrease to 1,024 bytes. As a result, the total amount of
memory could be reduced to 3,664 bytes which is still
around twice the size of a TCP socket.

In a SIP session between a user agent and the server,
SIP messages do not have to allow such large gap, since
a SIP request requires the SIP response before sending
a new SIP request. However, in a SIP session between
proxy servers, a number of aggregated SIP messages are
transmitted over a single association. For this situation,
the SIP servers need to allow a certain gap depending on
the traffic model between proxy servers.

5 Number of Sustainable Associations

As a metric of server scalability, we measured the num-
ber of sustainable associations for the echo server. After
the echo clients request new associations, they send a SIP
INVITE message and receive a copy and maintain the as-
sociations. This measurement was performed without the
tuning proposed in Section 4.2.

To allow a large number of concurrent associations, we
raised an upper limit of the number of file descriptors per

 0

 2000

 4000

 6000

 8000

 10000

 12000

TCP (0)

SCTP (2048)

SCTP (1024)

SCTP (512)

SCTP (256)

SCTP (0)

M
em

or
y

us
ag

e
(b

yt
es

)

Protocol (SCTP_TSN_MAP_SIZE)

2,020
(1.00)

10,812
(5.35)

6,716
(3.32)

4,668
(2.31)

4,668
(2.31) 3,644

(1.80)

socket
epoll

other_than_sctp_asoc
sctp_asoc

Figure 7: Memory usage for a socket as a function of
SCTP TSN MAP SIZE

process to 60,000 for the clients and to 1,000,000 for the
SUT. In addition, to increase concurrent associations for
each client, we expanded the range of ephemeral local
port to 10,000 - 65,535. Specifically for SCTP, for sim-
plification, we disabled the heartbeat mechanism, which
probes the reachability of remote associations every 30
seconds by default. Appendix D describes the detailed
system configuration.

5.1 The Effect of One-to-many Style Sockets

Table 4 compares the numbers of sustainable associations
or connections among the one-to-one and one-to-many
style sockets of SCTP and TCP. The number is measured
just before the system yields an error, out of memory for
sockets, and the “oom killer” process kills heavy pro-
cesses based on the memory usage and lifetime. From our
measurements, the number of sustainable associations of
SCTP is only 17-21% that of TCP. Although a server us-
ing a one-to-many style socket can increase the number
of concurrent associations by about 15,000 compared to
one-to-one style sockets, this improvement makes barely
a difference in the comparison with TCP.

Table 4 also compares the memory usage per associ-
ation or connection by measuring the memory usage for
the slab cache objects. The memory usage agrees with
our analysis in Section 4.1. Thus, if we adjust the TSN
map size depending on the requirement for handling un-
ordered data delivery, we could improve the number of
sustainable associations up to approximately 50% of that
of TCP.

6 Data Transfer Latency for an Echo Server

As a metric of server performance, we measured data
transfer latency for the echo server to compare the setup
time and transaction time of SCTP and TCP to identify
how using a single socket buffer in a one-to-many style

5

Table 4: Sustainable associations and memory usage per
association for SCTP and TCP

SCTP TCP
Socket Style
at server

One-to-one One-to-many

Number of
assoc.

74,680 90,607 419,019

Ratio 0.17 0.21 1.00

Memory us-
age per as-
soc. (KB)

11.12 8.90 2.05

socket affects and how much piggybacking data in the
initial handshake reduces them. For this measurement,
we configured the echo server and clients to eliminate
unnecessary delay and errors, in addition to allowing a
large number of connections as shown in Section 5. Ap-
pendix D describes the details.

The setup time of an association is the elapsed time
from the instant that a client invokes theconnect()
system call to returning from it. The transaction time
is the elapsed time from the instant that a client invokes
the sendmsg() system call to send a 1,550 byteIN-
VITE request to its invoking therecvmsg() system call
to receive a copy. The echo clients send the requests
at 2,500 requests/second and the echo server accumu-
lates the SCTP associations or TCP connections until their
number reaches 50,000.

