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(a) Input photograph (b) Synthesized images

Figure 1: A photograph of a person and images of an interactive avatar created from the photograph.

ABSTRACT this paper is to create interactive 2D and 3D avatars of fetas
provide realistic facial motion from text or speech inputSuch

This paper presents a complete framework for creating $peec speech-enabled avatars can significantly enhance useiengein

enabled 2D and 3D avatars from a single image of a person. Oura variety of applications including hand-held devicespinfation

approach uses a generic facial motion model which represist kiosks, advertising, news reporting and videoconferemncin

formations of the prototype face during speech. We haveldeve ] o )

oped an HMM-based facial animation algorithm which takee in ~ The major contribution of our work is an end-to-end system fo

account both lexical stress and coarticulation. This algar pro- building a 2D avatar from a photograph or a physical 3D avatar
duces realistic animations of the prototype facial surfeme either from a single stereo image of a face. Such avatars are amimate
text or speech. The generic facial motion model is transéafo from text or speech input with the help of a novel motion sgsth

a novel face geometry using a set of corresponding pointedast algorithm.

the generic mesh and the novel face. In the case of a 2D avatar,
a single photograph of the person is used as input. We manuall
select a small number of features on the photograph and #rese Photo Facial surface Photo Facial surface
used to deform the prototype surface. The deformed surében —— and motion model — and motion model
used to animate the photograph. In the case of a 3D avatarseve u generation generation

a single stereo image of the person as input. The sparse geome
try of the face is computed from this image and used to warp the
prototype surface to obtain the complete 3D surface of theopés

Facial motion
synthesis algorithm

Facial motion
synthesis algorithm

Video Video

face. This surface is etched into a glass cube using subesurf } Phonetic 4 Phonetic
laser engraving (SSLE) technology. Synthesized faciahation segments _ segments
Text Acoustic text-to- | Audio Audio Audio

videos are then projected onto the etched glass cube. Egagtth
the etched surface is static, the projection of facial atiznaonto it

speech engine Speech Recognition

results in a compelling experience for the viewer. We shoverse (a) Text-driven avatar animation (b) Speech-driven avatar animation
examples of 2D and 3D avatars that are driven by text and Bpeec Figyre 2: (a) Text- and (b) speech-driven visual speech synthesis. In
inputs. both cases, the avatar is generated from a single photograph. The

visual speech synthesis algorithm uses a face surface along with a fa-
Index Terms: H.5.2 [Information Interfaces and Presentation]: cial motion model and a time-labeled phoneme segmentation derived
Multimedia Information Systems—Animations; 1.3.7 [Cont@u from text or speech to produce a facial animation video. In the case
Graphics]: Three-Dimensional Graphics and Realism—Atiiona of text-driven synthesis, phonetic segmentation is generated using
acoustic text-to-speech synthesis. For speech-driven animation, we
use speech recognition technology to obtain the spoken phonemes

1 INTRODUCTION and their timings.

While a substantial amount of work has been done on devajopin . L . .

human face avatars, we have yet to see 2D and 3D avatars éhat ar OUr @pproach to facial animation employs the generic fanation

realistic in terms of animation as well as appearance. Thégo  Model previously introduced in [2]. The model representsfard
mation of the 3D prototype facial surface due to articulatioring

*g-mail: bitouk@cs.columbia.edu speech as a linear combination of a small set of basis veeldsfi

Te-mail:nayar@cs.columbia.edu The coefficients of this representation are the time-depetrfdcial
motion parameters. In order to build a speaker-dependerl fa
motion model for a hew subject, we firstly deform the protetyp
surface into a novel surface using a small set of featuretpain
the novel face. Then, the basis vector fields are adaptee rowel
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facial surface with the help of the deformation obtainechia pre-
vious step.

