

Abstract—Text search on 3D models has traditionally worked

poorly, as text annotations on 3D models are often unreliable or

incomplete. In this paper we attempt to improve the recall of

text search by automatically assigning appropriate tags to

models. Our algorithm finds relevant tags by appealing to a

large corpus of partially labeled example models, which does

not have to be preclassified or otherwise prepared. For this

purpose we use a copy of Google 3DWarehouse, a database of

user contributed models which is publicly available on the

Internet. Given a model to tag, we find geometrically similar

models in the corpus, based on distances in a reduced

dimensional space derived from Zernike descriptors. The labels

of these neighbors are used as tag candidates for the model with

probabilities proportional to the degree of geometric similarity.

We show experimentally that text based search for 3D models

using our computed tags can work as well as geometry based

search. Finally, we demonstrate our 3D model search engine

that uses this algorithm and discuss some implementation issues.

I. INTRODUCTION

istorically, interest in 3D models has largely been

confined to expert users such as video game

programmers, computer animators, and engineers

prototyping new products. Recently, however, a number of

new applications have greatly expanded the pool of users

who deal with 3D models. Free, user-friendly modeling tools

such as Google Sketchup and new casual uses for 3D models

such as modeling one’s home for Google Earth or staking out

a digital existence in Second Life have resulted in an

increased popular interest in 3D models and to an explosive

growth in the amount of 3D data available on the web. As

these datasets continue to expand, existing methods of

searching databases of 3D models are proving insufficient.

There are three dominant approaches for 3D model

search. The simplest method is text search on descriptive

tags associated with each model. While this form of search is

the most natural from a user perspective, its power is limited

by a dependence on the accuracy of the descriptions, and

more fundamentally by the requirement that such annotations

even exist. Min, Kazhdan, and Funkhouser experimentally

confirmed that searching on text alone is a poor retrieval

strategy for 3D models drawn from the web [1], although in

specialized databases one might expect somewhat better

results.

Manuscript received December 9, 2007. This work was supported in

part by a National Defense Science and Engineering Graduate Fellowship.

Corey Goldfeder is a PhD student in Computer Science at Columbia

University, NY; coreyg@ cs.columbia.edu

Peter Allen is a Professor of Computer Science at Columbia University;

allen@ cs.columbia.edu

A second approach is to allow a user to submit a sketch as

a query. In [2] users input 2D sketches as search queries,

which are compared to 2D renderings of the object taken

from viewpoints sampled on the enclosing sphere, while in

[3], 2D queries are supported for only a small number of

viewpoints. In both cases, only the projected contours of the

3D model are considered for matching, and as such any

features which do not lie on the visual hull cannot be used in

the retrieval. Using suggestive contours [4] might break the

dependence on the visual hull, but it has not been attempted.

The major disadvantages of the sketch based approach are

that it demands a certain amount of artistic ability from

users, and that composing a query is both slower than other

methods and more difficult to repeat consistently.

Finally, many search algorithms [5] [6] can take an initial

3D model as a query and retrieve other similar models.

Search is done in an iterative fashion – an initial query model

is selected via some other search method, such as text search,

and a number of similar models are retrieved. The user can

then select any of the retrieved models as the source of a new

query. While this paradigm is well suited for browsing a

database, it has serious limitations for searching, as the only

way to break out of the very local view of the database is to

select an entirely new 3D model as a query.

It is well known that human notions of similarity are not

purely geometric [7] and that there is a semantic gap

between what users intend when they search and what

geometric shape descriptors can deliver. Recent work in

shape matching has focused on bringing human intelligence

into the loop. The most common approach has been to use

relevance feedback [8][9], which has been applied with great

success in other fields, particularly 2D image search.

Relevance feedback is a supervised learning technique, and

as such inherits the limitation of supervised methods, which

is that learning new classes will generally require new

training.

We propose a different method of harnessing human

intelligence, by making use of existing textual annotations

and keywords associated with 3D models. We use geometric

relationships between models to propagate information

between similar models and improve the saliency of the text

annotations. Our goal is to improve the precision and recall

of text based 3D model search to the point that it is

comparable to geometric shape descriptors. This is desirable

because text search is a very natural search interface.

