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ABSTRACT

Software products released into the field typically have some
number of residual bugs that either were not detected or
could not have been detected during testing. This may be
the result of flaws in the test cases themselves, assumptions
made during the creation of test cases, or the infeasibility
of testing the sheer number of possible configurations for
a complex system. Testing approaches such as perpetual
testing or continuous testing seek to continue to test these
applications even after deployment, in hopes of finding any
remaining flaws. In this paper, we present our initial work
towards a testing methodology we call in vivo testing, in
which unit tests are continuously executed inside a running
application in the deployment environment. These tests ex-
ecute within the current state of the program (rather than
by creating a clean slate) without affecting or altering that
state. Our approach can reveal defects both in the applica-
tions of interest and in the unit tests themselves. It can also
be used for detecting concurrency or robustness issues that
may not have appeared in a testing lab. Here we describe
the approach and the testing framework called Invite that
we have developed for Java applications. We also enumerate
the classes of bugs our approach can discover, and provide
the results of a case study on a publicly-available applica-
tion, as well as the results of experiments to measure the
added overhead.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and De-

bugging
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1. INTRODUCTION

Thorough testing of a software product is unquestionably
a crucial part of the development process, but the ability
to faithfully detect all defects (“bugs”) in an application is
severely hampered by numerous factors. For large, complex
software systems, it is typically impossible in terms of time
and cost to reliably test all configuration options before re-
leasing the product into the field. A recent report [48] indi-
cates that 40% of companies consider insufficient pre-release
testing to be a major cause of later production problems,
and the problem only worsens as changes are rolled out into
production without being thoroughly tested. Furthermore,
it is possible that the test code itself may have flaws in it,
too, perhaps because of oversights or assumptions by the
authors. And, of course, despite progress in measuring test
coverage and formal verification, it is only possible to detect
the presence of bugs, not their absence.

One proposed way of addressing this problem has been to
continue testing the application in the field, even after it has
been deployed. The theory of this “perpetual testing” [44]
approach is that, over time, defects will reveal themselves
given that multiple instances of the same application may
be run globally with different configurations, under different
patterns of usage, and in different system states.

In this paper, we present a testing methodology we call in
vivo testing, in which unit tests are continuously executed
inside a running application in the deployment environment.
In this new approach, tests execute within the current state
of the program without affecting or altering that state. This
approach can reveal defects both in the applications under
test and in the unit tests themselves. It can also be used
for detecting concurrency or robustness issues that may not
have appeared in a testing lab (the “in vitro” environment).

The foundation of the in vivo testing approach is the fact
that many (if not all) software products are released into
deployment environments with latent defects still residing
in them, as well as our claim that these defects may reveal
themselves when the application executes in states that were
unanticipated and/or untested in the development environ-
ment. In vivo testing can be used to detect bugs hidden by
assumptions of a clean state in the unit tests, errors that
occur in field configurations not tested before deployment,
and problems caused by unexpected user actions that put
the system in an unanticipated state. Our approach goes
beyond application monitoring in that it actively tests the
application, using the same unit tests from the development
stage, with minimal modification to the application and unit
test code.



Our main contribution is an approach to executing unit
tests within the environment of a running system, and doing
so without altering that system’s state.

2. THE IN VIVO TESTING APPROACH

In vivo testing is a methodology by which unit tests are
executed in the deployment environment, in the context of
the running application, as opposed to a controlled or blank-
slate environment. Tests are run continuously as the appli-
cation runs, at appropriate points in the program execution.
Crucial to the approach is the notion that the test must not
alter the state of the application. In a live system in the
deployment environment, it is clearly undesirable to have a
test application altering the system in such a way that it af-
fects the users of the system, causing them to see the results
of the test code rather than of their own actions. This is
done by executing the test in a separate process, which has
been created as an exact copy of the original.

2.1 Conditions

In order for in vivo testing to be useful in practice for a
given unit test and a corresponding piece of software to be
tested, three conditions must be met. First, the unit test
must pass in the development environment, even though
there are unknown defects in the software under test (if
the unit test fails before deployment, then obviously in vivo
testing is not necessary). Second, under certain potentially-
unanticipated circumstances the running application should
give erroneous results or behavior in the deployment envi-
ronment, i.e. have a bug. Lastly, for some process state
or condition of use, the unit test must subsequently fail. If
these conditions are met, it is possible for in vivo testing
to detect that there is a bug. The bug may be one in the
application code, or in the unit test code, or both.

2.2 Categories and Motivating Examples

Although the necessary conditions described above may
appear to be rather restrictive, many such bugs exist in
production applications. To examine the feasibility of our
testing approach, we investigated the documented defects
of some popular, open-source applications to see which of
them could have been discovered using in vivo testing. The
first application we considered, OSCache version 2.3 [6], is
an open-source multi-level caching solution designed for use
with JSP pages and Servlet-generated web content. In ad-
dition, we looked at different versions of Apache Tomcat [1],
a Java Servlet container.

We identified five different categories of defects that in
vivo testing could potentially detect. The categories are
listed in Table 1. There may be other categories of bugs
that could be found with in vivo testing, but these are the
ones identified so far.

