A Recursive Data-Driven Approach to Programming Multicore Systems

Rebecca Collins and Luca P. Carloni
Technical Report CUCS-046-07
Department of Computer Science

Columbia University
1214 Amsterdam Ave, MailCode 0401
New York, NY, 10027
December 2007
[rlc2119,1 uca] @s. col unbi a. edu

Abstract—In this paper, we propose a method to program programming is a tool that takes a sequential program and
divide-and-conquer problems on multicore systems that is &sed automatically transforms it into an efficient parallel praw.
on a data-driven recursive programming model. Data intensie Many paradigms for programming multicores can handle the

programs are difficult to program on multicore architectures h th f interd d . Il -Paral
because they require efficient utilization of inter-core conmunica- case where there are few interaependencies very well.-Fara

tion. Models for programming multicore systems available bday l€lization is achieved simply by partitioning the data setl a
generally lack the ability to automatically extract concurrency moving the partitions to separate cores. Programming these
from a sequential style program and map concurrent tasks to multicore systems in a way that can make one big task twice
efficiently leverage data and temporal locality. For divideand- 44 fast (or at least significantly faster), however, is alehgk.
conquer algorithms, a recursive programming model can addess In thi introd del of tati
both of these problems. Furthermore, since a recursive furton n "'.3 paper We_ Introduce a new mQ elo compu a '_on
has the same behavior patterns at all granularities of a prokem, for multicores that is based on a recursive data-driven view
the same recursive model can be used to implement a multicore of the application. Our work focuses on applications that ca
program at all of its levels: 1. the operations of a single c®, pe defined withdivide-and-conquestyle recursive programs.

2. how to distribute tasks among several cores, and 3. in what Our model is driven by the data of the application. Given a

order to schedule tasks on a multicore system when it is not . that divides the dat ith h .
possible to schedule all of the tasks at the same time. We pergt recursive program that divides the data with each recursive

a novel selective execution technique that can enable autatic St€p. eff_icient task mappir_lg and schedu!ing becqme inuitiv
parallelization and task mapping of a recursive program onb a If one pictures the execution of a recursive function as a tre

multicore system. To verify the practicality of this approach, we of procedure calls, the data assigned to sibling procecanes
perform a case-study of bitonic sort on the Cell BE processor 4o closely coupled than those of cousins. Thus, the decisi
to co-schedule two tasks can be based on their relationship i
the tree - i.e. how tightly coupled their data is. Moreover,
the cores can organize themselves dynamically based on how
The performance of single core architectures is not keepititge data is distributed among them. We accomplish this by
up with Moore’s Law. Even though more transistors fit on aeparating the view of the global data from the actual data
chip with each new process generation, there are limits en titself so that each core recurses on the data structuresof th
amount of instruction level parallelism that can be exwect abstract global data set, but selectively executes codalteas
from a sequential program, and contrary to trends thus fartime actual data. Each core dynamically determines whick cod
microprocessor design, the technique of extending pipelin it should execute based on the data that is present locally.
increase ILP is yielding diminishing returns [9]. If it isfficult Related Works. Models of computation for multicore pro-
to make a larger processor do two times the amount of wogkamming can be characterized according to what is asked of
as a smaller processor in the same amount of time, why ribé programmer and what is asked of the backend (ie. litzrarie
use two small processors to do twice as much work in tleenxd compiler).
same time as one small processor? Unfortunately, whilelgavi Thedata-parallel programming modebn be used when the
two processors can allow one to compute two independesatme operation can be applied to different data indepelydent
jobs in half the time, it doesn’t always allow one to computand it works well with graphical processing units since they
one big task twice as fast. Individual programs almost agvayypically have a large number of cores, but not a very high-
have data dependencies that force some of the operationbaadwidth intercommunication system [12]. In a data-pelral
be ordered with respect to each other. Meanwhile, convenedel, the programmer can express concurrency by defining
tional programming models were designed for single CPlunctions over vectors where a function at an element of the
systems and either assume sequential execution, or requizetor does not depend on the values of any of the other vector
the programmer to explicitly distinguish concurrent tagke elements. Data-parallel computing does well with appilicet
example, with POSIX threads). The holy grail of multicor¢hat require little inter-task communication. Any overtbk

I. INTRODUCTION

Library for Clean Data Partitioning

Multicore System
ex: right_half(), left_half()

