The Impact of SCTP on Server Scalability and Performance

Kumiko Ono and Henning Schulzrinne
Dept. of Computer Science, Columbia University.
Email: {kumiko, hgg @cs.columbia.edu

Abstract SIP proxy servers

The Stream Control Transmission Protocol (SCTP) is a
relatively recent transport protocol, offering features-b

yond TCP. Although SCTP is an alternative transport pro-
tocol for the Session Initiation Protocol (SIP), we do not
know how SCTP features influence SIP server scalability
and performance. To estimate this, we measured the sca
ability and performance of two servers, an echo server= &
and a simplified SIP server on Linux, f(_)r both SCTP andSIP user ems SIP user agents

TCP. Our measurements found that using SCTP does not

significantly affect data transfer latency. However, th&igure 1: Two types of connections at SIP proxy servers
number of sustainable associations drops to 17-21% or

to 43% of the TCP value if we adjust the acceptable 98khux, so that it can be easily used between user agents

size of unordered data delivery. and a proxy server as well as between proxy servers. This
1 Introduction broad deployment requires a server with enough scalabil-

o ity to accommodate a large number of user agents. We
The Stream Control Transmission Protocol (SCTP) [Llesent how SCTP affects scalability and the performance
was originally designed for carrying telephony signalings 4 echo server and a simplified SIP server that only
protocol, Signaling Systems No.7 (SS7), over IP. Sim"%plements the message handling parts of a SIP proxy

to TCP, SCTP is reliable and connection-oriented, butgryver. From our measurements, we estimate the effect
is message-oriented like UDP, and has additional featufﬁ%hoosing SCTP as a transport protocol for SIP,
such as multi-streaming and multi-homing. SCTP is de-

fined as an alternative transport protocol to UDP or TCp The remainder of this paper is organized as follows.
for the Session Initiation Protocol (SIP) [2] [3], which is E§ectlon 2 dlgcusses which SCTP featqre; benefit SIP..Sec-
major Internet telephony signaling protocol. Understantion 3 describes our measurement objectives and environ-
ing how SCTP affects scalability and performance is iff2€nt. Section 4 compares socket memory usage between
portant for building SIP servers and designing large voi& TP and TCP and suggests how to save memory with
over IP (VoIP) systems. SCTP. Section 5 compares the number of sustainable con-
Depending on its role in a VoIP network, a SIP prox{}€ctions and Section 6 compares data transfer latency for

server may connect to a large number of user agentsaBreCho server between SCTP and TCP. Section 7 com-

to a, typically smaller, number of other proxy servers, Rares data transfer latency for a simplified SIP server,

shown in Figure 1. Proxy servers maintaining conneg@mely, SIP front-end server among SCTP, TCP and UDP.

tions to user agents are often called edge proxy serv{fg conclude with a discussion of the influence of SCTP

Therefore, if a connection-oriented transport protocol ! SIP server scalability and performance in Section 8.

used, the server is required to manage a large numbefABpendlces describe the metrics, tools and configurations

concurrent connections, making server scalability as i pr our meas_urements an_d the data structures used by the

portant as request throughput and latency. On the otfdftx SCTP implementation.

hand, between proxy servers, the server needs to manage

a smaller number of connections, since connections @n SCTP Features

be shared among user agents with the same signaling des-

tination. Table 1 compares the features of SCTP, TCP and UDP.
Even though SCTP is not as commonly used as TCRe following SCTP features potentially benefit SIP ap-

or UDP, it has been implemented as a kernel modulephcations and server scalability, respectively.

Client Server Client Server Client Server

one-to-one one-to-one one-to-one one-to-many one-to-many one-to-one
t() X 'y
con?;;ck(s)) 1 INIT accept () INIT sendmsg () INIT
INIT-ACK ook INIT-ACK INIT-ACK accept ()
(cookie) (blocks) ‘W (cookie) (blocks)
setup time 4/ /
P COOKIE-ECHO COOKIE-ECHO COOKIE-ECHO
N) n DATA) o
H accep
connect () ‘w accept () COOKIE-AC ". COOKIE-AC returns
returns X returns ¥, SACK recvmsg ()
sendmsg () r DATA r DATA DATA sendmsg ()
transaction : | SACK recvmsg () SACK recvmsg () recvmsg () Y|

time

sendmsg () : d SACK
DATA : @ OATA sendmsg () \>
recvmsg () X SACK A 4 SACK

sendmsg () DATA DATA sendmsg () r DATA

SACK recvmsg () | SACK recvmsg () SACK recvmsg (

DATA sendmsg () DATA sendmsg () DATA sendmsg (
recvmsg (X SACK X SACK recvmsg (¢ SACK

Figure 2: Message exchanges using Figure 3. Message exchanges ugigure 4: Message exchanges us-

.’l

)
)

one-to-one style sockets for both a ing a one-to-many style socket foing a one-to-many style socket for
server and a client a server a client
2.1 Beneficial Features for SIP Applications one more than that for the three-way handshake in TCP.