The first category of defects likely to be found by in vivo
testing are those in which the corresponding unit test as-
sumes a clean slate, but the code does not work correctly
otherwise. By clean slate, we mean a state in which all ob-
jects have been created anew and are modified only by the
unit test or methods it calls, such that the unit test has com-
plete control of the system. Generally unit tests are written
in such a way that the objects being tested are created and
modified to obtain a desirable state prior to testing [5]. In
these cases, the code may pass unit tests coincidentally, but
not work properly once executed in the field, revealing bugs

Table 1: Categories of defects that can be detected
with in vivo testing

1 | Unit tests make incorrect assumptions about
the state of objects in the application

2 | Possible field configurations were not tested in the lab

3 | A legal user action puts the system in
an unexpected state

4 | An unanticipated user action breaks the system

5 | Those that only appear intermittently

in both the test code and the code itself. State-based testing
[49] or static analysis [20] could be used to look for defects
in this category, though these may not be as useful as in
vivo testing when the system state depends heavily on ex-
ternal systems or user input sequences, which may not be
able to be anticipated prior to deployment, or with respect
to bugs caused by values determined at runtime, such as
pointer variables or array indices.

One of the OSCache bugs® we discovered notes that, under
certain configurations, the method to remove an entry from
the cache is unable to delete a disk-cached file if the cache
is at full capacity. In this case, the corresponding unit test
for testing cache removal may simply add something to the
cache, remove it, and then check that it is no longer there. A
unit test that assumes an empty or new cache would pass,
but when the cache is full, the test would fail, revealing
a bug that may not have been caught in the development
environment.

The second category of defects concerns those that come
about from field configurations that were not tested in the
lab. These, too, may reveal a bug in the code or in the
unit test. Java server applications may require testing on
multiple platforms with multiple JDK versions and multiple
revisions of the application code; this is not always feasi-
ble for testing in a single test lab, particularly given the
frequency with which companies must release their applica-
tions to be competitive in the marketplace. Additionally,
a new JDK may be released after the software is deployed.
System administrators of such applications may have numer-
ous runtime configuration options, and not all combinations
may have been tested before release. We note that a testing
approach using a system like Skoll [24] [34] to run tests at
the production site before deployment of the software could
potentially find some defects in this category, but others
will only reveal themselves once the application has been
running for a while, and would not be detected prior to the
application’s deployment and widespread use.

Another OSCache bug? falls in this category. In this bug,
setting the cache capacity programmatically does not over-
ride the initial capacity specified in a properties file when
the value set programmatically is smaller. A unit test for
the method to set the cache capacity may assume a fixed
value in the properties file and only execute tests in which it
sets the cache capacity to something larger; this test would
pass. However, if a system administrator sets the capacity
to a large number in the properties file, the unit test would
fail when it tries to set the cache capacity to a smaller value,
revealing the bug. This also happens to reveal a flaw in a
poorly-designed unit test, as well, which is a side benefit of
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the in vivo testing approach.

The third type of defect targeted by in vivo testing are
ones that stem from a (legal) user action that puts the sys-
tem in an unexpected state. This could happen when ob-
jects in the same process are shared between users, and one
user’s activities modify an object such that it does not work
correctly for other users.

Concurrency bugs are a very common type of defect in
this category. We noticed one of the concurrency bugs® in
Apache Tomcat, in which a particular method used in the
creation of a session is not threadsafe. If the thread that
invalidates expired sessions happens to execute at the same
time as a session is being created, it is possible that an
exception would occur because one of the objects being used
in the session creation could be set to null. A unit test
that is simply testing the creation of sessions is not likely
to detect this bug because at that time there may not be
any other sessions to invalidate (this is also a case of the
first type of defect targeted by in vivo testing, in which the
unit test assumes a blank slate). However, in the deployment
environment, this unit test may fail if the session invalidation
thread is cleaning up other sessions at the same time. Note
that here, we are in a sense testing the unit test as well as
the application code, which is a differentiating feature of the
in vivo testing approach.

The fourth type of defect that can be found by using in
vivo testing are ones in which an unanticipated (but legal)
user action causes the system to stop running (crash) or sim-
ply stop responding (hang). This may generally seem more
like “monitoring” than “testing”, but can still be addressed
by our approach. Unlike the third category, in which the ap-
plication continues to respond to users and appears to run
normally, these are defects that cause the system to stop
responding or to repeatedly give error messages.

For instance, one of the Apache Tomcat bugs® we studied
is one in which there is a resource leak in the database con-
nection pool. A single unit test to create, use, and release
connections from the pool may not detect the leak if it is
not executed enough times, particularly if the application is
restarted between tests. However, in the field this error may
arise if the test is executed repeatedly, and finally the test
would fail when it could not obtain a connection. Because
this does not result in a runtime error (the application just
hangs while waiting for a free connection), a system monitor
that is checking for uncaught exceptions would not detect
this situation. On the other hand, a unit test that is run in
vivo would eventually reveal this bug.

The fifth and final type of defect is one that only appears
occasionally. These defects may be discovered by a con-
tinuous testing approach [46] during only the development
phase, but the fact that our approach continuously tests the
application even after deployment increases the chance of
finding such a bug.

One such defect appears in OSCache®, whereby flushing
the cache, adding an item, and attempting to retrieve the
item can occasionally result in an error, particularly if two
calls to flush the cache happen within the same millisecond.
A unit test that tries this sequence of actions may simply
never encounter the error by chance during testing in the
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development environment, but an application fitted with the
in vivo framework would catch it when it eventually occurs.

It is conceivable that some of the bugs documented here
could have been discovered prior to release of the application
given more time, better unit tests, and a little luck. But
these examples demonstrate that a testing methodology that
continues to execute unit tests on an application in the field
greatly improves the chances of the errors being detected.
More importantly, certain bugs will in practice only manifest
themselves in the field (because of limited time and resources
in the testing lab), and these are the ones for which in vivo
testing is most useful.