At each moment of time, the facial motion of a person is déscti
by the small number of facial motion parameters describedeab
We train a set of Hidden Markov Models (HMMs) using the facial
motion parameters obtained from motion capture data of glesin
speaker. Our facial motion synthesis algorithm utilizes tifained
HHMs to generate facial motion parameters from either text o
speech input, which are subsequently employed to prodadistie
animations of avatars. Figure 2 shows the high-level agchite of
our animation approach based on (a) text and (b) speech input

We apply the facial motion synthesis algorithm to animate 2D
avatars created from a single photograph. Since depthniafor
tion is not directly available from a single photograph, watéin
(project) both the prototype surface and the basis vecfdiseda-
cial motion model to obtain a reduced 2D representation.réate
a 2D avatar, we first select a few corresponding points betvlee
prototype surface and the person’s face in the photograpinguU
these correspondences, we deform the prototype surfacedapd
the basis vector fields to obtain the speaker-dependeat faoction
model. We have developed real-time rendering softwaredhat
produce realistic facial animations of 2D avatars fromdhano-
tion parameters generated from either text or speech ihpotder
to enhance realism, our rendering system also synthesieegaze
motion and blinking. Figure 1 shows an input photograph anekt
sample frames of the speech-enabled avatar produced from it

Another application considered in this paper deals witHding
volumetric displays featuring interactive 3D avatars. \kespnt a
simple method for recovering 3D face geometry and textumfr
a single catadioptric (mirror-based) stereo image [13hc8ia hu-
man face has large areas that are devoid of texture, steneanta
produce a sparse set of depth estimates. We present a fémidnet
for obtaining the complete 3D surface of the face by defogntire
prototype surface using the sparse depth estimates. Agahyad
avatar of the person’s face is created by converting theirsddla
facial surface into a dense set of points, which are thenasedr
inside a solid glass block using sub-surface laser enggd88LE)
technology [25]. The facial motion animation synthesizexairf text
or speech is projected onto the static 3D avatar using aatljgio-
jector. Even though the physical shape of the avatar iscstids
projection of facial animations onto it results in a comipgjlexpe-
rience for the viewer.

2 RELATED WORK

Our work is related to previous works in several fields, idahg,
computer graphics, computer vision and 3D displays. Herdige
cuss the previous works that are most relevant to ours.

Facial M otion Representation: Existing approaches to facial mo-
tion synthesis fall into either image-based or model-basmte-
gories. Image-based approaches rely on building statistiod-
els which relate temporal changes in the images at the pexel |
to the text, or, equivalently, a sequence of phonemes dtteye
the speaker. For instance, the Video Rewrite system [7}&sea
database of phoneme-labeled mouth image patches. Givereh no
audio track, the system selects and morphs images that rietch
spoken phonemes into a facial animation. MikeTalk [12] esypl
a low-dimensional representation of optical flow in ordeblend
between images corresponding to different phonemes. hbhaged
models cannot be employed for creating interactive avétans a
single photograph since they require a large training séaaél
images in order to synthesize novel facial animations.
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speaker’s face with either a 2D or 3D mesh. Articulatory dhci
motion is described as deformation of the mesh and is cdadrol
by a set of parameters. The deformed mesh, along with a &extur
image, is used to render facial animation. One of the most pop
ular techniques parameterizes mesh deformations withethpedi
muscle models [35, 31, 17] which use facial muscle activatim
produce facial animation. On the other hand, performamivea
approaches learn facial motion from recorded motions opleeo
Facial motion is usually recorded using optical motion uep{8]

or structured light [24] techniques. In this paper, we tdleerhodel-
based approach and use a compact parameterized facial buiitiel
from motion capture data presented in [2].

Facial Motion Synthesis: Given a parametric representation of fa-
cial motion, the role of speech synthesis algorithms is toegate
parameter trajectories from a time-aligned sequence dfigrhes.
One of the approaches to visual speech synthesis is basefion d
ing a key shape for each of the phonemes and smoothly intgrpol
ing between them [24]. The effects of coarticulation areteinto
account using rule-based methods [10].

Similar to acoustic speech synthesis, visual speech syistheeth-
ods fall either into concatenative or HMM-based categor{ésn-
catinative approaches rely on stitching together prefoszb mo-
tion sequences, which correspond to triphones [7], phoeesy-
lables [19] or even longer speech units [8].

