
Schema Polynomials and Applications ∗

Columbia University Computer Science Technical Report cucs-047-07

Kenneth A. Ross †

Columbia University

kar@cs.columbia.edu

Julia Stoyanovich ‡

Columbia University

jds1 @cs.columbia.edu

ABSTRACT
Conceptual complexity is emerging as a new bottleneck as
data-base developers, application developers, and database
administrators struggle to design and comprehend large, com-
plex schemas. The simplicity and conciseness of a schema
depends critically on the idioms available to express the
schema. We propose a formal conceptual schema representa-
tion language that combines different design formalisms, and
allows schema manipulation that exposes the strengths of
each of these formalisms. We demonstrate how the schema
factorization framework can be used to generate relational,
object-oriented, and faceted physical schemas, allowing a
wider exploration of physical schema alternatives than tra-
ditional methodologies. We illustrate the potential practi-
cal benefits of schema factorization by showing that simple
heuristics can significantly reduce the size of a real-world
schema description. We also propose the use of schema poly-
nomials to model and derive alternative representations for
complex relationships with constraints.

1. INTRODUCTION
Physical data independence is the property that the phys-

ical schema used to store the data is independent of the logi-
cal schema used to conceptualize the same data. While text-
books advocate physical data independence, most database
systems map conceptual structures such as relations directly
to stored structures such as tables.

In a seminal paper [16], Tsatalos et al. enable higher de-
grees of physical data independence by allowing the stored

∗A shorter version of this report will appear at the In-
ternational Conference on Extending Database Technol-
ogy(EDBT), March 2008.
†Supported by National Science Foundation grants IIS-
0121239, IIS-0534389 and National Institute of Health grant
5 U54 CA121852-03.
‡Supported by National Science Foundation grant IIS-
0121239 and National Institute of Health grant 5 U54
CA121852-03.

structures to be defined via select-project-join views on the
conceptual schema. Physical decisions are decoupled from
the conceptual schema, and decisions like physical replica-
tion and nesting can be made without changing the concep-
tual schema. A wider range of physical representations can
be considered in order to improve the database performance
for a given workload.

Our viewpoint is similar to that of [16], in that we aim
to decouple physical and conceptual data representations.
Unlike [16], our focus is on optimizing the conceptual level
representation to make the schema as simple as possible.
Conceptual complexity is emerging as the new bottleneck as
database developers, application developers (using SAP for
example), and database administrators struggle to compre-
hend large, complex schemas.

There are many ways to measure schema simplicity, and
we will not restrict ourselves to any one in particular. The
general theme of simplicity, though, suggests that more con-
cise representations of the same schema are better.

The conciseness of a schema depends critically on the id-
ioms available to express the schema. As an analogy, con-
sider the class of boolean expressions with conjunction and
disjunction. It is well known that there are formulas that
are compact in one representation (say disjunctive normal
form) but exponentially bigger in another (say conjunctive
normal form), and vice versa.

We argue that a similar idiomatic conflict occurs for schema
design. Three well-known formalisms for writing schemas
are the relational, the object-oriented, and the faceted ap-
proaches. Each of these is very good at expressing cer-
tain classes of schema, but poor at expressing certain other
classes of schema. Object-oriented schemas allow the factor-
ization of common attributes into an inheritance hierarchy.
Faceted schemas allow the orthogonal composition of many
independent attributes; in an e-commerce application for ex-
ample, a product may be independently classified by size, by
brand, by color, etc.

Traditionally, one has been limited to just one of these
design methodologies when creating schemas. Even if part
of the schema is compactly represented using that method-
ology, other parts may not be. Our aim is to define a
higher-level conceptual data representation language that
allows the schema to be manipulated in ways that expose
the strengths of each of these data modeling approaches. If
a schema has parts that are compact when expressed accord-
ing to one approach, then that part of the schema should be
expressed using that approach, even if other parts of the
schema use a different approach.

Consider for example the database schema of an online
bookstore. This schema may be used to store the inven-
tory (i.e. different kinds of books and periodicals), allow for
faceted browsing of the inventory by several independent
dimensions, e.g. by author, topic, and price, and record in-
formation about customers and orders. Designing such a
schema currently requires that the architect choose a for-
malism, e.g. relational, faceted, or XML, design the en-
tire schema using that formalism, and then translate the
schema into its physical representation, either manually or
with the help of design tools. In our example, it may be
most natural to model the inventory sub-schema using the
object-oriented paradigm, organize some aspects of the in-
ventory in an orthogonal hierarchy using the faceted model,
but retain purely relational representation of customers and
orders. The choice of a different formalism for each part of
the schema will result in a schema that is easier to under-
stand and is more concise than if a single formalism were
chosen to represent the schema in its entirety.

The benefits of conciseness are twofold. First, as argued
above, concise schemas tend to be simpler, and easier for
users to understand. Second, since physical design usually
starts with a conceptual level description, simpler physical
designs can be produced. Sometimes these simpler physical
designs have better performance than alternative designs.

We propose a formal language for representing schemas,
and derive a set of properties that allow one to manipulate
schema expressions while preserving the set of representable
tuples. We propose that standard design methodologies such
as entity-relationship modeling [15], modeling in UML [13,
8], faceted modeling [20] and relational normalization [15],
produce outputs in this conceptual framework rather than
going directly to a physical relational schema. By doing so,
one obtains the following advantages:

• One can explore a variety of physical representations
obtained using different equivalent expressions for a
schema.

• One can derive a formally unambiguous logical rep-
resentation that allows transformations that are not
straightforward for sets of physical tables, such as at-
tribute factorization and subtraction.

• Different users can orient the schema to their own
points of view. One user may impose an inheritance
hierarchy (e.g., factoring out the location of manufac-
ture) while another may impose an alternative hier-
archy (e.g., factoring out the product-type). These
conceptual views are compatible, and can be automat-
ically translated into the chosen physical representa-
tion.

• Users can project out parts of the schema that they are
not interested in. The remaining portion can be sim-
plified using various equivalences, leading to a descrip-
tion that is much easier to understand than a schema
with hundreds of tables and thousands of columns.

Example 1.1. Consider the following schema expression.

ABCD + ABG + ACD + AG + BCH (1)

When we write ABCD in Expression 1 we mean that tu-
ples with attribute names A, B, C, and D are valid for this
schema. When we write S1 + S2 we mean that a tuple is

valid for either S1 or S2. As written, the schema could be
mapped to a collection of five stored tables ABCD, ABG,
ACD, AG, and BCH. We use bold script to describe phys-
ical level structures such as tables, and math script for con-
ceptual level expressions. We could alternatively factorize
the schema into the representation

A(B + 1)(CD + G) + BCH (2)

which has fewer syntactic elements than Expression 1. Com-
mon occurrences of some attributes have been factored out.
The B + 1 subexpression allows tuples having either a valid
or a null value for attribute B.

Expression 2 does not have a direct relational interpreta-
tion, since there is no relational construct to express CD+G.
Nevertheless, one can map this expression to a set of tables
for storage as follows: Add a new unique identifier column
(say I) to represent the link between the A(B+1) subexpres-
sion and the (CD + G) subexpression, to yield tables ABI,
ICD, IG and BCH, where B can be null in ABI. This
transformation is correct only with constraints on the new
attribute I. The constraint for I in ABI says that the value
of I must appear in exactly one of ICD and IG. There must
also be foreign key constraints on I into ABI from both ICD

and IG.
An alternative rewriting of Expression 2 is

A(B + 1)[(CD + 1)(G + 1) − CDG − 1] + BCH (3)

The subtractions in Expression 3 are interpreted as con-
straints stating that (a) C, D, and G cannot all be non-null,
and (b) C, D, and G cannot all be null. This expression
can be mapped to a physical schema ABCDG, BCH, where
ABCDG has various null/not-null constraints on B, C, D,
and G.

