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Abstract

The transport protocol for SIP can be chosen based on the requitsroéservices and network conditions. How
does the choice of TCP affect the scalability and performance compatédf® We experimentally analyze the im-
pact of using TCP as a transport protocol for a SIP server. We fikststigate scalability of a TCP echo server, then
compare performance of a SIP server for three TCP connection lifetitnassaction, dialog, and persistent. Our
results show that a Linux machine can establish 450,000+ TCP connedimh maintaining connections does not
affect the transaction response time. Additionally, the transaction resfganss using the three TCP connection life-
times and UDP show no significant difference at 2,500 registration tqlgecond and at 500 call requests/second.
However, sustainable request rate is lower for TCP than for UDP, sinicgydsCP requires more message processing.
More message processing causes longer delays at the thread quéhe $erver implementing a thread-pool model.
Finally, we suggest how to reduce the impact of TCP for a scalable S\Risespecially under overload control.
This is applicable to other servers with very large connection counts.

1 Introduction

The Session Initiation Protocol (SIP) [1] is used for Intdrtelephony signaling, i.e., establishing and tearingrdow
sessions. The SIP is a request-response protocol, simildf TP, but can work over any transport protocol such
as UDP, TCP or SCTP (Stream Control Transmission Proto2dl) If SIP messages are sent over connection-less
transport protocol, UDP, the SIP server does not have totaininonnection state, and a single socket can be shared
to communicate with all the users. UDP seems a better choieethiieve a scalable SIP server in congestion-free
networks.

However, TCP is preferred to UDP even in congestion-freevaids, since it addresses issues, such as the SIP
message size exceeding the MTU (Maximum Transfer Unityéileand NAT traversal. Due to its reliable nature,
TCP imposes additional processing cost on the SIP sereer the server has to maintain a TCP socket for each
connection. Typically, to facilitate inbound calls to theen phone behind a NAT or firewall, the user phone maintains
a persistent TCP connection with the SIP server. It has génbdeen perceived as difficult for a SIP server to maintain
250,000+ active TCP connections and to keep up with the sporeding number of user registrations and call requests,
in order to compete a high-capacity central office, LucebiEsXC™[3], a high-capacity 5ESS.

Our goal is to measure the impact of TCP on SIP server scijedild performance, and to suggest techniques to
maintain a large number of active TCP connections, such@$80, on a single server. The remainder of this article
is organized as follows. We introduce requirements for ®iRers in Section 3. Then, we show the scalability and
performance measurements of an echo server in Section 4asd of a SIP server in Section 5. We also analyze
the reason of the performance differences between TCP aril isihg component tests in Section 6. Appendices
describe system calls, system configurations and measnt¢onts.

2 Related Work

Since both a SIP server and an HTTP server can use TCP, treegdammon problems in handling a large number of
connections. Kegel [4] aggregates several tips and linnit$®@ and event delivery to support more than 10,000 clients
for a scalable HTTP server. Libenzi [5] developeddipml | () system call and shows that it enables an HTTP server
to achieve a high throughput with active 27,000 connecti@esbuilt our SIP server on these tips to increase an upper
limit of sockets and to enable the server to wait for events darger number of connections using tagol | ()
system call. However, we have to consider the differencesdsn a SIP server and an HTTP server as explained in
Section 3.

For SIP server scalability, Shemyak and Vehmanen [6] shawatda SIP server can maintain 100,000 inactive
TCP connections, emphasizing the effect of usingethel | () system call. However, we need to establish the limit
for the number of concurrent connections and clarify theléoeck.



For a scalable SIP server using UDP, Singh and Schulzriqreofvipared the performance for different software
architectures: event-based, thread-pool, and process-gdney suggested that the process-pool one has the best
performance in terms of response time. Additionally, theyppsed a two stage architecture, where servers at the first
stage dispatch messages to multiple servers at the se@galistorder to improve concurrency and reliability. For a
highly concurrent server, Welsh et al. [8] proposed a stayeat-driven architecture. Each stage contains a thread-
pool to drive the stage execution. They showed decoupliag tbanagement from service logic increases concurrency
with the measurement using 1,024 clients. We describe tpadiof the transport protocol on SIP server scalability,
not the impact of the software architecture.