HMM-based synthesis [23], on the other hand, models therdyna
ics of visual speech with the help of hidden Markov modelsjda-
tories of facial motion parameters are generated from HMd4sH

on the maximum likelihood criteria. Brand [6], for exampbeilds

a set of HMMs from audio and video data and employs HMM-
based synthesis for speech-driven animation. Our metlzidstr
HMMs that can capture both the effects of coarticulation el as
lexical stress and produce realistic facial motions frothezi text

or speech inputs.

Interactive 2D Avatars from a Photograph: Although a number
of approaches to fitting a deformable model to a photograpk ha
been suggested, generation of speech-enabled avatarsafsim
gle image remains an open research problem. For instanaetzBI
et al [4] developed a method to transfer static facial expoes
obtained from laser scans to photographs. The main drawtfack
this work is its high computational cost. A few commerciassy
tems (see [1], for example) introduced recently aim to atgémaer-
supplied facial images, but the facial motions they prodack in
realism. Our work builds an end-to-end system for creatiterac-
tive avatars from a single photograph which can be animated f
text or speech in real-time. We believe the realism of thealis
speech produced by our approach is fairly high comparedoseth
of existing commercial systems.

3D Face Reconstruction: Several approaches for recovering 3D
geometry of human faces have been developed. Laser scanning
[21] and structured light [37] techniques allow accurateokery

of facial shape [21], but require special hardware. Blantt ¥et-

ter [3] proposed a morphable face model which can be fitted to
face images. Photogrametric techniques [27] have beentased
construct face geometry from a set of manually marked pamts
multiple images. Stereo-based reconstruction of facesif2the
closest one to the approach taken in this paper. We deform the
prototype facial surface to match a sparse set of reconsth 8D
points. Our method for 3D geometry reconstruction provides
advantage since the estimated deformation of the protatygdace

is also used to obtain a facial motion model that is adaptetig¢o

Model-based approaches typically represent the shape of anovel face, as described in Section 3.2.
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Figure 3: Basis vector fields. (a)-(d) Action of the basis vector fields
P (u), k=12, ....4 on the prototype facial surface.

3 FACIAL MOTION REPRESENTATION

Our approach to synthesizing facial animation from textpmexh
utilizes the 3D parametric facial motion model previoushyro-
duced in [2]. For the sake of completeness, this sectiorflyrie-
views this model, which is based on representing facial onsti
as deformations of a 3D surface which describes the georétry
a speaker’s face. First, a generic, speaker-independeial fao-
tion model is estimated. Then, the speaker-independenthied
adapted to a novel speaker’s face.

3.1 Generic Facial Motion Model

The generic face motion model describes deformations opitbe
totype face represented by a parametrized sustaggx € R3,u e

R?. The displacement of the deformed face shega) at the mo-
ment of timet during speech is represented as a linear combination
of the basis vector fieldg, (u):

N
X (u) =x(u) +kz Ot P (U) @
=1

Vector fieldsy, (u) defined on the prototype facial surfax@) de-
scribe the principal modes of facial motion and are illusitlain
Figure 3.1. The basis vector fielgg (u) are learned from motion
capture data as described in [2]. At each moment of time, ¢fard
mation of the prototype facial surface is completely démmtiby a

vector of facial motion parametecg = (al_rhaz_,t?...?aN,t)T. The
dimensionality of the facial motion model is chosen td\be: 9.

3.2 Adapting Generic Facial Motion to a Novel Face

The above basis vector fields are defined with the respecteto th
prototype surface and, thus, have to be adjusted to matchethe
ometry of a novel face. While this problem was addressediprev
ously [26, 30], the approach described below enables oneafp m
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(b)

(© (d)

Figure 4: Generic facial motion model shown in Figure 3 is adapted
to two novel faces. Each of the columns (a)-(c) and (b)-(d) was gener-
ated using the same facial motion parameters. (a)-(b) Facial motions
of the novel subject 1. (c)-(d) Facial motions of the novel subject 2.

the generic facial motion model using a few correspondinigtpo
between the generic mesh and the novel face geometry.

