
 

 

 

  

Abstract—Text search on 3D models has traditionally worked 

poorly, as text annotations on 3D models are often unreliable or 

incomplete. In this paper we attempt to improve the recall of 

text search by automatically assigning appropriate tags to 

models. Our algorithm finds relevant tags by appealing to a 

large corpus of partially labeled example models, which does 

not have to be preclassified or otherwise prepared. For this 

purpose we use a copy of Google 3DWarehouse, a database of 

user contributed models which is publicly available on the 

Internet. Given a model to tag, we find geometrically similar 

models in the corpus, based on distances in a reduced 

dimensional space derived from Zernike descriptors. The labels 

of these neighbors are used as tag candidates for the model with 

probabilities proportional to the degree of geometric similarity. 

We show experimentally that text based search for 3D models 

using our computed tags can work as well as geometry based 

search. Finally, we demonstrate our 3D model search engine 

that uses this algorithm and discuss some implementation issues. 

I. INTRODUCTION 

istorically, interest in 3D models has largely been 

confined to expert users such as video game 

programmers, computer animators, and engineers 

prototyping new products. Recently, however, a number of 

new applications have greatly expanded the pool of users 

who deal with 3D models. Free, user-friendly modeling tools 

such as Google Sketchup and new casual uses for 3D models 

such as modeling one’s home for Google Earth or staking out 

a digital existence in Second Life have resulted in an 

increased popular interest in 3D models and to an explosive 

growth in the amount of 3D data available on the web. As 

these datasets continue to expand, existing methods of 

searching databases of 3D models are proving insufficient. 

There are three dominant approaches for 3D model 

search. The simplest method is text search on descriptive 

tags associated with each model. While this form of search is 

the most natural from a user perspective, its power is limited 

by a dependence on the accuracy of the descriptions, and 

more fundamentally by the requirement that such annotations 

even exist. Min, Kazhdan, and Funkhouser experimentally 

confirmed that searching on text alone is a poor retrieval 

strategy for 3D models drawn from the web [1], although in 

specialized databases one might expect somewhat better 

results.  
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A second approach is to allow a user to submit a sketch as 

a query. In [2] users input 2D sketches as search queries, 

which are compared to 2D renderings of the object taken 

from viewpoints sampled on the enclosing sphere, while in 

[3], 2D queries are supported for only a small number of 

viewpoints. In both cases, only the projected contours of the 

3D model are considered for matching, and as such any 

features which do not lie on the visual hull cannot be used in 

the retrieval. Using suggestive contours [4] might break the 

dependence on the visual hull, but it has not been attempted. 

The major disadvantages of the sketch based approach are 

that it demands a certain amount of artistic ability from 

users, and that composing a query is both slower than other 

methods and more difficult to repeat consistently.  

Finally, many search algorithms [5] [6] can take an initial 

3D model as a query and retrieve other similar models. 

Search is done in an iterative fashion – an initial query model 

is selected via some other search method, such as text search, 

and a number of similar models are retrieved. The user can 

then select any of the retrieved models as the source of a new 

query. While this paradigm is well suited for browsing a 

database, it has serious limitations for searching, as the only 

way to break out of the very local view of the database is to 

select an entirely new 3D model as a query.  

It is well known that human notions of similarity are not 

purely geometric [7] and that there is a semantic gap 

between what users intend when they search and what 

geometric shape descriptors can deliver. Recent work in 

shape matching has focused on bringing human intelligence 

into the loop.  The most common approach has been to use 

relevance feedback [8][9], which has been applied with great 

success in other fields, particularly 2D image search. 

Relevance feedback is a supervised learning technique, and 

as such inherits the limitation of supervised methods, which 

is that learning new classes will generally require new 

training. 

We propose a different method of harnessing human 

intelligence, by making use of existing textual annotations 

and keywords associated with 3D models. We use geometric 

relationships between models to propagate information 

between similar models and improve the saliency of the text 

annotations. Our goal is to improve the precision and recall 

of text based 3D model search to the point that it is 

comparable to geometric shape descriptors. This is desirable 

because text search is a very natural search interface. 

