
Distributed In Vivo Testing of Software Applications

Matt Chu, Christian Murphy, Gail Kaiser
Department of Computer Science, Columbia University, New York NY 10027

{mwc2110, cmurphy, kaiser}@cs.columbia.edu

Abstract

The in vivo software testing approach focuses on test-
ing live applications by executing unit tests throughout the
lifecycle, including after deployment. The motivation is that
the “known state” approach of traditional unit testing is un-
realistic; deployed applications rarely operate under such
conditions, and it may be more informative to perform the
testing in live environments. One of the limitations of this
approach is the high performance cost it incurs, as the unit
tests are executed in parallel with the application. Here we
present distributed in vivo testing, which focuses on easing
the burden by sharing the load across multiple instances of
the application of interest. That is, we elevate the scope
of in vivo testing from a single instance to a community of
instances, all participating in the testing process. Our ap-
proach is different from prior work in that we are actively
testing during execution, as opposed to passively monitor-
ing the application or conducting tests in the user envi-
ronment prior to execution. We discuss new extensions to
the existing in vivo testing framework (called Invite) and
present empirical results that show the performance over-
head improves linearly with the number of clients.

1. Introduction

Thorough testing of a commercial software product is
unquestionably a crucial part of the development process,
but the ability to faithfully detect all defects (“bugs”) in an
application is severely hampered by numerous factors. For
large, complex software systems, it is typically impossible
in terms of time and cost to reliably test all configuration
options or to anticipate all the different system states before
releasing the product into the field.

The in vivo testing approach [9] seeks to address this
by extending the testing phase into deployed environments,
which are subject to real world workloads and changes in
state. The claim is that many (if not all) deployed software
products still have latent defects and these may reveal them-
selves in application states that were unanticipated and/or
untested in the development and testing environments. In
addition, bugs may also exist in the unit tests themselves,

so a unit test that passes during development may not nec-
essarily pass after deployment, and a unit test that passes
does not ensure it is without flaw.

In vivo testing approaches this problem by executing
unit tests in the context of the running application within
the deployment environment, as opposed to a controlled or
“clean” state. Tests are run continuously through the life-
time of the application at arbitrary points. Crucial to the
approach is the notion that the test itself must not alter the
state of the application; this is clearly undesirable. To en-
sure this, the test is executed in a separate process which is
an exact replica of the original.

This important guarantee leads to a major limitation of
in vivo testing: the high cost of replicating a process. One
possibility is to limit the number of tests that are run, but
this also limits the effectiveness of the approach.

This paper introduces the idea of distributed in vivo test-
ing: applying the in vivo testing approach to a community
of applications, where the size of the community can be
leveraged to detect bugs and reduce overhead.

Applying a distributed approach to in vivo testing is
motivated by two reasons. First, amortizing the workload
over many instances tackles a major limitation, high per-
formance impact, without sacrificing the quantity of tests
being conducted. Second, in vivo testing relies upon testing
as many unexpected permutations of state as possible, in the
hopes that one will be encountered that is not correctly han-
dled by the code. Having a community of applications col-
laboratively working together increases the possibility that
an instance will find these erroneous permutations of state.

2. Related work

Our previous research into in vivo testing [9] was prin-
cipally inspired by the notion of “perpetual testing” [12]
[14] [13] [18], which suggests that analysis and testing of
software should continue into the deployment phase and
throughout the entire lifetime of the application. Perpet-
ual testing advocates that analysis and testing should be on-
going activities that improve quality through several gener-
ations of the product, in the development environment (the

lab) as well as the deployment environment (the field). The
in vivo testing approach is a type of perpetual testing in
which the same unit tests can be used in both environments
with only minor modifications, and the tests do not alter the
state of the application under test.

The Skoll project [6] [8] has extended the notion of con-
tinuous testing [15] [16] into the deployment environment
by carefully managed facilitation of the execution of tests at
distributed installation sites, and then gathering the results
back at a central server. The principal idea is that there are
simply too many possible configurations and options to test
in the development environment, so tests can be run on-site
to ensure proper quality assurance. Whereas the Skoll work
to date has mostly focused on acceptance testing of com-
pilation and installation on different target platforms and
performance testing, distributed in vivo testing is different
in that it seeks to execute unit tests within the application
while it is running under normal operation.

Other approaches to perpetual testing include the mon-
itoring and profiling of deployed software, as surveyed in
[5], though many of these do not use a distributed approach
[17] [4]. One that does, however, is the GAMMA sys-
tem [11] [10], which uses software tomography for divid-
ing monitoring tasks and reassembling gathered informa-
tion; this can then be used for onsite modification of the
code (for instance, by distributing a patch) to fix defects.
The principle difference is that GAMMA is a monitoring
tool that passively measures path or data access coverage,
or memory access, and expects users to report bugs. How-
ever, with distributed in vivo testing, we actively test the
applications of interest by executing the unit tests and auto-
matically report any failures found.

Lastly, distributed in vivo testing utilizes the notion of
“application communities” [7], in which application in-
stances in a software monoculture share information. This
allows in vivo testing to distribute the testing load in space
as well as in time. Our work is different in that we are
not concerned with repair policy or security violations, but
rather with conducting functional testing while the applica-
tion is running in the field.

