
A Distance Learning Approach to

Teaching eXtreme Programming
Christian Murphy, Dan Phung, Gail Kaiser

Dept. of Computer Science
Columbia University
New York NY 10027

{cmurphy, phung, kaiser}@cs.columbia.edu

ABSTRACT

As university-level distance learning programs become more and
more popular, and software engineering courses incorporate
eXtreme Programming (XP) into their curricula, certain
challenges arise when teaching XP to students who are not
physically co-located. In this paper, we present the results of a
three-year study of such an online software engineering course
targeted to graduate students, and describe some of the specific
challenges faced, such as students’ aversion to aspects of XP and
difficulties in scheduling. We discuss our findings in terms of the
course’s educational objectives, and present suggestions to other
educators who may face similar situations.

Categories and Subject Descriptors

K.3.1 and K.3.2 [Computers and Education]: Computer Uses in
Education - Distance Learning; Computer and Information
Science Education – Computer Science Education.

General Terms: Management, Human Factors.

Keywords: Distance and distributed learning, Software

engineering education, Test-driven development.

1. INTRODUCTION
Many universities offer distance learning programs for graduate
students who are full-time professionals. At the same time, CS
departments are incorporating agile processes like eXtreme
Programming (XP) [1] into software engineering courses. As
these two trends merge together, numerous challenges arise in
teaching XP to students who are not physically co-located.

In this paper, we present our findings from a three-year study of
such an online software engineering course, and describe some of
the specific challenges we faced. These include students’ aversion
to some of the aspects of XP, difficulties in pair programming,
and problems related to scheduling. We discuss these findings in
terms of the course’s educational objectives, using our
observations and the students’ assessment. We then present some
suggestions to other educators who may face similar situations.

2. BACKGROUND
The COMS W4156 Advanced Software Engineering course at
Columbia University focuses on topics such as process life cycle,
project planning, team programming, and unit and integration
testing. It also covers component-based software engineering
models like EJB, CORBA, and COM. Most importantly, though,
the course uses eXtreme Programming as its methodology,
adjusted to the classroom environment (we note, however, that
much of our findings are also relevant to other agile processes).
Students are required to do all programming work in pairs, and
then are combined into teams of four for their semester-long
project. There are three XP iterations during the semester, each
lasting approximately three weeks.

The Advanced Software Engineering course is taught on campus
but also offered via the Columbia Video Network (CVN) [3],
which is the graduate distance learning program of Columbia
University’s School of Engineering & Applied Science. Classes
available through CVN are taught on campus in New York City
by Columbia University faculty members. Faculty and students
meet on campus in specially equipped classrooms, and the classes
are recorded and made available electronically to registered CVN
students via online streaming media. An important difference
between CVN courses and other distance learning programs is
that CVN students see the same lectures, have the same
homework assignments, and take the same exams as their on-
campus counterparts; the CVN courses are not specifically
tailored to off-campus students. The motivation is to have CVN
students receive the same learning experience as on-campus
students, so that they may receive the same academic credit.

The CVN videos are not re-recorded each time the course is
taught; the same set of videos may be re-used for many following
semesters. This means that even when the course is not offered on
campus, it can still be offered on CVN, as long as there is a CVN
course manager to oversee it. A course manager is responsible for
overseeing all aspects of the course for the CVN students, such as
distributing and grading homework assignments, answering
students’ emails, and calculating final grades.

2.1 Course Objectives
The Advanced Software Engineering course is targeted to
graduate and upper-level undergraduate students who have
demonstrated the ability to work on large-scale software projects
on teams of four or five students. The two main educational
objectives of the course are as follows: (1) allow the students to
participate in a project using eXtreme Programming, and learn the
value of its core practices [27], like pair programming, test-driven
development, small releases, and refactoring; and (2) teach skills

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

in the domain of quality assurance, such as unit and integration
testing, and code inspections. Additionally, the students have the
opportunity to get hands-on experience working with a
component-based software model like EJB, CORBA, or COM.

2.2 Details of the Study
The first two authors of this paper were the course managers for
the CVN offering of Advanced Software Engineering from 2004-
2007, and also acted as TAs for the on-campus version of the
course, which was offered once a year; the third author is the
faculty member who taught both the on-campus course and the
pre-recorded version. During that time, approximately 90 CVN
students completed the course. All students in the Advanced
Software Engineering course (whether CVN or on-campus) were
required to write a subjective assessment of their experiences both
at the midpoint of the course and upon its completion. In Section
3, we present comments made by the students in their written
assessments, as well as our own observations.