C C C
Supervisor L 2 N
Mg M MN

" Optimized Platform Specific Details

- size of local storage

(may be off-chip)

(optional)

Fig. 1. Abstract Model of a Multicore System.)))
Single-Core Multi-Core Multi-Stage

Parallel Application

that can be broken up into many small independent tasks will
work. In this model, the programmer must explicitly separaf'g' 2. Software Development Flow
the application into independent pieces, and the backehd wi
manage data transfer and task mapping. However, it is not I
obvious how one could model data dependencies between
separate data-parallel functions. Before presenting the specifics of our approach, we define
MapReduceis a programmed model used for handlin@OW we abstract a multicore system (Fig. 1). A multicore
reduction applications on very large data sets [3], [2]. THYSt€m is made up oN cores that can work together plus
MapReducenodel works in two steps. In the “Map” step, eactt SUP€rvising coreTheseN + 1 cores may be homogeneous,
input token is mapped to a key-value pair. In the “Reduc@’ they may be different like in the IBM Cell BroadBand
step, all of the key-value pairs generated in the Map step &B9ine [4]. We label the coreg’;, wherel < i < N.
partitioned according to their keys and their values are sérCh coreC; has a store of local memory whose capacity is
to a reduction function. The programmer provides a functidfgnoted;. Together all of the local memories are combined
for mapping a single input instance to a key-value pair ari@g form the aggregate local memongM = {Jy; M;. The
reduction functions that handle all of the values matched f@in memory of the system is located off chip, separate from
specific keys; the backend handles all of the data movemdf€ local memories of the cores.

In multicore systemsMapReducénas been used with shared In typical sequential programming models, the data itself
memory systems. is abstract from the memory. We also keep the notion of

With the streamingmodel of computation [10] a programdata separate from memory and _denoFe the ove,rall data of
is defined as a series of filters, where each filter is a unit g}e program_ai). The data s_tored na single cofg's Ic_)cal
computation. Filters have input and output channels and ClglwmoryMi, is labeledL;, while AL is the data stored in the
be pipelined with other filters to build complex operatiolrs. aggregate memordM.
this model the programmer explicitly defines a data flow where

. ABSTRACTMODEL OF AMULTICORE SYSTEM

different cores will be responsible for different operagoThe [1l. METHOD
temporal flow of the data gives gOOd hints about which filters Figure 2 shows the design flow for deve|0ping an app"cation
are dependent on each other. with the recursive data-driven approach. The programmer

The idea of parallelizing a divide-and-conquer problemprovides a recursive implementation of the applicatione Th
according to a recursive function definition has been preposimplementation may have a standard sequential form except
for Symmetric MultiProcessor (SMP) Architecture from ahat when the recursive calls are made, the data must bdylean
compiler-oriented perspective, and shown to have gooaperfpartitioned. For example, if the data is in an array format,
mance [7]. In this approach, the compiler automaticalledest instead of recursing using C-style pointers, the programme
data independence in the recursive calls. will use functions likeright_half() or left_half() that will pass

The goals of our work differ from those of previous workghe right and left halves of the array but will also keep tratk
in two ways. First, we aim to develop a model primarilywhere the data overlaps and how it fits together in the overall
for applications with strong data dependencies that requitata set.
communication between concurrent tasks. We prefer system3he parallel implementation of the application has three
whose cores have private local memories rather than globahlarts, labeled “Single-Core”, “Multi-Core”, “Multi-Stagj in
shared memories; our motivation is that when the number Bigure 2. The single-core part of the application corresisdan
cores scales to the hundreds or even thousands in the f6lured single core executing on data contained in its local memory
architectures based on globally shared memory will be diffic The multi-core part corresponds to a multiple cores exaguti
to sustain. Our methodology is data-driven; it requireg than a set of data that fits within their combined local memories
the programmer explicitly partition the data as it is divideThe multi-stage part corresponds to a task that operates ove
and-conquered through recursive programming, but does acset of data too large to fit into the combined local memories
require any concurrent programming beyond this. Then, abthe available cores and so the task must be broken up into
the partitioned data is distributed among cores, each core r smaller pieces that will fit and computed in several stages.
the same recursive program, but a core will only follow the The easiest step of converting the recursive code to the
recursive paths that overlap with that core’s local data. parallel code is creating the single-core code. Since diatu

on a single core is sequential, the sequential recursive gd@gctor—add(int =C int =A int «B, int n)
can be copied directly. For performance, the programmer m%\y f(n ==1) {

also provide a non-recursive implementation optimizedtfier 0] = A[0] + B[1];
desired architecture. However, this optimization step ¢ n }