6.1 The Effect of One-to-many Style Sockets

To identify the effect of one-to-many style sockets for the
echo server, we compare the setup and transaction times
between the two SCTP sockets whose message exchanges
are shown in Figures 2 and 3. Table 5 compares the setup
and transaction times of the two SCTP socket styles and
TCP for the echo server. Significantly, the setup time
for the one-to-many style sockets grows linearly with the
number of associations, while the setup time as a func-
tion of the number of associations for the one-to-one style
sockets remains constant. Similarly, the transaction time
for one-to-many style sockets significantly differs from
the one-to-many style sockets, while the transaction time
for one-to-one style sockets does not significantly differ
from that using TCP.

To investigate the reason of the linear increase with the
number of associations using a one-to-many style socket,
we traced the kernel source code, and found that when
receivingINIT andCOOKIE ECHO messages, a linear
search is used to look up a matching association by end-
point. Such search always fails. Therefore, the one-to-
many style socket, where an endpoint links to multiple
associations, increases the setup time as a function of the
number of associations, while one-to-one style sockets,

where each endpoint links to a single association, do not
increase the setup time. Also, when sending a message,
thesctp sendmsg() function in kernel calls a lookup
function which performs a linear search. Thus, the trans-
action time increases linearly. However, the increase is
not so drastic as that in the setup time. Unlike to the setup
time, this association search is always successfully per-
formed and takes time depending where the matching as-
sociation is stored in the list of associations. Since the lin-
ear search clearly causes the cost of using a one-to-many
style socket, both setup and transaction times could be im-
proved by replacing it with a hash table lookup.

After applying a patch to replace the search algorithm,
we re-measured the setup time. Figure 8 indicates that
the setup time using a one-to-many style socket remains
constant at 0.34 ms, similar to that using one-to-one style
sockets.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

se
tu

p
tim

e
(m

s)

of SCTP associations (1,000)

one-to-many sockets
one-to-one sockets

Figure 8: SCTP setup time as a function of the number of
associations with one-to-one and one-to-many style sock-
ets after replacing search algorithm

6.2 The Effect of Piggyback Setup

With the piggyback setup mechanism, we can expect to
reduce the total number of messages and the combined
time for the setup and the transaction, not the setup time
itself. To identify the effect of using piggyback setup,
we compare the combined time between the two styles of

Table 5: Setup and transaction times for SCTP and TCP

SCTP TCP
Socket style
at server

One-to-one One-to-many

Setup style Regular Piggyback

Setup (ms) 0.34 0.84 0.38-170.91 0.17
Transaction
(ms)

0.54 0.65-34.14 0.48

Total (ms) 0.88 0.84 1.03-205.05 0.65

6

Table 6: Elapsed time between messages for SCTP and
TCP

SCTP TCP
Messages Regular

setup
(ms)

Piggyback
setup
(ms)

(ms) Messages

s:INIT 0.00 0.00 0.00 s:SYN
r:INIT-
ACK

0.14 0.14 0.09 r:SYN,
ACK

s:COOKIE-
ECHO

0.01 0.01 0.01 s:ACK

r:COOKIE-
ACK

0.13 0.23

s:DATA 0.00 N/Aa 0.00 s:DATA
r:DATA 0.37 0.26b 0.34 r:DATA

aDATA is piggybacked with COOKIE-ECHO.
bThis indicates the elapsed time from receiving COOKIE-ACK.

SCTP sockets for the clients, whose message exchanges
are shown in Figures 2 and 4. Table 5 compares the setup,
the transaction and the combined times among two SCTP
setup styles and TCP. This table indicates that using pig-
gyback setup reduces the combined time only by 0.04 ms
in our local area network.

To investigate the cost of the piggyback setup, we mon-
itored the elapsed time for each RTT at an echo client
using thetcpdump program. Table 6 shows that the
elapsed time between sendingCOOKIE-ECHO and re-
ceiving COOKIE-ACK grows by 0.1 ms beyond that of
the SCTP regular setup. Therefore, in spite of reducing
the elapsed time between receivingCOOKIE-ACK and
receiving a copied user message by 0.11 ms, the overall
effect of using piggyback setup is slight: 0.01 ms at the
network layer and 0.04 ms at the application layer. Ta-
ble 6 also indicates that the setup with processing signed
cookies is originally expensive. As long as SCTP pro-
cesses signed cookies to protect against a INIT flooding
attack, the SCTP setup is more expensive than that for
TCP, which processes no cookies by default. Although the
effect of using piggyback setup is slight in our measure-
ment environment, the effect of reducing one RTT would
be larger in a wide area network.