It is important to note that because of the nature of the course we
do not have any objective “outcomes” measurements, e.g. we
cannot compare how well one team learned one component model
against how well another team learned another (since each team
worked with only one). We have chosen not to use grades as a
measurement because of the various influential factors that go into
a student’s success in the course. We therefore are admittedly
limited to subjective experiences and our own observations.

We also note that we cannot fairly compare the off-campus
students to the on-campus students in all cases, because they may
be taking a different version of the course (depending on when the
CVN videos were recorded), and because of the relatively small
numbers of off-campus students. Having said that, however, we
do make some comparisons to demonstrate that some aspects of
agile processes are indeed more challenging to teach to distance
learning students than to on-campus students.

3. OBSERVATIONS & FINDINGS
CVN students who took this particular course tended to be full-
time professionals in the software industry who were completing
graduate degrees part-time; they may or may not have also been
taking other CVN classes concurrently. Given the course’s
educational objectives, challenges arose because of the students’
physical distance and diverse backgrounds and schedules.

3.1 Aversion to eXtreme Programming
One of the difficulties in teaching XP to CVN students stemmed
from the fact that, whereas the on-campus students tended to be
undergraduate or graduate students with little or no professional
software development experience, CVN students in this course
were almost always already employed as software developers and
may have been using different methodologies in their professional
work. We observed that students who had not been exposed to
other methodologies had an easier time adapting to XP, whereas
those who were using RUP, waterfall, rapid prototyping, etc.
during their professional work found it difficult to change their
mindset and approach while working on course assignments.
Furthermore, some CVN students had already had bad
experiences with XP, and found that it was unmanageable or did
not apply to the particular project on which they were working.
Other students expressed the typical criticisms of the main XP

tenets, for example that programming in pairs is less productive or
that it is too time consuming to write tests before writing code.

Concerning test-driven development, one student claimed that he
and his partner had “an incongruent idea of what unit testing is

supposed to accomplish. In my [opinion], functionality should be

driven by unit tests, which should be developed first. However,

given the … constantly changing user interface, it was hard to

settle on a consistent methodology. I would create tests that I felt

expressed the intention we were trying to accomplish with the

program, while [my partner] was creating and modifying the UI

to fit the various … requirements. In the end, I needed to modify

the unit tests to fit his program, which I believe was a backwards

way of building this system.”

Another core practice of XP that can be difficult to address in
such a setting is that of collective ownership. Many students who
were used to dividing a project into separate distinct parts
typically did not interact with anyone in the team but their pair
programming partner, so they were not familiar with the rest of
the team’s code. Wrote one student, “The other [pair in our

team] had no idea how our code worked or even was organized,

because [we] never bothered to discuss it. This created a severe

challenge when we later needed to do integration and testing.”

Although this aversion to core XP practices is not necessarily an
effect of distance learning in and of itself, it is still related because
the distance learners who are CVN students tend to be software
professionals, and those were the ones who typically had
difficulty accepting XP.

3.2 Difficulties of Virtual Pair Programming
The inability for pair programmers to be physically co-located
was perhaps the most obvious challenge in teaching XP in a
distance learning course. Although the CVN students were almost
never in the same physical location, they were still required to
engage in pair programming activities, and needed to figure out a
way to share a desktop environment and communicate.

One student indicated that “pair programming is a very difficult

thing to accomplish in the type of environment set forth by a

remote class made up of professional students. From my

experience, pair programming is hard to do even in a work

environment with set hours and close proximity. Even though [my

partner] and I are the closest in proximity of all the groups, … we

have had the hardest time using the pair programming idiom.”

In our courses, most of the students used RealVNC or a similar
tool as their shared desktop, and a regular phone line for voice
communication. In the cases where students were unwilling or
unable to make extended long-distance phone calls, they used
VoIP technologies like Skype or voice-enabled chat tools like
Windows Messenger. Very rarely did students have to rely on
typing messages to each other via instant messaging, though in
some cases this was necessary (though obviously much slower).