CLH = left_half(C;
mandatory for the correctness of our approach. CRH = right_hal f(CQ;

The challenge in creating multi-core and multi-stage cade i // etc.

that the data will not all fit necessarily into one local meyof ¥eC 8;-233%%’5{:’ reh
and the code must manage how the data is broken upj,In - -
addition to the recursive code, for these parts we also atid da
structures to handle the difference betwegabal data and Fig. 3: Recursive Vector Addition.
local data, but from two different perspectives. In the multi-
core code, the global data represents the data that is storedu! ticore_vector_add(Li ft *G List A List =B,
the combined local memories of the cores (the aggregate fata fnt n)

AL) and on each cor€’; the local data represents the data i f (mydata_intersects(A LH B_LH and C LH) {

B LH, n/2);
B RH, n/2);

that is resident in that core’s local memory. i fé?ﬁg?é?afgnthL?iEAaw’(B.LH iﬂﬁHC_léFDLH{ .

The multi-core code will run on each co€g. Initially, the } else { - - - ’
function call will be made on the aggregate datd, even mul ticore_vector_add(C LH A LH B LH n/2);
though no one core contains all dfZ. But at each level of }

[h Il si f the data is i ively daddo) i

recursion, the overall size of the data is iteratively y i f (nydata_intersects(A RH B_RH, and C RH) {
half into smallerAL’. To complete the multi-core code from i f(nydata_contains(A_RH B_RH, and C RH) {
the original recursive implementation, recursive callings) o 22' ?Core—veCtor—add(C—RH' ARH B RH n/2);
the partitioned data set will be augmented with conditional mul ti core_vector_add(C_RH, A_RH, B_RH, n/2);

wrappers. Two new functions are introduced in these condi- }
tionals: mydataintersects() which is true if AL’ U L # (),) }
andmydata contains() which is true if AL’ N L = L. Before
each recursive calinydata intersects(andmydata contains() Fig. 4: Multi-Core Recursive Vector Addition.

check whether the data used in the recursive call intergect t

core’s local datal; or are contained irl;. If the local data

does not intersect the recursed data, the core will skip tigigsily parallelized using existing models, but we use it as
part of the code. If the recursed data contained in the localsimple instructional example. Figure 3 shows a recursive
data, the single-core code will be called. Otherwise, wihen timplementation of vector addition.

local data intersects but does not contain the recursed datéFor single-core code, we keep the same function, but
the recursion continues in the multi-core code. for clarity, we rename itsingl ecore_vector_add().

In the multi-stage code, thglobal data represents theFigure 4 shows howvector_add() is converted to
overall data of the applicatiod, and thdocal data represents nul ti core_vect or _add() . The integer arrays are changed
the data that will fit into the combined local memories of thto (Li st *) data structures. This change decouples the data
coresAM - theglobal data of the multi-core code. M; from the data viewAL’ that is used in the recursive

Conditional wrappers are introduced around the recursigglls. Each core executes with a high level view of the
calls in the multi-stage code that check whether the redursaggregate data setL. However, since only a piece ofL
data will fit into the local memory or not. In this case, wavill fit into local memory, each corel; is restricted by
just need a functiomill_fit that checks whether the recursedrydat a_i nt er sect s() and nydat a_cont ai ns() to only
dataD’ will fit into AM, |D’| < |AM]. If it will fit, then the ~work on parts of the data that are contained.in TheLi st
multi-core code is called, otherwise, the recursion cargi Structures have information about the positionsidf’ data in
in the multi-stage code. The multi-stage code also takes ind L, but do not contain the actual data. Notice that if a core
account the size of individual local memorigg, and whether C; contains the data from the left half ef, B andC, but not
it is necessary to schedule all cores on a particular task. the right half, then it will recurse in the first conditional,t