2.3 In Vivo Testing Fundamentals

To apply the in vivo testing approach, the application ven-
dor must first perform some preparation steps (described in
Section 4.1), including the instrumentation of the portions of
the application that are to be tested in the production envi-
ronment. After these preparation steps have been performed
and the application has been configured to take advantage of
in vivo testing, it is deployed in usual fashion: the applica-
tion user does nothing special and would not even know that
in vivo testing is being performed. In vivo testing then works
as follows: when an instrumented part of the application is
to be executed, with some probability its corresponding unit
test is then executed in a separate “sandbox” that allows the
test to run without altering the state of the original appli-
cation process. The application then continues its normal
operation as the unit test runs to completion in a separate
process, and the results of the test are logged. Note that
the unit tests are only invoked as a result of the execution
of the code they are testing, so that commonly used code is
tested more often.

Although the in vivo testing approach is a general test-
ing approach suitable to most types of applications, it is
most appropriate for server-side network applications like
web servers, SMTP servers, etc. These types of applications
are long-lived and thus have frequent method calls and (pre-
sumably) little idle time, which increases the chances of unit
tests being executed, and thus the effectiveness of in vivo
testing.

3. RELATED WORK

Our work is principally inspired by the notion of “perpet-
ual testing” [41] [44] [45] [54], which suggests that analysis
and testing of software should not only be a core part of the
development phase, but also continue into the deployment
phase and throughout the entire lifetime of the application.
Perpetual testing advocates that analysis and testing should
be on-going activities that improve quality through several
generations of the product, in the development environment
(the lab, or “in vitro”) as well as the deployment environ-
ment (the field, or “in vivo”). The in vivo testing approach
is a type of perpetual testing in which the same unit tests
can be used in both environments with only minor modifica-
tions, and the tests do not alter the state of the application
under test.

In vivo testing is also a form of “residual testing” [42].
This type of testing is motivated by the fact that software
products are typically released with less than 100% coverage,
so testers assume that any potential defects in the untested
code (the residue) occur so rarely so as not to bear consider-
ation. Much of the research in this area to date has focused



on measuring the coverage provided by this approach by
looking at untested residue [38] [42] or by comparing the
coverage to specifications [37]. However, this work does not
consider the actual execution of unit tests in the deploy-
ment environment, as we describe here. Those approaches
describe measurements of the residue, whereas we are at-
tempting to discover the residual bugs by conducting tests.
Our approach does not currently address coverage, but could
be extended to do so, e.g. emphasizing testing of the residue
but not restricting the testing to only the residue, since bugs
could reside in already-tested code.

Also related to perpetual testing is “continuous testing”,
which refers to round-the-clock execution of tests, though
typically in the development environment [46] [47]. However,
the Skoll project [24] [34] has extended this into the deploy-
ment environment by carefully managed facilitation of the
execution of tests at distributed installation sites, and then
gathering the results back at a central server. The principal
idea is that there are simply too many possible configura-
tions and options to test in the development environment, so
tests can be run on-site to ensure proper quality assurance.
Whereas the Skoll work to date has mostly focused on ac-
ceptance testing of compilation and installation on different
target platforms, in vivo testing is different in that it seeks to
execute unit tests within the application while it is running
under normal operation. Rather than check to see whether
the installation and build procedure completed successfully,
as in Skoll, in vivo testing seeks to execute unit tests as the
application runs in its deployment environment. Addition-
ally, although the in vivo approach does not currently ad-
dress performance testing, as Skoll does, our approach could
be enhanced to maintain records of resource utilization of
the individual units tested, for instance to help detect bot-
tlenecks where optimization may be warranted, or in cases
where a priori assumptions about resource utilization turn
out to be off base in the field for a particular installation.

While the notion of “self-checking software” is by no means
new [53], much of the recent work in executing tests in the
field has focused on COTS component-based software. This
stems from the fact that users of these components often do
not have the components’ source code and cannot be cer-
tain about their quality. Approaches to solving this prob-
lem include using retrospectors [29] to record testing and
execution history and make the information available to a
software tester, and “just-in-time testing” [28] to check com-
ponent compatibility with client software. Work in ”built-
in-testing” [51] has included investigation of how to make
components testable [12] [13] [14] [33], and frameworks for
executing the tests [17] [32] [35], including those in embed-
ded systems [43] and Java programs [18], or through the use
of aspect-oriented programming [31].

In light of all these important contributions, in vivo test-
ing differentiates itself by providing the ability to test any
arbitrary part of the system (not just COTS components)
and by utilizing existing unit test code, rather than requir-
ing extensive modification to the original source to provide
special functional and testing interfaces [8] [50] or enforcing
a rearchitecture of the application to allow for the use of
testers and controllers/handlers [10] [36] [50]. The advan-
tage of the in vivo testing approach over these others is that
we are providing a framework for perpetual testing of an
existing application with minimal modification, as opposed
to prescribing a methodology for developing an application

so that it may be tested after its deployment.

Other approaches to testing software in the field include
the monitoring, analysis, and profiling of deployed software,
as surveyed in [19]. One of these, the GAMMA system [39]
[40], uses software tomography for dividing monitoring tasks
and reassembling gathered information; this information can
then be used for onsite modification of the code (for instance,
by distributing a patch) to fix defects. Liblit’s work on Co-
operative Bug Isolation [27] enables large numbers of soft-
ware instances in the field to perform analysis on themselves
with low performance impact, and then report their find-
ings to a central server, where statistical debugging is then
used to help developers isolate and fix bugs. Clause [16] has
looked at methods of recording, reproducing, and minimiz-
ing failures to enable and support in-house debugging, and
Baah [9] uses machine learning approaches to detect anoma-
lies in deployed software. All of these strategies could make
use of in vivo testing as part of their implementation.