In the past, text annotations on 3D models have been 

largely dismissed by shape search researchers as being 

unreliable and incomplete, and therefore of limited use. In 

this paper, we consider how the availability of very large 
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databases changes this equation and hypothesize that given a 

large enough corpus the semantic information contained in 

the whole can be more than the sum of its parts. We use a 

corpus consisting of user contributed models freely available 

on the Internet. Compared to similar recent work in tagging 

2D images [10], our algorithm for 3D autotagging has the 

advantage of being unsupervised. This means that the tags 

that our algorithm can produce are not limited to a small 

predefined set. Additionally, we do not require an explicit 

training stage.  

The remainder of this paper is structured as follows. In 

Section II we explain our algorithm and describe our dataset. 

In Section III we describe our implementation of shape 

similarity. Section IV shows experimental validation of our 

algorithm. Section V discusses our shape search system, 

which uses this algorithm. Section VI presents conclusions 

and future work. 

II. AUTOTAGGING 

A. The algorithm 

Given an unlabeled 3D model , we wish to assign to  a 

set of text tags from the set of all possible tags  

 

  (1) 

 

Specifically, for each tag  we wish to assign a 

confidence value  which we interpret as the 

probability that  is a relevant tag for . We informally 

define relevancy to mean that a conscientious annotator 

would apply tag  to model . We do not place any 

constraints on the set of possible tags.  is merely a 

notational convenience borrowed from the vector space 

model of information retrieval, which is discussed further in 

Section IV.   

To tag , we make use of a corpus of known models  

 

  (2) 

 

Each model  in the corpus has associated tag 

probabilities  for the tags in , most of which will 

be zero.  We make two simplifying assumptions.  

First, we assume that two physical objects with the same 

geometry (excluding scale) are the same. 3D models are 

discrete approximations of physical objects, and so two 

models that represent the same physical geometry may not be 

identical. We use the  operator to denote that two models 

are intended to represent the same physical geometry.  

Our second assumption is that models that represent the 

same physical geometry should have the same tags. 

Formally, 

 

  (3) 

 

Let  be the probability that our untagged model 

 and some model  represent the same physical geometry. 

In that case,  

 

  (4) 

 

Intuitively this just means that  is a good tag for  if  and 

 represent the same physical object and  is a good tag 

for . We can use (4) to propagate tags to an untagged 

model. 

Our algorithm is based on the idea that the geometric 

distance between  and  can be interpreted as an 

approximation of . We assign a distance 

 from model  to every model  in , based on 

their geometric dissimilarity. We use the Zernike descriptors 

[5], described in Section III, as our geometric distance 

function, but in principle any reasonable shape descriptor 

should suffice. We choose an appropriate threshold  and 

define 
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Note that the threshold is allowed to be a function of the 

model, which allows for adaptively defining the threshold 

based on the density of models in a given portion of the 

descriptor space. We define a set of neighbors  as 
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For our method to perform well, we will need  to 

consist mostly of models that represent physical objects very 

similar to , but we do not need the set to be very large. We 

therefore prefer small values of  in order to capture the 

higher precision most shape descriptors are capable of at 

small recall values.  

 As we have suggested above, we set 
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for the models in . It follows from (4) that given a 

single neighbor  
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Considering the full set of neighbors, we can generalize (4) 

to 
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in which case (8) becomes 
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We note that if  has no neighbors closer than the 

threshold distance, all of the tag probabilities will be zero. In 

practical terms, this means that our autotagging algorithm 

may not successfully tag every input model.  

B. The corpus 

For  we use a large, tagged corpus of 3D models 

downloaded from the Internet. We cannot assume that the 

models have useful geometric properties such as being 

watertight or even connected, and so we treat them as 

polygon soups.  We also do not assume that the models are 

particularly well tagged, and so we assign an initial  

to every tag on every model that represents our subjective 

confidence in how well the dataset is tagged. 