3 Requirements for a SIP Server

3.1 TCP Connection Lifetime

Although SIP is similar to HTTP, it differs from HTTP in TCP moection lifetime. For example, a SIP proxy server
in transaction-stateful mode needs to wait for the respbosethe User Agent Server (UAS). After ringing, it might
take more than 30 seconds for the UAS to answer it. If the sewres in dialog-stateful mode, it needs to wait for
the dialog between users to end. Thus, the TCP connectaimi# depends on human response time, and would be
much longer than that for HTTP/1.0 [9], but similar to that T TP/1.1 [10]. While HTTP/1.0 [9] opens and closes

a TCP connection to fetch each embedded object, HTTP/1 dostgopersistent connections across multiple objects
by default in order to improve server performance by avadimnecessary TCP connection opens and closes, by
reducing the impact of TCP slow-start, and by allowing giiah requests and responses [11]. Typical HTTP clients
and servers close inactive TCP connections when the sefsieouts. For example, Mozilla Firefox sets the session
timeout to 300 seconds by default.

However, a SIP client behind a NAT needs to maintain even aative TCP connection in order to wait for
incoming calls [12]. In this case, the TCP connection lifetifor SIP would be much longer even than HTTP/1.1.
Therefore, the number of sustainable TCP connections astdisable request rate are crucial factor for the scatgbili
of an outbound SIP server.

3.2 Traffic Model

We assume a target traffic model where a single server accdates300,000 subscribers, which is similar scalability
to that of Lucent's 5E-XEV, 256,000 subscribers. Each user quotes their locatiory &/600 seconds as defined by
default in [1]. The average call duration is 180 seconds. ffaffic is 0.1 erlangs. Thus, the target throughput for
registrations is 300,000 BHCA (Busy Hour Call Attempt), alinicorresponds to 83 requests per second. The target
throughput for calls is 600,000 BHCA (= 300,000 * 0.1 * (3,60080)), which corresponds to 167 requests/second.
If four mid-call requestsPRACK, ACK, UPDATE andBYE, are also counted as requests, the rate rises to 833
requests/second.

4 Basic TCP Measurements Using an Echo Server

Prior to the measurement for a SIP server, we measured thab#ita and performance of an echo server in order
to clarify the threshold and bottlenecks in terms of crepind maintaining a large number of concurrent TCP con-
nections. We expected these basic measurements to malgeit taestimate the scalability of a SIP server using
TCP.

4.1 Measurement Metrics

First, to establish the limit for the number of concurrentPT€nnections on a single server, we measured the number
of sustainable TCP connections, memory usage and CPUatitilizby theepol | () system call. Figure 1 shows
that the echo server with polling accepts several TCP cdmmeequests and receiving user messages depending on
the order of data delivery.

Second, we measured the impact of a large number of TCP ciiomefrom two perspectives: of establishing and
of maintaining active TCP connections. When echo clientsl 42 byte messages to the echo server over separate
TCP connections. In other words, TCP does not bundle meltiptssages into a single packet when sending out.
Appendix C describes the measurement tools for these metric

4.2 Measurement Environment

Figure 2 illustrates our measurement environment congistf the server under test (SUT) and the echo clients. The
SUT is an echo server using a single-process and singlaethvhich runs on a dedicated host with Pentium IV 3 GHz
32-bit dual-core CPU and 4 GB of memory. The SUT runs LinuxXB&onfigured with a 2G/2G virtual memory
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split, where the kernel can use 2 GB of memory. For the eclemtsj we used ten hosts with Pentium IV 3 GHz
32-bit CPU and 1 GB of memory running Redhat Linux 2.6.9. Ehassts communicated over a 100 Mb/s Ethernet
connection at light load. The round trip time (RTT) measuvgg@i ng was roughly 0.1 ms.

We configured the SUT and clients to allow a large number otement connections. The upper limit of file
descriptors was increased to 1,000,000 at the SUT and t@®@0every client. The ephemeral local port range at
the clients was expanded to 10,000 - 65,535, so that eactt cha establish approximately 55,000 (= 65535 - 1000)
concurrent connections. Appendix B details the system gordtions.