However, the piggyback setup allows to bundle user data
Piggyback setup in four-way handshake: SCTP es- jnto theCOOKIE-ECHO message, as shown in Figure 4,
tablishes a connection with a four-way handshake usigg that it reduces the RTTs combined in the handshake
INIT, INIT-ACK, COOKIE-ECHO, and COOKIE-ACK and in sending user data to the same as those of TCP. In a
messages, as shown in Figure 2. Clearly, this four-w8yp sessjon using non-persistent connection, where a new
handshake requires two round trip times (RTTs), whichdgnnection is established, a larger RTTs in the handshake
causes a longer setup delay. Thus, the piggyback setup is
expected to mitigate this setup delay.
Table 1: Comparison of transport protocols

[[scTp | TCP | UDP | Message orientation:Similar to UDP, SCTP preserves
Connection- Yes: establish| Yes: No message boundaries. Applications can extract a single re-
oriented using four-way| establish ceived message and determine if the original message is

handshake in{ using fully delivered through the socket API, while they need
cluding cookie| three-way to parse received messages over TCP usin@theent-
to resist flood| hand- Length header in SIP. However, message parsing is nec-
attack shake essary for SIP applications. Thus, we suspect that this
Socket style correq) one-to-one - or) one-to- | (O0ne- | agqage orientation has a negligible benefit.
sponding to con-| one-to-many one to-
nections many
Message-oriented || Yes No Yes Message exceeding MTU sizeSimilar to TCP, SCTP
Message exceed; Yes Yes No supports the delivery of message exceeding Maximum
ing MTU Transfer Unit (MTU) size by segmentation. Since some
Reliability Yes Yes No networks or services require SIP extension headers or sig-
Flow control Yes Yes No natures, the message size of a SIP request may grow be-
Congestion control| Yes Yes No yond the Ethernet MTU of 1,500 bytes. For example, an
Multi-streaming || Yes: minimize | No No | INVITE request in IP Multimedia System (IMS), which
- HOL blocking contains privacy headers and many routing-related head-
Multi-homing Yes No NO_ | ers, is at least 1,550 byte long.

2.2 Features improving Server Scalability This is similar to that of UDP, but messages sent are kept
Two features of SCTP, one-to-many style sockets aloqger than for UDP, since the_y cannot be removed until
multi-streaming, potentially help server scale by redgcii’® SCTPACK has been received. Therefore, the send
memory usage and increasing throughput. buffer may be exhausted at high request rates. We will

SCTP provides one-to-one and one-to-many socket ﬁy_aluatg the effects of this one-to-many style socket by
terfaces. These two interfaces differ in representiag COMParing three sequences shown in Figure 2, 3 and 4.
sociations which mean connections in SCTP, as shown The other feature, multi-streaming, can minimize head-
in Figures 5 and 6. While a one-to-one style socket c@filine (HOL) blocking, as evaluated by Camarillo, Kan-
represent a single association, a one-to-many style sodRé and Schulzrinne [4]. The HOL blocking occurs in
can represent multiple associations, similar to UDP, whef&'P when a segment is lost and a subsequent segment
a socket can receive messages from multiple clierfé/ives out of order. The receiving application needs to
Other SCTP-related data structures are described in At for the lost segment to read the arrived segment. In
pendix C.2. CTP, however, by breaking multi-session streams into

A server using a one-to-many style socket can receft@gParate streams, the HOL blocking can be minimized,
messages from different associations at a single listenf}gn though it occurs in the same stream. This multi-
socket, i.e., without creating a new socket by calling tféaming feature is effective especially for inter-proxy

accept () system call to create a new association, 88"Vers, where multiple SIP sessions can share an asso-

shown in Figure 3. Thus, using the one-to-many styféation. We can expect this multi-streaming feature to im-

socket can drastically reduce the number of sockets &rQve throughput especially in a congested network, but

server do not discuss this feature here.

3 Measurements

We measured the effects of three SCTP features, namely,

| sctp_sock |—| endpoint |—| assoc. |—| transport |

| sctp_sock [endpoint |—| assoc. | transport | one-to-many style sockets, piggyback setup and message
- orientation. To evaluate the effect of the one-to-many
| sctp_sock | endpoint |—] assoc. | transport style sockets, we first identified the data structures of the
Figure 5: One-to-one style socket data for three assodlso styles of SCTP sockets, then we compared memory
tions usage among these two styles of SCTP sockets and TCP

sockets. Then, to evaluate its effect on server scalgbility

we compared the number of sustainable associations for
an echo server between two SCTP socket styles. To eval-
uate its effect on server performance, we compared the

assoc. |—| transport |

| sctp_sock |—| endpoint [assoc. |—| transport | S:etuD tim_e anq _transaction time. By f:omparing the setup
time, we identified the effect of the piggyback setup. By
assoc. |_| transport| comparing the transaction time, we identified the effect

. of the SCTP message orientation using a SIP front-end
Figure 6: One-to-many style socket data for three assagityer, which simply receives a SIP request and responds
ations with a200 OK response without any substantial SIP op-
eration.