We employed the method developed in [2] for facial motionsfar
between different face geometries which is based on shadgsis
using diffeomorphismsp : R3 — R3 defined as continuous one-
to-one mappings oR3 with continuously differentiable inverses.
A diffeomorphismg which transforms the source surfac® (u)
into the target surfacxe<t)(u) can be computed from a sparse set of
correspondences between the two surfaces [16].

The diffeomorphismg which carries the source surface into the
target surface defines a non-rigid coordinate transfoomaif the
embedding Euclidean space. Therefore, the action of ttieodif

morphism¢ on the basis vector fieldﬂf(s) on the source surface is
defined by the Jacobian ¢f[5]:

(s)

g (u)— Do X9 (U P (), (2
whereDg| : is the Jacobian ap evaluated at the poind® (u;)
X (Ui
_9a .. _
(D(p)ij_d_xj7|7j_17273~ (3)

Equation (3) is used to adapt the generic facial motion maoalel
the geometry of a novel face. Given a set of correspondinmifea
points on the prototype and novel face shapes, we first egtima
the diffeomorphismp between them using the method presented in
Appendix A. Then, the Jacobidbg can be explicitly computed at
any point on the generic face mesh and applied to the facitbmo

basis vector field:nlll((S> in order to obtain the adapted basis vector
fields. Figure 4 shows the results of applying this approadiwb
novel faces.
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(b) /SIL/ unit

Figure 5: HMM topology for the visual speech. (a) HMM for a phone
in the CMU set. The allowed transition between the HMM states s;
and s, are shown as arcs with the transition probabilities pjj. (b) The
topology of the silence HMM /SIL/ (the state labels and transition
probabilities are not displayed).

3.3 Visual Speech Unit Selection

In large vocabulary speech applications, uttered wordsamsid-
ered to be composed of phones which are acoustic realization

phonemes. We make use of the CMU phone set, which consists

of 39 distinct phones along with a non-speech unit /SIL/ Wwhic
describes inter-word silence intervals. In order to accofete
lexical stress, the most common vowel phonemes are cloried in
stressed and unstressed phones (for example, /AAO/ andJAlAL
particular, we chose to model both stressed and unstresseahts

of phones /AA/, /AE/, IAH/, IAQ/, IAY/, IEH/, [ER/, IEYI, /I
/IY], IOW/ and /JUW/. The rest of the vowels in CMU set are mod-
eled independent of their lexical stress.

Each of the phones, including stressed and unstressechigria
represented as a 2-state HMM , while the /SIL/ unit is desdtib
using 3-state topology, as shown in Figure 3.3. The HMM stite
ands, explicitly represent the onset and end of the corresponding
phone. The output probabilities of each HMM state is assurned
be given by a Gaussian distribution over the facial pararaete
which correspond to the HMM observations.

3.4 HMM Training

The goal of the HMM training procedure is to obtain maximum-
likelihood estimates of the transition probabilities beém HMM
states and the sufficient statistics of the output proligtinsities
for each HMM state from a set of observed facial motion parame
ter trajectoriesar; corresponding to the known sequence of words
uttered by a speaker. As a training set, we utilize facialiomgpa-
rameter trajectories derived from motion capture dataioéthin

2].

In order to accommodate for the dynamic nature of visual dpee
we augment the original facial motion parametgtswvith their first
and second derivatives. Our implementation of HMM trainisg
based on the Baum-Welch algorithm [28] and similar in spirihe
embedded re-estimation procedure [36]. Overall, the HMAtr
ing is realized in three major steps.

Firstly, a set of monophone HMMs is trained. Secondly, ineord
to capture co-articulation effects, monophones modelsiarged
into triphone HMMs which explicitly take into account lefhé
right neighboring phones. Finally, we employ decisioretbased

CUCS-045-07
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0| 100 | 160 | 240 | 290 | 320 | 390 | 440 | 520

Table 1: Phone labels and their start times (in milliseconds) corre-
sponding to the utterance “security.”

clustering of triphone states to improve robustness of stienated
HMM parameters and predict triphones that were not seenen th
training set.