7 Data Transfer Latency for a SIP Front-
end Server

To identify the effect of the message orientation, we used
a SIP front-end server that parses SIP messages to deter-
mine the message boundary for TCP. This SIP front-end
server is halfway of an echo server and a SIP registrar
server as shown in Table 2.

As described in Section 2.1, the message orientation
over SCTP potentially affects processing time for a SIP

server, but we suspected that it is small. Thus, to identify
such small effect of the message orientation, we elimi-
nated the processing of SIP operation including database
access, which dominates processing time in the SIP regis-
trar server.

7.1 The Effect of Message Orientation

When calling therecvmsg() system call, we can deter-
mine whether or not the received message is fully deliv-
ered by checking the message flag. If the full message is
delivered, the message flag is set toMSG EOR. Figure 9
compares the setup and transaction times among the three
SCTP cases, TCP and UDP, for the SIP front-end server.
As we suspected, we cannot see any effect of the message
orientation. We summarized that parsing a SIP message
is not a heavy task, since the typical message size is ap-
proximately 1,550 bytes. If a SIP message conveys a bulk
data as much as for a file transfer application, the mes-
sage orientation could be effective. Also, message parsing
is required for SIP operations regardless of the transport
protocol. Therefore, the message orientation feature has
little effect on a SIP server.

 0

 0.2

 0.4

 0.6

 0.8

 1

SCTPone-to-one

SCTPone-to-m
any

SCTPpiggyback setup

TCP
UDP

el
ap

se
d

tim
e

(m
s)

transaction time
setup time

Figure 9: Setup and transaction times for SCTP and TCP
for SIP front-end server

8 Conclusion
We have shown how using SCTP impacts on server scala-
bility and performance by evaluating the effect of the three
SCTP features and to estimate the impact on SIP server
scalability and performance. We suspected that using
SCTP has negative impact on server scalability, since an
SCTP association, which corresponds to a TCP connec-
tion, requires significantly more storage to support the ad-
ditional features. Then, we expected using a one-to-many
style socket enables to increase the number of sustainable
associations by saving the number of sockets. Our mea-
surement results indicates that the echo server scalability
decreases to one fifth of that using TCP, because of a large

7

amount of association-related data. By adjusting the ca-
pacity for accepting out of order data delivery, we could
mitigate the decrease to a half. Yet, the scalability gap be-
tween SCTP and TCP remains significant. This gap surely
limits the usability of SCTP for edge servers.

On the other hand, data transfer latency, such as the
setup and transaction times, does not significantly differ
between using one-to-one style sockets for SCTP and us-
ing TCP. When a client uses the piggyback setup, the dif-
ference in the combined time can slightly decrease. We
failed to identify the effect of the message orientation us-
ing the SIP front-end server. For one-to-many style sock-
ets of SCTP, we had to fix the current lookup function in
order to limit the latency for a scalable server. Since the
SCTP kernel implementation is far less mature than the
TCP implementation, we suspect that there is a significant
room for improvement.

Acknowledgement
This work was supported by NTT Corporation. The au-
thors would like to thank Vlad Yasevich of HP for provid-
ing a patch for the association lookup function.

References
[1] R. Stewart. Stream Control Transmission Protocol.

RFC 4960, IETF, September 2007.

[2] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. John-
ston, J. Peterson, R. Sparks, M. Handley, and
E. Schooler. SIP: Session Initiation Protocol. RFC
3261, IETF, June 2002.

[3] J. Rosenberg, H. Schulzrinne, and G. Camarillo. The
Stream Control Transmission Procotol (SCTP) as a
Transport for the Session Initiation Protocol (SIP).
RFC 4168, IETF, October 2005.

[4] G. Camarillo, R. Kantola, and H. Schulzrinne. Evalu-
ation of Transport Protocols for the Session Initiation
Protocol. InIEEE Network, September 2003.

8

A Measurement Metrics and Tools
Figure 10 shows that the controller starts the echo server
and monitoring tools at the SUT and echo client programs
at multiple echo clients. After starting all processes at the
SUT and the clients, the controller waits for the responses
from the clients so that it can synchronize the time the
clients start to send messages to the SUT.