Aside from the technical challenge of actually conducting virtual
pair programming, we had the difficulty of breaking the group of
distance learning students into pairs. As described in [13, 18], it is
typically desirable to match students based on skill level (actual
and perceived), and students tend to gravitate to each other based
on gender and ethnicity. Unfortunately, not only were the students
unable to meet each other because they were not co-located, even
the course manager (who determined the pairs) could not easily

get a sense of which students would work well together. In the
past, we tried to pair students based on their level of programming
experience, language expertise, and physical location.
Unfortunately, though, in some cases pairs have not worked out
well, typically because one of the students failed to perform well
and neither the instructor nor the programming partner was
physically present to encourage the student to participate more.

3.3 Scheduling Problems
Related to the virtual pair programming issues are the problems
that arose from the students being in different time zones. Because
Columbia University is on the east coast of the United States,
most of the students (even the distance learning ones) tend to live
in the metro-New York area, or at least in the Eastern Time Zone.
And while all students (distance learning or not) have different
time commitments and difficulty in scheduling time to work
together, this problem was exacerbated by the fact that sometimes
a student in one time zone would be paired with a student in
another, which was particularly a problem when the two students
were on different coasts of the United States (three time zones
apart) and worked full-time jobs during the day. This usually only
left weekends as potential times to work together, which was
frustrating to many students.

One student complained, “After the [midterm], the divide in my

group grew even more. [My partner] and I started working much

less closely because of scheduling issues and finally, I believe, out

of frustration. Pair programming was far from a reality.”

Another student wrote, “Pair programming is a challenge to me

since I’m [used] to the traditional way of individual

programming. The challenge is amplified by the fact that the

other half of my pair [is] not only in a different physical location

[from] me, but also in a different time zone. It is very difficult at

times for us to find common blocks of time to work … together. I

think it would be easier just to … work independently.”

Additionally, having the students in different locations made it
impossible to have ad hoc “stand-up meetings”, which are critical
to any XP project. In fact, we observed that the only real-time
communications students had were during scheduled meetings
and pair programming sessions, and any other communication was
almost always done by email.

3.4 Issues with Code Inspections
As part of the quality assurance aspect of the course, students
participated in a formal code inspection with their entire team
(four students total), led by the course manager. Though many of
the students had already had similar experiences in their
professional work, others stated that they missed out on the
opportunity for a variety of reasons, including failure to
adequately plan for the meeting, insufficient time allocated for the
inspection, or technical and scheduling issues. One student wrote
that the problem of the code inspection “was a result of the

technical communication problems we encountered doing a large

conference call. In the future, I would suggest … finding a

communication technology that can robustly support 4-6 way

voice calling. It is also important to choose a time when everyone

involved is available by phone (or some other voice medium). Use

of [text-based] chat, as was necessary to communicate with one

of the team members who was out of the country, slows down

proceedings dramatically.”

4. ANALYSIS & ASSESSMENT
Based on our observations the students’ own assessment, we next
consider the course objectives to determine what impact the
distance learning program had on the educational experience.

4.1 Learning the Value of XP Core Practices
Of the approximately 90 CVN students who took the course
during the time of the study, more than half pointed out that pair
programming in such an environment was too difficult to be
effective in practice. The biggest complaint was that it was
inefficient and caused the students to spend more time on the
course than they had expected to or thought was necessary.

Given our observations and the students’ statements, the distance
learning approach to XP has, in our experience, failed to
consistently meet the educational objective of teaching some of
the core XP practices, in particular the value of pair programming.
We estimate that at least half of the students abandoned the pair
programming approach, though we do not know the exact number
because students were told that they must use pair programming
and only a few admitted not using it. On the other hand, only a
small number (fewer than 20%) claimed to have enjoyed pair
programming or learned valuable lessons from it. In general, CVN
students often leave the course frustrated by their pair
programming experience and without having realized its benefits,
whereas on-campus students tended to work in the same labs,
lounge areas, dormitories, etc. and thus had an easier time sticking
with this practice.

Another XP practice that was not adequately learned by the
students was test-driven development. Students were instructed to
write unit tests first, but many (over 65%) admitted that, at some
point during the course, they did not write unit tests first because
of time constraints or because they did not see the benefits of
doing so. This situation may arise because there is no personal
influence (either by the “customer” or other team members) on an
individual to adhere to the test-first approach; this may not be the
case for on-campus students, of course.