If one cared only about attributes A, B, and C in this
schema, one could project out the other attributes to obtain
from 1 the simpler expression ABC + AB + AC + A + BC,
which could again be factorized in various ways. 2

Example 1.2. Yet another factorization of Expression 1
is

C(ABD + AD + BH) + ABG + AG (4)

This would be a natural factorization in a hierarchical or
object-oriented view in which C is the primary dimension
of classification and is inherited from a higher-level entity.
Unlike traditional object-oriented data modeling that imposes
a single hierarchical structure, our approach allows different
users with different points of view to “orient” the schema
according to the dimensions they are most interested in. In
such a case, the measure of simplicity for a user might give
added weight to the absence of redundancy for the C attribute
in Expression 4, since the user cares more about C than the
other attributes. 2

Example 1.3. As a final example, consider the expres-
sion

ABC + AB + BC + AC + A + B + C (5)

We might rewrite this expression as

(A + 1)(B + 1)(C + 1) − 1. (6)

This expression has the quality of a faceted classification
[20]. A tuple can independently have an A, B, and/or C at-
tribute, as long as it has at least one of them. One physical

representation of this schema would be a single table ABC

with constraints allowing any combination of null/not-null
values except all three being null. Another physical repre-
sentation, using a transformation similar to one used in Ex-
ample 1.1, would use three tables AI, BI, and CI with no
attributes allowed to be null. This second physical represen-
tation is “faceted” in the sense that it allows the storage of
A, B and C to happen independently. 2

Our choice of polynomial-like notation, with addition, mul-
tiplication, and subtraction is deliberate. As we shall demon-
strate formally, addition and multiplication satisfy the famil-
iar commutativity and distributivity laws (although subtrac-
tion does not satisfy all such laws), and all transformations
described above are valid for schema manipulation.

Our schema manipulation allows the use of nulls1 as a
legitimate design construct when it simplifies the schema,
as in Examples 1.1 and 1.3. Current design methodologies
sometimes frown on the use of nulls, stating that they should
be avoided or used only as a last resort. A dogmatic prohi-
bition of nulls can be counterproductive, and a judicious use
of nulls can lead to better conceptual and physical schemas.
Our methods allow for a disciplined use of nulls in order to
improve some quantitative measure of schema simplicity.

Data redundancy is a well-studied problem in the domain
of relational database systems. A number of normal forms
have been developed to address data redundancy and various
kinds of anomalies. Normalization can be incorporated into
our framework; see Section 2.2. Our work is complementary
to traditional normalization in that we try to minimize the
size of the conceptual-level schema representation, rather
than minimizing data redundancy.

In schema factorization we generate a variety of possible
equivalent expressions that make the schema concise or ori-
ent the schema to the point of view of the user. Another
application of schema polynomials is the representation of
complex relationships in the presence of constraints. Given
entities and their inheritance hierarchy as input, relation-
ship factorization generates a variety of possible equivalent
expressions that take constraints into account, and orient
the relationships to the user’s point of view.

The rest of this paper is organized as follows. We formally
define the proposed schema description language in Sec-
tion 2, and describe a class of rewrite rules that allow auto-
matic generation of relational, object-oriented, and faceted
physical representations in Section 3. The complexity of
finding minimal schema representations is discussed in Sec-
tion 4, followed by experimental results demonstrating the
potential of schema factorization in Section 5. We develop
an application of schema polynomials to relationships and
constraints in Section 6. Related work is outlined in Sec-
tion 7. We discuss future work and conclude in Section 8.

2. SCHEMA EXPRESSIONS
The basic notion in describing schemas is the attribute.

We shall assume that two instances of the same attribute
name denote the same concept. Thus we avoid generic
attribute labels like “name”, and prefer specific labels like

1Nulls have been used with a variety of interpretations. For
us, null means“not applicable”. Very different designs would
apply if one was to interpret null as “value at present un-
known” [14] or “no information” [5].

“person-name”or “company-name”. We assume without fur-
ther comment that attributes have data types from some
type language, and that data values in the database have
the correct types with respect to the attribute’s data types.
We will use the symbols A, B, C, etc. to denote attributes.

2.1 Tuple Descriptors and Tuples

Definition 2.1. A tuple-descriptor T is defined recur-
sively using the following context free grammar:

T ::= 0 | 1 | A | B | C | . . . | TT | T + T | T − T

We will describe the concatenation TT as multiplication.
A, B, C, . . . are the attribute names, 1 is a special symbol
denoting an empty product (i.e., the empty set of attributes),
and 0 is a special symbol denoting an empty sum. 2

A tuple-descriptor is a schema-level constraint that de-
scribes the set of valid tuples in the database. This idea is
formalized below.

Definition 2.2. A tuple is a set of (attribute, value) pairs
(ai, vi), with no attribute name ai appearing more than once.
The empty tuple ε (with no attributes) is permitted. A tuple
t matches a tuple-descriptor T if and only if:

1. T = 1 and t = ε.

2. T is a single attribute, and t contains a single pair
(T, v) for some value v.

3. T = T1T2 and there exist t1 and t2 such that t1∪t2 = t,
t1 matches T1, and t2 matches T2.

4. T = T1 + T2, and t matches either T1 or T2.

5. T = T1 − T2, t matches T1, and t does not match T2.

Note that no tuples match the tuple-descriptor 0. 2

Definition 2.3. If S is a set of tuples, we say S matches
a tuple descriptor T if every tuple in S matches T . We
denote by S(T) the set of all tuples that match T . 2

Definition 2.1 provides the syntax for tuple descriptors.
The semantics of a tuple-descriptor T is the collection of
tuples S(T) that match T according to Definition 2.2. We
write T1 = T2 if T1 and T2 admit exactly the same tuples,
even if T1 and T2 are not syntactically identical. Based on
Definition 2.2, we identify the following properties of tuple-
descriptors.

Lemma 2.1. Given tuple-descriptors T1 and T2

• T1 − T2 = 0 if and only if S(T1) ⊆ S(T2).

• T1 − T2 = T1 if and only if S(T1) ∩ S(T2) = ∅.

Proof. Both properties follow directly from set algebra.

• S(T1−T2) = S(T1)−S(T2) = ∅ if and only if S(T1) ⊆
S(T2).

• S(T1 − T2) = S(T1) − S(T2) = S(T1) if and only if
S(T1) ∩ S(T2) = ∅.

2

Lemma 2.2. Addition and multiplication on tuple-descrip-
tors are commutative and associative. Addition and subtrac-
tion are idempotent, i.e., (T1 − T2) − T2 = T1 − T2. Mul-
tiplication of attributes is idempotent. 1 is a multiplicative
identity, 0 is an additive identity and a right-identity for
subtraction, 0T = T0 = 0 for all T , and multiplication dis-
tributes over addition.
Proof.

• Commutativity of addition follows directly from Defi-
nition 2.2: T = T1 + T2 = T2 + T1.

• Commutativity of multiplication follows directly from
Definition 2.2: T = T1T2 = T2T1.

• Associativity of addition follows from associativity of
set-union:
S((T1 + T2) + T3) = S(T1 + T2) ∪ S(T3) = (S(T1) ∪
S(T2)) ∪ S(T3) = S(T1) ∪ (S(T2) ∪ S(T3)) = S(T1 +
(T2 + T3))

• We show associativity of multiplication as follows.
Consider a tuple t that matches a tuple-descriptor T =
(T1T2)T3. Since t matches T , then there exist tuples
t12 and t3 such that t12 ∪ t3 = t, t12 matches T1T2

and t3 matches T3. Since t12 matches T1T2, then there
exist tuples t1 and t2 such that t1 matches T1 and t2
matches T2 and t12 = t1 ∪ t2.
But then there also exists a tuple t23 = t2 ∪ t3 that
matches T2T3. Note that t23 does not have two differ-
ent values for the same attribute, since t23 ⊆ t. Since
t1 matches T1 and t23 matches T2T3, then t = t1∪t2∪t3
matches T1(T2T3).

• We show idempotence of multiplication over attributes
as follows. TT ⊆ T by Definition 2.2 part 3, choosing
t1 = t2 = t. For a single attribute T , if t1 matches T

and t2 matches T then t1 and t2 must share the same
attribute name. If they have different values, then t1 ∪
t2 is not a tuple. If they have the same value, then
t1 = t2 matches T .

• Idempotence of addition follows directly from idempo-
tence of set-union:
S(T + T) = S(T)∪ S(T) = S(T).

• Idempotence of subtraction follows from itempotence of
set-difference:
S(T1 − T2 − T2) = S(T1) − S(T2) − S(T2) = S(T1) −
S(T2) = S(T1 − T2)

• We show distributivity of multiplication over addition
as follows.
We first demonstrate that T1(T2 + T3) ⊆ T1T2 + T1T3.
Consider a tuple t that matches T1(T2 + T3). There
exist tuples t1 and t23 such that t1 matches T1 and t23
matches T2 or T3, and t = t1 ∪ t23. We choose T2

or T3 depending on which of the two tuple-descriptors
t23 matches; say, without loss of generality, that t23
matches T2. Then t1∪t23 matches T1T2 ⊆ T1T2+T1T3.
Let us now show that T1T2+T1T3 ⊆ T1(T2+T3). If tu-
ple t matches T1T2, then there exist t1 and t2 such that
t1 matches T1 and t2 matches T2. Since t2 matches T2,
it also matches T2 + T3. So t matches T1(T2 + T3). A
similar analysis holds when t matches T1T3.