 Our corpus consists of 192,343 models downloaded from 

Google 3DWarehouse. Each model has a title, a set of 

keywords, and a text description, although for many models 

one or more is blank. A good deal of the text is composed of 

nonsense words or blatantly incorrect labels that have 

nothing to do with the models they are applied to. We found 

that the title and keyword fields were usually more reliable 

than the description, and so we assumed  for 

tags drawn from the title and keywords and  

for tags drawn from the words of the description. Tags were 

stemmed using WordNet [11] and words that appeared ona 

list of stop words were ignored.  

Although we have implied a separation between the query 

model  and the corpus, in practice we make no such 

distinction. As the corpus is not specially prepared in any 

way, we can choose any model from 3DWarehouse itself as 

 and improve its tags based on its neighbors; computing 

this for every model can be seen as a smoothing operation on 

the tags. Additionally, any new query model can be 

immediately added to the corpus, which allows the system to 

learn better tags with time. 

III. GEOMETRIC SIMILARITY 

In order to find geometrically similar models, we need to 

define similarity of 3D objects. Many descriptors have been 

proposed for 3D, including the Spherical Harmonic 

descriptors [6] [12], Lightfield descriptors [2], Zernike 

descriptors [5] and Spherical Wavelet descriptors [13]. Due 

to the nature of our dataset, not all of these descriptors are 

equally appropriate. Many of the models in our corpus are 

architectural, where internal structure is significant, which 

rules out the use of Lightfield descriptors as they only 

capture the visual hull.  Additionally, many models include a 

backdrop or a supporting plane, which would be problematic 

for the Spherical Wavelet functions or the [12] version of 

Spherical Harmonics, both of which capture only the 

maximal spherical extent function. The remaining two 

functions, the [6] version of Spherical Harmonics and the 

Zernike descriptors, are very similar. We use the Zernikes 

because they are more compact. 

A. Zernike descriptors 

Ignoring rotation, we can compare two functions in R
3
 by 

taking the square root of the inner product of their 

difference, which can be thought of as a measure of their 

overlap. This can have undesirable results for shape 

matching, because it is easy to construct intuitively similar 

shapes that cannot be aligned to have significant overlap. To 

deal with this, we can project the two functions into an 

orthonormal moment space, ignore higher order moments, 

and then take the norm, which has the effect of smoothing 

the functions and increasing their overlap. This is the 

approach of [14], using Krawtchouk moments.  

Novotni and Klein observed that normalizing rotation is a 

difficult problem, and proposed making the moments 

comparison rotationally invariant by comparing only the 

energy levels at each frequency rather than the actual 

moment coefficients [5]. Their basis of choice was the 3D 

Zernike polynomials, originally derived by Canterakis [15]:  

 

  (11) 

 

where  is a spherical harmonic. The  terms are radial 

polynomials, and we refer the interested reader to [5] for 

their definition. These functions form an orthonormal basis 

for the unit sphere, and so for a function contained within the 

unit sphere, its Zernike moments are 
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and its Zernike descriptor is 

 

  (13) 

 

where all we have done is taken the norms of the moments 

over the  index and collected the results in a vector. These 

descriptors are then compared using the  norm, although 

the original geometric meaning as a measure of smoothed 

overlap is lost. Novotni and Klein recommended using 

moments up to , which results in a descriptor with 

121 components. 

B. Implementation 

We use Zernike descriptors with a few minor variations 

from [5]. Our calculations are done on a voxel grid of 128 

voxels per side and we thicken our surfaces with a kernel 4 

voxels wide. For scaling, we use 7 point Gaussian numerical 

integration to find the center of mass of a uniform mass 



 

 

 

distribution on the surface of the object. Another integration 

gives us the mean distance and standard deviation from 

surface points to the center of mass. We scale so that the 

mean distance and 3 standard deviations fit within the unit 

sphere and clip anything that lies outside. Scaling in this 

fashion is robust to moderate changes in shape and to 

outliers. We voxelize our models using a fast software 

voxelizer which we wrote, and compute the descriptors using 

a tuned version of Novotni and Klein’s publicly available 

reference implementation. 