4. THE IN VIVO TESTING FRAMEWORK

The in vivo testing framework, which we call Invite (IN
VIvo TEsting framework), has been implemented in Java
and has been designed to reuse existing test code as much
as possible, while not imposing restrictions on the design of
the software application. This section describes the steps
that must be followed to prepare an application for in vivo
testing, and how the tests are actually executed in the de-
ployment environment.

4.1 Preparation

Here we describe the steps that a software vendor would
need to take to use the Invite framework. We start by assum-
ing that unit tests have already been written in the JUnit
[4] style, though this may not always be the case. In sit-
uations where unit tests have not been written at all, then
they should be created according to the following guidelines.

Step 1. Create test code. In order to use Invite, the
software vendor must ensure that the unit test methods re-
side in the same class as the code they are testing. Also, the
unit test for a method “foo” should be a public method called
“testFoo”, which returns a boolean (to indicate whether or
not the test passed, so that Invite can log the result and
possibly take some appropriate action) and takes no argu-
ments. Additionally, rather than create new objects to test
in the test methods, those methods should use existing ob-
jects (i.e. the one in which the method resides, or other
objects directly accessible through it), since the goal of in
vivo testing is that, when the test is run in the field, it is
using the object that has been modified over the course of
the application’s execution.

Certainly there are unit tests that may not seem appro-
priate for in vivo testing. Take, for instance, an example
of a simple Vector. A unit test might create a new Vector,
put in one element, remove that element, and then check
that the Vector is empty. This is a perfectly valid test of
the Vector’s ability to remove elements, but if it is changed
to use an existing Vector that has accumulated state (and
elements), then this test would fail because after adding and
removing one element, the Vector is obviously not going to
be empty. However, this test could easily be modified for
in vivo testing by changing the emptiness check to simply
see if the removed element no longer exists. The goal is
the same (checking that the Vector’s method to remove el-



ements works correctly) but now this test will work even
if it uses a Vector that already has elements in it. On the
other hand, leaving the unit test as is, 7.e. allowing it to
create a new object instead of using an existing one, still
has utility within in vivo testing because it can be used to
test underlying APIs and system library calls, such as those
that allocate memory and maintain pointer references.

It is important to note that this step does not require
any modification or special constraints on the design of the
software application itself; it may merely require moderate
changes to the test code, which would be done a priori by the
vendor who plans to distribute an in vivo-testable system,
and not by the customer in whose environment the tests run.

To demonstrate the type of minor modification that would
be necessary to use the in vivo testing approach, Figure 1
shows a simple Java class, and Figure 2 shows its corre-
sponding test class in the JUnit [4] style, specifically that
a separate class is used to hold all the test methods, and
uses a “setUp” method to create new objects to test. Figure
3 shows the modified application code in the in vivo test-
ing style: (1) the test methods have been moved into the
same class; (2) the names of the test methods have been
changed to match that of the method each is testing; (3)
the return type of the test methods has been changed; and
(4) the reference to the object being tested (in this case,
the DataHolder) in the test methods is now “this” (implied)
instead of a newly-created object.

public class DataHolder {
public int largestSoFar = 0;
public void update(int x) {
if (x > largestSoFar) largestSoFar = x;
}
public void reset() {
largestSoFar = 0;
}

Figure 1: Original application code

public class DataTest {
private DataHolder d;
@Before public void setUp() {
d = new DataHolder();
}
@Test public void testUpdateData() {
d.update(5);
d.update(3);
assertTrue(d.largestSoFar == 5);
}
@Test public void testResetData() {
d.update(5);
d.reset();
assertTrue(d.largestSoFar == 0);
}
}

Figure 2: Original test code in JUnit style

Most importantly, note that no changes were necessary to
the DataHolder class (aside from adding the new test meth-
ods) or to the application logic (the “update” and “reset”
methods). If the “update” or “reset” methods created new

public class DataHolder {
public int largestSoFar = 0;
public void update(int x) {
if (x > largestSoFar) largestSoFar = x;
}
public void reset() {
largestSoFar = 0;

}
public boolean testUpdate() {
update(5) ;
update(3);
return (largestSoFar == 5);
}
public boolean testReset() {
update(5) ;
reset();
return (largestSoFar == 0);
}

Figure 3: Modified application code

objects, that would be totally fine in the world of in vivo
testing and would not necessitate modification; we are only
concerned with changing references to the objects used by
the test methods. Although this is clearly a toy example, it
demonstrates that an application’s test code can be rewrit-
ten in the in vivo testing format with minimal effort, and no
significant changes to the application code are necessary.

Step 2. Instrument classes. After making any nec-
essary code modifications, the vendor must then select one
or more Java classes in the application under test for in-
strumentation, such that all method calls in the class will
be points at which a unit test could be run. Aside from
acting as jumping off points for the unit tests, the instru-
mented classes are also the same ones that will be tested
by the Invite system, and should be selected according to
which ones the vendor wants to test (this could certainly
be all of the classes, of course). The list of classes is spec-
ified in a plain-text file. To achieve this instrumentation,
Invite uses a Java component written in the aspect-oriented
programming language AspectJ [2], which is woven into the
instrumented classes. This does not require any modification
of the original source code; it only calls for recompilation,
though this restriction could be lifted by use of a system like
[22], which would dynamically insert the test harness code
into the application without recompilation.