Additionally, a client using a one-to-many style sock%l
can utilize piggyback setup to reduce the setup delay 0
the four-way handshake described in Section 2.1. To e use two servers, an echo server and a SIP front-
piggyback setup, a client has to create a one-to-many s#f@l server using a single process and single thread. Ta-
socket and invoke theendnsg() system call to send able 2 compares them with a SIP server, which usually use
message without calling theonnect () system call, as multi process and/or multi threads. The servers under test
shown in Figure 4. (SUT) for both run on a dedicated host with Pentium IV

Thus, we can expect to benefit from one-to-many stydeGHz 32-bit dual-core CPU and 4 GB of memory. The
sockets for both server and client, although the sock&WT runs Linux 2.6.23 configured with the default vir-
style can be set independently to each other. At the saiw@l memory split of 1G/3G, where the kernel space is 1
time, however, using one-to-many style sockets pot€aB and the user space is 3 GB. When the server needs
tially decreases server throughput. By sharing a sindtewait for events on more than 1,024 sockets, it uses the
socket buffer, the server receives and sends messagesipal | () system call.
all associations and de-multiplexes the messages by fouFor the echo clients or SIP user agents, we use six hosts
tuples: source and destination IP addresses and posith Pentium IV 3 GHz 32-bit CPUs and 1 GB of mem-

?. Measurement Environment

Table 2: Comparison of servers

Echo SIP SIP server
server | front-
end
server
Receive/Send|| Yes Yes Yes
msg.
Forward msg. || No No No for registrar,
yes for proxy
Msg. parsing || No Yes Yes
SIP operation || No No Yes
Database act No No Yes
cess
Number of || 2 2 2 for registrar,
msg. per 14 for proxy
request
Number of| 1 1 1 for registrar, 6
transactions for proxy
Process/ThreadSingle/ | Single/ | (Multi/ Multi)
Single | Single

more than the data size when allocated from slab cache
objects, since the slab cache object size is a power of two.
For example, the dominant objesttpassociationis al-
located from a 8,192 byte slab object. As a result, main-
taining an SCTP socket statically consumes 10,812 bytes,
approximately five times of the amount needed for a TCP
socket, even in the simplest case, that is, with a one-to-
one style socket and a single stream each. The dominant
data is association-related data, which consumes approxi-
mately 80% of the total memory usage. Even when using
one-to-many style sockets, a server needs to allocate the
same number of associations with when using one-to-one
style sockets. Therefore, we cannot expect drastic mem-
ory saving by using one-to-many style sockets, although
we expected that in Section 2.2. Section 4.2 will inves-
tigate how to reduce association-related data in order to
increase the effect of one-to-many style sockets on mem-
ory saving.

4.2 Memory-conscious Usage of Association Data

To cut down the memory footprint of association-related
data, it is crucial to reduce the size of the dominant
sctpassociatiordata. Although the size of this data struc-

ory running Redhat Linux 2.6.9, except the measuremeqife is 5,120 bytes, it grows to 8,192 bytes when it is al-
applying a patch in Section 6.1, where we use two hof§gated from the slab cache objects. This is because the
which have the same hardware and software specificatigpa|iest slab cache object to store more than 4,096 bytes

with the echo server. These hosts communicate ovejs@ 192 bytes. This means that the memory footprint will
100 Mb/s Ethernet connection at light load. The round

trip time measured by thei ng command is roughly 0.1

ms. Appendix A details measurement tools and confighable 3: Itemized memory usage for an SCTP and a TCP

rations.

4 SCTP Data Structures
We first identified the data structures for establishing a

socket at a server

maintaining an SCTP socket and calculated the mem

usage. Then, we evaluated server scalability by measu
the number of sustainable associations at the SUT.

4.1 Comparison of the Data Size of SCTP and TCP
Sockets

Table 3 itemizes the sizes of socket-related data strigty
and those allocated from cache objects called slab cal
in Linux. The slab cache is implemented for frequent g

locations and deallocations of data. The socket-rela
data structures detail used in both two transport pro
cols, which are listed in Appendix C.1, and for SCT
specific in Appendix C.2. SCTP requires larger prot
col specific data including the 5120-bydetp association

which stores data linked to an association, while TCP

quires only the 1096-byttep_socket Table 3 also shows

that the amount of memory using one-to-many style SOdﬂ&S‘ubtotaI for an association (byte$) 8,768 \

ets significantly increases as a function of the numberofiz memory usage (bytes)

associations. The amount of memory using multi-strea

Data Structure Slab
Name Size | Size | # of objects
”f', ()| (B)| SCTP| TCP
i Jentry 128] 128 1 1
file 136 192 1 1
inode 328 | 384 1 1
socket 40
sock(tcpsocket) | 1,096 | 1,152 0 1
reock(sctpsocket)| 772 | 896 1 0
CPpolLentry 36 36 1 1
tepitem 80| 128 1 1
“Sctpendpoint 176 | 256 1 0
“Sctpbind_addr 40 64 1 0
b Subtotal for a socket (bytes) | 2,044] 2,020]
sctpassociation | 5,120 | 8,192 | lorrf 0
esctptransport 284 | 512| lorrf 0
sctpssnmap 60 64 | LornP 0
0
| 10,812 2,020

TS

increases slightly as a function of the number of streams. 2one-to-many
Furthermore, each socket-related data object consumeynulti-streaming

be halved if we can reduce 5,120 bytes to 4,096 bytes.