The training data consist of facial motion parameter ttajeéesa

and the corresponding word-level transcriptions. For tiee f
convenience, the training set was manually segmented intora
ber of sentences. The dictionary employed in the HMM tranin
process provides two instances of phone-level transerigtifor
each of the words — the original transcription and a variamctv
end with the silence unit /SIL/. The output probability di¢ies of
monophone HMM states are initialized as a Gaussian dengity w
mean and covariance equal to the global mean and covaridnce o
the training data. Subsequently, 6 iterations of the Bauetetv
re-estimation algorithm are performed in order to refineHihvM
parameter estimates using transcriptions which contarsillence
unit only at the beginning and the end of each utterance. As th
next step, we apply the forced alignment procedure [36] taiob
hypothesized pronunciations of each utterance in theitgiset.
The final monophone HMMs are constructed by performing 2 iter
ation of the Baum-Welch algorithm.

In order to capture the dependence of a phone’s realizatich®
context and co-articulation, we utilize triphones, whiake into ac-
count the proceeding and the following phones, as the spegtsh
The triphone HMMs are initialized by cloning the correspiogd
monophone models and are consequently refined by perforining
iterations of Baum-Welch algorithm. The triphone state sledre
clustered with the help of tree-based procedure to reduealith
mensionality of the model and construct models for triptsone-
seen in the training set. The resulting models are oftenmefdao
as tied-state triphone HMMs in which the means and variaaces
constrained to be the same for triphone states belongingicea
cluster. The final set of tied-state triphone HMMs is obtditg
applying another 2 iterations of the Baum-Welch algorithm.

4 FACIAL MOTION SYNTHESIS FROM TEXT AND SPEECH

In order to synthesize trajectories of facial motion partsrseo
either from text or acoustic speech signal, we firstly geteeasse-
guence of time-labeled phones, as shown in Table 1. When text
is used as input, we employ an acoustic text-to-speech (€MS)
gine for the purpose of generating a waveform and the sequenc
of phones synthesized along with their corresponding atattend
times. To synthesize facial animation from acoustic spéeght,

we utilize a speech recognizer [29] and use the forced alkgmm
procedure [36] to obtain time-labels of the phones in the bgs
pothesis generated by the speech recognizer.

In the beginning of the synthesis stage, we convert the tabeled
phone sequence to an ordered set of context-dependent HMM
states. Vowels are substituted with their lexical strestanés ac-
cording to the most likely pronunciation chosen from theiditary

with the help of a monogram language model. In turn, we create
an HMM chain for the whole utterance by concatenating cheste
HMMs of each triphone state from the decision tree consgdict
during the training stage. The resulting sequence consfstis-
phones and their start and end times. Since each triphonésuni
modeled as a two-state HMM, the start and end times of HMM
states cannot be directly obtained from phone-level setatien.
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(a) Inputimage

(b) Synthesized images

Figure 6: A photograph of a person and images of an interactive avatar created from it.

However, state-level segmentation can be inferred in thérman-
likelihood sense by utilizing the state transition prolitibs esti-
mated during HMM training stage.

The mean durations of the HMM statsg and s, with transi-

tion probabilities shown on Figure 3.3(a) can be computed as

p11/(1— p11) and peo/(1— p22). If the duration of a triphona
described by a 2-state HMM in the phone-level segmentasitg i

the durationas.gl) andt,gz) of its HMM states are proportional to their
mean durations and are given by

1 _ P11— P11P22 t t(2) _ P22 — P11P22 th. (4)
P11+ P22 — P11P22 P11+ P22 — P11P22

Equation (4) for estimating HMM state durations allows usdo-
vert a phone-level segmentation of the utterance into atieled

sequence of triphone HMM state&) s ... sNs) Smooth tra-
T
jectories of facial motion parametefs = <a<1)7...7a(NP>> cor-

responding to the above sequence of HMM states is genersitegl u
the variational spline approach described in Appendix B.