Step 3. Configure framework. Before deployment,
the vendor would configure Invite with values representing,
for each method with a unit test in the instrumented classes,
the probability p with which that method’s unit test will
be run. This configuration is specified in a plain-text file,
where each line contains the name of the class, the name of
the method, and the percent of calls to that method that
should result in execution of the corresponding unit test.
For ease of use, the list of methods that have unit tests
is auto-generated by Invite as part of the instrumentation
phase; the vendor need only specify the p values. The file
is read at run-time (not at compile-time) so it can be modi-
fied by a system administrator at the customer organization
if necessary. A “DEFAULT” value can be specified as well:
any method not explicitly given a percentage will use that
global default. If the global default is not specified, then



the default percentage is simply set to zero, which provides
an easy way of disabling all in vivo testing for all but the
specified methods. To disable testing for all methods in the
application, the administrator can simply put “DISABLE” in
the first line of the file. Note that if method “foo” is called
twice as frequently as method “bar”, and both have equal
p values, then “testFoo” is going to be called twice as fre-
quently as “testBar”, which we feel is desirable since that
method should be tested more often since it is called more
often.

Step 4. Deploy application. It is assumed that the
application vendor would ship the compiled code including
the unit tests and the configured testing framework as part
of the software distribution. However, the customer orga-
nization using the software would not need to do anything
special at all, and ideally would not even notice that the in
vivo tests were running.

4.2 Implementation Details

Whenever a method of an instrumented class is invoked,
the AspectJ code weaved in by Invite uses the percentage
value p for that method to decide whether to execute a test.
If Invite decides that a test is to be run, it uses Java Reflec-
tion to see if the method has a corresponding “test” method
(for performance reasons, however, we cache the results of
previous checks to see if the test method exists). This is
the unit test that will then be executed. The purpose of
running a method’s corresponding “test” method is so that
the unit test is executed at the same point in the program
(the same state) as the method itself. This makes it possible
to see how the test performs in the same state in which the
method performs, which is preferable to arbitrarily choosing
a random test to execute, since there may be states when
such a test is not expected to work correctly.

If the test method exists and it is determined that a test
should be run, Invite then forks a new process (which is a
copy of the original) to create a sandbox in which to run the
test code, ensuring that any modification to the local pro-
cess state caused by the unit test will not affect the “real”
application, since the test is being executed in a separate
process with separate memory. As Invite is currently im-
plemented in Java, and there is no “fork” in Java, we have
used a JNI call to a simple native C program which exe-
cutes the fork. Performing a fork creates a copy-on-write
version of the original process, so that the process running
the unit test has its own writable memory area and cannot
affect the in-process memory of the original. Once the test is
invoked, the application can continue its normal execution,
while the unit test runs in the other process. Note that the
application and the unit test run in parallel in two processes;
the test does not pre-empt or block normal operation of the
application after the fork is performed.

In the current implementation of Invite, unit test mod-
ifications to files, network I/O, the operating system, ex-
ternal databases, etc. are not automatically undone; the
sandbox only includes the in-process memory of the appli-
cation. Though this somewhat limits the type of testing
that can be performed currently, there are still many cate-
gories of defects (listed in Section 2) that can be detected
when considering tests that only utilize and affect the state
of the process in memory. Furthermore, if a “tearDown”
method exists in the class in which the unit test was run,
that method is executed upon completion of the test, allow-

ing for any programmatic clean-up that needs to be done
(though, as described previously, it is not necessary to re-
store in-process memory to its original state, only that of
external systems). To further address this limitation in a
more automatic fashion, we are currently integrating Invite
with DejaView [25], an application which creates a virtual
execution environment that isolates the process running the
unit test and gives it its own view of the file system, so that
it will not affect files used by the original process.

When the unit test is completed, Invite logs whether or
not it passed, and the process in which the unit test was run
is terminated. Invite provides a tool for analyzing the log
file and providing simple statistics like the number of tests
run, the number that passed/failed, and a summary of the
success/failure of each instrumented method’s unit test. We
have also implemented a “client-server” version of Invite [15]
in which all errors are reported back to a central server (pre-
sumably this would be set up at the vendor’s location), and
could be processed as in [40] or [34], wherein configuration
parameters (like the frequency of test execution or even the
list of classes to test) could then be modified.

Unlike other testing approaches that test the application
as it is running, such as [18] or [36], Invite avoids the “Heisen-
berg problem” of having the test alter the state of the ap-
plication it is testing. This is the major contribution and
differentiating characteristic of the in vivo testing approach.

4.3 Comparison to JUnit Conventions

We originally considered maintaining the JUnit style for
the test code, in particular that the test code resides in a dif-
ferent class. However, a major limitation of this approach is
that, in JUnit, new objects to test are created (for instance,
in the “setUp” method [5]), but this defeats the point of in
vivo testing, which is designed to test within the confines
of the state of the running application, and not on new or
clean objects. Additionally, because JUnit tests reside in
classes separate from the ones they are testing, this results
in the added difficulty of providing arbitrary access to ex-
isting objects (which is necessary for in vivo testing to be
effective) from separate classes without modifications, pos-
sibly major ones, to the application code. For instance, if a
new DataTest object (Figure 2) is created and its test meth-
ods are invoked, there is no way for it to access an existing
instance of the DataHolder class for its testing because the
test methods do not take arguments, nor does the “setUp”
method.

One alternative would have been to add a method to the
JUnit classes for purposes of in vivo testing (or allow the
test methods or “setUp” to take arguments), but this still
brings up the issue of the absence of a clear mapping in
terms of names between a method and its corresponding
unit test in the JUnit style, in which test methods can be
arbitrarily named. For these reasons, we abandoned the
JUnit conventions, and require that the test code reside in
the same class as the application code. A desirable side
effect of this is that private methods can now be tested, as
well, since all code is in the same class.