10,812
Appendix C.2 lists the members of theg 12000 1 (5.35) epoll |
sctpassociation structure. The total size is 3 000f 67";2”—‘“6‘”—:&5:228(‘2 i
5120 bytes and the dominant sub-member ig 8000 - (3.32) 7
map[sctptsnmapstoragesize(SCTPTSNMAP_SIZE)], & 6000 | 7 4668 4,668 .
which accounts for 4,096 bytes. This is a byte mapping 4900 - 2,020 231 [(31'%‘5‘) i
array, namely, TSN (Transmission Sequence Nun‘é o000 | 200 e o o e _—
ber) map, each byte of which indicates the number] | | | | |
of chunks for each TSNs to trace received TSNs for 0 S O B, S, S
unordered data delivery. The TSN map size, i.e., the A@ ’\@ ’2’,{ ’\fé\ /\fe ’\fo
SCTP_TSN.MAP_SI ZE, is set to allow a gap of 2,048 % B ° B 7
segments between the cumulative ACK and the highest
TSN by default. This mapping array is twice the size of Protocol (SCTP_TSN_MAP_SIZE)

the TSN map to allow an overflow map. Therefore, if we
do not need to handle such large gap, we can reduceftigure 7. Memory usage for a socket as a function of
TSN map size. SCTP_TSN.MAP_SI ZE
Figure 7 shows how memory usage for a socket can de-
crease by adjusting the TSN map size. When we adjust it
to 512, the mapping array would decrease to 1,024 bytesycess to 60,000 for the clients and to 1,000,000 for the
and thesctpassociationwould decrease to 2,048 bytesSUT. In addition, to increase concurrent associations for
This reduced data could then be allocated from a 2,0d8ch client, we expanded the range of ephemeral local
byte slab object. As a result, the total amount of mermert to 10,000 - 65,535. Specifically for SCTP, for sim-
ory for an SCTP socket could be reduced to less than halffication, we disabled the heartbeat mechanism, which
4,668 bytes, although the amount is still more than twipgobes the reachability of remote associations every 30
the size of a TCP socket. Adjusting the TSN map size $econds by default. Appendix D describes the detailed
256 does not affect the data size of g®passociation system configuration.
since the size of mapping array is still larger than 1,02541
bytes. Therefore, if we need to support unordered data
delivery, adjusting the TSN map size to 512 is most efable 4 compares the numbers of sustainable associations
fective to reduce the size of tteetpassociation If we or connections among the one-to-one and one-to-many
do not need to support any unordered data delivery, whigllyle sockets of SCTP and TCP. The number is measured
is unrealistic though, we could adjust the TSN map sipgst before the system yields an error, out of memory for
to zero. The data size of tleetpassociatiorwould then sockets, and the “oom killer” process kills heavy pro-
decrease to 1,024 bytes. As a result, the total amountegses based on the memory usage and lifetime. From our
memory could be reduced to 3,664 bytes which is stiieasurements, the number of sustainable associations of
around twice the size of a TCP socket. SCTP is only 17-21% that of TCP. Although a server us-
In a SIP session between a user agent and the servigr,a one-to-many style socket can increase the number
SIP messages do not have to allow such large gap, siateoncurrent associations by about 15,000 compared to
a SIP request requires the SIP response before sending-to-one style sockets, this improvement makes barely
a new SIP request. However, in a SIP session betweegifference in the comparison with TCP.
proxy servers, a number of aggregated SIP messages afi@ble 4 also compares the memory usage per associ-
transmitted over a single association. For this situaticatjon or connection by measuring the memory usage for
the SIP servers need to allow a certain gap dependingtba slab cache objects. The memory usage agrees with
the traffic model between proxy servers. our analysis in Section 4.1. Thus, if we adjust the TSN
. . map size depending on the requirement for handling un-
5 Number of Sustainable Associations ordered data delivery, we could improve the number of
As a metric of server scalability, we measured the nuskistainable associations up to approximately 50% of that
ber of sustainable associations for the echo server. Af@érTCP.
the echo clients request new associations, they send a SIP
INVITE message and receive a copy and maintain the §s- Data Transfer Latency for an Echo Server
sociations. This measurement was performed without the a metric of server performance, we measured data
tuning proposed in Section 4.2. transfer latency for the echo server to compare the setup
To allow a large number of concurrent associations, wime and transaction time of SCTP and TCP to identify
raised an upper limit of the number of file descriptors paow using a single socket buffer in a one-to-many style

The Effect of One-to-many Style Sockets

Table 4: Sustainable associations and memory usagevsBere each endpoint links to a single association, do not

association for SCTP and TCP increase the setup time. Also, when sending a message,
SCTP Tcp | thesctp._sendmsg() function in kernel calls a lookup
Socket Style| One-to-one| One-to-many function which performs a linear search. Thus, the trans-
at server action time increases linearly. However, the increase is
Nomber of 74680 90.607| 419019 not SO drastlc as.th'atlnthe setpptlme. Unlike to the setup
time, this association search is always successfully per-
assoc. . ; :
Rai 017 071 100 formed and takes time depending where the matching as-
atio - - - sociation is stored in the list of associations. Since the li
Memory us- 1112 8.90 2.05| ear search clearly causes the cost of using a one-to-many
age per asq style socket, both setup and transaction times could be im-
soc. (KB) proved by replacing it with a hash table lookup.

After applying a patch to replace the search algorithm,
we re-measured the setup time. Figure 8 indicates that

socket affects and how much piggybacking data in tﬂ?e setup time using a one-to-many style socket remains

initial ha_ndshake reduces them. For t,h's measu_re_medgnstam at 0.34 ms, similar to that using one-to-one style
we configured the echo server and clients to elimin Bckets

unnecessary delay and errors, in addition to allowing a
large number of connections as shown in Section 5. Ap-
pendix D describes the details. one-to-many sockets +
The setup time of an association is the elapsed time
from the instant that a client invokes tlo®nnect ()
system call to returning from it. The transaction timez
is the elapsed time from the instant that a client invoke%
the sendnsg() system call to send a 1,550 byid-
VITE request to its invoking theecvnsg() system call
to receive a copy. The echo clients send the requests
at 2,500 requests/second and the echo server accumu- g
lates the SCTP associations or TCP connections until their
number reaches 50,000.