Fortunately, other course objectives related to XP principles (such
as executing a project with frequent, short release cycles, or using
a simple, metaphor-based design) were met, despite any of the
limitations of distance learning. However, it typically required
extra work by the course manager (more than the on-campus TA
would need to do) to overcome these obstacles, and there is
certainly room for improvement and more efficient practices.

4.2 Developing QA Skills
The fact that the students were not co-located did not prevent
them from achieving the objective of learning about the
importance of unit, integration, and system testing. Although
some teams failed to conduct thorough testing as end-of-term
deadlines drew near, the percent of CVN teams that did so was
not much different from the percent of on-campus teams.

Working in a distributed team did bring about challenges to
performing the final code inspection, though. The review sessions
invariably took much more time than the students expected, and
even though the students were supposed to agree upon
programming conventions at the beginning of the semester,
ultimately they would have some differences of opinion which
stemmed from their own personal experiences as professional

software developers. However, students were able to complete
this task successfully and gain some benefits from it.

4.3 Other Issues
As mentioned, the CVN courses are not targeted specifically to
off-campus students. Instead, the on-campus lectures are recorded
and then distributed online. Additionally, the videos are not re-
recorded each semester, due to costs and the fact that the course is
not offered on campus every semester. Thus, the same set of
videos for a course may be re-used for many following semesters.

The issue in such a software engineering course (or any course in
which the technology is frequently changing, for that matter) is
that the material in the recorded lectures may be out of date. In
our case, the recordings of the lectures for the Advanced Software
Engineering course were made in early 2004 and were used up
until Summer 2007 (CVN recorded new lectures in Fall 2007).
Because this course teaches the use of component models, the
versions and capabilities of the different frameworks varied
greatly between what was discussed in lecture (in Spring 2004)
and what the students were actually able to download and use (as
late as Summer 2007). For instance, the EJB 3.0 spec was not
released until after the Advanced Software Engineering course
was recorded for use on CVN, so those lectures described EJB
2.1. However, within a year or two many EJB container vendors
had completely moved away from EJB 2.1, and students viewing
those videos were unable to match what they were taught with
what they were able to download and use.

The educational objective of working with component models was
still met, but led to considerable difficulties for the course
manager, who had to help the students overcome the difference
between what they were taught and what was the reality of the
state-of-the-art. Although this issue is not related to XP per se, it
can come about when teaching in a distance learning program.

5. SUGGESTIONS
In teaching a distance learning course that focuses on XP, the
limitations presented by requiring virtual pair programming are
clearly the most difficult to overcome. We suggest using a
combination of communication and shared desktop tools (as
discussed in more detail in [24, 11, 26]), though we note,
however, that in our case the students’ difficulties with distance
pair programming were not just of a technical nature, but often an
issue with scheduling and personal preference.

Fixing the scheduling problems can quite difficult, since there are
so many variables and so many unforeseen factors involved
(business trips, work deadlines, family issues, etc.), as well as the
particular problem of working across time zones. The best advice
is to keep a fixed weekly schedule for pair programming sessions
and team meetings, so that further time need not be spent on
negotiating available times and rescheduling. In addition,
although ad hoc face-to-face meetings are practically impossible,
it is still important to communicate frequently, even if the
meetings are not ad hoc and are not face-to-face.

When meeting in person is not possible, the course manager or
instructor should also encourage telephone communication as a
first choice, with instant messaging a second choice, and trading
emails as a last option. Emails are too easily ignored and may not
result in significant progress on a matter. Although frequent in-
person meetings (either with the “customer” or other members of

the team) are impossible because of geographic location, we
suggest at least one face-to-face meeting at the beginning of the
semester, if possible, even if not all members can attend.

It is important to ensure that students participating in the class are
capable of working in distributed teams on a project with such
short time scales. To help all students in the course benefit from
their mutual experience, we screened students by their level of
past project experience. Those who had not participated in a
project longer than 5K lines of code were directed to take a more
intermediate course, since the typical project consisted of a client-
server system that consisted of 5-10K LOC and supported by
third-party software plugins and frameworks. Proper screening of
the students is critical in maximizing each student’s contribution
and benefit within their pairs and teams.