C. Dimensionality reduction 

In analyzing the descriptors of our 192,343 models, we 

observed strong correlation between components of the 

descriptor with n indices of the same parity, and also that the 

correlation increases as l increases. (The latter effect is due 

to the band limiting imposed by voxelization). These 

correlations implied that we could reduce the dimensionality 

of the descriptor, and indeed Principal Components Analysis 

produced a 57 dimensional vector that preserved 99.9% of 

the variance of the original. All Zernike descriptor distances 

referred to in this paper were computed in the reduced space. 

Aside from the storage savings, PCA moves most of the 

variance into a few dimensions which enabled us to do real 

time nearest neighbor search as described in Section VI.  

IV. EXPERIMENTAL VALIDATION 

To validate the quality of our automatically produced tags, 

we use the Princeton Shape Benchmark (PSB) [16]. We 

computed Zernike descriptors for every model in the PSB, 

matched them against the models in our 3DWarehouse 

corpus, and produced tags for the models using our 

algorithm. In computing these tags we treated the PSB as if it 

consisted of completely untagged models, ignoring the 

model classifications provided with the benchmark and any 

other text associated with the models. For  we used an 

adaptive threshold, which we defined as the radius of the 

hypersphere containing the first 15 nearest neighbors.  

A. Discriminative power 

Our first set of experiments is designed to test how 

discriminative our tags are, in the sense that models of the 

same class get similar tags, and models in different classes 

get dissimilar tags. We use the Vector Space Model [17] to 

define a distance between the tags of any two models. In the 

Vector Space Model, every possible tag  is assumed 

to be an independent dimension, and a model’s tags are 

represented as a vector in this -space. Each model  has 

an associated tag vector   

 

  (14) 

 

The component  along each dimension is given 

using the “tag frequency, inverse document frequency,” [18] 

or tf-idf, method:  

 

  

(15) 

 

where  is the number of times tag  appears on 

model . The -space distance between two models is 

taken to be 1 - the cosine of the angle between their tag 

vectors: 

 

  (14) 

 

If either model has no generated tags, we set the distance to 

be 1.0, which is the maximum possible distance using the 

cosine metric. 

Using this cosine distance, we computed the distance 

matrix for the models of the PSB. Fig. 1 shows the 

precision/recall graph for our computed tag distances, as 

compared to the precision/recall for the Zernike descriptors. 

It is important to remember that the autotag values are for 

text search, while the Zernikes require an input 3D model. 

From Fig. 1 we can see that our algorithm captures most of 

the discriminative power of the underlying shape descriptor, 

and makes it accessible to text search without requiring the 

user to provide an initial 3D model as a query. 

As a control, we compared the quality of our computed 

tags to the original tags that came with the PSB models, 

using the method of [1]. Like them, we used seven sources of 

text for each model, including the model’s filename, original 

URL, text from the referring webpage, and synonyms from 

WordNet. We computed the cosine distance matrix for these 

tags in the same fashion as before. Fig. 2 shows how our 

computed tags compare to the original tags. The initial 

precision of our tags is significantly superior to that of the 

 
Fig. 1.  The precision/recall graph for our automatically generated tags, as 

compared to the precision/recall of the geometric distance given by the 

Zernike descriptors. 

 

 



 

 

 

 
Fig. 2.  The precision/recall graph for our automatically generated tags, 

as compared to the original PSB tags weighted by tf-idf. 

 

original tags, although at greater recall the original tags still 

show more precision. It is clear that the quality of our 

automatically generated annotations is comparable to the 

quality of the original tags.  However, the original tags and 

the computed tags are not identical, which suggested to us 

that it would be worthwhile to combine both sources of tags. 

Fig. 3 demonstrates how the combination of original and 

computed tags outperforms either tag source alone. In fact, 

the results are quite close to the precision/recall of the 

Zernike descriptors, as can be seen in Fig. 4. We feel that 

this result is strong evidence against the notion that text 

based search can never compete with other forms of 3D 

search such as 2D sketches and 3D query models.  