There is an important distinction in the way the multiwill skip the second completely.
core and multi-stage codes are run. The multi-core code isApart from decoupling the data from the data view, the
duplicated and run simultaneously on thecores. However, only other change is that the exit case is removed. In the
different paths of the recursion are followed by each cofgulti-core code, an exit case is no longer needed because it
according to which part of the global data they have. THe guaranteed that when the size of the data becomes small

multi-stage code is run by only one supervising core. enoughsi ngl ecor e_vect or _add() will be called to han-
dle the rest of the work. Sincs ngl ecore_vect or _add()

is only called on data present in the local memory, it is easy

to plug in a more efficient non-recursive version for better
In this section, a small example parallel application idtbuiperformance.

from a sequential recursive program. Consider the problemFigure 5 shows the multi-stage code. This code is very

of vector addition,C = A + B. This algorithm can be similar to the multi-core code. Thei st structure is over-

IV. EXAMPLE

mul ti Stage_vector_add(il-inftn;cy List «A List *B, is a good benchmarking algorithm because its communica-

tion pattern is interesting and because hand-optimized im-

if(will_fit(ALHB_LH and CLH { plementations have been written on a number of multicore
spawn_nmul ti core_vect or _add_t hr eads(platforms [11] [8]

C LH A_LH B LH n/2); - . . .
} else { - - LR n/2) Bitonic sort is a popular parallel sorting algorithm be@us

nul tistage vector_add(C _LH, A LH B _LH n/2); the order of compare-and-swap operations is not data depen-
dent. That is, when choosing which elements of the array to

}
if(will_fit(ARH B RH and CR o .
] fit (A v and CR 1 compare, the position of the elements in the array matteis, b

spawn_nmul ti core_vect or _add_t hreads(

C RH, A_RH, B RH, n/2); not the values (unlikguicksort for example). In this section,
MUl tistage_vect or_add(C_RH, A RH B_RH, n/ 2) the glgqnthm qnd |m_pllementat|on of bitonic s.ort are exyaal. _
} Bitonic sort is a divide-and-conquer algorithm where a list
} of elements is sorted by first sorting its two halves in opigosi

directions, and then merging the two halves together. The

Fig. 5: Multi-Stage Recursive Vector Addition. merge is done by compare-and-swapping tHeelement of

the first half to thel st element of the second half, and then the

sort(int *list, int n, int direction)

(274 element of the first half to the"? element of the second
i f(n==1) return; half, and so on. The compare-and-swap operations go in the
left = left_half(list); direction that we are sorting the list. After this initial nge
right = right_half(list); (where the elements ane/2 elements apart), we repeat the
sort(left, n, direction); mergelog n times, but each time we reduce the distance that
sort(right, n, direction«-1); the elements are apart by half and consider pieces of the list

merge(left, right, n, direction); completely separately

/1 sort_2() is the same as sort(), except it Figure 7(a) shows an example of a list being sorted with

/1 skips the sort() calls before merge() bitonic sort. Figure 7(b) shows a picture of how we might map

sort_2(left, n, direction); he d d d . f th | h h

sort 2(right, n, direction); the data dependencies of the arrays elements throughpst ste
} of the algorithm. Depending on how we group the elements,
we can look at the algorithm in more or less detail just like a
fractal. Notice that at the finest level of granularity, thexes
if(n==1 { _ hold one piece of data. As we increase the granularity so

if((right[0] - Ieft[0])=dir< 0) that two or four pieces of data are grouped together, then the

left[0 d right[0 Lo !
swap [eft[0] and right[0] structure of the communication remains the same, but dveral

merge(int xleft, int *sright, int n, int dir)

return;
there are fewer communication paths. In fact, the structiee

left of left =Tleft _half(left); course granularity mirrors the fine grained structure ohimit

right _of _left = right_half(left); . .

left of right = left half(right): a local block. In this way, we can look at the algorithm as

right_of right = right_half(right); a divide-and-conquer algorithm where we group locations in

merge(left of left, left of right, n/2, dir); tShe l;a)lrrfay tot;qethkgr ac%ordlng to thglr Iocatlonbln g_le h;ehwd

merge(right of left, right of right, n/2, dir); o before breaking the computation up to be distributed on
} multiple cores, we can break up the data into chunks that have

good locality. Or, from another point of view, we can break

Fig. 6: Recursive implementation of Bitonic Sort. the problem up into chunks that are small enough to fit into

one core’s local memory or cache.