4.3 Results from Basic TCP Measurement
4.3.1 Number of Sustainable TCP Connections

We measured the number of sustainable TCP connectionseat thquest sending rates, 200, 2,500 and 14,800 re-
guests/second for the echo server in the message sequemaeish-igure 1. Figure 3 indicates that the echo server
can sustain approximately 520,000 connections at any st¢qate of them. Figure 3 also shows the overall memory
usage and memory usage for TCP socket buffers for the eckiersérhe “high” line indicates the system limit of
TCP socket buffer memory, 800 MB, which is automaticallyfigured at boot time based on available memory. The
overall memory usage increases linearly at any requesanatéhe amount of used memory is approximately 1.2 GB.
However, memory usage for TCP socket buffers is less than B@ivany request rate of them. We can deduce that
the bottleneck is the amount of memory for TCP connectiomsghnis allocated 2.3 KB per connection as long as the
connection remains open, not the amount of socket bufferangrwhich is dynamically allocated depending on the
request rate.
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To get a detailed picture of the memory usage for TCP commestiwe monitored the usage of the slab cache,



where the Linux kernel allocates TCP socket data structaobsding socket buffers at 14,800 requests/second rate.

Figure 4 shows that the slab cache usage for approximat@lpy6@ TCP connections is 1.2 GB including the data
structures for thepol | () system call: eventpakpi and evenpolpwqg. Figure 4 also indicates that the slab cache
usage dynamically allocated for the socket buffer headsuarddata is only 12 MB. This result is coherent with the
result in Figure 3.

Therefore, we have determined that a TCP connection reqj@i2 KB of the slab cache and the bottleneck of
sustainable concurrent connections is the amount of alibt= kernel memory for the slab cache, since this slab
cache is statically allocated as long as the TCP conneatimrains open. For exchanging TCP control messages and
user data, extra amount of the slab cache for socket buffeesjuired, depending on the request rate and the size of
user data. If a target traffic model requires more than 5@¢gadnections, we recommend to have more than 2 GB
of kernel memory, since we have experienced that the setwrgy Without any error message when adding concurrent
TCP connections because of memory exhaustion.

In later versions of Linux, e.g., Linux 2.6.20, the systemdarces an error, “out of memory”, then the “oomkiller”
process kills heavy processes including the echo serveepsovhen it tries to allocates kernel memory for the
TCP socket data structures.

To increase kernel memory, installing more physical meniorya 32-bit kernel does not help since the kernel
process can only handle 4 GB of memory including user spabe.ohly way to increase kernel space for a 32-bit
kernel is to modify the memory split to 3G/1G, where kernedcmpis 3 GB. Another way is to switch to a 64-bit
kernel. Once kernel can support more than 4 GB of physical angnthe bottleneck would move to other factors,
such as the number of file descriptors, which is currently4¥0a24.

4.3.2 The Cost of Establishing TCP Connections

Figure 5 compares the response time and peak CPU time adffessrtt connection lifetimes for TCP and to UDP at
two request rates, 2,500 and 14,800 requests/second.attamsbased TCP opens a TCP connection before sending
a user data, i.e., a 512 byte message in ANSI text, and cltdsn§CP connection after receiving the echoed message.
Persistent TCP has two scenarios: with open, where the echeropens and maintains TCP connections, and without
open, where the echo server reuses existing connections.

Comparing the results between the two persistent TCP dosnadicates the cost of establishing a new TCP
connection. This costs 0.2 ms of the response time and 1BmestCPU time at high request rate in our measurement
environment. Comparing the results between transact@med and persistent TCP with open indicates the cost of
closing a TCP connection. This costs a negligible amounhefrésponse time and 14 percent of CPU time at high
request rate. Since the maximum CPU time of our server rgnmina dual-core CPU is 200 percent, these CPU cost
is not so significant.

Thus, the cost of establishing TCP connections is not saamifiat low request rate, 2,500 requests/second, which is
significantly above the requirement. Furthermore, up taaest rate of 14,800 requests/second, the amount of kernel
memory, rather than CPU cycles, limits the scalability @& dtho server , as we have determined in Section 4.3.1.