6.1 The Effect of One-to-many Style Sockets

0.8

0.6

etup tim

04 F

0
0 10 20 30 40 50

of SCTP associations (1,000)

To identify the effect of one-to-many style sockets for thejg, re 8: SCTP setup time as a function of the number of

echo server, we compare the setup and transaction tg€s, ciations with one-to-one and one-to-many style sock-
between the two SCTP sockets whose message excharéggaﬁer replacing search algorithm

are shown in Figures 2 and 3. Table 5 compares the setup
and transaction times of the two SCTP socket styles and
TCP for the echo server. Significantly, the setup tin&2 The Effect of Piggyback Setup

for the one-to-many style sockets grows linearly with ﬂ“/?/ith the piggyback setup mechanism, we can expect to

Pg:]gfe t;gfnasrsgg'ragfo:&ovgg L%;hefosretthuep;:]rg_etoa_‘gn‘:‘; flf{rP duce the total number of messages and the combined
' un ssociafions ne StYifhe for the setup and the transaction, not the setup time
sockets remains constant. Similarly, the transaction t"ﬁgelf To identify the effect of using piggyback setup

for one-to-many style sockets S|gr1|f|cantly dn‘ferg frq e compare the combined time between the two styles of
the one-to-many style sockets, while the transaction time

for one-to-one style sockets does not significantly differ

from that using TCP. Table 5: Setup and transaction times for SCTP and TCP
To investigate the reason of the linear increase with the SCTP TCP
number of associations using a one-to-many style sockefgcket style One-to-one One-to-many

we traced the kernel source code, and found that wheg server
receivingINIT and COOKIE_.ECHO messages, a lineal Setup style Regulaﬂ Piggybac
search is used to look up a matching association by e '%etup (ms) | 034 084 03817091 1 017
point. Such search always fails. Therefore, the one St ransaction 0'54 ' 0‘65-34 1'4 0.48
many style socket, where an endpoint links to multiple&ms) ' ’ ' ‘
associations, increases the setup time as a function ofthe
number of associations, while one-to-one style sockdtdotal (ms) [0.88 [0.84 | 1.03-205.05 || 0.65 |

Table 6: Elapsed time between messages for SCTP ardver, but we suspected that it is small. Thus, to identify

TCP such small effect of the message orientation, we elimi-
SCTP TCP nated the p.rocessir)g of SIP operqtion_ inclluding databa_se
Messages | Regulal Piggyback| (ms) | Messages | 2CCess, which dominates processing time in the SIP regis-
setup | setup trar server.
(ms) | (ms) 7.1 The Effect of Message Orientation
SHINIT 0.00 0.00 0.00 | s:SYN When calling the ecvneg() system call, we can deter-
rINIT- 0.14 | 0.14 0.09 | SYN, mine whether or not the received message is fully deliv-
ACK ACK ered by checking the message flag. If the full message is
s:COOKIE; 0.01 | 0.01 0.01 | s:ACK delivered, the message flag is setMBG_ECR. Figure 9
ECHO compares the setup and transaction times among the three
r.COOKIE- 0.13 0.23 SCTP cases, TCP and UDP, for the SIP front-end server.
ACK As we suspected, we cannot see any effect of the message
s:DATA | 0.00 | N/A® 0.00 | s:DATA | orientation. We summarized that parsing a SIP message
r:DATA 0.37 | 0.26 0.34 | nDATA is not a heavy task, since the typical message size is ap-

proximately 1,550 bytes. If a SIP message conveys a bulk
data as much as for a file transfer application, the mes-
sage orientation could be effective. Also, message parsing
is required for SIP operations regardless of the transport
SCTP sockets for the clients, whose message excharigj@socol. Therefore, the message orientation feature has
are shown in Figures 2 and 4. Table 5 compares the sefiiie effect on a SIP server.

the transaction and the combined times among two SCTP

3DATA is piggybacked with COOKIE-ECHO.
bThis indicates the elapsed time from receiving COOKIE-ACK.

setup styles and TCP. This table indicates that using pig- ! " ansacton ime
gyback setup reduces the combined time only by 0.04 ms 08 V<A] setup time -0
in our local area network. 7 ‘ Mess ‘
To investigate the cost of the piggyback setup, we morg o6 i A
itored the elapsed time for each RTT at an echo cIierg i =
using thet cpdunp program. Table 6 shows that theg 04
elapsed time between sendi@POKI E- ECHO and re- 3 0.2
ceiving COOKI E- ACK grows by 0.1 ms beyond that of '
the SCTP regular setup. Therefore, in spite of reducing o
the elapsed time between receivi@@KI E- ACK and gg\% gg% 2@,% B s
receiving a copied user message by 0.11 ms, the overall % 6. 9%@
effect of using piggyback setup is slight: 0.01 ms at the % T, %@,

network layer and 0.04 ms at the application layer. Ta- %

ble 6 also indicates that the setup with processing signed o

cookies is originally expensive. As long as SCTP prngure 9: Setup and transaction times for SCTP and TCP
cesses signed cookies to protect against a INIT floodifqj SIP front-end server

attack, the SCTP setup is more expensive than that for

TCP, which processes no cookies by default. Although the)