B. Search quality 

For our next experiment, we simulated some example 

searches on the original tags and on our autotags. The 

queries were chosen to map directly onto classes in the PSB 

classification, so that we could evaluate the precision and 

recall of the results.  

Given a search query , we retrieved the models  that 

were tagged with , ordered by descending . For the 

original tags, we weighted all tags equally, since we have no 

probability information for them.   

Fig. 5 shows the precision/recall for the queries 

“airplane,” “swords” and “heads” where we have capped the 

recall at the point where there are no more models tagged 

with the query string, and so any further retrieval would be 

random. Note that the autotags have equal or greater 

precision to the original tags nearly always. More 

importantly, text search on the computed tags successfully 

recovered over 65% of the relevant results for each query. 

This is in strong contrast to the search on the original tags, 

for which 2 of the queries only retrieved 10% of the relevant 

models, and one retrieved 40%. 

V. SEARCH ENGINE 

Based on the work described in this paper, we have 

designed a shape search engine that uses autotagging. Our 

search engine has access to copies of the 3DWarehouse and 

the PSB and can find models by their original tags or by their 

autotags. For any model in the database, our engine can also 

return the nearest neighbors in the Zernike sense.  

 In Section III.C we described how a PCA of the models in 

our database resulted in a 57 dimension linear subspace of 

the 121 dimensional Zernike descriptor space that preserved 

nearly all of the original variance. Aside from dimensionality 

reduction, PCA also packs as much variance as possible into 

the first few dimensions. We made use of this fact to build a 

very fast k-nearest neighbors implementation. This is the 

core of our search engine, since we need to find neighbors in 

Zernike descriptor space in order to do autotagging.  

Our approach is based on [19]. To find all of the 

neighbors of p within radius r they first prune the space to a 

 
Fig. 4.  The precision/recall for our autotags combined with the original 

tags is very similar to the precision/recall of the Zernike descriptors.  

 
Fig. 3.  The precision/recall for the original tags combined with our 

autotags is better than either set of tags individually. 



 

 

 

hypercube with sides of 2r, centered on p. To support this 

operation, they maintain n separate lists of the points, each 

sorted along one dimension. Pruning to a hypercube then 

reduces to rejecting any points with a distance greater than r 

in any one dimension, and then finding the intersection of n 

lists. The points which remained are then brute force 

searched, and those which lie outside of the radius r 

hypersphere are rejected. If k neighbors are not found, the 

algorithm can be run again with a larger value of r. 

 We mapped this algorithm to a PostgreSQL based 

database implementation. Instead of n lists, we maintain a 

table of n columns, where each row represents a single n-

dimensional point. We also maintain an index on each 

column, which is algorithmically equivalent to maintaining a 

sorted list on each dimension.
1
 To search for the nearest 

neighbors of a model described by point p in the reduced 

Zernike space, we can perform the entire [19] pruning 

algorithm as a single SELECT statement: 

  

SELECT * FROM model  

WHERE  

(z1 BETWEEN p[1]  - r AND p[1] + r) AND 

    �  
(z57 BETWEEN p[57]  - r AND p[57] + r)  

AND distance(model, p) < r  

ORDER BY distance(model, p); 

 

where distance (model, p) is a stored procedure that gives the 

Euclidean distance between a row and p. Aside from the 

simplification of having the database do all the pruning and 

intersection work, this implementation makes use of the fact 

that, due to PCA, most of the variance is in the first few 

dimensions. PostgreSQL keeps statistics on the variance of 

each column and executes the BETWEEN clause on the 

columns with the most variance first. Columns with a higher 

variance are likely to have fewer neighbors within the search 

distance, and so most rows are pruned very early and do not 

need to be repeatedly considered for intersection. In practice, 

our implementation running on a 2.4 GHz Intel CPU can 

search 192,343 Zernike descriptors and return the 50 nearest 

neighbors of a query descriptor in approximately 3 seconds. 