4.3.3 The Cost of Maintaining TCP Connections

Figure 6 shows the response time consisting of the TCP hakdsind message exchange as a function of the number
of concurrent TCP connections for the echo server. The eeheisestablishes new TCP connections at 14,800
connections/second and leaves them. The “handshake” datts ghow the elapsed time for the TCP three-way
handshake to establish a new connection, and the “sentl-data points show the interval between sending and
receiving an echoed message after the handshake. Thé tatalpoints shows the sum of them.

Regardless of the number of maintaining TCP connectiomstabponse time remains constant around at 0.3 ms
for ‘send-recv”, which matches the results of persistenPTiCFigure 5, and at 0.4-0.5 ms for “total”, of which average
matches the results of persistent TCP with open. Thus, aaing TCP connections affects neither the performance
of establishing new TCP connections nor of exchanging uste. d

5 SIP Server Measurements

From the results of the basic TCP measurements, we haverdeget that TCP impacts mainly on kernel memory.
Although each TCP connection consumes 2.3 KB of kernel mgnestablishing and maintaining 300,000 TCP
connections themselves does not significantly affect thifopeance. Compared to the echo server, a SIP server
requires no additional kernel memory. Thus, the TCP impa&ieonel memory is the same for a SIP server. Therefore,
we can focus on measuring the performance for a SIP server.
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Figure 5: Response times and CPU utilization for echdrigure 6: Response times as a function of number of TCP
server connections for echo server

Although [1] does not strictly define that a SIP server and Béysport persistent TCP connections, we can assume
that a SIP server supports persistent TCP connections,|Bui/S behaviors may vary. Thus, we need to clarify how
TCP connection handling affects throughput on a SIP semdrdata latency, i.e., the sustainable request rate and
the transaction response time. We measured them for thses cA TCP connection lifetime: transaction, dialog and
persistent. These three cases of TCP connection lifetiffes @i how many SIP messages share a connection and how
often TCP connections are established and closed.

Transaction-based TCP: UAs create new TCP connections for each transaction, REGISTER-200 OK, BYE-
200 OK, INVITE-200 OK, ACK, BYE-200 OK, UPDATE-200 OK. For the average call or dialog, four TCP
connections are established and closed. The maximum ttEorsduration with the default configuration in [1]
is 32 seconds.

Dialog-based TCP: UAs create and share new TCP connections for a dialog, ricen, $endingNVITE requests to
exchangindBYE requests and th200 OK responses. In our traffic model, a TCP connection is maiatkiar
180 seconds on average.

Persistent TCP: UAs and SIP servers keep TCP connections created when gdREBISTER requests, and reuse
them to sendNVITE requests or to update the registration. The default registr interval is 3,600 seconds.

5.1 Measurement Environment

The SUT is our SIP server, sipd [13], running on the same heshea echo server in Section 4.2. The sipd SIP
server implements a single process and a thread-pool meHete a fixed number of threads is spawned on startup,
is pooled, and handles tasks upon requests. If more taske@uested than the number of threads, the tasks wait
in a queue. The SIP proxy and registrar functions are cadolcan a single server to measure the effect of reusing
TCP connections established at registration. The SIP iseume as an outbound proxy for both a User Agent Client
(UAC) and the User Agent Server (UAS), and also as their inldquroxy for simplification. In other words, we used

a single server model, instead of trapezoid model, whereseseers connect to UAs and interconnect with each other.
User information including registered locations is stoireé MySQL DBMS running on a different server on the
same local network. For SIP UAs, we used a SIP UA emulatot,qiaipstone test suite [14], running on the same
hosts as the echo clients in Section 4.2. Figure 7 shows #mggiees and message exchanges. All SIP requests and
responses traverse the SIP server to emphasize the imphet ®CP connection for the SIP server. By dividing the
sequences into two, we applied two scenarios of tests: atratjon test, i.e. REGISTER-200 OK test, and a call
test, i.e. INVITE-200 OK test. Table 1 compares these two tests to the basic TCP meeasutrusing echo server.
The registration test is similar to the basic measuremeéngecho server except parsing messages and SIP operation,
while the call test is more complicated especially in terifihe number of SIP messages and transactions.
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5.2 Registration Test ScenarioREGISTER-200 OK Test

For the registration test, the UAC serREGISTER requests and receives tA80 OK response from the SIP server.
Since registrations create no dialog, we measured theafttios response time dREGISTER-200 OK for two
connection lifetimes: transaction in Figure 8 and persiste Figure 9. Under persistent TCP, we measured the
response time in two cases: initial registration that neuT CP connection establishment, which is corresponding t
persistent TCP with open for the basic TCP measurement, @rgkguent registration that reuses the existing TCP

connection.