In the past, text annotations on 3D models have been

largely dismissed by shape search researchers as being

unreliable and incomplete, and therefore of limited use. In

this paper, we consider how the availability of very large

Autotagging to Improve Text Search for 3D Models

Corey Goldfeder, Peter Allen

H

databases changes this equation and hypothesize that given a

large enough corpus the semantic information contained in

the whole can be more than the sum of its parts. We use a

corpus consisting of user contributed models freely available

on the Internet. Compared to similar recent work in tagging

2D images [10], our algorithm for 3D autotagging has the

advantage of being unsupervised. This means that the tags

that our algorithm can produce are not limited to a small

predefined set. Additionally, we do not require an explicit

training stage.

The remainder of this paper is structured as follows. In

Section II we explain our algorithm and describe our dataset.

In Section III we describe our implementation of shape

similarity. Section IV shows experimental validation of our

algorithm. Section V discusses our shape search system,

which uses this algorithm. Section VI presents conclusions

and future work.

II. AUTOTAGGING

A. The algorithm

Given an unlabeled 3D model , we wish to assign to a

set of text tags from the set of all possible tags

 (1)

Specifically, for each tag we wish to assign a

confidence value which we interpret as the

probability that is a relevant tag for . We informally

define relevancy to mean that a conscientious annotator

would apply tag to model . We do not place any

constraints on the set of possible tags. is merely a

notational convenience borrowed from the vector space

model of information retrieval, which is discussed further in

Section IV.

To tag , we make use of a corpus of known models

 (2)

Each model in the corpus has associated tag

probabilities for the tags in , most of which will

be zero. We make two simplifying assumptions.

First, we assume that two physical objects with the same

geometry (excluding scale) are the same. 3D models are

discrete approximations of physical objects, and so two

models that represent the same physical geometry may not be

identical. We use the operator to denote that two models

are intended to represent the same physical geometry.

Our second assumption is that models that represent the

same physical geometry should have the same tags.

Formally,

 (3)

Let be the probability that our untagged model

 and some model represent the same physical geometry.

In that case,

 (4)

Intuitively this just means that is a good tag for if and

 represent the same physical object and is a good tag

for . We can use (4) to propagate tags to an untagged

model.

Our algorithm is based on the idea that the geometric

distance between and can be interpreted as an

approximation of . We assign a distance

 from model to every model in , based on

their geometric dissimilarity. We use the Zernike descriptors

[5], described in Section III, as our geometric distance

function, but in principle any reasonable shape descriptor

should suffice. We choose an appropriate threshold and

define

 (5)

Note that the threshold is allowed to be a function of the

model, which allows for adaptively defining the threshold

based on the density of models in a given portion of the

descriptor space. We define a set of neighbors as

 (6)

For our method to perform well, we will need to

consist mostly of models that represent physical objects very

similar to , but we do not need the set to be very large. We

therefore prefer small values of in order to capture the

higher precision most shape descriptors are capable of at

small recall values.

 As we have suggested above, we set

 (7)

for the models in . It follows from (4) that given a

single neighbor

 (8)

Considering the full set of neighbors, we can generalize (4)

to

 (9)

in which case (8) becomes

 (10)

We note that if has no neighbors closer than the

threshold distance, all of the tag probabilities will be zero. In

practical terms, this means that our autotagging algorithm

may not successfully tag every input model.

B. The corpus

For we use a large, tagged corpus of 3D models

downloaded from the Internet. We cannot assume that the

models have useful geometric properties such as being

watertight or even connected, and so we treat them as

polygon soups. We also do not assume that the models are

particularly well tagged, and so we assign an initial

to every tag on every model that represents our subjective

confidence in how well the dataset is tagged.

 Our corpus consists of 192,343 models downloaded from

Google 3DWarehouse. Each model has a title, a set of

keywords, and a text description, although for many models

one or more is blank. A good deal of the text is composed of

nonsense words or blatantly incorrect labels that have

nothing to do with the models they are applied to. We found

that the title and keyword fields were usually more reliable

than the description, and so we assumed for

tags drawn from the title and keywords and

for tags drawn from the words of the description. Tags were

stemmed using WordNet [11] and words that appeared ona

list of stop words were ignored.

Although we have implied a separation between the query

model and the corpus, in practice we make no such

distinction. As the corpus is not specially prepared in any

way, we can choose any model from 3DWarehouse itself as

 and improve its tags based on its neighbors; computing

this for every model can be seen as a smoothing operation on

the tags. Additionally, any new query model can be

immediately added to the corpus, which allows the system to

learn better tags with time.