SUT

controller

clients

associations

start echo serverstart/synchronize echo clients

Figure 10: Measurement environment

To monitor memory usage of sockets and the number
of slab objects allocated for socket-related data, we moni-
tored the/proc/slabinfo file every second. Also, we
monitored the overall memory usage of slab objects using
the/proc/meminfo file.

To monitor CPU time, we monitored the total
CPU time and that of the echo server process us-
ing the top command. Also, we used a profiler,
the oprofile tool, to identify heavy functions in-
cluding the kernel functions. By this, we identified
sctp endpoint lookup assoc() as the heaviest

function call.
To monitor the number of concurrent sockets, we

scanned the/proc/net/sctp/sctp dbg objcnt
file every second. To enable this monitor, we changed the
kernel configuration parameter and recompiled the kernel.

To monitor the setup and the transaction times, we
added time stamps at the echo client program. To avoid
the slowdown caused by calculating and printing the
elapsed time, it only calculates every one thousand mes-
sages. Additionally, we monitored message exchanges us-
ing thetcpdump command to assess the reliability of the
elapsed time measured by the timestamps.

B SCTP Message Exchanges

B.1 Initiating an Association

SCTP uses a four-way handshake to initiate an associ-
ation. When the server receives an SCTPINIT chunk,
the implementation in Linux allocates temporarily a new
association, i.e., sctpassociation object, sends an SCTP
INIT-ACK chunk, and frees the temporal association.
When receiving an SCTPCOOKIE-ECHO chunk, it al-
locates a new association.

B.2 Heartbeat

This mechanism is to probe the reachability of a particular
destination transport address defined in the present associ-

ation. In other words, this is used to see which destination
address is active or idle and to measure round trip time
(RTT) via the active destination address. by waiting for
the response within the Retransmission Timeout (RTO).

RFC 4960 [1] specifies that each endpoint should send
HEARTBEAT requests to its peer endpoint. When re-
ceiving theHEARTBEAT request, the endpoint should
respond with theHEARTBEAT-ACK. This mechanism is
enabled by default and the recommended interval is 30
seconds. When increasing the interval, we need to con-
sider that the detection of lostABORT messages, which
have noACK, will take longer.

This is a similar mechanism to the TCP keepalive
mechanism, which is not enabled by default, and which
has a default interval of two hours.

C Date Structures for SCTP Sockets

C.1 Generic Data Structures for Transport Protocols

Theinodestructure represents all the information of a file
or directory needed by the kernel. Thefile structure repre-
sents an open file associated with a process. Thedentry is
an entry containing the path information such as the par-
ent and child directories.

The socket is a general structure to hold the type and
state in the socket layer. Thesockstructure is used com-
mon in all transport layer protocols and the socket options.
This sock is cast each transport protocol, e.g., sctpsocket.

Thesk buff is a socket buffer to provide buffering and
flow control. The buffered data in the socket is sepa-
rately allocated and linked to a skbuffheadcache. When
cloning skbuff for TCP segmentation, this is allocated
from the slab cache, skbufffclone cache.

There are two additional data structures for polling us-
ing theepoll() system call. Theeppoll entry structure
holds a wait queue used by the event poll. Theepitem
is an event entry for each file descriptor to be added the
eventpoll interface.

C.2 Date Structures for SCTP Sockets

The sctp socket stores SCTP information per socket,
e.g., the socket options, the heartbeat interval to be in-
herited by all new associations, and the pointer to the
endpoint. Thesctp endpoint stores the logical sender
or receiver of SCTP packets per socket. On a multi-
homed host, an SCTP endpoint is represented as a set of
source/destination transport addresses. A one-to-one style
socket, a TCP-style socket, has exactly one association on
one endpoint, while a one-to-many style socket, a UDP-
style socket, has multiple associations on one endpoint.

Thesctp bind addr stores bind addresses (the local
port and the list of IP addresses) common between the
associations and endpoints. Thesctp bind bucket holds
the local port number only used at an SCTP client.

9

The sctp associationholds a recommended set of pa-
rameters in TCB (Transmission Control Block), e.g., the
local bind address, cookie, the SCTP state, the current
TSNs (Transmission Sequence Numbers), the initial pa-
rameters of the socket, and all information about the peers.
It has approximately 100 attributes, as the data defini-
tion ininclude/net/sctp/structs.h is shown in
Figures 11 and 12. We added data size for not well-known
data structures.