Sometimes the screening process is not enough to assess the
impact of a student in the course, however. In our case,
confidential peer assessments were conducted to gauge the
personal and professional fit of the pairs (this was done for on-
campus students, as well). It was not uncommon to find conflicts
with regards to personality and working styles (time habits,
controlling natures, idiosyncrasies, etc.) that sometimes required a
redistribution of students. The result of such redistributions
usually benefited the team and project completion.

6. RELATED WORK
There has been quite a bit of work in investigating software
engineering education [8, 9, 10, 15, 20], but most of these do not
address the challenges that come up from teaching in a distance
learning setting. Edwards directly asks the question “can quality
graduate software engineering courses really be delivered
asynchronously on-line?” in his 2000 paper [7] and describes the
structure of the course, the assignments, and the tools, but he does
not discuss any of the challenges he encountered, nor did his
course use eXtreme Programming (or even team programming),
which brings about separate issues aside from those in a
traditional software engineering course. Similarly, the CURE tool
[2] facilitates collaboration and communication in distance
learning software engineering courses, and Pankratius and Stucky
[19] report on the technical, economic, and pedagogical
challenges of teaching software engineering at a “virtual
university”; however, neither of these addresses the difficulties
that arise specifically from teaching eXtreme Programming and
the accompanying non-technical challenges.

There have been experience papers published about teaching
software engineering by using eXtreme Programming [16, 23],
but none of these has addressed the problem of teaching it in a
distance learning program. Work that does discuss the problems
encountered in teaching computer science in distance learning
programs tends to be for introductory courses [5, 21] or for
advanced courses that were specifically designed for distance
learning [17]; note that, in our case, the course was taught to on-
campus students and recorded for distribution on the Internet, and
was not specifically targeted to off-campus students. Tomayko
[25] has looked at teaching XP in a distance learning course, but
admits “this course was not a true test of distance education and
XP,” and only describes the problems with pair programming, and
no other core XP practices.

Investigation of the teaching of “distributed software engineering”
is very important as the software development community

becomes more globalized. However, the work in this field, which
focuses on course design [4, 12], projects [22], and tools [6], does
not incorporate the challenges of eXtreme Programming or
(necessarily) of distance learning. Other work on Distributed
eXtreme Programming [14] addresses many of the issues raised in
this paper, but not in an academic setting.

7. CONCLUSION
We have discussed some of the challenges that arise from teaching
software engineering using eXtreme Programming in a distance
learning course. We hope that our experiences help other
educators who face similar situations.

8. ACKNOWLEDGMENTS
Murphy and Kaiser are members of the Programming Systems
Lab, funded in part by NSF CNS-0717544, CNS-0627473, CNS-
0426623 and EIA-0202063, NIH 1 U54 CA121852-01A1. Phung
is funded by NSF ITR grant CNS-0426623.

9. REFERENCES
[1] K. Beck, Extreme Programming Explained: Embrace

Change, Addison-Wesley, 1999.

[2] P. Bouillon and J. Krinke, “Using Eclipse in distant teaching
of software engineering”, In Proc. of the 2004 OOPSLA

workshop on eclipse technology eXchange, Vancouver,
2004, 22-26.

[3] Columbia Video Network, http://www.cvn.columbia.edu.

[4] D. Damian, A. Hadwin, B. Al-Ani, “Instructional design and
assessment strategies for teaching global software
development: a framework”, In Proc. of the 28th ICSE,
Shanghai, 2006, 685-690.

[5] G. Davies and J. Preece, “Computer science, home
computing and distance learning—the largest computer
science course in the world?”, In Proc. of the 21st SIGCSE,
Washington DC, 1990, 143-146.

[6] U. Dekel, “Supporting distributed software design meetings:
what can we learn from co-located meetings?”, In Proc. of

the 2005 Workshop on Human and Social Factors of

Software Engineering, St. Louis MO, 2005, 1-7.

[7] S. Edwards, “Can quality graduate software engineering
courses really be delivered asynchronously on-line?”, In
Proc. of the 22nd ICSE, Limerick, Ireland, 2000, 676-679.

[8] P. Freeman, A. I. Wasserman, R. E. Fairley, “Essential
elements of software engineering education”, In Proc. of the

2nd ICSE, San Francisco, 1976, 116-122.