When converting from the JUnit style to the in vivo test-
ing style, sometimes a JUnit test may be designed to test a
number of methods, not just one, in order to test the state
of the object after a particular sequence of actions. In the
cases where there is not a clear one-to-one mapping between
the methods to be tested and the unit tests, it is necessary



public class DataHolder {
public int largestSoFar = 0;
public void update(int x) {
if (x > largestSoFar) largestSoFar = x;
}
/** This is the dispatch method **/
public boolean testUpdate() {
if (Math.random() > 0.5)
return testUpdatelncreasing();
else
return testUpdateDecreasing();
}
/** Original JUnit test method *x/
public boolean testUpdateIncreasing() {
update(5) ;
update (10) ;
return (largestSoFar == 10);
}
/** Original JUnit test method **/
public boolean testUpdateDecreasing() {
update (10) ;
update(15);
return (largestSoFar == 10);

}

Figure 4: The number of methods to be tested is
less than the number of test methods.

to use intermediate placeholder methods. For instance, if
the number of methods to be tested is less than the number
of test methods, then the existing JUnit test methods (with
original names intact) can still be used, but the unit test
named in the in vivo style should arbitrarily decide between
the JUnit tests and then dispatch accordingly. In Figure
4, there is only one method to test (“update”) but it has
two corresponding unit tests: “testUpdatelncreasing” and
“test UpdateDecreasing”. The “testUpdate” method, which
would be invoked by Invite, then must choose between the
two test methods.

On the other hand, in the situation when a single test is
used to test numerous methods, there may be more methods
to be tested than there are unit tests. Such an example is
shown in Figure 5, in which the JUnit test method “testSe-
quenceOfUpdatesAndResets” is meant to test both the “up-
date” and “reset” methods. In this case, the “testUpdate”
and “testReset” methods simply pass along the return value
of the one, singular unit test.

4.4 Scheduling Execution of Tests

We have also considered other policies for determining
how frequently unit tests should be run, aside from the static
configuration value. For instance, if it is desirable to have
all the test cases run equally often, then the p value could be
automatically adjusted to increase probability for a method
that, empirically, runs rarely, and lowered for one that runs
often. Another policy would be to multiply the weighting
(which treats all essentially equally but considers how often
they run in practice) by some factor that is larger for meth-
ods/classes where more bugs were found during lab testing
and/or more field bugs were reported, so as to increase the
likelihood of finding a bug in a potentially flawed method or
class. One other idea is for Invite to automatically alter the

public class DataHolder {
public int largestSoFar = 0;
public void update(int x) {
if (x > largestSoFar) largestSoFar = x;
}
public void reset() {
largestSoFar = 0;
}
public boolean testUpdate() {
return testSequenceOfUpdatesAndResets();
}
public boolean testReset() {
return testSequenceOfUpdatesAndResets();
}
/**% Original JUnit test method **/

update(8);

reset();

update (10) ;

reset();

update (6) ;

return (largestSoFar == 6);

}

public boolean testSequenceOfUpdatesAndResets() {

Figure 5: The number of methods to be tested is
greater than the number of test methods.

p value based on the desired frequency of test execution, or
an acceptable performance overhead. For instance, the value
can be raised when there is less usage of the application, so
that more tests will run but the system will not be under
excessive load. The relative effects of these different policies
are outside the scope of this paper.

4.5 Configuration Guidelines

In order to help a system administrator or vendor under-
stand the configuration’s impact on performance and test-
ing, Invite periodically records to a log file the total num-
ber of unit tests that have been run, the average time each
test takes, and the number of tests run per second. All of
these statistics are tracked globally, but also for the separate
methods, since they may have different p values. From this
data, it is then possible to estimate how altering the value of
p will affect the system’s performance and number of tests
executed.

Specifically, the rate of tests run per second is proportional
to p: for instance, to double the frequency of execution of
a particular test, simply double the method’s p value. This
simple calculation will help guide how to adjust p so as to
execute more (or fewer) unit tests for a given method.

To estimate the performance overhead caused by the unit
tests, one can multiply the number of unit tests by the av-
erage time each takes to see what additional time is being
spent running those tests. Then, by calculating the effect
that p has on the number of tests being run per unit time,
one can then calculate the additional overall time cost of
increasing or decreasing p. We surmise that, in practice, the
p values would presumably be very small (perhaps around
1%). However, these are heavily dependent on the number
of instrumented methods, the frequency with which they are
called, the desired amount of testing to be performed, and
the acceptable performance degradation. We discuss more
performance issues in Section 6.



S. CASE STUDY

Given the numerous motivating examples listed in Sec-
tion 2, we sought to apply Invite to a different publicly-
available application, in order to determine whether the ap-
proach would work to detect more defects. The application
we instrumented for testing was the Jetty WebServer 6.1
[3], a Java HT'TP server that also supports the Java Servlet
API. We chose it primarily because it is open source and
provides its own unit tests.

We first selected 13 classes from the Jetty distribution,
and to those classes we added the corresponding test meth-
ods (approximately 50 in total), taken from the JUnit tests
that are included with Jetty. We needed to modify some
of the tests as described above; to get references to the ob-
ject in the running application, rather than creating new
ones, we changed those references to point to the object in
which the test was being run, or to other objects directly
accessible through the current one. Note that these changes
were only necessary because Jetty uses the JUnit style, and
the tests had already been written. However, these changes
took less than eight man-hours to complete, and no changes
were needed for the application code, nor were any other
restrictions imposed.

To ensure that there would be at least one defect to po-
tentially find, we then planted a bug in Jetty in the “copy-
Thread” method of an I/O utility class. This method is
given an input stream and an output stream as arguments,
creates a new thread, reads from the input stream in its en-
tirety, and writes to the output stream. We removed the
call to the output stream’s “flush” method after the copy
had been completed; this omission is a very easy mistake
to make, but will not always cause an error in the applica-
tion because the output stream may send the bytes anyway
without explicitly being flushed. Its unit test, which shipped
with the Jetty distribution as opposed to being written by
us, creates and initializes a byte array input stream, invokes
the “copyThread” method, waits 1.5 seconds, and then reads
from a byte array output stream to see if the data were cor-
rectly copied.