The sctp transport represents a remote transport ad-
dress (IP address and port) and tracks the current retrans-
mission timeout (RTO) value, RTT, current congestion
window and heartbeat interval. Thesctp ssnmaptracks
both the outbound and inbound stream sequence numbers,
which assures sequenced delivery of the user messages
within a give stream.

The sctp chunk is a unit of information within an
SCTP packet containing a pointer to the skbuff. The
sctp datamsgis for a single message to track chunk frag-
ments some of which has been acked, but the remaining
has not.

10

D System Configuration

D.1 Server Configuration

The following command line increases the number of file descriptors in the system:

% echo 1048576 > /proc/sys/fs/file-max

1,048,576 (= 1024*1024) is the system limit defined as a constant,NR FILE in include/linux/fs.h. To
increase this limit when enough memory is installed, we needto modify and recompile the kernel.
To change the/proc/sys parameters at boot time, we need to add them to/etc/sysctl.conf as follows:

fs.file-max=1048576

Theulimit command can be used to increase the number of file descriptorsper process:

% ulimit -n 1000000

To allow a remote shell to access a large number of file descriptors for our measurement, we need to specify the user
name and the parameter in/etc/security/limits.conf:

special_user soft nofile 1000000
special_user hard nofile 1000000

To allow a remote shell to access a larger number of file descriptors invoked byssh, we need to restartsshd in
/etc/rc.local:

% ulimit -n 1000000
% /etc/rc.d/init.d/sshd restart

The memory space for TCP socket buffers is configured as follows:

net.ipv4.tcp_rmem = 4096 87380 174760
net.ipv4.tcp_wmem = 4096 16384 131072
net.ipv4.tcp_mem = 98304 131072 196608

These parameters are automatically configured at boot time based on available memory as well as TCP established
and bind hash table entries. The variables are logged in/var/sys/message during boot:

kernel: TCP established hash table entries: 524288 (order: 10, 4194304 bytes)
kernel: TCP bind hash table entries: 65536 (order: 7, 524288 bytes)
kernel: TCP: Hash tables configured (established 524288 bind 65536)

D.2 Client Configuration

To increase the number of file descriptors for a shell, we again use theulimit command:

% ulimit -n 60000

To increase the range of local ports, we modify theip local port range file:

% echo 10000 65535 > /proc/sys/net/ipv4/ip_local_port_range

11

struct sctp_association {

struct sctp_ep_common base; //80 bytes
struct list_head asocs; // 8 bytes
sctp_assoc_t assoc_id; // 4 bytes
struct sctp_endpoint *ep;
struct sctp_cookie c; //168 bytes
struct {

__u32 rwnd;
struct list_head transport_addr_list;//8 bytes
__u16 transport_count;
__u16 port;
struct sctp_transport *primary_path;
union sctp_addr primary_addr; //28 bytes
struct sctp_transport *active_path;
struct sctp_transport *retran_path;
struct sctp_transport *last_sent_to;
struct sctp_transport *last_data_from;

/*
* Mapping An array of bits or bytes indicating which out of

* Array order TSN’s have been received (relative to the

* Last Rcvd TSN). If no gaps exist, i.e. no out of

* order packets have been received, this array

* will be set to all zero. This structure may be

* in the form of a circular buffer or bit array.

*
* Last Rcvd : This is the last TSN received in

* TSN : sequence. This value is set initially by

* : taking the peer’s Initial TSN, received in

* : the INIT or INIT ACK chunk, and subtracting

* : one from it.

*
* Throughout most of the specification this is called the

* "Cumulative TSN ACK Point". In this case, we

* ignore the advice in 12.2 in favour of the term

* used in the bulk of the text. This value is hidden

* in tsn_map--we get it by calling sctp_tsnmap_get_ctsn().

*/
struct sctp_tsnmap tsn_map; // 168 bytes
__u8 _map[sctp_tsnmap_storage_size(SCTP_TSN_MAP_SIZE)];//4096 bytes

__u8 sack_needed;
__u8 ecn_capable;
__u8 ipv4_address;
__u8 ipv6_address;
__u8 hostname_address;
__u8 asconf_capable;
__u8 prsctp_capable;
__u32 adaptation_ind;
__be16 addip_disabled_mask;
struct sctp_inithdr_host i; //16 bytes
int cookie_len;
void *cookie;
__u32 addip_serial;

} peer;

Figure 11: Data structure ofsctpassociation(contd.)