III. GEOMETRIC SIMILARITY

In order to find geometrically similar models, we need to

define similarity of 3D objects. Many descriptors have been

proposed for 3D, including the Spherical Harmonic

descriptors [6] [12], Lightfield descriptors [2], Zernike

descriptors [5] and Spherical Wavelet descriptors [13]. Due

to the nature of our dataset, not all of these descriptors are

equally appropriate. Many of the models in our corpus are

architectural, where internal structure is significant, which

rules out the use of Lightfield descriptors as they only

capture the visual hull. Additionally, many models include a

backdrop or a supporting plane, which would be problematic

for the Spherical Wavelet functions or the [12] version of

Spherical Harmonics, both of which capture only the

maximal spherical extent function. The remaining two

functions, the [6] version of Spherical Harmonics and the

Zernike descriptors, are very similar. We use the Zernikes

because they are more compact.

A. Zernike descriptors

Ignoring rotation, we can compare two functions in R
3
 by

taking the square root of the inner product of their

difference, which can be thought of as a measure of their

overlap. This can have undesirable results for shape

matching, because it is easy to construct intuitively similar

shapes that cannot be aligned to have significant overlap. To

deal with this, we can project the two functions into an

orthonormal moment space, ignore higher order moments,

and then take the norm, which has the effect of smoothing

the functions and increasing their overlap. This is the

approach of [14], using Krawtchouk moments.

Novotni and Klein observed that normalizing rotation is a

difficult problem, and proposed making the moments

comparison rotationally invariant by comparing only the

energy levels at each frequency rather than the actual

moment coefficients [5]. Their basis of choice was the 3D

Zernike polynomials, originally derived by Canterakis [15]:

 (11)

where is a spherical harmonic. The terms are radial

polynomials, and we refer the interested reader to [5] for

their definition. These functions form an orthonormal basis

for the unit sphere, and so for a function contained within the

unit sphere, its Zernike moments are

 (12)

and its Zernike descriptor is

 (13)

where all we have done is taken the norms of the moments

over the index and collected the results in a vector. These

descriptors are then compared using the norm, although

the original geometric meaning as a measure of smoothed

overlap is lost. Novotni and Klein recommended using

moments up to , which results in a descriptor with

121 components.

B. Implementation

We use Zernike descriptors with a few minor variations

from [5]. Our calculations are done on a voxel grid of 128

voxels per side and we thicken our surfaces with a kernel 4

voxels wide. For scaling, we use 7 point Gaussian numerical

integration to find the center of mass of a uniform mass

distribution on the surface of the object. Another integration

gives us the mean distance and standard deviation from

surface points to the center of mass. We scale so that the

mean distance and 3 standard deviations fit within the unit

sphere and clip anything that lies outside. Scaling in this

fashion is robust to moderate changes in shape and to

outliers. We voxelize our models using a fast software

voxelizer which we wrote, and compute the descriptors using

a tuned version of Novotni and Klein’s publicly available

reference implementation.

C. Dimensionality reduction

In analyzing the descriptors of our 192,343 models, we

observed strong correlation between components of the

descriptor with n indices of the same parity, and also that the

correlation increases as l increases. (The latter effect is due

to the band limiting imposed by voxelization). These

correlations implied that we could reduce the dimensionality

of the descriptor, and indeed Principal Components Analysis

produced a 57 dimensional vector that preserved 99.9% of

the variance of the original. All Zernike descriptor distances

referred to in this paper were computed in the reduced space.

Aside from the storage savings, PCA moves most of the

variance into a few dimensions which enabled us to do real

time nearest neighbor search as described in Section VI.

IV. EXPERIMENTAL VALIDATION

To validate the quality of our automatically produced tags,

we use the Princeton Shape Benchmark (PSB) [16]. We

computed Zernike descriptors for every model in the PSB,

matched them against the models in our 3DWarehouse

corpus, and produced tags for the models using our

algorithm. In computing these tags we treated the PSB as if it

consisted of completely untagged models, ignoring the

model classifications provided with the benchmark and any

other text associated with the models. For we used an

adaptive threshold, which we defined as the radius of the

hypersphere containing the first 15 nearest neighbors.