• The fact that 1 is a multiplicative identity follows di-
rectly from the definition: T and T1 admit exactly the
same set of tuples, since t ∪ ε = t.

• The fact that 0 is an additive identity also follows from
the definition.
S(T + 0) = S(T)∪ S(0) = S(T) + ∅ = S(T).

• Finally, we see that 0 is the right identity of subtraction
because
S(T − 0) = S(T)− S(0) = S(T) − ∅ = S(T).

2

The idempotence of addition means that it does not mat-
ter how many times a particular combination of attributes
appears in a sum; what matters is just whether the combi-
nation appears at all.2 The idempotence of multiplication
means that repeated instances of an attribute in a product
term of a tuple-descriptor are not significant. In other words,
saying twice that a tuple has an attribute is the same as say-
ing it once. Note that multiplication of tuple-descriptors is
not idempotent: (A + BC)(A + BC) = A + BC + ABC 6=
A + BC. Subtraction is not associative with addition, since
A + (A − A) = A 6= (A + A) − A = 0. However, we can
get a limited form of associativity according to the following
lemma.

Lemma 2.3. Let T1, T2, and T3 be tuple-descriptors. T1+
(T2 − T3) = (T1 + T2) − T3 if and only if T3 − T1 = T3.
Proof. By Definition 2.2, S(T3) − S(T1) = S(T3). Using
this, and the property of set algebra that (B − A) ∪ C =
(B ∪ C) − (A− C), we have:

S(T1 + (T2 − T3)) = S(T1) ∪ (S(T2) −S(T3))

= (S(T1) ∪ S(T2)) − (S(T3) − S(T1))

= (S(T1) ∪ S(T2)) −S(T3)

= S((T1 + T2) − T3)

2

Multiplication does not distribute over subtraction, since,
for example, B(AB − A) = AB 6= (AB − AB) = 0.

Definition 2.4. A tuple-descriptor is in additive normal
form if it has no subtractions, and consists of a sum of prod-
ucts of attributes: In each product, no attribute is mentioned
more than once, and there are no repeated product terms. 2

Lemma 2.4. Every tuple-descriptor has an equivalent tuple-
descriptor in additive normal form. The additive normal
form representation is unique up to the order of terms in
sums and products.
Proof of existence: For expressions without subtractions, the
transformation is standard, and is similar to a disjunctive
normal-form transformation using De Morgan’s Laws. Sub-
tractions can be eliminated inductively from inner subexpres-
sions outwards. Given T1 − T2 where neither T1 nor T2

contain subtractions, construct additive normal form expres-
sions T ′

1 and T ′
2 equivalent to T1 and T2 respectively. Elimi-

nate from T ′
1 any product terms appearing in T ′

2. The result

2There is no notion of a “relation name” for tuples. Any
semantic information that might be embedded in a table
name in a relational database (such as calling a table “part-
time-employees”) has to be provided instead via attribute
names and values.

is an additive normal form representation of T1 − T2.
Proof of uniqueness: Suppose that, in addition to T ′, there
existed another tuple-descriptor T ′′, such that T is equiva-
lent to T ′′, T ′′ is in additive normal form, and T ′ and T ′′ are
not syntactically identical. The transformation to additive-
normal form is correct, in the sense that T ′ and T ′′ are both
equivalent to T : S(T) = S(T ′) = S(T ′′). By definition of
additive normal form, a tuple t matches a tuple-descriptor in
additive-normal form if it matches exactly one additive term
in the descriptor. If T ′ and T ′′ are not syntactically identi-
cal, then let us suppose, without loss of generality, that there
exists an additive term T1 in T ′ but not in T ′′. However,
S(T ′) = S(T ′′) + S(T1) = S(T ′′) if and only if S(T1) = ∅.
Then, by Definition 2.2, T1 = ε. 2

Definition 2.5. Given tuple-descriptors T1 and T2, we
say that T1 subsumes T2 if, for every tuple t such that t

matches T2, t also matches T1. 2

Lemma 2.5. A tuple-descriptor T1 subsumes a tuple-des-
criptor T2 if and only if, in the additive normal forms T ′

1 and
T ′

2 of T1 and T2 respectively, every product term appearing
in T ′

2 also appears in T ′
1.

Proof. Given that S(T2) ⊆ S(T1), then also S(T ′
2) ⊆ S(T ′

1).
Tuple t matches T ′

2 if it matches exactly one term S in T ′
2.

Since t also matches T ′
1, the term S must be present in T ′

1.
2

Definition 2.6. Given tuple-descriptors T1 and T2, we
define T1 ∩T2 to mean the set of tuples t that match both T1

and T2. 2

Lemma 2.6. For any pair of tuple-descriptors T1 and T2,
there exists a tuple-descriptor T equivalent to T1 ∩ T2.
Proof. T can be constructed by taking the additive nor-
mal forms of T1 and T2 and retaining only product terms
that appear in both. If there are no common product terms,
T1 ∩ T2 = 0. Consider expressions T ′

1 and T ′
2 that represent

additive normal forms of T1 and T2, respectively. A tuple t

matches T1 iff it matches exactly one additive term in T ′
1,

call it S1. Likewise, t matches a single additive term in T ′
2,

call it S2. Since t matches both S1 and S2, and since S1 and
S2 are in additive normal form, then S1 must be syntacti-
cally identical to S2. 2

As a result of Lemmas 2.5 and 2.6, it is possible to syn-
tactically determine the subsumption and intersection rela-
tionships between tuple-descriptors.

When a user is interested in only a subset of attributes,
the schema could be projected onto just that subset. For
expressions without subtraction, there is a simple transfor-
mation: replace all instances of unwanted attributes by 1.
This transformation is not valid for expressions with sub-
traction, so an equivalent subtraction-free tuple-descriptor
(such as its additive normal form) should be derived before
projecting out attributes.

We remark that we were tempted to include division in our
formalism to represent overriding. One might write A(B +
C + A−1D) to represent the overriding of attribute A by
D in a subclass of the class defining attribute A. However,
adding division would make multiplication non-associative,
since (AA)A−1 = 1 6= A(AA−1) = A. In future work, we
plan to examine syntactic restrictions on tuple-descriptors
that might avoid such problems.

2.2 Relationship to Other Schema Design For-
malisms

Our formalism bases its semantics on the set of tuples that
a tuple-descriptor permits. But where does the “correct” set
of tuples for an application come from? This is an important
question, because a poor choice of tuple types can lead to
substantial data redundancy and insertion/deletion/update
anomalies.

We propose to take as input to our conceptual framework,
the output of a conventional design tool. Instead of gener-
ating relations, textbook ER-diagram-to-table transforma-
tions can be recast as transformations from ER-diagrams to
tuple-descriptors. (Some ER-diagram elements such as car-
dinality constraints are not representable as tuple-descriptors,
and would need to be re-examined once a physical design is
chosen.) Similarly, instead of generating tables directly, a
relational normalization algorithm could generate a tuple-
descriptor. For example, if the Boyce-Codd normal form
(BCNF) of a schema was {ABC, CDE, EF}, then we would
take the expression ABC+CDE+EF as the corresponding
tuple-descriptor.

Two different normalizations of the same initial set of at-
tributes may lead to nonequivalent tuple-descriptors. Con-
sider the simple schema ABC with functional dependencies
A → B and A → C. {ABC} is in BCNF, as is the schema
{AB, AC}. But ABC and AB + AC are not equivalent
tuple-descriptors. {ABC} is the superior normalization be-
cause {AB, AC} needs additional foreign key constraints to
embody the same information. If B and C are permitted
to be null, but A was not, then we would map {ABC} to
A(B + 1)(C + 1) instead.

3. PHYSICAL REPRESENTATIONS
Given a schema expression, we describe a class of rewrite

rules that allows the automatic generation of physical repre-
sentations. Multiple rewrite rules may be valid for a single
expression, leading to multiple options for the physical rep-
resentation. We assume that a physical column must be
non-null, unless nulls are explicitly allowed via a constraint.
In some of the rewrite rules, a new “identifier attribute” is
added to the schema. A constraint stating that this attribute
is unique should be attached to every physical structure in
which it appears. We distinguish between subexpressions T

that are part of the original expression, and new identifier
attributes I that are introduced during the rewrite process.