When we executed all of the tests outside of the running
program to ensure that the tests would pass under normal
circumstances, i.e. outside of the in vivo testing framework,
the unit test for the “copyThread” method also passed, even
though a bug was present. This is exactly the type of de-
fect that in vivo testing is designed to find, as it falls into
the category of “bugs that only appear intermittently”, as
described in Section 2.

In order to attach Invite to Jetty, we then used AspectJ to
instrument the 13 classes, most of which are used in every
page request, and then weave in the Invite code, so that
every page request had a chance of causing one or more unit
tests to be invoked. To simulate user activity on the Jetty
web server, we used The Grinder [7], a load testing tool, to
request a series of static and dynamic web pages.

The unit test for “copyThread” generally passed during
in vivo testing, but occasionally (approx. 15% of the time)
failed when there was load on the web server, because the
byte array of the output stream would sometimes be empty
at the end of the test. We speculated that the 1.5 second
waiting time in the unit test was not always enough to copy
over the bytes from the input stream to the output stream,
and increased the value to 10 seconds but still the error occa-
sionally appeared (there were only 44 bytes being copied and

this certainly should not take 10 seconds). When we restored
the call to flush the output stream, the error disappeared.
Thus, it was the failure to flush the output stream that was
intermittently causing the bytes not to appear there, and in
vivo testing discovered this bug in the code.

This example demonstrates one type of intermittent bug
that may not be revealed in traditional unit testing in the
development environment, but could appear in the deploy-
ment environment, and would be detected with in vivo test-
ing. Although we did not find any unexpected bugs in the
13 classes we instrumented, aside from the one we planted,
our testing is continuing, and we expect to find others in the
future. More importantly, this case study demonstrates the
technical feasibility of our approach and is indicative of its
efficacy in such situations.

6. PERFORMANCE EVALUATION

We are concerned with the performance impact of our ap-
proach, particularly in using aspect-oriented programming
to instrument potentially numerous method calls (perhaps
all of them), and the overhead incurred by forking a pro-
cess through a native method call to create a new process
in which the test would be run. We conducted some perfor-
mance tests to determine the additional overhead introduced
by the Invite framework.

6.1 Test Setup

For our performance testing, we instrumented Jetty Web-
Server 6.1 [3], running on Java 1.5.0 on a Linux RedHat
2.6.9 server with four 3.2 GHz CPUs and 1 GB of memory.
Only minimal background system processes were executing
during our tests. To place load on the web server, we used
The Grinder (7] installed on a Microsoft Windows XP sys-
tem with a single 3 GHz processor and 1 GB of memory.
The server and the client machines were connected over our
department’s gigabit LAN.

6.2 Baseline Testing

We first tested Jetty in our configuration without the
in vivo testing framework attached, to determine a base-
line. The test consisted of 10,000 requests for a JSP page
of 20 kilobytes, which is approximately the average size of
an HTML page [26]; the page was dynamically generated
to avoid any caching by Jetty. The mean time for com-
plete page requests was 6.35ms, the mean time to receive
the first byte of the response was 3.59ms, and the through-
put of HT'TP response bytes was 3910kBps.

We then instrumented one Java class in Jetty (HttpCon-
nection), but for each method set the probability of running
a test to 0. In this case, we could measure the overhead of
the instrumentation itself from the inserted AspectJ code,
which still has to check that probability on each method call,
since the instrumentation of the code is done at compile-
time but the configuration is checked at run-time. In this
case, though, we did not need to consider the forking of new
processes or parallel execution of any test code, since Invite
would never execute any tests. This time, the mean time for
page requests was 6.43ms (1.2% increase), the mean time to
receive the first byte was 3.62ms (0.1% increase), and the
throughput was 3800kBps (2.8% decrease), which indicated
very little impact overall and is consistent with the small
overhead caused by calls to weaved-in AspectJ code [23].



6.3 Performance Impact of In Vivo Testing

Next we configured Invite so that the probability p of
running a unit test was set to 1% for one method that is
called exactly once per page request; all other methods still
had p set to 0. This meant that only 1% of the page requests
would invoke a unit test, or that each page request had a
1% chance of causing a test to be run. Using the same test
setup as above, we saw that the mean time to complete a
page request was 6.65ms (4.7% increase), though the overall
throughput stayed the same at 3800kBps; this performace
degradation includes the overhead from the framework itself,
as well. The most telling statistic was the mean time to the
first byte, which rose to 3.89ms (8.3% increase) compared to
the baseline. The reason for the increase is that the class we
instrumented is used before any bytes are sent back to the
client, so any unit tests would be forked into new processes
and launched during that time, hence the initial overhead.

Table 2: Load tests with pages of 20kB

Table 3: Load tests with pages of 600kB

Mean
Percent of time Avg time to
page to start
requests serve Throughput | sending
that execute | page of response response
tests (ms) %diff | data (kBps) | (ms) % diff
Baseline 61.5 - 9770 0.960 -
0% 61.8 0.4 9340 0.961 0.1
1% 62.0 0.8 9770 1.20 25.0
10% 62.3 1.3 9770 1.49 55.2
100% 64.2 4.4 9340 3.22 235

Mean
Percent of time Avg time to
page to start
requests serve Throughput | sending
that execute | page of response response
tests (ms) %diff | data (kBps) | (ms) % diff
Baseline 6.35 - 3910 3.59 -
0% 6.43 1.2 3800 3.62 0.1
1% 6.65 4.7 3800 3.89 8.3
10% 7.98 25.6 3030 5.04 40.3
100% 13.6 114 1810 10.4 189

We then configured Invite to execute a unit test on 10% of
the page requests. In this case, the mean time to complete a
page request rose to 7.98ms (25.6% increase), the mean time
to the first byte increased to 5.04ms (40.3% increase), and
the throughput was 3030kBps (22.5% decrease). We also
ran a test in which 100% of the page requests launched one
unit test. As shown in Table 2, the differences in the mean
times to complete a page request are mirrored in the mean
times to the first byte.