A. Discriminative power

Our first set of experiments is designed to test how

discriminative our tags are, in the sense that models of the

same class get similar tags, and models in different classes

get dissimilar tags. We use the Vector Space Model [17] to

define a distance between the tags of any two models. In the

Vector Space Model, every possible tag is assumed

to be an independent dimension, and a model’s tags are

represented as a vector in this -space. Each model has

an associated tag vector

 (14)

The component along each dimension is given

using the “tag frequency, inverse document frequency,” [18]

or tf-idf, method:

(15)

where is the number of times tag appears on

model . The -space distance between two models is

taken to be 1 - the cosine of the angle between their tag

vectors:

 (14)

If either model has no generated tags, we set the distance to

be 1.0, which is the maximum possible distance using the

cosine metric.

Using this cosine distance, we computed the distance

matrix for the models of the PSB. Fig. 1 shows the

precision/recall graph for our computed tag distances, as

compared to the precision/recall for the Zernike descriptors.

It is important to remember that the autotag values are for

text search, while the Zernikes require an input 3D model.

From Fig. 1 we can see that our algorithm captures most of

the discriminative power of the underlying shape descriptor,

and makes it accessible to text search without requiring the

user to provide an initial 3D model as a query.

As a control, we compared the quality of our computed

tags to the original tags that came with the PSB models,

using the method of [1]. Like them, we used seven sources of

text for each model, including the model’s filename, original

URL, text from the referring webpage, and synonyms from

WordNet. We computed the cosine distance matrix for these

tags in the same fashion as before. Fig. 2 shows how our

computed tags compare to the original tags. The initial

precision of our tags is significantly superior to that of the

Fig. 1. The precision/recall graph for our automatically generated tags, as

compared to the precision/recall of the geometric distance given by the

Zernike descriptors.

Fig. 2. The precision/recall graph for our automatically generated tags,

as compared to the original PSB tags weighted by tf-idf.

original tags, although at greater recall the original tags still

show more precision. It is clear that the quality of our

automatically generated annotations is comparable to the

quality of the original tags. However, the original tags and

the computed tags are not identical, which suggested to us

that it would be worthwhile to combine both sources of tags.

Fig. 3 demonstrates how the combination of original and

computed tags outperforms either tag source alone. In fact,

the results are quite close to the precision/recall of the

Zernike descriptors, as can be seen in Fig. 4. We feel that

this result is strong evidence against the notion that text

based search can never compete with other forms of 3D

search such as 2D sketches and 3D query models.

B. Search quality

For our next experiment, we simulated some example

searches on the original tags and on our autotags. The

queries were chosen to map directly onto classes in the PSB

classification, so that we could evaluate the precision and

recall of the results.

Given a search query , we retrieved the models that

were tagged with , ordered by descending . For the

original tags, we weighted all tags equally, since we have no

probability information for them.

Fig. 5 shows the precision/recall for the queries

“airplane,” “swords” and “heads” where we have capped the

recall at the point where there are no more models tagged

with the query string, and so any further retrieval would be

random. Note that the autotags have equal or greater

precision to the original tags nearly always. More

importantly, text search on the computed tags successfully

recovered over 65% of the relevant results for each query.

This is in strong contrast to the search on the original tags,

for which 2 of the queries only retrieved 10% of the relevant

models, and one retrieved 40%.

V. SEARCH ENGINE

Based on the work described in this paper, we have

designed a shape search engine that uses autotagging. Our

search engine has access to copies of the 3DWarehouse and

the PSB and can find models by their original tags or by their

autotags. For any model in the database, our engine can also

return the nearest neighbors in the Zernike sense.

 In Section III.C we described how a PCA of the models in

our database resulted in a 57 dimension linear subspace of

the 121 dimensional Zernike descriptor space that preserved

nearly all of the original variance. Aside from dimensionality

reduction, PCA also packs as much variance as possible into

the first few dimensions. We made use of this fact to build a

very fast k-nearest neighbors implementation. This is the

core of our search engine, since we need to find neighbors in

Zernike descriptor space in order to do autotagging.

Our approach is based on [19]. To find all of the

neighbors of p within radius r they first prune the space to a

Fig. 4. The precision/recall for our autotags combined with the original

tags is very similar to the precision/recall of the Zernike descriptors.

Fig. 3. The precision/recall for the original tags combined with our

autotags is better than either set of tags individually.

hypercube with sides of 2r, centered on p. To support this

operation, they maintain n separate lists of the points, each

sorted along one dimension. Pruning to a hypercube then

reduces to rejecting any points with a distance greater than r

in any one dimension, and then finding the intersection of n

lists. The points which remained are then brute force

searched, and those which lie outside of the radius r

hypersphere are rejected. If k neighbors are not found, the

algorithm can be run again with a larger value of r.