While we have not precisely defined the class of constraints
that are allowed, all of the constraints mentioned in the
rewrite rules are easily expressed in conventional relational
constraint formalisms. Some of the rewrite rules place con-
straints on the representations of subexpressions. Since these
subexpressions may themselves be further decomposed, such
constraints may need to be expressed as constraints on views
over the decomposed representations.

3.1 Relational Physical Representation
For the relational rewrite rules, we assume that the phys-

ical representation language provides the table as the ab-
stract storage type. There are several data structures that
could be used to represent a table, but the choice of data
structure is orthogonal to the choice of which tables to build.

Rewrite Rule 3.1. Given an expression equal to 0, gen-
erate the empty physical representation. 2

Rewrite Rule 3.1 handles cases where a recursive applica-
tion of other rules requires a representation for an expression
like 1 − 1.

Rewrite Rule 3.2.

(a) Given an expression of the form A1 . . . An(B1 + 1) . . .

(Bm +1), construct a table with n+m columns match-
ing the attributes A1, . . . , An, B1, . . . , Bm, and a con-
straint that allows each of B1, . . . , Bm to be null.

(b) Given an expression of the form IA1 . . . An(B1 +1) . . .

(Bm + 1), construct a table with n + m + 1 columns
matching the attributes I, A1, . . . , An, B1, . . . , Bm, and
a constraint that allows each of B1, . . . , Bm to be null.
2

Rewrite Rule 3.3.

(a) Given an expression T1 + T2, construct the union of
the physical representations R1 and R2 of T1 and T2

respectively.

(b) Given an expression I(T1+T2), where I is an identifier
attribute, construct the union of the physical represen-
tations R1 and R2 of IT1 and IT2 respectively, and add
a constraint requiring that the values of I in R1 and
R2 are disjoint. 2

Note that in Rewrite Rule 3.3, when T1∩T2 is non-empty,
we have some flexibility about whether a tuple matching
T1 ∩ T2 is stored in R1, R2, or both.

Example 3.1. Consider the expression

ABCDE + ABCE + ABDE + ABE + AE + BE + E

which we might choose to factorize as E(A + 1)(B + 1) +
EAB(C + 1)(D + 1). Using Rewrite Rules 3.3 and 3.2, we
obtain the schema EAB, EABCD with constraints: (a)
Each of A and B may be null in EAB; (b) Each of C and
D may be null in EABCD; (c) Every non-null EAB triple
in EAB must appear in EABCD and vice versa. 2

Rewrite Rule 3.4.

(a) Given an expression of the form T1 − T2, let T ′
2 be the

additive normal form of T2. Construct the physical
representation of T1, and add a constraint that disal-
lows each of the combinations of null/non-null values
described by the product terms of T ′

2.

(b) Given an expression of the form I(T1 − T2), let T ′
2 be

the additive normal form of IT2. Construct the physi-
cal representation of IT1, and add a constraint that dis-
allows each of the combinations of null/non-null values
described by the product terms of T ′

2. 2

Example 3.2. Consider the factorized expression
A(B +1)(C +1)−AC. Using Rewrite Rules 3.4 and 3.2, we
would generate a physical schema ABC in which B and C

are allowed to be null, and if B is null, C must be null. 2

Rewrite Rule 3.5. Given an expression T without any
identifier attributes, let I be a new identifier attribute, and
recursively construct the physical representation of IT . 2

Rewrite Rule 3.6. Given an expression of the form
IT1T2, where the sets of attributes that appear in T1 and
T2 are disjoint, recursively construct physical representations
R1 and R2 for IT1 and IT2 respectively. Add an integrity
constraint stating that any tuple in R1 must have exactly one
tuple in R2 matching on the I column, and vice-versa. 2

Rewrite Rule 3.7. Given an expression of the form
I(T1+1)T2, where the sets of attributes that appear in T1 and
T2 are disjoint, recursively construct physical representations
R1 and R2 for IT1 and IT2 respectively. Add an integrity
constraint stating that any tuple in R1 must have exactly one
tuple in R2 matching on the I column. 2

Rewrite Rule 3.8. Given an expression of the form
I((T1 + 1)T2 − 1), where the sets of attributes that appear in
T1 and T2 are disjoint, and where T2 subsumes 1, recursively
construct physical representations for IT1 and I(T2 − 1) re-
spectively. (No constraints are added.) 2

Example 3.3. Consider again the expression of Exam-
ple 3.1 which we might choose to factorize instead as E(A+
1)(B+1)+EAB[(C+1)(D+1)−1]. Using Rewrite Rules 3.3,
3.2, 3.5, 3.6, 3.8, and 3.1, we would obtain the schema
EAB, EABI, IC, ID with the following constraints: (a)
Each of A and B may be null in EAB; (b) Every I value in
EABI must appear in at least one of IC and ID; (c) Every
I value in IC must appear in EABI; (d) Every I value in
ID must appear in EABI; (e) Column I is unique in each
table containing I. 2

Comparing Examples 3.1 and 3.3, we see two quite dif-
ferent physical representations for the same initial expres-
sion. While the factorization of Example 3.1 was more con-
cise, and the physical representation required fewer tables,
the generated physical representation contains some data re-
dundancy: EAB triples are stored twice. This redundancy
could improve performance (some queries are faster because
one table can be consulted rather than two) or worsen per-
formance (updates need to modify two copies), and the net
benefit depends on the workload. Note that we are not con-
cerned with other typical pitfalls of redundancy, such as in-
consistent updates. Insertions/deletions would be performed
on the conceptual schema and automatically translated into
modifications to the data in the physical schema. As long as
the transformations are correct, inconsistent copies cannot
arise.

Lemma 3.1. The collection of rewrite rules above is cor-
rect, in the sense that a tuple set S matches a tuple-descriptor
if and only if S, extended with unique values of identifier at-
tributes, can be faithfully represented in the generated set of
tables with constraints.
Proof. The proof is by induction on the size of the expres-
sion, with a separate argument for each rewrite rule:

• Rule 3.1 trivial.

• Rule 3.2 Any tuple matching A1 . . . An(B1+1) . . . (Bm+
1) must include all attributes Ai, may optionally in-
clude any number of the Bi attributes, and cannot in-
clude any other attributes. This is exactly the class of
tuples representable in a table A1 . . . AnB1 . . . Bm with
the Bi columns allowed to be null.

• Rule 3.3(a): Let S1 be the fragment of S satisfying
T1, and similarly for S2 and T2. By the induction hy-
pothesis, the physical representations R1 and R2 can
faithfully represent S1 and S2 respectively, and so this
pair of tables together do indeed represent tuples that
match either T1 or T2.

• Rule 3.3(b): Similar to Rule 3.3(a). The disjointness
condition prevents the combination of the two physical
tables from violating the property that I is an identifier
attribute.

• Rule 3.4: straightforward.

• Rule 3.5: trivial.

• Rule 3.6: Because T1 and T2 have disjoint attributes,
we can partition each tuple t ∈ S into parts t1 and t2
such that ti mentions only the attributes in ITi, and
t = t1∪t2. Let S1 be the set of tuple parts t1, and simi-
larly for S2. By the induction hypothesis, R1 faithfully
represents S1 and R2 faithfully represents S2. S can
be reconstructed as the join of R1 and R2 on I, which
is lossless because I is a key attribute. The constraints
between R1 and R2 prevent the possibility of a dangling
tuple, e.g., an S1 tuple without a matching S2 tuple.

• Rule 3.7: Similar to Rule 3.6. The difference here is
that it is possible to have an S2 tuple without a match-
ing S1 tuple.

• Rule 3.8: Similar to Rule 3.6.

2

Lemma 3.2. The collection of rewrite rules above, in con-
junction with the transformation to additive normal form,
is complete, in the sense that every tuple-descriptor can be
rewritten into a corresponding relational representation.
Proof. Tuple-descriptors are generated by a context free
grammar in Definition 2.1. Let us show how each produc-
tion of the grammar is handled by the rewrite rules. We
apply rewrite rules recursively, using an inductive argument
on the number of operators in the expression. Given a tuple-
descriptor T , rewrite rules are considered in the following
order:

• If T = 0 apply Rewrite Rule 3.1.

• If T = 1 or T is of the form A1 . . . An(B1+1) . . . (Bm+
1) apply Rewrite Rule 3.2.

• If T is in additive normal form, apply Rewrite Rule 3.3.

• If T is of the form T1 − T2 apply Rewrite Rule 3.4.

• If T does not contain any identifier attributes, apply
Rewrite Rule 3.5, transforming the tuple-descriptor to
IT .