Consider the recursive implementation of bitonic sort in
Figure 6. The structure of the recursive functigort () is
sErEiIar tovect or _add() in the way that it splits up the input

ata array with ef t _hal f () andri ght _hal f () functions.
Iglowever, in the middle ogort (), there is a call to another
recursive functiomer ge(). Bothsort () andnerge() are
) . divide-and-conquer recursive programs, but they dividarth
respectively, is true for the global data set. input differently. Figure 8 shows at a high level how data is

For example, if D is smaller than AM, then it is . . .
. . mapped differently for the two functions. For our prelimipa
not necessary to recurse at all, we can just invoke

) : experiments, we handle data passing simply by matching up
spawn_mul ticore_vector_add_threads() directly. pairs of cores that together contain the datasfort () that

should be used by two cores farerge() and have the
V. INTERCOMMUNICATION - BITONIC SORT two cores swap data accordingly as shown in the bottom of

In the vector addition example discussed in Section I\Eigure 8. Internal data swapping has a straightforwarcepatt
the parallelization is trivial since no intercommunicatics for bitonic sort, however the swap patterns may not always
required between the cores. In this section, we describaibit be so direct. We can easily detect when swapping should
sort, the application we use in our experiments. Bitonid savccur - when one recursive program calls another recursive

loaded here to represenb rather than AL. The func-
tion spawn_nul ti core_vector_add_t hreads() handles
the bookkeeping of managing threads and sending data b
and forth to theV cores. For both the multi-stage code and th
multi-core code, the first call of the recursive function nadso
be checked in caseill _fit() or mydata_contains(),

timestep

o [10] [so] [16] [32] [25] [5] [19] [rs] 2o aajaa e
1 [10] o) 2] i8] (5] o] Fre] o] GREREMEN ENELE
2 [10] [16] [s2] [09] 78] [25] (5] (o] |ENE] ERE] ERE] E
3 B B4 E8 EMQEd BN 2R

) 02 6 b9 () ())

NS
Sl

&
’%

5

&
2]
2]
2]
2]

0] [e] (9] B) 5] 2] o
ol (51 ol 6] [e2] 251 [re] e
5] [10] [s6] [19] [zs] [s2] [re] fs]

(a) Example Bitonic Sort (b) Data Dependencies - Recursive Layers

(6]
=
(5]
2]
2]
H)CH
2]
B H

[«2)

2]
H
H

Fig. 7: Bitonic Sort — (a) An example of how to sort a list using Bitoi8ort. At each stage, the elements of the list are paired dp an
sorted in the direction shown with the red and green arrodemEgnts that will be swapped in the current sorting step ablighted. (b)
The data dependencies for each sorting step are shown.eNbtt the position of an element matters, but its value dogssp generia;
variable names are used.

sort() mapping

SIMD processor capable of doing the same operation over the
[aJafala el P p 9 p

elements of a 128-bit wide vector, for example, a vector af fo
32-bit integers [6]. We sel,; = 128 K B (or 32K integers)
since bitonic sort only takes input whose size is a power of 2,
and we must leave room if/; for the code and stack. One
Cell chip, then haslL = 1M (256K integers). The QS20 has
two cell chips, which if used together double the data sterag
capacity: AL = 2M. However, the communication between

Fig. 8: Data Mapping. cores on different chips is not as fast as the communication

between cores on the same chip.
) . . Implementation. The core recursive function of our imple-

program and the two split data differently. In the most &ivi aniation is essentially the same as the code in Figure 6.
implementation the data could be sent back.and forth to th_? our model, the single-core code can be replaced with
supervisor to convert between the data mappings. Howevergp, ential code to enhance performance. We have three local
the most general case, a tool that can automatically dmermfunctions:sort (), merge(), andsort_2(). We replaced
how to swap the data between cores on-the-fly is a much mgre single-core code fosort () with a_standardquicksort

interesting, and likely more efficient, alternative. implementation [13]. We replaced the recursive singlescor
code fornerge() with an iterative alternative. One could
VI. EXPERIMENTS also replacesort _2() with quicksort but we found that the
I;?{iginal recursive version had better performance. Howeve
we did enhance the recursive implementatios@ft _2() by
galling insertion sortfor small instances to avoid unnecessary
overhead from recursive calls at the small scale. For compar

EREN

swap

A recursive data-driven model can be applied to differe
applications on different platforms. To evaluate perfonce
and scalability of this new model, we implemented Bitoni
sort on the Cell BE architecture [4]. As a preliminary exseci . o .
we converted the original recursive function to multi-carel ISons with s!ngle-cc_)re syst_ems, we used the sgjieksort
multi-stage code by hand. implementation as in our single-cosert () code.