effect of using piggyback setup is slight in our measur8- Conclusion

ment environment, the effect of reducing one RTT woulgle have shown how using SCTP impacts on server scala-
be larger in a wide area network. bility and performance by evaluating the effect of the three
7 Data Transfer Latency for a SIP Front- SCTP .ffaatures and to estimate the impact on SIP server
scalability and performance. We suspected that using
end Server o e
SCTP has negative impact on server scalability, since an
To identify the effect of the message orientation, we us&CTP association, which corresponds to a TCP connec-
a SIP front-end server that parses SIP messages to deiet; requires significantly more storage to support the ad-
mine the message boundary for TCP. This SIP front-editional features. Then, we expected using a one-to-many
server is halfway of an echo server and a SIP registgtyle socket enables to increase the number of sustainable
server as shown in Table 2. associations by saving the number of sockets. Our mea-
As described in Section 2.1, the message orientatsurement results indicates that the echo server scajabilit
over SCTP potentially affects processing time for a SHecreases to one fifth of that using TCP, because of a large

amount of association-related data. By adjusting the ca-
pacity for accepting out of order data delivery, we could
mitigate the decrease to a half. Yet, the scalability gap be-
tween SCTP and TCP remains significant. This gap surely
limits the usability of SCTP for edge servers.

On the other hand, data transfer latency, such as the
setup and transaction times, does not significantly differ
between using one-to-one style sockets for SCTP and us-
ing TCP. When a client uses the piggyback setup, the dif-
ference in the combined time can slightly decrease. We
failed to identify the effect of the message orientation us-
ing the SIP front-end server. For one-to-many style sock-
ets of SCTP, we had to fix the current lookup function in
order to limit the latency for a scalable server. Since the
SCTP kernel implementation is far less mature than the
TCP implementation, we suspect that there is a significant
room for improvement.

Acknowledgement

This work was supported by NTT Corporation. The au-
thors would like to thank Vlad Yasevich of HP for provid-
ing a patch for the association lookup function.

References

[1] R. Stewart. Stream Control Transmission Protocol.
RFC 4960, IETF, September 2007.

[2] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. John-
ston, J. Peterson, R. Sparks, M. Handley, and
E. Schooler. SIP: Session Initiation Protocol. RFC
3261, IETF, June 2002.

[3] J. Rosenberg, H. Schulzrinne, and G. Camarillo. The
Stream Control Transmission Procotol (SCTP) as a
Transport for the Session Initiation Protocol (SIP).
RFC 4168, IETF, October 2005.

[4] G. Camarillo, R. Kantola, and H. Schulzrinne. Evalu-
ation of Transport Protocols for the Session Initiation
Protocol. InNIEEE Network September 2003.

A Measurement Metrics and Tools ation. In other words, this is used to see which destination

Figure 10 shows that the controller starts the echo Serggrdress_ IS actlve_or idle _and_ to measure round _trlp time
and monitoring tools at the SUT and echo client prograrfR' 1) Via the active destination address. by waiting for
at multiple echo clients. After starting all processes at tH'€ "esPonse within the Retransmission Timeout (RTO).
SUT and the clients, the controller waits for the responsedRFC 4960 [1] specifies that each endpoint should send
from the clients so that it can synchronize the time tHéEARTBEAT requests to its peer endpoint. When re-

clients start to send messages to the SUT. ceiving theHEARTBEAT request, the endpoint should
respond with théedlEARTBEAT-ACK. This mechanism is
start/synchronize echo clients start echo server enabled by default and the recommended interval is 30
P controller . . .
seconds. When increasing the interval, we need to con-
v sider that the detection of lo#BORT messages, which
| % Y have noACK, will take longer.
H : associations SUT This is a similar mechanism to the TCP keepalive
clients (g mechanism, which is not enabled by default, and which

has a default interval of two hours.
C Date Structures for SCTP Sockets

To monitor memory usage of sockets and the numker; Generic Data Structures for Transport Protocols
of slab objects allocated for socket-related data, we moni-]]]
tored the' pr oc/ sl abi nf o file every second. Also we Theinode structure represents all the information of a file

monitored the overall memory usage of slab objects usifgdirectory needed by the kernel. Ttie structure repre-
the/ pr oc/ meni nf o file. sents an open file associated with a process.dEmry is

To monitor CPU time. we monitored the totafN €Ntry containing the path information such as the par-

CPU time and that of the echo server process (@t and child directories.

ing the t op command. Also, we used a profiler, The socketis a general structure to hold the type and
the oprofil e tool, to identify heavy functions in- State in the socket layer. Tiseckstructure is used com-
cluding the kernel functions. By this, we identifiednoninalltransportlayer protocols and the socket options.
_sct p_endpoi nt _| ookup_assoc() as the heaviest This sock is cast each transport protocol, e.g.,.scigket.
function call. The sk buff is a socket buffer to provide buffering and

To monitor the number of concurrent sockets, wigw control. The buffered data in the socket is sepa-
scanned thd proc/ net/sct p/ sct p_dbg_obj cnt rately allocated and linked to a skbufeadcache. When
file every second. To enable this monitor, we changed glening skbuff for TCP segmentation, this is allocated
kernel configuration parameter and recompiled the kerrfépm the slab cache, skbuftlone cache.