[9] P. Freeman, A. I. Wasserman, “A proposed curriculum for
software engineering education”, In Proc. of the 3rd ICSE,
Atlanta, 1978, 56-62.

[10] C. Ghezzi and D. Mandrioli, “The challenges of software
engineering education”, In Proc. of the 27th ICSE, St. Louis
MO, 2005, 637-638.

[11] B. Hanks, “Student performance in CS1 with distributed pair
programming”, In Proc. of the 10th annual ITiCSE, Lisbon,
Portugal, 2005, 316-320.

[12] M. Hawthorne and D. E. Perry, “Software engineering
education in the era of outsourcing, distributed development,
and open source software: challenges and opportunities”, In
Proc. of the 27th ICSE, St. Louis MO, 2005, 643-644.

[13] N. Katira, L. Williams, J. Osborne, “Towards increasing the
compatibility of student pair programmers”, In Proc. of the

27th ICSE, St. Louis MO, 2005, 625-626.

[14] M. Kircher, P. Jain, A. Corsaro, D. Levine, “Distributed
eXtreme Programming”, In Proc. of XP2001, May 2001.

[15] C.W. Liew, “Teaching software development skills early in
the curriculum through software engineering”, In Proc. of the

10th ITiCSE, Lisbon, Portugal, 2005, 133-137.

[16] C. Loftus and M. Ratcliffe, “Extreme programming promotes
extreme learning?”, In Proc. of the 10th ITiCSE, Lisbon,
Portugal, 2005, 311-315.

[17] M. McDonald, B. Dorn, G. McDonald, “A statistical analysis
of student performance in online computer science courses”,
In Proc. of the 35th SIGCSE, Norfolk VA, 2004, 71-74.

[18] C. McDowell, L. Werner, H. E. Bullock, J. Fernald, “The
impact of pair programming on student performance,
perception and persistence”, In Proc of the 25th ICSE,
Portland OR, 2003, 602-607.

[19] V. Pankratius and W. Stucky, “Information systems
development at the virtual global university: an experience
report”, In Proc. of the 27th ICSE, St. Louis MO, 2005, 639-
640.

[20] D. Petkovic, G. Thompson, R. Todtenhoefer, “Teaching
practical software engineering and global software
engineering: evaluation and comparison”, In Proc. of the 11th

ITiCSE, Bologna, Italy, 2006, 294-298.

[21] J. A. Preston, L. Wilson, “Offering CS1 on-line reducing
campus resource demand while improving the learning
environment”, In Proc. of the 32nd SIGCSE, Charlotte NC,
2001, 342-346.

[22] I. Richardson, A. E. Milewski, N. Mullick, P. Keil,
“Distributed development: an education perspective on the
global studio project”, In Proc. of the 28th ICSE, Shanghai,
2006, 679-684.

[23] J. Schneider and L. Johnston, “eXtreme Programming at
universities: an educational perspective”, In Proc of the 25th

ICSE, Portland OR, 2003, 594-599.

[24] D. Stotts et al., “Virtual Teaming: Experiments and
Experiences with Distributed Pair Programming”, Extreme

Programming and Agile Methods - XP/Agile Universe 2003,
Springer, Berlin/Heidelberg, 2003.

[25] J.E. Tomayko, “Teaching eXtreme Programming Remotely”,
In Proc. of the 18th CSEET, Ottawa, Canada, 2005, 17-24.

[26] A. M. Zin, S. Idris, N. K. Subramaniam, “Implementing
Virtual Pair Programming in E-Learning Environment”,
Journal of Information Systems Education, Summer 2006.

[27] http://www.xprogramming.com/what_is_xp.htm

	1. INTRODUCTION
	2. BACKGROUND
	2.1 Course Objectives
	2.2 Details of the Study

	3. OBSERVATIONS & FINDINGS
	3.1 Aversion to eXtreme Programming
	3.2 Difficulties of Virtual Pair Programming
	3.3 Scheduling Problems
	3.4 Issues with Code Inspections

	4. ANALYSIS & ASSESSMENT
	4.1 Learning the Value of XP Core Practices
	4.2 Developing QA Skills
	4.3 Other Issues

	5. SUGGESTIONS
	6. RELATED WORK
	7. CONCLUSION
	8. ACKNOWLEDGMENTS
	9. REFERENCES