12

sctp_state_t state; //4 bytes
struct timeval cookie_life; //8 bytes
int overall_error_count;
unsigned long rto_initial;
unsigned long rto_max;
unsigned long rto_min;
int max_burst;
int max_retrans;
__u16 max_init_attempts;
__u16 init_retries;
unsigned long max_init_timeo;
unsigned long hbinterval;
__u16 pathmaxrxt;
__u32 pathmtu;
__u32 param_flags;
unsigned long sackdelay;
unsigned long timeouts[SCTP_NUM_TIMEOUT_TYPES];
struct timer_list timers[SCTP_NUM_TIMEOUT_TYPES]; //24 bytes
struct sctp_transport *shutdown_last_sent_to;
struct sctp_transport *init_last_sent_to;
__u32 next_tsn;
__u32 ctsn_ack_point;
__u32 adv_peer_ack_point;
__u32 highest_sacked;
__u16 unack_data;
__u32 rwnd;
__u32 a_rwnd;
__u32 rwnd_over;
int sndbuf_used;
atomic_t rmem_alloc;
wait_queue_head_t wait; //12 bytes
__u32 frag_point;
int init_err_counter;
int init_cycle;
__u16 default_stream;
__u16 default_flags;
__u32 default_ppid;
__u32 default_context;
__u32 default_timetolive;
__u32 default_rcv_context;
struct sctp_ssnmap *ssnmap;
struct sctp_outq outqueue; //60 bytes
struct sctp_ulpq ulpq; //40 bytes
__u32 last_ecne_tsn;
__u32 last_cwr_tsn;
int numduptsns;
__u32 autoclose;
struct sctp_chunk *addip_last_asconf;
struct sctp_chunk *addip_last_asconf_ack;
struct list_head addip_chunk_list; //8 bytes
__u32 addip_serial;
char need_ecne;
char temp;

};

Figure 12: Data structure ofsctpassociation

13

D.3 Common Configuration for Server and Clients

Disabling Heartbeat

To eliminate extra process cost for the heartbeat, we disabled the SCTP heartbeat mechanism for both server and
clients. For one-to-one sockets, we used thesetsockopt() system call to disable the heartbeat mechanism
just after creating the socket. The option name isSCTP PEER ADDR PARAM. For Linux 2.6.23, the member of
sctppaddrparams, sppflagsshould be set toSPP HB DISABLE. For Linux 2.6.9,sppflagsdoes not exit. Instead,
spphbintervalshould be set to 0.

However, it is not the same for one-to-many style socket, since theSCTP PEER ADDR PARAM is valid for an
association, not multiple associations for the socket. We can call the samesetsockopt() system call with a valid
associationid after an association is created and added to an existing socket. To get the association id, we need to
use the notification mechanism, which is costly. To avoid thenotification cost, we simply extended the interval of the
heartbeat from 3,600 seconds to 360,000 seconds at the system level of the SUT.

% echo net.sctp.hb_interval=360000 >> /etc/sysctl.conf

Expanding the Size of Socket Buffers

For one-to-many sockets, multiple associations share a single socket buffer. This sharing easily exhausts the send and
receive socket buffer and causes the error “Resource temporarily unavailable”. To avoid this resource starvation, we
expanded the buffer size using thesetsockopt system call. These option names areSO SNDBUF for a send buffer
andSO RCVBUF for a receive buffer, respectively.

In our measurement, when an echo server handles 2,500 requests/second via a one-to-many socket whose send
buffer is expanded to 262,142 bytes, the echo server couldn’t send echoed message due to the send buffer starvation.
Since the maximum size of socket buffers is limited innet.core.wmem max, we need to expand the value of
net.core.wmem max in order to raise the size of a send buffer.

Setting no Delay Option

Using thesetsockopt system call, we set ”no delay” to a socket to disable the Nagelalgorithm. The option name
isSCTP NODELAY. Note that SCTP preserves message boundaries, so it does notbundle multiple short messages into
a single large IP packet, unlike TCP.

14