5 INTERACTIVE 2D AVATARS

In this section we apply our facial motion synthesis aldritto
building a speech enabled avatar from a single photograpipef-
son. First, we deform the prototype surface to match theesbép
a person’s face in the photograph and adapt the facial masiny
approach presented in Section 3.2. Next, to enhance realisunse
an algorithm that synthesizes eye gaze motion and eye bijnki

5.1 Fitting a Generic Facial Model to a Photograph

Since depth information cannot be recovered from a phopbgra
we use a reduced 2D representation. Both the prototypeceuafad
basis vector fields of the generic facial motion model areefed
using orthogonal projection onto the canonical frontalwjgane.
In such reduced representation, avatars are 2D surfackdagitl
motions which are restricted to the avatar’s plane.

We start with a photograph of a person looking at the cametta wi
a neutral facial expression. In order to establish cornedpoce
between the generic facial model and subject’s face, we aignu
mark a number of feature points on the photograph, as ifitedr

in Figure (7). Using the corresponding feature points, theegic
mesh is deformed to fit the geometry of a subject’s face in tioéqgp
graph. The obtained deformation is used to transfer thergeme-
tion model onto the deformed mesh using the approach pexsent
in section 3.2.

(a) Prototype face surface (b) A photograph of a subject

Figure 7: A set of manually selected corresponding features on (a)
the prototype face model and (b) the novel face photograph.

5.2 Eye Texture and Gaze Motion Synthesis

Changes in eye gaze direction can provide a compellindikésap-
pearance to avatars. Since some regions of the iris andléra sce
obstructed by the eyelids in the input photograph (see Ei§{n)),
our approach automatically generates a new texture imagsafth
eyeball. We use a sampling-based texture synthesis digofit1]
to create the missing parts of the cornea and the sclerapamsh
Figure 8 (b). Using the points marked around the eyes, wesfiest
tract image regions which contain the eyeballs. Then, thsitipa
and shape of the iris are found using generalized Houghftrans
[18] in order to segment of the eye region into the iris andsttiera.
Finally, a new eyeball image is generated by synthesizirgsimj
texture inside the iris and sclera image regions.

We model each eyeball as a textured sphere placed behingiehe e
less face surface, as shown in Figure 8 (c). The eye gaze motio
is generated by rotating the eyeballs around its centersust/'ea
previously proposed stochastic model [20] to generatetheyaze
changes.

5.3 Examples of 2D Avatars

We developed a real-time rendering software which creataiésr
tic face animations of 2D avatars from text input. Figuresd &
display a few sample frames from speech-enabled, 2D avatars
thesized using the approach presented above.

6 3D AVATARS USING SUB-SURFACE LASER ENGRAVING

Facial motion representation and synthesis approachesreal in
the previous section can be applied to building physicalag&ars.



Technical Report : CUCS-045-07

(©

Figure 8: Eye texture synthesis and rendering. (a) A cropped image
of the subject’s eye. (b) New eyeball texture image that includes syn-
thesized parts of the cornea and the sclera. (c) The eyeball is placed
behind an eyeless image of the face and it is rotated to synthesize (b) 3D face shape  (c) Face shape etched inside a glass
eye gaze changes. block

Figure 9: Volumetric 3D avatars created from a single stereo image.

(a) Catadioptic stereo image of a person which include the direct
Following the approach of Nayar and Anand [25], we build a 3D view as well as a reflection in a planar mirror. (b The prototype facial
avatar of a specific person from a single stereo image usiag th surface deformed to match the geometry of the subject's face. (c)
technique of relief projection. We estimate the shape ofraques The face shape engraved inside a glass block on top of the projection
face and etch it inside a 100100x 200 mm glass block. Facial ~ system.
animation, synthesized either from text or speech, is thejegted
onto the shape inside the glass block using a digital projetl-
though the physical shape is static, the facial animatioogpted number of correspondences between points on the generic mes
onto it result in a compelling experience for the viewer. and points in the observed views. These correspondencésesre
used to obtain an initial estimate of the rigid pose and ey mf
the generic mesh.