• If T is of the form I((T1 + 1)T2 − 1) apply Rewrite
Rule 3.8.

• Consider now a tuple-descriptor T = IT1T2 such that
the set of attributes that appear in T1 and T2 are dis-
joint. If T is of the form I(T1 + 1)T2 apply Rewrite
Rule 3.7. Otherwise apply Rewrite Rule 3.6.

• If T is of the form T1T2 and the sets of attributes in T1

and T2 are not disjoint, we must transform T into ad-
ditive normal form, and then apply Rewrite Rules 3.3
and 3.2 as described above.

2

3.2 Object-Oriented Physical Representation
In an object-oriented system, the basic abstraction is the

class. For each attribute A in the system, a special class
has A is defined with a single attribute A.3 A class C1 can
inherit from another class C2, in which case every attribute
defined for C2 is also valid for C1. The inheritance rela-
tion between classes must be acyclic, and the special has A
classes do not inherit from other classes. A class C admits
a tuple t as an instance if and only if t and C have exactly
the same set of attributes. A class can be declared as virtual
meaning that it is not permitted to have instances.

Definition 3.1. Let T be a tuple-descriptor. We say T

is simple if it can be generated by the following context-free
grammar.

S ::= A | B | C | . . .

T ::= 1 | S | ST | T + T

2

A simple tuple-descriptor is one that has no subtraction, and
in which every left-multiplier is a single attribute. Since the
additive normal form is simple, every tuple-descriptor has
at least one equivalent simple representation.

A simple tuple-descriptor can be rewritten into an object-
oriented physical representation using the following rewrite
rules. During rewriting, we keep track of a “parent set” P

that links a subclass to its containing superclass(es). The
initial parent set of the complete expression is empty. We
assume that all classes are virtual unless explicitly marked
as “nonvirtual” by one of the rewrite rules.

Rewrite Rule 3.9. Given the expression 1, and a par-
ent set P , mark each class in the parent set as nonvirtual.
2

Rewrite Rule 3.10. Given a tuple-descriptor T of the
form A1, . . . , An, and a parent set P , create a new class C.
C inherits from each class in P . C also inherits from each
of the classes has A1, . . . , has An. Mark C as non-virtual.
2

Rewrite Rule 3.11. Given a tuple-descriptor T of the
form A1, . . . , AnT1, and a parent set P , create a new class C.
C inherits from each class in P . C also inherits from each of
the classes has A1, . . . , has An. The physical representation
of T1 is recursively constructed with parent set {C}. 2

Rewrite Rule 3.12. Given an expression T of the form
T1 + T2, and a parent set P , recursively construct physical
representations of each T1 and T2, both with parent set P .
2

3The point of these has A classes is to ensure that attributes
with the same name inherited on different paths are the same
attribute.

has_A has_BC1

C2 C3

has_E

C4
has_C has_D

C5 C6

C7

Figure 1: Object-oriented schema with multiple in-

heritance

Rewrite Rule 3.13. Given an expression T of the form
S1T1+S2T2+S1S2T3, where S1 and S2 are products of single
attributes, and a parent set P , proceed as follows. Construct
classes C1 and C2, both of which inherit from all classes
in P . Construct a class C3 that inherits from both C1 and
C2. For each i, if attribute Ai appears in S1, then C1 in-
herits from has Ai, and if attribute Ai appears in S2, then
C2 inherits from has Ai. Recursively construct the physical
representation of T1 with parent set {C1}. Recursively con-
struct the physical representation of T2 with parent set {C2}.
Recursively construct the physical representation of T3 with
parent set {C3}. 2

Rewrite Rule 3.13 identifies one kind of multiple inher-
itance. There are many other patterns that could be de-
tected as multiple inheritance, and corresponding rewrite
rules could be derived if such patterns were common.

Example 3.4. Consider once more the expression of Ex-
ample 3.1 which we now factorize as the simple expression

E[1 + A + B + AB(1 + C + D + CD)]

Using Rewrite Rules 3.11, 3.9, 3.10 and 3.13, we would ob-
tain the double-diamond schema shown in Figure 1, with all
classes Ci nonvirtual. 2

Lemma 3.3. The collection of rewrite rules above is cor-
rect, in the sense that a tuple set S matches a tuple-descriptor
if and only if S can be faithfully represented by the set of
nonvirtual classes in the generated physical schema.
Proof. First observe that the parent set for any rewrite con-
struction is either empty (for the initial rewrite application),
or contains a single class (for recursively spawned rewrite ap-
plications). At any intermediate point in the construction,
a class C will inherit from various other classes. Once the
inheritance relationship for C is fixed by a rewrite rule, sub-
sequent rewrite rules do not change the inheritance structure
of C, since they work either on subclasses of C, or on classes
on separate branches of the hierarchy. Thus it makes sense
to define att(C), the set of attributes inherited by C, at any
point of the construction after C is created.

Consider an expression T that has not yet been rewritten
at a certain point during the computation, and let {C} be

the parent set of T . Let N(T) be the additive normal form
of att(C)T , the product of the attributes inherited by C with
T . In the event that T has an empty parent set, N(T) is
simply the additive normal form of T .

We claim that the following expression is left invariant by
all of the rewrite rules:

X

Non-virtual classes Ci

att(Ci) +
X

Non-rewritten terms Tj

N(Tj)

• Rule 3.9 takes a term Tj = 1 with parent set {Ci} and
marks Ci non-virtual. The term att(Ci) is removed
from the second sum, but added to the first sum.

• Rule 3.10 takes a term Tj = A1 . . . An with parent set
{C′} and creates a new non-virtual class C inherit-
ing A1, . . . , An. The term att(C ′)A1 . . . An is removed
from the second sum, but added to the first sum.

• Rule 3.11 takes a term T = A1 . . . AnT1 with parent set
{C′} and creates a new class C inheriting attributes
A1, . . . , An and att(C′). The term T1 remains to be
rewritten. The removal of T from the second sum,
combined with the addition of T1 to the second sum
leaves the sum unchanged.

• Rule 3.12 takes a term T = T1 + T2 with parent set
{C′} and recursively performs two rewritings, for T1

and T2, each with parent set {C ′}. The removal of T

from the second sum, combined with the addition of T1

and T2 to the second sum leaves the sum unchanged,
due to the distributivity of multiplication over addition
(Lemma 2.2).

• Rule 3.13 is similar to the previous cases. One term
is removed from the second sum, and replaced by three
new terms. Distributivity again ensures that the net
effect is that the sum is unchanged.

Before any rewriting takes place, the result of the invariant
is just the additive normal form of the initial expression.
Once all terms have been rewritten, the result of the invari-
ant is the sum of all attribute combinations at non-virtual
nodes. Because the invariant is invariant, these expressions
must be equal. The construction terminates because recur-
sive rewriting steps are applied to subexpressions that are
strictly smaller than the initial expression. 2

Lemma 3.4. The collection of Rewrite Rules 3.9, 3.10,
3.11, and 3.12 is complete, in the sense that every tuple-
descriptor can be rewritten into a corresponding relational
representation.
Proof. The rewrite rules recognize certain outermost opera-
tors, and decompose the problem into smaller subproblems.
Each possible outer operator has a matching rewrite rule
that applies. Tuple-descriptors are generated by a context
free grammar in Definition 3.1. Let us show each produc-
tion of the grammar is handled by the rewrite rules. We
apply rewrite rules recursively, using an inductive argument
on the number of operators in the expression. Given a tuple-
descriptor T , rewrite rules are considered in the following
order:

• If T = 1 apply Rewrite Rule 3.9.

• If T is a single attribute, or a product of attributes,
apply Rewrite Rule 3.10.

• If T is of the form A1 . . . AnT1 apply Rewrite Rule 3.11.

• If T is of the form T1 + T2 apply rewrite rule 3.12.

Additional Rewrite Rules, such as Rule 3.13 can be intro-
duced to generate more efficient physical representations.
However, Rules 3.9, 3.10, 3.11, and 3.12 are sufficient to
handle any object-oriented tuple-descriptor.

2

3.3 Faceted Physical Representation
The faceted data model represents objects in the domain

of discourse as collections of clearly defined, mutually exclu-
sive, and collectively exhaustive aspects, properties or char-
acteristics [20].