Despite the large overhead incurred by running tests very
frequently, we note that there is less than 5% overhead when
running unit tests on 1% of the page requests. We con-
tend that 1% is probably sufficient for detecting defects on
a heavily-used application. In this particular test, setting p
= 1% yielded a total of 100 tests in just over one minute of
execution, which (assuming sustained traffic) would be well
over 100,000 unit tests run per day.

6.4 Tests with Large Web Pages

We suspected that the process forking was the cause of
much of the overhead in this implementation of the in vivo
testing framework. However, we conjectured that the over-
head of executing the tests is not related to the size of the
web page being requested; it should be more or less constant,
according to how fast the fork can be executed.

To demonstrate this, we conducted another test using a
large (static) web page of 600kB. Although the pages could
be cached, this did not affect the execution of unit tests,
since the instrumented method was invoked before looking
for the pages in the cache. As shown in Table 3, with no test
instrumentation, the average time to serve a page request of
this size was 61.8ms. This number rose only to 62.0ms (0.8%
increase over baseline) if 1% of the page requests were re-

sulting in a unit test being executed; 62.3ms (1.3% increase)
when 10% resulted in unit tests; and only 64.2ms (4.4% in-
crease) in the case where 100% of the page requests caused
a unit test to run. This average overhead is still only a few
milliseconds, as in the test with small dynamic pages, but is
very small compared to the total time to serve the page.

6.5 Areas for Performance Improvement

We have investigated ways to reduce the overhead by dis-
tributing the testing load across multiple instances of the
application under test. In our initial findings [15], we dis-
covered that it is possible to share the testing load across
a small “application community” [30] in a software mono-
culture of only 450 instances of the application to reduce
the overhead to just 1%, yet still achieve the same num-
ber of tests executed globally. Another solution may be to
use a tool like the GAMMA system [39] [40] for distributing
the tests and determining which tests should be run under
different circumstances, such as system load.

7. LIMITATIONS AND FUTURE WORK

The most critical limitation of the current Invite frame-
work implementation is that anything external to the ap-
plication process itself, e.g. files, database tables, network
1/0, etc., is not replicated by forking the process and mod-
ifications of those made by a unit test may therefore affect
the external state of the original application. As described
previously, we do allow for the execution of a “tearDown”
method for programmatic cleanup, and are currently inte-
grating Invite with DejaView [25], though DejaView only
provides a limited sandbox that addresses local file system
issues and does not address any concerns related to exter-
nal databases or network I/O. We will be addressing these
limitations in future work.

Also, we have not yet finalized what action to take once
a unit test fails and a defect is found. A simple approach
would be to use something akin to an online crash reporting
system like the Mozilla Quality Feedback Agent or Microsoft
XP Error Reporting. An advantage of using the DejaView
system for creating a virtual execution environment for the
in vivo tests is that DejaView creates a “snapshot” of the
process execution state and file system state, so that when
a test fails, the snapshot could be sent back to the ven-
dor, who could then try to reproduce, debug, and fix the
problem. This could conceivably raise privacy and security
issues, however. Another option would be to simply report
failed unit tests to a central server, without any user state
or environment information so as to avoid privacy issues, as
we explored in the distributed in vivo testing approach [15].

Currently the Invite framework has only been implemented



in Java and is designed to work with Java applications. Port-
ing it to C or C++ could present a challenge because the
framework uses Java Reflection techniques to discover and
execute the unit test methods (though it could conceivably
be easily implemented with aspect-oriented programming
and reflection in other managed languages like C#). Ad-
ditionally, it may not always be desirable or even possible
to recompile the target source code, as made necessary by
our use of aspect-oriented programming. An approach to
dynamically instrumenting the compiled code, such as in
Kheiron [21] [22], could be used instead.

To date we have not made efforts to determine the ade-
quacy [52] of our testing approach, for instance by measuring
path/statement coverage or percentage of defects reliably
found, and establishing success criteria. Further work could
also more precisely categorize the prospective defects that
could be found.

Future work could also investigate which classes to instru-
ment, the percentage of method calls that should launch unit
tests, or the optimal timing for when tests should be run,
since the current framework only uses a percentage value to
choose when to execute tests, based on each method call of
the instrumented classes. This would vary greatly depend-
ing on the type of application and the defects that are being
targeted, however. A further enhancement could consider
the automatic selection of test cases at the time of execu-
tion, depending on the current system state and load.

8. CONCLUSION

We have presented in vivo testing, a novel testing ap-
proach that supports the execution of unit tests within a
running application in the deployment environment, with-
out affecting that application’s state. We have classified the
types of defects that could be found by our approach, and
described a Java implementation of the Invite framework.
Through our initial findings and investigation, we have pre-
sented some real-world examples of bugs that could be de-
tected, and shown the usefulness of the approach with a case
study of a real-world system. Additionally, we have demon-
strated that our approach and the current implementation
add limited overhead in terms of system performance and
code modification.

Testing in the deployment environment has been identified
as a future challenge for the software testing community [11],
and we expect that in vivo testing will provide a foundation
for future work in this field.
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