5.3 Results fromREGISTER-200 OK Test

Figure 10 compares the transaction response times at gamdguiest sending rates at 100% success rate. The sus-
tainable request rate for transaction-based TCP is 2,99@ests/second, that for persistent TCP with open is 3,300

requests/second, that for persistent TCP is 4,100 redsestsid, and that for UDP is 5,300 requests/second. Below

1,600 requests/second, the gaps in their response timesrreonstant, but above that, the gaps enlarge exponen-
tially. This exponential increase of the response time @on$ to Little's theorem. Since sipd has a M/D/1 queue for

quence
OK test

foREGISTER-200

Table 1: Comparison between TCP measurements for echa sed&IP server

Echo server SIP server
Registration test | Call test
Processing processing sockets| Yes Yes Yes, including sockets tg
UAS
at server reading buffer Yes Yes Yes
parsing messages || No Yes Yes
SIP operation No Yes, including DB access | Yes, including DB access

Number of SIP messages per requgs? (rcv 1, snd 1)

2(rcv 1, snd 1)

14 (outbound: rcv 3, snd 5
inbound rcv 3, snd 3)

Number of transactions per requesf 1

1

6 (outbound 3, inbound 3)

Software model

Single process/threal

d Single process, thread-poo

Single process, thread-poo




handling tasks, we can deduce the increase of the respomséstcaused by waiting tasks’ exceeding the maximum
gueue length at these request rates.

To investigate these gaps more closely, we compare thenrsgpione and CPU utilization at 2,500 requests/second
sending rate with those of the basic TCP measurements iné-lgjjuas shown in Figure 11. Since the number of
messages and transactions are same as shown in Table Drtigaréson indicates the cost of handling SIP requests:
message parsing and SIP operations or the difference obthgase model. The cost of handling SIP requests in
CPU time is 15-18 percent for all cases, and the cost in thesaaion response time is 0.4-1.2 ms. These cost
gaps among three TCP cases and UDP increase more in thectransasponse time than those in CPU time. For
example, the difference in the transaction response timadam the two persistent TCP cases, indicating the cost
of establishing a TCP connections, is 0.4 ms, which is 0.2mike basic TCP measurement. Thus, we determined
that this increased cost of establishing TCP connections w&used by the software model of the SIP server. The
bottleneck of sustainable request rate is the thread queuere the number and lifetime of threads cause queuing
delay of threads in the thread-pool model. Section 6 shoesabult of component tests that focus on threads in sipd
to investigate this reason.

Figures 12 and 13 show that the SIP server starts to fail inllr@nSIP requests far before exhausting system
resources for persistent TCP and UDP. Although we omit pitésgethe results of transaction-based TCP and persistent
TCP with open, their results are similar to that for persisfECP except the sustainable rate. For all cases, CPU
utilization is still below 40 percent and usage of physicamory in RSS and virtual memory in VSZ is below 200
MB and below 800 MB, respectively. Clearly, the bottleneskeither memory usage nor CPU utilization.
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When the success rate drops, the SIP server produces waresgages saying that the overload control drops
83% of requests for persistent TCP and 10-28% of requestdid@t. Since sipd detects overload by monitoring the
thread queue of waiting tasks for available threads, we Hatermined the bottleneck is the thread queue.

Furthermore, the success rate for persistent TCP steeppsdwhile that for UDP gradually decreases. The
difference between persistent TCP and UDP in drooping tleeess rate implies that the overload control works
ruthlessly for TCP, while it works gracefully for UDP. Theanoad control at sipd set threshold of tasks in the thread
gueue and drops tasks to handle new requests exclBBEgequests, which have fewer subsequent SIP messages. To
investigate the difference between TCP and UDP, Sectiosdudses the details of the overload control mechanism.