Cell BE Architecture. We performed our experiments on Scaling the Input Size. The graph in Figure 9 compares
a QS20 CellBlade with Cell Software Development Kit 2 ghe performance of our bitonic sort implementation withesth
A QS20 features two Cell BE processor chips together witfiPlementations running on different platforms as the tnpu
a 1GB memory. Each Cell chip ha¥ = 8 processing cores data size scales frosl2K to 128 M integers. Both axes have
called SPEs, and one PowerPC core, which is used as #iogarithmic scale.
supervising core. Each SPE core has a local menmidyy= CellSort [11] is a hand-optimized bitonic sort implementa-
256 K B that is used for both data and code. The SPE loc@&bn for the Cell processor. Our implementation is about 10
memories are not cached. Data is transferred between cdmees slower than CellSort for smaller input sizes, such as
through direct memory access (DMA). The communicatiohM integers, but comes within a factor of 6 in the larger input
network between cores, called the Element Interconnect Baases. There are a number of reasons why the recursive model
is capable of transferring up to 96 bytes per cycle, and thdees not come closer to the “ideal” performance of a hand-
link to main memory is 16 bytes per cycle [1]. Each SPE is @ptimized implementation. First, for single-core compiota,

_* 8

100.0000.

[
o o« 2

10.0000: 38
é o N Vs _
£ 1.0000 _x / —+— CellSort e —— 64K m_tegers (256K data)
El : /’ P —=— Recursive Sort g - 256_K integers (1M)
8 P —+— AMD Opteron 252 g4 —— 1M integers (4M)
' 0.1000 —— PPE = —=—4M integers (16M
2 s TeMinte eré (64!\)/|)
o g, ’
£ 0.0100 e
= L -3

0.0010+ 2 - R 0
zef_%, % U e, %, %, "e% i B 16
Number of Integers sorted Number of Cores

Fig. 9: Scaling the Input Size. Fig. 10: Scaling the Processing Cores.

VII. CONCLUDING REMARKS

CellSort uses a vectorized SIMD bitonic sort implementatio

that is optimized for the SPE architecture. Our experimentsThe recursive model we propose for programming multicore
use a standardjuicksort implementation instead which issystems is powerful because it expresses concisely (1) data
about 4 times slower for single-core sorting. Since singlgycality - i.e. which parts of the data should be co-located
core sort operations grow with the input size, this penalfyhen the overall data is distributed; and (2) temporal liogal
carries over to larger input sets. In addition, the commative - if tasks must be scheduled, which tasks should be run at
protocols in our implementation are very simple and do ngfie same time (temporally co-located). In a multicore sgtti

yet contain optimizations such as double buffering. Ones®u when recursion is used as a means to reduce the problem
of overhead intrinsic to our approach comes from the cost &ize, a single recursive function statement can be used at al
making recursive function calls. However, since the rewars of the different levels of the problem - on a single core, on
implementation of bitonic sort cuts the problem size in hafultiple cores, and on multiple cores over multiple stages.
with each recursive function call, the number of recursivsince recursion is naturally hierarchical, it will contato be
function calls should grow with the logarithm of the globahn intuitive model even over networks of multicore systems.

data size and be_come less of a penalty as the input size scaleg) (st the performance of our approach, we have imple-
up. Moreover, since the cores do not need to use the dgfanieq pitonic sort on the Cell BE multicore system. We
during the initial multi-core recursive function ca.IIs,etkﬂata. found that at each level of programming, we could reuse the
transfer could be overlapped with these recursive calls inggme recursive function which greatly eased developméet. T
more optimized version. recursive implementation of bitonic sort scales with bdth t

Figure 9 also shows the performance times on two sititput size and the number of cores. The performance came
gle core systems runninguicksort The first is an AMD Within a factor of 6 of a hand-optimized implementation of th
Opteron(tm) Processor 252 with 2.5 GHz , and the secondSgme algorithm. Furthermore, the difference in perforreanc
the PowerPC PPE from the Cell processor. In both cases &fithe recursive implementation and the hand implementatio

recursive implementation on the Cell gives better perforcea decreased as the problem size scaled up. When scaling the