Definition 3.2. Let T be a tuple-descriptor. We say T

is purely faceted if (a) it can be generated by the following
context-free grammar:

S ::= A | B | C | . . . | SS

T ::= 1 | S + 1 | TT

and (b) in every subexpression of the form T1T2 in T , the
attributes appearing in T1 are disjoint from the attributes
appearing in T2. 2

A purely faceted tuple-descriptor contains no subtraction
or addition (besides right-addition with 1). A facet is defined
by a product of attributes, S in Definition 3.2. Each facet
is optional and may appear in combination with any other
facet. Because of the disjointness requirement, each facet F

splits the universe of discourse into two mutually exclusive,
collectively exhaustive sets of entities: those that have F

and those that do not. While some tuple-descriptors, such
as A + B, cannot be written in a purely faceted form, it is
relatively straightforward to show the following lemma.

Lemma 3.5. Every tuple-descriptor is equivalent to a tuple-
descriptor of the form T1 − T2 where T1 is purely faceted.
Proof. Given a tuple descriptor T , we may transform it into
the form T1−T2 using the following procedure. First, gener-
ate an additive normal form of T , call it T ′. Next, generate
a purely faceted T1 by including a multiplicative term (Ai+1)
for each distinct attribute Ai in T . Now expand T1 into its
additive normal form T ′

1. Finally, generate T2 = T ′
1 − T ′,

i.e., T2 includes all additive terms that are there in T ′
1 but

not in T ′. 2

As an example of Lemma 3.5, A + B would be expressed
as (A+1)(B+1)−(AB+1). Based on Lemma 3.5, one could
rewrite expressions that are “close” to being faceted (i.e., the
orthogonal composition of disjoint facets) as a purely faceted
schema with the subtraction interpreted as a constraint on
the allowed combinations of facets. Rewrite rules for an
underlying faceted physical representation are analogous to
Rewrite Rules 3.2 and 3.4 for relational schemas.

For an example of a faceted re-writing consider again Ex-
ample 1.3, and its faceted factorization (A + 1)(B + 1)(C +
1)− 1. We first apply Rewrite Rule 3.4, that instructs us to
construct a physical representation of (A+1)(B +1)(C +1),
and then add a constraint that disallows A, B, and C to
all be null. We construct the physical representation of
(A + 1)(B + 1)(C + 1) as per Rewrite Rule 3.2, by creating
a table with 3 columns, one for each attribute, and allowing
each of A, B, and C to be null.

An alternative rewriting can use Rewrite Rules 3.5 and 3.8
to obtain three tables IA, IB, IC.

4. FACTORIZATION COMPLEXITY
Our formalism has some syntactic similarities to digital

circuit design. However, some of the basic equivalence trans-
formations of boolean circuit expressions are different from
transformations in our algebra. For example, while in a dig-
ital circuit X + Y + XY can be equivalently rewritten as
X + Y , this equivalence does not hold for schema factor-
ization. Nevertheless, some techniques demonstrated in this
paper (e.g., Rewrite Rule 3.13), are similar in spirit to digital
circuit optimization. Minimization of boolean expressions is
NP-hard, with the exact complexity depending on the repre-
sentation of the expression[19]. While schema factorization
does not directly reduce to digital circuit optimization, we
still expect the problem of finding the shortest expression for
a schema to be difficult (likely exponential) in the general
case.

Schema factorization also bears some similarities to alge-
braic polynomial factorization, with the difference that term
constants and exponents are 0 or 1, due to idempotence
of addition and of multiplication of attributes. Similarly
to boolean and algebraic polynomial expressions, schema
polynomials can be represented with a kernel cube matrix
(KCM) [12]. Minimizing a polynomial expression repre-
sented by a KCM is equivalent to finding a maximum val-
ued covering of the KCM, and is analogous to the minimum
weighed rectangular covering problem described in [9], which
is NP-hard.

5. FACTORIZATION POTENTIAL
In this section, we try to quantify the potential concise-

ness benefits of schema factorization. A complete design of
a large real-world schema is beyond the scope of this paper.
Nevertheless, we can assess the potential for reducing the
schema complexity by taking an existing large schema, and
measuring the decrease in schema redundancy obtained by
applying some simple factorization heuristics. The schema
we shall use is the data dictionary (i.e., catalog) of the Or-
acle 9i commercial database system [2]. We start with the
additive normal form of the tables in the schema.

We use the number of attributes needed to write down the
schema as our rough measure of schema complexity. This
measure is both simple and independent of the physical rep-
resentation of the resulting expression. The heuristics we
employ do not change the number of addition operators, and
do not increase the number of multiplications, so a reduc-
tion in the number of attributes represents a real reduction
in the total size of the expression.

Heuristic 5.1. Factor out all common attributes from
two or more expressions in a sum, starting with expressions
sharing the most common attributes. 2

Heuristic 5.2. Factor out a single attribute from two or
more expressions in a sum, starting with attributes appearing
in the greatest number of expressions. 2

Heuristic 5.3. Combine Heuristics 5.1 and 5.2: at each
step, estimate which heuristic will produce a more compact
expression at the next step, and choose that heuristic. 2

In Heuristic 5.3 we break ties in favor of Heuristic 5.2; this
choice produced more compact results overall.

Columns Column Redundancy

Schema Tables Total Distinct Average Max

TAB 17 301 114 2.64 15
MVIEW 21 176 127 1.39 11
LOGMNR 37 313 140 2.24 29
REPCAT 43 324 187 1.73 20
ALL 446 3601 1621 2.22 148

Figure 2: Schema statistics

Average Redundancy Max Redundancy

Schema Heur. 1 Heur. 2 Heur. 3 Heur. 1 Heur. 2 Heur. 3

TAB 1.82 1.51 1.82 8 4 5
MVIEW 1.17 1.21 1.20 6 3 3
LOGMNR 1.59 1.35 1.39 12 6 6
REPCAT 1.43 1.32 1.32 10 5 5
ALL 1.63 1.50 1.54 59 9 24

Figure 3: Effect of heuristics on column redundancy

Example 5.1. Consider again the expression

ABCDE + ABCE + ABDE + ABE + AE + BE + E

of Example 3.1. This expression contains 5 unique attribute
names, but it takes 21 occurrences of these attributes to write
down the expression. Heuristic 5.1 transforms this expres-
sion into ABCE(D + 1) + ABE(D + 1) + E(A + B + 1),
bringing complexity measure down to 12. Heuristic 5.2 gen-
erates E(A(B(C(D + 1) + D + 1) + 1) + B + 1). It now
takes 7 attributes to write down the schema expression, a
significant improvement. Heuristic 5.3 happens to produce
the same expression as Heuristic 5.2 for this example. 2

We applied our heuristics to the schema as a whole (we re-
fer to this as schema ALL), as well as to several sub-schemas,
to highlight that different sections of the schema exhibit dif-
ferent degrees of redundancy, and can benefit from the use of
our heuristics to different extent. We chose 4 sub-schemas of
the Oracle data dictionary schema for our experiments: TAB
(table management); MVIEW (materialized view manage-
ment); LOGMNR (operation of the Oracle LogMiner util-
ity); and REPCAT (replication).

We identified members of the sub-schemas based solely on
table names. For example, tables that contain TAB in their
name were included into the TAB sub-schema. Properties of
the schema and its sub-schemas are summarized in Figure 2.
Average redundancy is the total number of columns, divided
by the number of distinct columns. For a non-redundant
schema, this measure is 1. Max redundancy lists the number
of times the most frequently used column appeared in the
schema expression.

We summarize the result of applying heuristics to our
schemas in Figure 3. Using any of the simple heuristics leads
to a significant reduction in the average column redundancy.
More sophisticated heuristics, such as those developed in [9,
12], may be used in addition to the heuristics described in
this section.

Our heuristics act on existing schema expressions. Such
processing is retroactive and cannot be expected to yield
schemas as compact as those designed compactly from the
start. However, the fact that we achieve significant improve-
ment even in this manner highlights the potential of schema
factorization to produce compact schemas.

Upgrade

customer

VIP

sales agent

managerfrequent flyer

Figure 4: Ticket upgrade relationship

6. RELATIONSHIPS AND CONSTRAINTS
We now describe another application of schema polynomi-

als – representing relationships with constraints. Relation-
ship factorization utilizes a similar formalism as that de-
scribed in the previous sections, but additionally accounts
for an inheritance hierarchy over the entities. Relationship
factorization can be applied as a second step over a factor-
ized schema, or it can be used independently over an existing
hierarchy.