5.4 Call Test Scenario:INVITE-200 OK Test

For a call test, UACs and UASes should register their looatlmeforehand. UACs sedVITE requests, receivié30
Ringing and200 OK responses from the UASes, and s&@K for the200 OK. Just after establishing a dialog, the
UACs senBYE request to tear down the dialog and receive2i® OK response. For the call test, we measured the
transaction response timeldfVITE-200 OK test for three cases of TCP connection lifetimes: transadiased TCP

in Figure 14, dialog-based TCP in Figure 15 and persistef iGFigure 16.

To simplify the sequence of tHBIVITE-200 OK test, we assume zero ringing duration, zero dialog durasind
no mid-dialog request. By this simplification, the threeesagiffer only in the number of TCP control messages, such
asSYN or FIN.

As described in Section 5.1, the SIP server runs as an outbproxy and also as an inbound proxy. As an
outbound proxy, the SIP server operates in passive openlagd mode. However, as an inbound proxy, the SIP
server opens a connection in active mode, requesting a nemection to the UAS, while it closes TCP connections
in passive mode, based on TCP close requests from the UASurleamfiguration, since the UAS closes a TCP
connection after each transaction, the SIP server as anmislyoroxy operates similarly to the transaction-based TCP.
This configuration between the SIP server and the UAS migkemaclear the difference among the TCP connection
lifetimes between the SIP server and the UAC. However, wédcgee the largest impact of transaction-based TCP for
a SIP server compared to UDP.

5.5 Results ofINVITE-200 OK test

Figure 17 shows that the sustainable request rate for all @3Bs is at 700 requests/second and that for UDP is at
900 requests/second. Both sustainable rates are onlyap@ately 17 percent of those for the registration testgesin

the call test sequence contains seven times as many SIPgasesssaithe registration sequence, and additional TCP
connections between the SIP server and the UAS as compafetlm 1. However, this sustainable request rate, 700



requests/second, is much above the requirement in ourctrafidlel, 167 requests/second in Section 3.2. Also for
the requirement including mid-dialog requests, this snatde rate, which is translated to 1,400 requests/secgnd b
addingBYE requests, is above the requirement, 833 requests/seconds.

Figures 18 and 19 show that the success rate, CPU time and mesage as a function of throughput for the
SIP server, for persistent TCP and for UDP, respectively. geosistent TCP, the success rate drops dramatically to
seven percent above 700 requests/second. On the otherftiad®P, the success rate gradually decreased above 900
requests/second. We omit presenting the results for tcéinasbased and dialog-based TCP, since they are similar to
that for persistent TCP. This is probably because the SNesgerforms as an inbound proxy for transaction-based
TCP for all the three cases.

As we discussed in the results of the registration test, we bdatermined that this drop of the success rate is not
caused by exhausting system resources e.g., CPU or mernboalsed by the overload control at sipd. Figures 18
and 19 shows that CPU utilization is still below 40 percertt @intual memory consumes at most 1,050 MB, which are
slightly more than the registration test. When the succesglraps, sipd produced warning messages saying dropping
93 percent of requests by the overload control.
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6 Component Tests

From the results of the SIP measurement, we have deternfinethe major cause of the difference in the sustainable
request rate between TCP and UDP is message processingread-ftool model, rather than socket handling. Also,



we have determined the overload control for the SIP servekswoorse for TCP than for UDP.

Since TCP is a connection-oriented protocol, the SIP serweds to handle control messages for the connections,
such as TCP open and close requests. This requires moregaedsabe handled. Also, since TCP transfers byte-
stream data, the SIP server needs to find the end of the melsggamsing. This requires longer thread lifetime
that causes lower throughput. Furthermore, this makedaacticontrol harder, since it disables sorting messages
by parsing the first line of the message before parsing thdenhessage. To confirm these analysis, we performed
component tests to focus on message processing.

6.1 Message Processing Test

We performed thdREGISTER-200 OK tests as a white-box test, i.e., measuring the called timdstze elapsed
time of the functions involved in message processing. Tadathe influence of queuing, we set the load low to 10
requests/second, and ran the test for 10 seconds.