6.1 3D Face Model Acquisition Using Catadioptric
Stereo
6.2 Interactive Volumetric Displays
Using the method of [13], we capture a single image of a stibjec . . )
using a camera and a planar mirror. An example image is giegla Ve convert the estimated shape of a subject's face into dwts
on Figure 9 and includes the view of the subject as well agdis/  Point, namely a point cloud, which contains approximatetyril-

reflection in the mirror. We treat the original and virtuaf(ected) lion points. The pointcloud is then engraved inside a sdkt@ of
views as a stereo pair and subsequently rectify them in ¢codgign optical glass using SSLE technology [32]. Figure 9 (,C) shaws
the epipolar lines with the horizontal scan-lines. In ortecalcu- example of a glass cube with the shape of a subject’s faceetch
late the camera’s intrinsic parameters and the relativitipoof inside the cube. A facial animation video which is synthediei-
the mirror, the system is calibrated with help of Zhang'soailtam ther from text or speech is relief-projected onto a stawefshape
[38]. inside the glass cube using a digital projection systemhalgh

the shape is static, the projection of a face animation vigo it
Due to the fact that images of a human face have large arels tharesults in a realistic and compelling experience for an nlese
are devoid of texture, our reconstruction algorithm recewiepth
estimates for a sparse set of points. A dense mesh is getherate
by warping the prototype facial surface to match the spagsefs
reconstructed points. First, we detect a number of Hareatufes
[15] in both the direct and reflected views. Then, the detkfta-
tures in each view are matched to locations in the secondieect
view using normalized cross-correlation. We reconstregitld of
the image features from the obtained correspondences brtive 7 DISCUSSION
views using triangulation. Since correspondence betwkemnd-
constructed points and vertices on the generic face mesbtis n In this paper, we developed an end-to-end system for creatin
given, we apply non-rigid iterative-closest point (ICPyaithm speech-enabled avatars. Such avatars are built from g gdhg-
similar to the one developed by [9] in order to warp the generi tograph or, in the case of the volumetric displays, a singgecs
mesh. To initialize our ICP procedure, we manually mark alsma image of the person. We also presented a method for gergeratin

Due to differences in optical paths between the projectdriadi-
vidual scatters inside the glass, the projected frame Hasatigned

and warped to match the engraved face shape. We use method
developed by Nayar and Anand [25] to warp the projected video
frames. Figure 6.1 shows sample views of interactive 3Daagat
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(9)

Figure 10: An example of synthesized facial animations projected onto the face shape etched inside a glass cube. Panels (a)-(d) and (e)-(h)

show synthesized video frames for a male and a female subjects .

realistic facial motion from text and speech inputs. We niscuks
the limitation of our work and open problems to be address¢dd
future.

The HMM-based facial motion synthesis approach implicitsr
sumes that the visual and acoustic realizations of phonansesy/n-
chronous. However, there exists cognitive evidence tleagtbxist
only loose synchronicity between them [14]. For examplejaia
articulations sometimes precede the sounds they produsemay
expect an improvement in the quality of synthesized faadiéha-
tions if the visual and acoustic speech is modeled asynohisin

by extending the HMM-based approach using, for example, dy-

namic Bayesian networks.

In order to transform the generic facial motion model andivhthe
geometry of a novel face from a photograph, our approachinegju
a few corresponding points to be established between therigen
surface and the novel face. In our current implementatios cor-
responding features are marked manually on the input phaypbg
We expect that, in the future, 2D avatars can be created ftwn p
tographs automatically using feature detection algorithsuch as
[33].

Appearance of 2D avatars can be improved by synthesizinggeisa
in the head pose. Although arbitrary rigid motions of thechean-
not be created due to the lack of depth information, smaldi imea-
tions can be simulated using image warping methods. Pedeiv
realism of our speech enabled avatars is also limited byable |
of facial emotions in the produced animations. Extendingap+
proach to include synthesis of facial emotions is an opeblpro
that we plan to address in the future work.