To monitor the setup and the transaction times, weThere are two additional data structures for polling us-
added time stamps at the echo client program. To avdig theepol | () system call. Theppoll_entry structure
the slowdown caused by calculating and printing thelds a wait queue used by the event poll. Hpétem
elapsed time, it only calculates every one thousand misan event entry for each file descriptor to be added the
sages. Additionally, we monitored message exchangesexgntpoll interface.

ing thet cpdunp command to assess the reliability of th
elapsed time measured by the timestamps. €2 Date Structures for SCTP Sockets

B SCTP Message Exchanges

Figure 10: Measurement environment

The sctp_socket stores SCTP information per socket,
e.g., the socket options, the heartbeat interval to be in-
B.1 Initiating an Association herited by all new associations, and the pointer to the

SCTP uses a four-way handshake to initiate an assq@dPoint. Thesctp.endpoint stores the logical sender
ation. When the server receives an SCIRPT chunk. ©' receiver of SCTP packets per socket. On a multi-
the implementation in Linux allocates temporarily a nef?™ed host, an SCTP endpoint is represented as a set of
association, i.e., sctassociation object, sends an SCT‘s_purce/destmatlon transport addresses. A one-to-olee sty
INIT-ACK chunk, and frees the temporal associatiofocket. a TCP-style socket, has exactly one association on

When receiving an SCTEOOKIE-ECHO chunk, it al- one endpoint, while a one-to-many style socket, a UDP-
locates a new association. style socket, has multiple associations on one endpoint.

Thesctp_bind_addr stores bind addresses (the local
B.2 Heartbeat port and the list of IP addresses) common between the
This mechanism is to probe the reachability of a particulassociations and endpoints. Téep_bind _bucket holds
destination transport address defined in the present assibwa local port number only used at an SCTP client.

The sctp_associationholds a recommended set of pa-
rameters in TCB (Transmission Control Block), e.g., the
local bind address, cookie, the SCTP state, the current
TSNs (Transmission Sequence Numbers), the initial pa-
rameters of the socket, and all information about the peers.
It has approximately 100 attributes, as the data defini-
tionini ncl ude/ net/ sct p/ structs. hisshownin
Figures 11 and 12. We added data size for not well-known
data structures.

The sctp_transport represents a remote transport ad-
dress (IP address and port) and tracks the current retrans-
mission timeout (RTO) value, RTT, current congestion
window and heartbeat interval. Tlsetp_ ssnmaptracks
both the outbound and inbound stream sequence numbers,
which assures sequenced delivery of the user messages
within a give stream.

The sctp_chunk is a unit of information within an
SCTP packet containing a pointer to thetskf. The
sctp_.datamsgis for a single message to track chunk frag-
ments some of which has been acked, but the remaining
has not.

10

D System Configuration

D.1 Server Configuration

The following command line increases the number of file dpsans in the system:

% echo 1048576 > /proc/sys/fs/file-nmax
1,048,576 (= 1024*1024) is the system limit defined as a essR_FI LE in i ncl ude/ | i nux/fs. h. To

increase this limit when enough memory is installed, we needodify and recompile the kernel.
To change thé pr oc/ sys parameters at boot time, we need to add thefretbc/ sysct | . conf as follows:

fs.fil e-max=1048576

Theul i m t command can be used to increase the number of file descrggomocess:
%ulimt -n 1000000

To allow a remote shell to access a large number of file ddscsifior our measurement, we need to specify the user
name and the parameter/iet c/ security/linmits. conf:

speci al _user soft nofile 1000000
speci al _user hard nofile 1000000

To allow a remote shell to access a larger number of file detecs invoked byssh, we need to restastshd in
/etc/rc.local:

%ulimt -n 1000000
% /etc/rc.d/init.d/sshd restart

The memory space for TCP socket buffers is configured asisllo

net.ipv4.tcp_rnmem = 4096 87380 174760
net.ipv4.tcp_wrem = 4096 16384 131072
net.ipv4.tcp_mem = 98304 131072 196608

These parameters are automatically configured at boot tasedbon available memory as well as TCP established
and bind hash table entries. The variables are loggéd# &r / sys/ nessage during boot:

kernel : TCP established hash table entries: 524288 (order: 10, 4194304 bytes)
kernel : TCP bind hash table entries: 65536 (order: 7, 524288 bytes)
kernel : TCP: Hash tabl es configured (established 524288 bi nd 65536)

D.2 Client Configuration

To increase the number of file descriptors for a shell, weragsé thaul i m t command:
%ulimt -n 60000
To increase the range of local ports, we modifyitheel ocal _port _r ange file:

% echo 10000 65535 > /proc/sys/net/ipvd/ip_local _port_range

11

struct sctp_assoc

ation {

struct sctp_ep_comon base; /180 bytes
struct |ist_head asocs; /1 8 bytes
sctp_assoc_t assoc_id; /1 4 bytes
struct sctp_endpoint xep
struct sctp_cookie c; /1168 bytes
struct {
__u32 rwnd
struct |ist_head transport_addr_list;//8 bytes
__ulé transport_count;
__ulé port;
struct sctp_transport =primary_path;
uni on sctp_addr primary_addr; /128 bytes
struct sctp_transport =*active_path;
struct sctp_transport =*retran_path;
struct sctp_transport x|l ast_sent_to;
struct sctp_transport =*last_data_from
| *
* Mapping An array of bits or bytes indicating which out of
* Array order TSN s have been received (relative to the
* Last Rcvd TSN). If no gaps exist, i.e. no out of
* order packets have been received, this array
* will be set to all zero. This structure nay be
* inthe formof a circular buffer or bit array.
*
* Last Rcvd : This is the last TSN received in
* TSN . sequence. This value is set initially by
* : taking the peer’s Initial TSN, received in
* the INNT or INIT ACK chunk, and subtracting
* one fromit.
*
* Throughout nost of the specification this is called the
* "Cumul ative TSN ACK Point". In this case, we
* jgnore the advice in 12.2 in favour of the term
* used in the bulk of the text. This value is hidden
* in tsn_map--we get it by calling sctp_tsnmap_get_ctsn().
*/
struct sctp_tsnmap tsn_map; /1 168 bytes
__u8 _map[sctp_tsnmap_storage_si ze(SCTP_TSN_MAP_SI ZE)];// 4096 bytes
_u8 sack _needed,;
__u8 ecn_capabl e;
_u8 i pv4_addr ess;
_u8 i pv6_addr ess;
__u8 host nanme_addr ess;
_u8 asconf _capabl e;
_u8 prsct p_capabl e;
_u32 adapt ati on_i nd;
__bel6 addi p_di sabl ed_mask;
struct sctp_inithdr_host i; /116 bytes

int cookie_len;
voi d *cooki e;

} peer;

u32 addi p_seri al

Figure 11: Data structure gttpassociationcontd.)

12

sctp_state_t state;

struct tinmeval cookie life;
int overall _error_count;
unsigned long rto_initial;
unsi gned | ong rto_mex;

unsi gned long rto_mn;

i nt max_burst;

int max_retrans;

__ul6 max_init_attenpts;
__ulé init _retries;
unsigned |ong nmax_init_timeo;
unsi gned | ong hbi nterval;
__ul6 pat hmaxr xt;

__u32 pathntu;

__u32 param fl ags;

unsi gned | ong sackdel ay;

/14 bytes
/18 bytes

unsi gned | ong ti meout s[SCTP_NUM TI MEQUT_TYPES] ;

struct tinmer_list timers[SCTP_NUM TI MEQUT_TYPES]; //24 bytes
struct sctp_transport *shutdown_| ast_sent _to;

struct sctp_transport *init_|ast_sent_to;

__u32 next_tsn;

__u32 ctsn_ack_point;
__u32 adv_peer_ack_point;
__u32 highest_sacked;
__ulé unack_dat a;

__u32 rwnd;

__u32 a_rwnd;

__u32 rwnd_over;

i nt sndbuf_used,;

atom c_t rnem.all oc;

wai t _queue_head_t wait;
__u32 frag_point;

int init_err_counter;

int init_cycle;

__ul6 default_stream
__ul6 default_fl ags;

__u32 default_ppid;

__u32 default _context;
__u32 default_tinetolive;
__u32 default _rcv_context;
struct sctp_ssnmap *ssnnap;
struct sctp_outq outqueue;
struct sctp_ul pg ul pq;
__u32 last_ecne_tsn;

__u32 last_cwr_tsn;

i nt numdupt sns;

__u32 autocl ose;

struct sctp_chunk »addip_| ast _
struct sctp_chunk *addi p_I ast _

/112 bytes

/160 bytes
/140 bytes

asconf;
asconf _ack;

struct |ist_head addi p_chunk_list; /18 bytes

__u32 addi p_serial;
char need_ecne;
char tenp;

Figure 12: Data structure sttpassociation

13

D.3 Common Configuration for Server and Clients
Disabling Heartbeat

To eliminate extra process cost for the heartbeat, we didathle SCTP heartbeat mechanism for both server and
clients. For one-to-one sockets, we used s$let sockopt () system call to disable the heartbeat mechanism
just after creating the socket. The option nam&GIP_PEER ADDR PARAM For Linux 2.6.23, the member of
sctp paddrparamssppflagsshould be set t&PP_HB_DI SABLE. For Linux 2.6.9,sppflagsdoes not exit. Instead,
spp.hbintervalshould be set to 0.

However, it is not the same for one-to-many style socketesitie SCTP_PEER_ ADDR PARAM s valid for an
association, not multiple associations for the socket. ¥eaall the samset sockopt () system call with a valid
associationid after an association is created and added to an existitkesoTo get the association id, we need to
use the notification mechanism, which is costly. To avoidrtbéfication cost, we simply extended the interval of the
heartbeat from 3,600 seconds to 360,000 seconds at thenslgsted of the SUT.

% echo net.sctp. hb_interval =360000 >> /etc/sysctl.conf

Expanding the Size of Socket Buffers

For one-to-many sockets, multiple associations sharegéessocket buffer. This sharing easily exhausts the send and
receive socket buffer and causes the error “Resource temlyannavailable”. To avoid this resource starvation, we
expanded the buffer size using thet sockopt system call. These option names &@ SNDBUF for a send buffer
andSO._RCVBUF for a receive buffer, respectively.

In our measurement, when an echo server handles 2,500 tefgeesnd via a one-to-many socket whose send
buffer is expanded to 262,142 bytes, the echo server cdiddnd echoed message due to the send buffer starvation.
Since the maximum size of socket buffers is limitedniat . cor e. wwnemnax, we need to expand the value of
net . cor e. wremimax in order to raise the size of a send buffer.

Setting no Delay Option

Using theset sockopt system call, we set "no delay” to a socket to disable the Nalfggrithm. The option name
is SCTP_NODELAY. Note that SCTP preserves message boundaries, so it ddasmue multiple short messages into
a single large IP packet, unlike TCP.

14