Figure 20 compares the number of function calls and new dsreaquired for sipd to processREGISTER
message. The base thread, not a new thread, processessedketcalling theaccept () system call to create a
new connection. For TCP, a new thread reads butter and pansessage. Transaction-based TCP requires most
function calls for processing sockets, and most threadsefading buffers, since it receivCP-SYN and FIN.
Although receivingTCP-SYN does not require to read buffdfJN require to read a zero-sized buffer. Persistent
TCP with open requires the second most function calls sineeeivesTCP-SYN. For UDP, on the other hand, the
base thread reads buffer and parses the first line to sorages$or the overload control, then a new thread parses a
message again for SIP operations. This makes the overpfiaddime for UDP slightly longer than that for persistent
TCP as seen in Figure 21, although persistent TCP and UDRredfje same number of function calls and threads.

However, the elapsed time for reading and sorting messagéise overload control for UDP is one forth of that
for persistent TCP, since sorting message for UDP limitsniin@ber of lines to be parsed to one. Furthermore, the
elapse time for parsing message by a new thread is slightisteshfor UDP than for persistent TCP, since reading
buffer has already been processed by the base thread forTiefefore, we can determine that these two differences
cause the better sustainable rate for UDP than for persi&h in the registration test, although these differennes i
the thread lifetime is much smaller that the elapsed timelBfdperation, which dominate in the elapsed time. The
cost of sorting message for the overload control makes tRes&iver performance significantly worse for TCP at high
loads.
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7 Suggestions for Reducing the Impact of TCP on a SIP Server

Under our target traffic model, we can conclude that the impBECP on the scalability of a SIP server is relatively
small, since it only includes the setup delay for the TCPahwmay handshake and 690 MB of kernel memory for
300,000 concurrent TCP connections. However, as HTTP/&fibas persistent TCP to improve the HTTP server
performance, persistent TCP is also recommended to avoiglcessary the setup delay for a SIP server.
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Under heavy loads, however, persistent TCP is not efficieotigh to compete with the sustainable rate for UDP,
since a SIP server falls to overload condition earlier treingiUDP. We suggest some approaches to reduce the impact
under heavy load.

7.1 Accelerating Parsing for Overload Control

We first suggest that the SIP server sort messages by pahngifiigst-line of a buffered message without determining
the exact message boundary. As found in Section 6, the garassage for UDP, which is by parsing the first line of
the message is much lighter than that for TCP. The speedirf sgrting messages can make it easy to process the
overload control for the SIP server.

Although this sorting is accurate not for all messages, itkwanostly. The messages with a higher priority for the
overload control, i.e., responses @BME request, are relatively short in size. Thus, the messagdilely to be sent
partially. As a result, the size of receiving buffer to bed®g user applications is usually large enough to buffer a SIP
message at once. Thus, with a high possibility, the SIP seareparse the first line without determining the message
size by parsing th€ontent-Length header. Even if the SIP server cannot determine the mesgagédéecause of
partial delivery or bundled delivery, the server can singigp such a message fragment under overload.

Another suggestion is that a function required for the aaaticontrol, such as sorting messages, be processed by
the base thread that does not need to wait for an additioresdh This is only applicable in a thread-pool model.

Furthermore, the software architecture should handle mangurrent requests efficiently. Rather than the thread-
pool model like our environment, a small set of multiple @e®es running a single thread each is more appropriate to
avoid causing large queuing delay and unnecessary cosgidhing.

8 Conclusions and Future Work

We have shown measurement results to clarify the impact & @iCSIP server scalability and performance. Choosing
TCP requires 2.3 KB of kernel memory per TCP connection aditiadal CPU cycles mainly for the TCP handshake.
Establishing TCP connections causes a setup delay of 0.2 s environment, while maintaining TCP connections
only consumes kernel memory. The impact on the responsagina significant under our target traffic model.

However, under heavy loads, e.g., 700 requests/secontdardl test, the major impact is on the performance
and on the success rate. The response time exponentialiases around the sustainable rate. This increase is caused
by queuing delay in the thread pool model, when thread quexeseds the maximum length. To avoid this, the
software architecture should be selected to achieve atangder of concurrent requests. Above the sustainable rate,
the success rate drops steeply by the overload control é08IR server. From the results of the component tests, we
suggest to speed up message parsing to ease overload ¢on&r@IP server.

We will measure the impact of choosing SCTP (Stream Contrahdmission Protocol), which is defined as a
transport protocol for SIP, on server scalability. Sinde ttew transport protocol seems more complicated than TCP,
it would be important to clarify the impact of sustainableections.
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A Comparison of System Calls to Wait for Events

We used theepol | () system call to wait for events, instead of thel | () or sel ect () system call. This is
because thepol | () system call is the most scalable.