APPENDIX

A ADAPTATION OF THE GENERIC FACIAL MOTION MODEL
TO A NOVEL FACE

In order to estimate a deformation between the prototypetiaad
novel face surfaces, they are firstly aligned using rigidstegtion.
Given a set of corresponding point%s),x;s), ...,xf\fg on the proto-

type surface and(lt),x(zt),‘.‘,x,(jz on the aligned novel surface, the

diffeomorphism between them is given by

NP
#09 =x+ 3 K(xx)By 5)
=1

where the kerneK(x,y) was chosen to be as follows

x—v|2
K(x,y) Dexp(—” Za)zl” >|3x3- (6)

and By € R3 are coefficients found by solving a system of linear
equations [16].

In order to illustrate the transformation rule (3), let usisider the
diffeomorphisme which carries the source surfag® (u) into the
target surface (u), (p(x(5>(u)) = (p(x(U(u)). The goal of the
adaptation algorithm is to transfer the basis vector fieﬂ@(u)

into the vector fieldspl((t)(u) on the target surface such that the
parametersxy of Equation (1) are invariant to difference in shape
and proportions between the two surfaces which are deschipe
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the diffeomorphismp

N N
<0(>?S)(U)+kz ak,twﬁ(U)> = W(UHKZ i) (0
=1 =1

Approximating the left-hand side of Eq. () using Taylor ssriip to
the first order terms yields

N
P(X%(u)+ S axDe
k=1

N
WS (u) =~ x® t

X (up) Pi(u) ~ X (U)Jrkzlak.thk(u)-

. (8)

Since the above has to hold for all (small) valuesagf the basis

vector fields adapted to the target surface are given by

w (u)

JacobiarD@ can be explicitely computed using Equation (5).

9)

Pheouy

B FACIAL MOTION PARAMETER TRAJECTORY SMOOTHING

The problem of generating a trajectory of observation wacto
which, in our case, correspond to the facial motion parareete

from a given sequence of HMM states was considered in [6, 23]

using the maximume-likelihood estimation. However, in oMpe-
rience, this technique produces temporal discontinuitiebe re-
sulting trajectories of the facial motion parameters. Thethad
presented below solves this problem by employing a vanatiap-
proach with an explicit smoothness penalty.

Let Nr be the number of frames in the utterantgit, ..., tn;

be the centers of each frames ads,,..., s, be the sequence
of HMM state corresponding to each frame. From the statisti-
cal point of view, the values of the facial motion parametatrs
the moments of timey,ty,...,tn. are characterized by the mean
Hiys By oo By and diagonal covariance matrickg, %, ..., 2y,

of the corresponding HMM state output probability densitie

The vector components of a smooth

=
a®,...,aNe)) " of facial motion parameters is constructed
as a solution to the following variational spline problem

trajectorg

k K\ 2
NG e (e -w) RCTC
Gy = argmin 72+)\/ of Lagdt  (10)
@ (o) 0
T
Whereut(nk) are the components ¢f; = (ufnl), t(nl>,..., t(an)> ,

2
(ot(nk>) are the diagonal components ofZ,

2 2 2 R
diag((oék» ,(ot(f)) yeens <ot(an)) ) L is a self-adjoint
differential operator, and is the parameter controlling smooth-
ness of the solution.

It follows from Wahba's Representer Theorem [34] that tHatsmn
to the variational problem (10) is given in the following fior

Ne
& = 2 Ku.0A, (11)
=1

where kernelK(ty,t) is the Green’s function of the self-adjoint
differential operator.. In our implementation, we chose kernel
K(ty,t2) to be Gaussian

(tb—tg)?
202

K(ty,t2) Oe (12)
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The vector of unknown coefficien= (1, 32, ...7[3NF)T that min-
imizes the right-hand side of equation (10) after the stg#iin
(11) is the solution to the following system of linear eqaas

(K+A§l>ﬁ:u7 13)

where K is a Ng x Ng matrix with the elements
Klm = K(ti,tm), S is a Ng x Ng diagonal ma-
2 2 2
rix S = diag((ot(ln)> (o) M@(@))) and
(n) ,(n) m\T
“:< ) Mty s tNF) .
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