)] . number of cores, we observe that the speedup improved as
Scaling Cores Perhaps more important than the comparisqf e program size increased.

of multicore to single-core is the performance of the moltic . .
A . . Future Work. For this work, we performed the conversion
application when the number of cores is greatly increased. . .
: : . fom a recursive program to a parallel recursive program by
The advantage of multicore over single core hinges on t

” . S) " and, and have identified several challenging areas that wil

scalability of multicore applications. While there are iignto N . : .

. . uire future work in developing a tool that can perforns thi
much faster single core systems can become in the future, . . } :

. ; o . . nversion automatically for any general recursive florcti
scale of multicore systems is rapidly increasing. Figure . . :

hen two interleaved recursive functions suchsast ()

shows the speedup observed as the number of cores wa: : :
. . andmer ge() have different low level data mappings, the tool
increased from 2 to 16 cores. For smaller data sizes such_as

64K integers or 256K integers, increasing the number of&orr(‘emst convert between the mappings to direct inter-core data

past 4 does not improve performance very much if at all. AY/appIng. The partitioning of data is another Interestirgna
Of research. In some cases, such as matrix multiplicatien, t

thE." data size scal_es up, however,_the speedup gained fri?lglut data should be distinguished from the output data and
using more cores increases dramatically. . "
the input partitions would probably overlap. In other cases
Notice that our programming method allows us to searit-be best to partition the data in non-contiguous blocksl an
lessly scale the deployment of the same bitonic sort cofte very complicated partitions, theydat a_i nt er sect s()
across thel6 SPU and2 PPE processors that are featuredndnydat a_cont ai ns() functions would also become more

in the two Cell chips hosted on the QS20 CellBlade board.complicated.

(1]
(2]

(3]

(4]
(5]

(6]

(7]

(8]

El

[10]

[11]

[12]

[13]

REFERENCES

T. W. Ainsworth and T. M. Pinkston. Characterizing thellGIB on-
chip network. IEEE Micro, 27(5):6—-14, 2007.

J. Dean and S. Ghemawat. MapReduce: Simplified data gsotwe
on large clusters. ®SDI'04: Sixth Symposium on Operating System
Design and Implementatioran Francisco, CA, December 2004.

C. Rangeret al. Evaluating MapReduce for multi-core and multiproces-
sor systems. Ifroc. of the Symposium on High Performance Computer
Architecture February 2007.

J.A. Kahleet al. Introduction to the CELL multiprocessolBM J. Res.
Develop, 49(4-5):589-604, September 2005.

K. Asanovic et al. The landscape of parallel computing research: A
view from Berkeley. Technical Report UCB/EECS-2006-18E0S
Department, University of California, Berkeley, Dec 2006.

M. Gschwindet al. Synergistic processing in Cell's multicore architec-
ture. IEEE Micro, 26(2):10-24, 2006.

M. Gupta et al. Automatic parallelization of recursive procedures.
International Journal of Parallel Programmind28(6):537-562, 2000.

N. K. Govindarajuet al. GPUTeraSort: High performance graphics
coprocessor sorting for large database managememaCM SIGMOD
International Conference on Management of Dathicago, United
States, June 2006.

V. Agarwal et al. Clock rate versus IPC: the end of the road for con-
ventional microarchitectures. IRroc. Annual International Symposium
on Computer Architecturepages 248-259, 2000.

W. Thies et al. Streamlt: A compiler for streaming applications,
December 2001. MIT-LCS Technical Memo TM-622, Cambridgé.M
B. Gedik, R. R. Bordawekar, and P. S. Yu. CellSort: Higirfprmance
sorting on the Cell processor. Mery Large Data Bases Conference
(VLDB), Vienna, Austria, September 2007.

M. D. McCool. Data-parallel programming on the Cell BEdathe
GPU using the RapidMind development platform. G8Px Multicore
Applications ConferenceSanta Clara, October 2006.

M. A. Weiss. Data structures and algorithm analysis in C (2nd ed.)
Addison-Wesley Longman Publishing Co., Inc., Boston, MASA)
1997.