 We mapped this algorithm to a PostgreSQL based

database implementation. Instead of n lists, we maintain a

table of n columns, where each row represents a single n-

dimensional point. We also maintain an index on each

column, which is algorithmically equivalent to maintaining a

sorted list on each dimension.
1
 To search for the nearest

neighbors of a model described by point p in the reduced

Zernike space, we can perform the entire [19] pruning

algorithm as a single SELECT statement:

SELECT * FROM model

WHERE

(z1 BETWEEN p[1] - r AND p[1] + r) AND

 �
(z57 BETWEEN p[57] - r AND p[57] + r)

AND distance(model, p) < r

ORDER BY distance(model, p);

where distance (model, p) is a stored procedure that gives the

Euclidean distance between a row and p. Aside from the

simplification of having the database do all the pruning and

intersection work, this implementation makes use of the fact

that, due to PCA, most of the variance is in the first few

dimensions. PostgreSQL keeps statistics on the variance of

each column and executes the BETWEEN clause on the

columns with the most variance first. Columns with a higher

variance are likely to have fewer neighbors within the search

distance, and so most rows are pruned very early and do not

need to be repeatedly considered for intersection. In practice,

our implementation running on a 2.4 GHz Intel CPU can

search 192,343 Zernike descriptors and return the 50 nearest

neighbors of a query descriptor in approximately 3 seconds.

 Fig. 6 shows the user interface of our search engine, which

combines text and geometry search. Models are shown with

their original and computed tags. Users can search by

filename, original tags, and computed tags. Hovering over a

thumbnail pops up a context menu that gives access to both

the original 3D file and the voxelized version used in the

computation of the Zernike descriptors. Clicking on a

thumbnail retrieves the model’s geometric neighbors. The

user can separately select which collections of models are to

be searched and which are to be considered part of the

corpus for autotagging.

1 We recommend PostgreSQL over MySQL for this algorithm, as the

current version of MySQL limits the number of indices on a table to 64.

Search for “airplane”

Search for “sword”

Search for “head”

 Fig. 5. Precision/recall for 3 searches. The recall is capped at the point

where there are no more tagged models (and any further retrieval would be

random). The precision of the autotags equals or exceeds that of the

original tags in nearly all instances, and the autotags can retrieve many

times more models than the original tags, since only a fraction of the

models have relevant original tags. Note to readers: it may be helpful to

zoom in to better see the areas where the red and blue lines overlap.

 Fig. 6. Our web based autotagging and shape search interface.

car, vehicle, sedan,

dodge, charger

steel string, guitar, string,

seagull, acoustic guitar

sword, blade, sign,

architecture, landscape

airplane, house, aircraft,

plane, jet

house, instrument,

musical instrument,

 musical, piano

chair, wood, furniture,

wooden, simple chair

mug, drinks, beverages,

coffee, interior

animal, human, biped, man,

aircraft

Fig. 7. Eight models from the PSB and their 5 best autotags. Tags we deemed to be irrelevant are shown in italics. (“Seagull” is considered relevant because it

is a brand of guitar).

Fig. 7 shows some example models and their 5 best

autotags. We examined the results and italicized tags that did

not fit. Some of the autotagger’s mistakes are due to

geometry that is difficult to distinguish from other classes of

models. For example, 3DWarehouse contains many long,

thin street sign models that are geometrically rather close to

the sword, which explains why the sword received the tag

“sign.” Other errors are more likely artifacts of our choice of

corpus. In particular, 3DWarehouse contains a very large

number of buildings, which tends to skew tagging towards

words like “house” and “architecture.”

VI. CONCLUSIONS AND FUTURE WORK

We have demonstrated an automatic tagging system that

learns new tags for an unknown 3D model by comparing it to

a large set of tagged models and probabilistically

propagating tags from neighbors. We have shown that the

precision/recall of text search using our autotags approaches

that of the underlying shape descriptor, and that searching

for models based on our autotags can be much better than

searching on the original tags. It is important to point out that

the quality of our results is highly dependent on the quality

of the corpus we use, in terms of both tag quality and

coverage of the space of common 3D shapes. In choosing

3DWarehouse as our corpus, we have emphasized coverage

over tag quality. The 192,343 models in our dataset are

varied enough to have excellent (although not complete)

coverage, but the quality of the annotations is very poor as

compared to using a hand-classified database. We believe

that our method would produce even better results with a

more accurately annotated corpus, should one with

comparably broad coverage become available.