 Fig. 6 shows the user interface of our search engine, which 

combines text and geometry search. Models are shown with 

their original and computed tags. Users can search by 

filename, original tags, and computed tags. Hovering over a 

thumbnail pops up a context menu that gives access to both 

the original 3D file and the voxelized version used in the 

computation of the Zernike descriptors. Clicking on a 

thumbnail retrieves the model’s geometric neighbors. The 

user can separately select which collections of models are to 

be searched and which are to be considered part of the 

corpus for autotagging.  

 
1 We recommend PostgreSQL over MySQL for this algorithm, as the 

current version of MySQL limits the number of indices on a table to 64.  

Search for “airplane” 

 
 

Search for “sword” 

 
 

Search for “head” 

 Fig. 5.  Precision/recall for 3 searches. The recall is capped at the point 

where there are no more tagged models (and any further retrieval would be 

random). The precision of the autotags equals or exceeds that of the 

original tags in nearly all instances, and the autotags can retrieve many 

times more models than the original tags, since only a fraction of the 

models have relevant original tags. Note to readers: it may be helpful to 

zoom in to better see the areas where the red and blue lines overlap.  

 

 



 

 

 

 

 

 
         

  Fig. 6.  Our web based autotagging and shape search interface. 

 

 

 

 

 
car, vehicle, sedan, 

dodge, charger 

 

 
steel string, guitar, string, 

seagull, acoustic guitar 

 
sword, blade, sign, 

architecture, landscape 

 
airplane, house, aircraft, 

plane, jet 

 
house, instrument,  

musical instrument, 

 musical, piano 

 
chair, wood, furniture, 

wooden, simple chair 

 
mug, drinks, beverages, 

coffee, interior 

 

 

 
animal, human, biped, man, 

aircraft 

Fig. 7.  Eight models from the PSB and their 5 best autotags. Tags we deemed to be irrelevant are shown in italics. (“Seagull” is considered relevant because it 

is a brand of guitar). 

 

 

 



 

 

 

Fig. 7 shows some example models and their 5 best 

autotags. We examined the results and italicized tags that did 

not fit. Some of the autotagger’s mistakes are due to 

geometry that is difficult to distinguish from other classes of 

models. For example, 3DWarehouse contains many long, 

thin street sign models that are geometrically rather close to 

the sword, which explains why the sword received the tag 

“sign.” Other errors are more likely artifacts of our choice of 

corpus. In particular, 3DWarehouse contains a very large 

number of buildings, which tends to skew tagging towards 

words like “house” and “architecture.”   

VI. CONCLUSIONS AND FUTURE WORK 

We have demonstrated an automatic tagging system that 

learns new tags for an unknown 3D model by comparing it to 

a large set of tagged models and probabilistically 

propagating tags from neighbors. We have shown that the 

precision/recall of text search using our autotags approaches 

that of the underlying shape descriptor, and that searching 

for models based on our autotags can be much better than 

searching on the original tags. It is important to point out that 

the quality of our results is highly dependent on the quality 

of the corpus we use, in terms of both tag quality and 

coverage of the space of common 3D shapes. In choosing 

3DWarehouse as our corpus, we have emphasized coverage 

over tag quality. The 192,343 models in our dataset are 

varied enough to have excellent (although not complete) 

coverage, but the quality of the annotations is very poor as 

compared to using a hand-classified database. We believe 

that our method would produce even better results with a 

more accurately annotated corpus, should one with 

comparably broad coverage become available. 

Although we have focused in this paper on autotagging to 

improve shape retrieval, there are several other domains 

where automatically annotating 3D models can be helpful. 

For example, when users submit models to a collection such 

as 3DWarehouse, they often get to choose tags for the 

models. If we can autotag the model before this stage, we 

can suggest tags that already exist on other models, which 

could improve the consistency of annotations in the 

collection.   

The system presented in this paper should be seen as a 

proof-of-concept for autotagging 3D models based on 

geometrically similarity. There are a number of ways the 

algorithm could be improved, such as using the original tags 

of a model to help find better autotags by boosting our 

confidence in neighbors with similar tags. In our future work 

we intend to examine this and other more sophisticated 

approaches to autotagging. 
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