Consider for example a schema that models the opera-
tions of an airline, and stores information about customers,
sales agents, and upgrades. Figure 4 graphically represents
this schema; class inheritance is denoted by solid lines, and
relationships by dashed lines. In our example, certain cus-
tomers have VIP status, which gives them preference for
seat upgrades. Customers may participate in a frequent flyer
program, making them eligible for air fare discounts. Cus-
tomers purchase airplane tickets from sales agents, some of
whom are managers. Any agent, manager or not, may offer
an upgrade to a VIP customer free of charge. Managers may
also use their discretion to upgrade non-VIP customers.

We propose to use schema polynomials to represent en-
tities and relationships for such schemas. We use similar
notation as in schema factorization, but shift gears in terms
of semantics, and take a class, rather than an attribute, as
the basic building block for modeling relationships. We use
the symbols A, B, C, etc. to denote classes in the remainder
of this section. These symbols are simply class labels, and
do not describe internal class structure (e.g., class attributes
or inheritance). However, we assume that the complete class

hierarchy is provided and can be used to reason about the
schema. The class hierarchy allows multiple inheritance and
is acyclic.

6.1 Class Descriptors
Definition 6.1. A class-descriptor T is defined recur-

sively using the following context free grammar:

T ::= 1 | A | B | C | . . . | TT | T + T | T − T

The class-descriptor has set-based semantics. Concatena-
tion is interpreted as set intersection4, while addition and
subtraction correspond to set union and difference, respec-
tively. An approach to modeling inheritance with set expres-
sion has been described in [11]. We assume that there exists
a single root for the class hierarchy, and denote this root
class (i.e. the set of all objects) as 1. The special symbol
0 denotes the empty class. Addition, subtraction, and mul-
tiplication have the same properties as for tuple-descriptors
in Section 2: addition and multiplication are commutative
and associative; addition and subtraction are idempotent. 1
is a multiplicative identity, 0 is an additive identity and a
right-identity for subtraction.

We assume that class membership respects the class hier-
archy. Given classes T and S such that T is a subclass of S,
an instance t of T is also an instance of S.

Definition 6.2. An instance t matches a class-descriptor
T if and only if:

1. T = 1.

2. T is a single class and t is an instance of that class.

3. T = T1T2 and t is an instance of both T1 and T2.

4. T = T1 + T2, and t is an instance of either T1 or T2.

5. T = T1 − T2, t is an instance of T1 but not of T2.

In the airline example, we may denote the class of cus-
tomers as C and the VIP customers sub-class as V ; then
instances of C who are not VIP are denoted as C − V . If L

denotes frequent flyers, then the expression V L stands for
the set of customers who are both VIP and frequent fly-
ers, while V + L denotes customers who are either VIP or
frequent flyers.

We write T1 = T2 if the class-descriptors T1 and T2 always
admit exactly the same instances, even if T1 and T2 are
not syntactically identical. In other words, T1 and T2 are
equivalent set expressions.

Definition 6.3. A class-descriptor T1 subsumes another
class-descriptor T2 if every instance that matches T2 also
matches T1. We denote this by T2 ⊆ T1.

To determine whether a class-descriptor is subsumed by
another, one can use standard subset inclusion reasoning
from set algebra. Note that in presence of a class hierarchy
T ⊆ S if T is a sub-class of S. We assume that the class
hierarchy is acyclic. Complexity of subsumption among ar-
bitrary set expressions has been considered in the Set Con-
straints literature, and has been shown to be NP-complete
if constants are allowed by the language [4].
4Note that semantics of multiplication is different compared
to previous sections.

Definition 6.4. A class-descriptor is in union-normal
form if it consists of a sum of subtractions of class-descrip-
tors, where all multiplications are of basic class terms.

Example 6.1. Consider the following class descriptor:

T = A(BC + (B − D)) + (ABC − D) (7)

T is not in union-normal form: A(BC + (B − D)) con-
tains a nested multiplication and is equivalently re-written as
ABC+(AB−D). The full expression for T in union-normal
form is then:

T = ABC + (AB − D) + (ABC − D) (8)

Definition 6.5. A class-descriptor T is in minimal union-
normal form if it is in union-normal form and if no pair-wise
subsumption holds among class-descriptors in T .

Lemma 6.1. Every class-descriptor T has an equivalent
class-descriptor in minimal union-normal form.
Proof. Transform the original class-descriptor into union-
normal form by pushing nested multiplications outside, using
the following transformations5:

1. A(B + C) = AB + AC

2. A(B − C) = AB − C

Remove subsumed additive terms using subset inclusion rea-
soning in conjunction with the class hierarchy. The resulting
descriptor is in minimal union-normal form. 2

The union-normal form of expression in Example 6.1 is
redundant, because (ABC − D) ⊆ (AB −D). The minimal
union-normal form of T is then:

T = ABC + (AB − D) (9)

Definition 6.6. Given class-descriptors T1 and T2, the
least common subsumer is the class-descriptor lcs(T1, T2) =
T1 + T2.

Transforming the lcs to minimal union-normal form may
yield a more compact representation compared to the origi-
nal expression. For example, lcs(T1, T2) = T2 if T1 ⊆ T2.

We now explore how class-descriptors may be used to con-
cisely represent relationships with constraints.

6.2 Relationship Descriptors
Definition 6.7. An n-ary relationship is described by a

relationship-descriptor R, generated using the following gram-
mar (T refers to a class-descriptor in Definition 6.1):

R ::= (T, . . . , T) | R + R | R − R | RR

For an n-ary relationship the vector of class-descriptors
(T, . . . , T) has exactly n elements. In all productions that
combine relationship vectors, the vectors must agree in arity
and produce a vector of that same arity.

We refer to addition, subtraction, and multiplication in
the context of relationship-descriptors as vector addition,
vector subtraction, and vector multiplication, respectively, in
order to distinguish these operations from their counterparts
over class descriptors.
5Recall that we are using set semantics to represent inher-
itance. The correctness of these transformations is easy to
verify using Venn diagrams.

Definition 6.8. A relationship instance is a vector of
class instances (t1, t2, . . . tn). A relationship instance r mat-
ches a relationship descriptor R if and only if:

1. R = (T1, . . . , Tn), r = (t1, . . . , tn), and each class in-
stance ti matches the respective class descriptor Ti.

2. R = R1 + R2 and r matches R1 or r matches R2.

3. R = R1R2 and r matches R1 and r matches R2.

4. R = R1 − R2 and r matches R1 but not R2.

We write R1 = R2 if the relationship-descriptors R1 and
R2 admit exactly the same relationship instances, even if R1

and R2 are not syntactically identical.

Lemma 6.2. A relationship instance matches the descrip-
tor (T1, . . . , Tn)(S1, . . . , Sn) if and only if it matches the de-
scriptor (T1S1, . . . , TnSn).
Proof: Let us denote by S(R) the set of relationship instances
r that match R. By Definition 6.8, S[(T1, . . . , Tn)(S1, . . . , Sn)] =
S(T1, . . . , Tn) ∩ S(S1, . . . , Sn) = S(T1S1, . . . , TnSn). 2

Definition 6.9. A relationship-descriptor R1 subsumes
another relationship descriptor R2 if every relationship in-
stance that matches R2 also matches R1.

Lemma 6.3. A single-term relationship-descriptor of the
form R1 = (T1, . . . , Tn) subsumes another single-term rela-
tionship-descriptor R2 = (S1, . . . , Sn) if and only if for each
position i, the class descriptor Ti in R1 subsumes the class-
descriptor Si in R2.
Proof. Since S(R2) ⊆ S(R1), then for each relationship
instance r, if r ∈ S(R2) then r ∈ S(R1). Since each class
instance ri in r matches the corresponding class descriptor
Si in R2, then S(Si) ⊆ S(Ti). 2

Definition 6.10. We say that a relationship-descriptor
R is in union-normal form if R contains no vector multi-
plications, and consists of a vector-sum of subtractions of
relationship-descriptors.

Consider again the Upgrade relationship in Figure 4. We
may represent this relationship in several equivalent ways,
depending on the point of view of the user.

Upgrade1 = (A,V) + (M, C) + (M, V)
Upgrade2 = (A,C) − (A − M, C − V)

The first variant enumerates all valid combinations of ar-
guments, and states that Upgrade is a relationship between
a sales agent and a VIP customer, between a manager and a
customer, or between a manager and a VIP customer. The
second variant states that Upgrade is a relationship between
an agent and a customer, with the exception of agents who
are not managers and customers who are not VIP.

Definition 6.11. A relationship-descriptor R is in min-
imal union-normal form if it is in union-normal form, and
if no pairwise subsumption holds among relationship-des-
criptors in R.