Although we have focused in this paper on autotagging to

improve shape retrieval, there are several other domains

where automatically annotating 3D models can be helpful.

For example, when users submit models to a collection such

as 3DWarehouse, they often get to choose tags for the

models. If we can autotag the model before this stage, we

can suggest tags that already exist on other models, which

could improve the consistency of annotations in the

collection.

The system presented in this paper should be seen as a

proof-of-concept for autotagging 3D models based on

geometrically similarity. There are a number of ways the

algorithm could be improved, such as using the original tags

of a model to help find better autotags by boosting our

confidence in neighbors with similar tags. In our future work

we intend to examine this and other more sophisticated

approaches to autotagging.

ACKNOWLEDGEMENT

We wish to thank Google for providing us with a complete

copy of 3DWarehouse converted to the .obj format, which

made processing the corpus much easier.

REFERENCES

[1] P. Min, M. Kazhdan, T. Funkhouser, “A comparison of text and shape

matching for retrieval of online 3D models,” European Conference

on Digital Libraries, Bath, UK, 2004.

[2] D. Chen, X. Tian, Y. Shen, M. Ouhyoung, “On visual similarity based

3D model retrieval,” Eurographics, Granada, Spain, 2003.

[3] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. Halderman, D.

Dobkin, D. Jacobs, “A search engine for 3D models," Transactions

on Graphics, 22(1), pp. 83-105, 2003.

[4] D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, A. Santella, “Suggestive

contours for conveying shape,” SIGGRAPH, San Diego, 2003.

[5] M. Novotni, R. Klein, “3D Zernike descriptors for content based

shape retrieval,” Solid Modeling and Applications, Seattle, 2003.

[6] M. Kazhdan, T. Funkhouser, S. Rusinkiewicz, “Rotation invariant

spherical harmonic representation of 3D shape descriptors,”

Symposium on Geometry Processing, Aachen, Germany 2003.

[7] A. Tversky, “Features of similarity,” Psychological Review, 1977.

[8] G. Leifman, R. Meir, A. Tal, “Semantic-oriented 3D shape retrieval

using relevance feedback,” The Visual Computer, (Pacific Graphics),

2005.

[9] M. Novotni, G. Park, R. Wessel, R. Klein, “Evaluation of kernel

based methods for relevance feedback in 3D shape retrieval,

International Workshop on Content-Based Multimedia Indexing,

Riga, Latvia, 2005.

[10] R. Datta, W. Ge, J. Li, J. Z. Wang, “Toward bridging the annotation-

retrieval gap in image search,” MultiMedia 14(3), pp. 24-35, 2007.

[11] C. Fellbaum, WordNet: An Electronic Lexical Database, MIT Press,

Cambridge, Ma, 1998.

[12] D. Saupe, D. V. Vranic, “3D model retrieval with spherical harmonics

and moments,” Symposium on Pattern Recognition, London, 2001.

[13] H. Laga, H. Takahashi, M. Nakajima, “Spherical wavelet descriptors

for content-based 3D model retrieval,” in Shape Modeling and

Applications, Washington D.C., 2006.

[14] A. Mademlis, A. Axenopoulos, P. Daras, D. Tzovaras, M. G. Strintzis,

“3D content-based search based on 3D Krawtchouk moments,” in

International Symposium on 3D Data Processing, Visualization, and

Transmission, Washington D.C., 2006.

[15] N. Canterakis, “3D Zernike moments and Zernike affine invariants for

3D image analysis and recognition,” Scandinavian Conference on

Image Analysis, Kangerlussuaq, Greenland, 1999.

[16] P. Shilane, P. Min, M. Kahzdan, M. Funkhouser, , “The Princeton

shape benchmark,” Shape Modeling International, Genova, Italy,

2004.

[17] G. Salton, “Mathematics and information retrieval,” Journal of

Documentation 25(1), pp. 1-29, 1979.

[18] G. Salton, “Term-weighting approaches in automatic text retrieval,”

Information Processing and Management 24(5), pp. 513-523, 1988.

[19] S. A. Nene, S. K. Nayar, “A simple algorithm for nearest neighbour

search in high dimensions,” Transactions on Pattern Analysis and

Machine Intelligence, 19(9), 1997.