Thesel ect () system call has an upper limit on the file descriptor set sfze @24, while user applications
increase an upper limit for theol | () system call. Theepol | () system call is more scalable than thel | ()
system call for the following reasons.

Separated interface
Both ofpol | () andsel ect () provide a combined interface for setting up the pollingdist for retrieving events.

Theepol | () system call separates interfaces for eagnl | creat e(),epol | .wai t () andepol | ctl (),
so that the system can build efficient data structure in kenme user spaces.

Theepol | () system call is only for Linux, but similar system calls eXmtother OS, such dsqueue() for
FreeBSD or dev/ pol | for Solaris.

Theepol | _creat e() system call builds the persistent data structure for a ggokihg file descriptors only in
kernel space, while theol | () system call builds the interest sets both in kernel and ysseres
Efficient event retrieval
After theepol | _ctl () system call adds or removes a polling file descriptor fromdék theepol | wai t ()
system call waits for events with preparing a data strudtureser space for retrieving events. The data structure in
user space is much shorter list than thatgot | (), since theepol | .wai t () can set the list only for the number
of events to be handled at once.

When an event occurs on a file descriptor, the kernel sets et av the top of the list, while the kernel using
pol | () sets it corresponding to the prepared file descriptor. Tharser application scans the list to find the new
event from the top. Thus, user applications ugpg! | () can find the event more efficiently than that usirgg | ()
that needs to scan the full list. Therefoegol | () system calls improves I/O performance.

B System Configurations
B.1 Server Configurations
The following command line increases the number of file dpsans in the system;

% echo 1048576 > /proc/sys/fs/file-nmax

1,048,576 (= 1024*1024) is the system limit defined as a e IR FI LE in i ncl ude/ 1 i nux/fs.h. To
increase this limit when enough memory is installed, we rieedodify and recompile the kernel.
To change thé pr oc/ sys parameters at boot time, we need to add thefretboc/ sysct | . conf as follows:
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fs.file-max=1048576
Theul i m t command can be used to increase the number of file descrggomocess:
%ulimt -n 1000000

To allow a remote shell to access a large number of file descsijior our measurement, we need to specify the user
name and the parameter/iet c/ security/limts. conf:

speci al _user soft nofile 1000000
speci al _user hard nofile 1000000

To allow aremote shell to access a larger number of file detecs via ssh, we need to restaghd in/ et c/rc. | ocal :

%ulimt -n 1000000
% /etc/rc.d/init.d/sshd restart

The memory space for TCP socket buffer is configured as fatlow

net.ipv4.tcp_rnmem = 4096 87380 174760
net.ipv4.tcp_wrem = 4096 16384 131072
net.ipv4.tcp_nem = 98304 131072 196608

These parameters are automatically configured at boot tasedion available memory as well as TCP established
and bind hash table entries. We can see the variables atdgpmt/|var / sys/ message:

kernel : TCP established hash table entries: 524288 (order: 10, 4194304 bytes)
kernel : TCP bind hash table entries: 65536 (order: 7, 524288 bytes)

kernel : TCP: Hash tabl es configured (established 524288 bi nd 65536)

B.2 Client Configurations

To increase the number of file descriptors for a shell, weragsé thaul i nt command:

%ulimt -n 60000

To increase the range of local ports, we modify ithel ocal _port _r ange file:

% echo 10000 65535 > /proc/sys/net/ipval/ip_|local _port_range

C Measurement Tools

We monitored our measurement metrics every second by tlosvfal tools. We monitored the “inuse” field to mea-
sure the number of TCP connections, and the “mem” field to tootie allocated pages for TCP socket buffers in

/ proc/ net/sockst at file at server. We used tHfer ee command to measure the total memory usage at server,
andsl abi nf o command to measure slab cache. We measured the responsntineéapsed time by adding the
timestamps at programget t i meof day() . For accuracy, we subtracted the overhead of cafjeigt i meof day/() .

To monitor how many resources an application consumes, vesuned CPU utilization with theop command, and
memory usage, RSS (resident set size) and VSZ (virtual mesioe), with theps command.
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