In our running example, the expression Upgrade1 is trans-
formed into minimal union-normal form by removing the
term (M, V) because it is subsumed by both other terms in
the expression, by Lemma 6.3.

A

C

D

B E

F

G

Figure 5: Example of a relationship

Relationship-descriptors might be thought of as data types
for external applications. External applications typically ac-
cept simpler (usually atomic) data types for the attributes;
we thus need a principled mechanism for transforming com-
plex relationship-descriptors into such simplified form. We
propose to do this by means of a relationship signature:
a generalization of the least common subsumer over class-
descriptors (see Definition 6.6) to relationship-descriptors.
Relationship signature of an n-ary relationship R is obtained
by applying lcs(T1, . . . , Tn) to the positive terms in the de-
scriptor for R. For example,

sig(Upgrade1) = (lcs(A, M), lcs(V, C)) = (A,C) (10)

Upgrade2 contains a single additive term, (A, C), which
is trivially also sig(Upgrade2).

A signature provides a simpler, more concise view of a
relationship; it summarizes the relationship by simplifying
the types of its arguments. In the Upgrade example, the
signature (A,C) simply states that Upgrade is a relation-
ship between a sales agent and a customer. Note, however,
that a relationship signature is an approximation, because
it admits invalid combinations of agent and customer.

The signature of the Upgrade relationship produces atomic
types for each argument. However, this may not always
be the case. Consider the binary relationship in Figure 5:
R : (C, G) + (D, F). The signature of this relationship is
sig(R) = (C + D, F + G): both arguments are of union
types. If the external application does not recognize union
types, this signature requires further simplification: we need
to find, for each argument, the least common subsumer that
is atomic. Note that such signatures are not always unique:
(A, E) and (B, E) are both valid atomic signatures for R.

7. RELATED WORK
In their seminal paper, Tsalos et al. [16] focus on physical

data independence in the relational setting. Deriving alter-
native physical representations of XML schemas [1] based on
cost considerations has been studied in the LegoDB project [3].
The aim of our work is to optimize the conceptual level rep-
resentation, and then suggest rewrite rules that can translate
the resulting schema into a physical representation. Repre-
senting schemas conceptually using polynomials allows the
user to combine multiple design formalisms, leading to sim-
pler, more compact schemas.

UML [13, 8] supports a rich set of design concepts, and
gives multiple alternative design options. While the Schema
Polynomials formalism does not support all features of UML,
our work is the first attempt at providing conciseness-based
design guidelines. In our framework, a design formalism will
match a schema, or a part of a schema, if it can express the
schema concisely.

The problem of minimizing concept descriptions has been
considered in the Description Logics literature. Baader et

al [6, 7] consider the problem of using a terminology τ to
rewrite a concept definition C into an equivalent defini-
tion C′ that is more concise than C. The motivation for
such a rewriting is, like in our work, increased human read-
ability. However, the rewriting methodology is different:
terminology-based rewritings minimize concept descriptions
one at a time using substitutions, while schema factoriza-
tion allows for concise representations of schemas as a whole.
In [7] the authors show that the size of a least common sub-
sumer expression may be exponential in the size of a termi-
nology.

Yu and Jagadish [21] developed a schema summarization
framework, with the goal of concisely representing complex
real-life schemas. In addition to generating concise represen-
tations, schema factorization can be used to generate mul-
tiple alternative representations, thus orienting the schema
to the point of view of the user.

The idea of constructing a purely faceted representation
and disallowing certain combinations of facets was used by
Tzitzikas et al. [17, 18] to address a different kind of problem:
finding compact representations of ontological term systems
with subsumption relationships between terms.

Dagan and Itai [11] describe a set-based formalism for
representing inheritance. We take a similar approach when
reasoning about class and relationship-descriptors.

Buneman and Pierce [10] develop a type system for semi-
structured data that incorporates union types and propose
a syntax that allows to operate on the type descriptors in
their original compact form, avoiding a possible exponential
explosion if the disjunction were unfolded.

8. CONCLUSIONS AND FUTURE WORK
We presented the schema factorization framework: a for-

mal conceptual schema representation language that com-
bines different design formalisms, and allows schema manip-
ulation that exposes the strength of each of these formalisms.
Schema factorization is a unifying model that can be used
to transform schemas into simpler, more concise represen-
tations. The central benefit of schema factorization is in
further decoupling physical and conceptual data representa-
tions: schema design is elevated to a conceptual level where
it is no longer restricted by the idioms available to a partic-
ular design formalism.

We presented rewrite rules that can be used to translate
conceptual schemas into their relational, object-oriented, and
faceted physical representations. We demonstrated the po-
tential of our approach by applying simple heuristics to a
large real-life relational schema, and observing a significant
improvement in schema compactness.

A schema polynomial can easily represent a logical schema
with parts that are relational, object-oriented, or faceted in
nature. Our physical representations have so-far focused on
target platforms that are either purely relational or purely
object-oriented. We plan to study combined platforms in fu-
ture work. Object-relational databases provide a potential
target platform. However, current object-relational systems
have limitations, such as the choice to make objects sub-
sidiary to tables, and the absence of multiple inheritance.

We introduced an application on schema polynomials to
the representation of relationships with constraints. This
approach allows for concise representation of relationships,
and enables the user to orient the representation to his point
of view. We plan to consider relationship composition in our

future work.
In the future, we plan to consider how to extend schema

factorization to include more constructs, such as overriding
in the object-oriented model. We also plan to design efficient
factorization algorithms, and to experimentally evaluate the
potential of our methodology for schema integration.

9. REFERENCES
[1] Extensible markup language (XML).

http://www.w3.org/XML/.

[2] Oracle9i database release 2 (9.2) documentation.
http://www.oracle.com/technology/documentation/
oracle9i.html.

[3] The unified modeling language user guide. 2005.

[4] A. Aiken, D. Kozen, M. Vardi, and E. Wimmers. The
complexity of set constraints. In CSL, pages 1–17,
1993.

[5] P. Atzeni and N. M. Morfuni. Functional dependencies
in relations with null values. Inf. Process. Lett.,
18(4):233–238, 1984.

[6] F. Baader, R. K”usters, and R. Molitor. Rewriting
concepts using terminologies. In KR, pages 297–308,
2000.

[7] F. Baader and A.-Y. Turhan. On the problem of
computing small representations of least common
subsumers. In KR, pages 99–113, 2002.

[8] G. Booch, J. Rumbaugh, and I. Jacobson. The unified
modeling language user guide. Addison-Wesley, 2nd
edition, 2005.

[9] R. K. Brayton, R. L. Rudell, A. L.
Sangiovanni-Vincentelli, and A. R. Wang. Multi-level
logic optimization and the rectangular covering
problem. In ICCAD, pages 66–69, 1987.

[10] P. Buneman and B. Pierce. Union types for
semistructured data. In DBPL, pages 184–207, 1999.

[11] I. Dagan and A. Itai. A set expression based
inheritance system. Annals of Mathematics and
Artificial Intelligence, (4):269–280, 1991.

[12] A. Hosangadi, F. Fallah, and R. Kastner. Optimizing
polynomial expressions by algebraic factorization and
common subexpression elimination. IEEE Trans. on
CAD of Integrated Circuits and Systems,
25(10):2012–2022, 2006.

[13] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified
Software Development Process. Addison Wesley
Longman, 1998.

[14] M. Levene and G. Loizou. Axiomatisation of
functional dependencies in incomplete relations.
Theor. Comput. Sci., 206(1-2):283–300, 1998.

[15] R. Ramakrishnan and J. Gehrke. Database
Management Systems. McGraw-Hill, 3rd edition, 2003.

[16] O. G. Tsatalos, M. H. Solomon, and Y. E. Ioannidis.
The GMAP: A versatile tool for physical data
independence. VLDB J., 5(2):101–118, 1996.

[17] Y. Tzitzikas, A. Analyti, and N. Spyratos. Compound
term composition algebra: The semantics. J. Data
Semantics, 2:58–84, 2005.

[18] Y. Tzitzikas, A. Analyti, N. Spyratos, and
P. Constantopoulos. An algebraic approach for
specifying compound terms in faceted taxonomies. In
EJC, pages 67–87, 2003.

[19] C. Umans. The minimum equivalent DNF problem
and shortest implicants. J. Comput. Syst. Sci.,
63(4):597–611, 2001.

[20] B. Wynar. Introduction to Cataloging and
Classification. Libraries Unlimited, Inc., 8th edition,
1992.

[21] C. Yu and H. V. Jagadish. Schema summarization. In
VLDB, pages 319–330, 2006.