3. The distributed Invite framework

The original implementation of the in vivo approach was
the Invite (IN VIvo TEsting) framework [9], which works
as follows: the developer specifies a list of target classes in
the application under test to instrument, and a set of unit
tests to execute. Invite then instruments each method in the
list of classes so that with a predetermined probability one
of the unit tests are executed. If a unit test is to run, the pro-
cess is forked, the child process executes the test, the results
are recorded, and the child process terminates. Thus (by de-
sign) a unit test can only be run if an instrumented method

is called; if the application under test is idle, then no tests
will ever be run. There are a number of requirements the
code must satisfy (the tests must be in their own class, test
methods must follow a common convention, etc.), which
are fully detailed in [9].

In this work we have extended the original frame-
work with a distributed component which follows a sim-
ple server-client model, where each application under test
includes the Invite client. The Invite server is a separate
standalone component that runs on a separate machine.

The new distributed Invite framework seeks to reduce the
overhead of each Invite client by reducing the number of
tests each instance has to run while maintaining the same
global quantity. This distributed effort is coordinated by the
central Invite server. The basic protocol is:

1. The Invite server is initialized and ready to receive In-
vite client requests.

2. When an instance of the instrumented application be-
gins, it logs into the Invite server for the first time and
registers itself as an Invite client as part of its initializa-
tion process. The Invite client receives a unique client
id, a list of tests to run, a probability p to run the tests,
and a time t to reconnect to the Invite server.

3. The application under test executes normally, except
that with probability p the Invite client (randomly) ex-
ecutes one of the assigned tests using the in vivo test-
ing approach. When the test is complete the results are
sent back to the Invite server.

4. At time t the Invite client connects to the Invite server
with its id as identification, and receives a new time
t′ to reconnect, as well as possibly a new list of tests
and/or a new probability p′. In this way the Invite
server can dynamically adjust to changes in commu-
nity size by modifying the values it assigns.

The Invite server handles all the bookkeeping of main-
taining client ids, distribution and assignment of the test
suite to the community, the results of each test and the In-
vite client that executed it, and the reconnect times. The
full test suite is intelligently partitioned by the Invite server
based on the size of the community, and these partitions are
rotated periodically (as in [11] and [7]). There is also a sim-
ple console client that allows a developer to query the Invite
server for reports. Currently, the server can report the num-
ber of clients in its community, the number of tests run by
each client, and the results of each individual test.

4. Experiments

We will show in the following experiments that distribut-
ing the testing load as described improves performance by

2

decreasing the number of tests each individual member in
the community has to run.

4.1. Setup

We experimented on the open-source application Jetty,
a webserver/JSP container written purely in Java [3]. In-
strumentation was performed using AspectJ [1] and stress
testing was performed using The Grinder [2]. The exper-
iments were conducted on Sun Sparc machines with dual
300 MHz CPUs and 512 MB of RAM running SunOS 5.8,
with each instance of Jetty running on its own machine. The
entire community was on the same internal 100 MBit LAN.

The class within Jetty that we instrumented was
BufferCache, a class that deals with the internal page
cache. We chose this class because of its high fre-
quency of getting called. The list of tests came from the
BufferCacheTest class. The Grinder was configured to
use one thread. We made 5,000 requests for specific static
and dynamic pages from each Jetty instance. Each Invite
client was assigned the full test suite instead of (disjoint)
subsets for the purpose of experimentation.

We conducted two sets of experiments. First, to establish
the minimal amount of overhead, we ran a single instance
of Jetty with the Invite framework disabled via a compile-
time flag. Second, to measure the effect community size
has on performance, we enabled the Invite framework and
ran the experiment on community sizes of one, two, three,
and four clients. We were limited to such small community
sizes because of a lack of machines with the same specifica-
tions (to ensure that differences in measurements were not
the result of differences in hardware); however there is noth-
ing inherent in the in vivo testing approach that precludes a
heterogeneous application community. Each member of the
community always received the same load (i.e. 5,000 re-
quests), independent of community size, while the rate of
test execution decreased (approximately, due to randomiza-
tion) linearly with the number of clients, ensuring that the
global number of tests remained constant. The base value
of p was arbitrarily set at 1.0%.

4.2. Analysis & discussion

In the context of these experiments we define perfor-
mance as the mean time that The Grinder receives the first
byte of the response from the instrumented Jetty server
(hereon denoted T̄1); this definition is appropriate because
the Invite client is executed before Jetty begins to send its
response to The Grinder. In contrast to this definition is the
mean time for The Grinder to completely receive the whole
response (hereon denoted T̄∗). While T̄∗might appear to be
a better definition of performance than T̄1, this definition is
misleading for two reasons: 1) the Invite framework forks

Avg # Total Mean
Test Per # Time to %

Clients p Client Tests 1st Byte Overhead
N/A N/A N/A N/A 3.05 0.0%

0 0.00% 0 0 3.13 2.4%
1 1.00% 449 449 17.1 460%
2 0.50% 227 454 10.0 227%
3 0.33% 151.67 454 7.34 141%
4 0.25% 112.75 451 6.19 103%

Table 1. Jetty reponses times (in millisec-
onds) with varying community sizes

Figure 1. Community Size (X Axis) vs Percent
Overhead (Y Axis).

the application, so the test (child) process becomes a pro-
cess just like any other process, subject to the whims of the
operating system scheduler; 2) the size of the webpage be-
ing requested affects T̄∗but not T̄1. Table 1 shows the raw
data we collected.

We begin with a comparison of the performance of Jetty
without the Invite framework and the performance of Jetty
with the Invite framework enabled but with no tests run, i.e.
with an empty list of tests. This comparison approximates
the overhead of Invite itself at 0.08 ms, a 2.4% increase in
overhead. This overhead stems from the Invite framework
itself, as no tests were actually executed. Thus, we expect
to see this overhead regardless of the size of the community,
and we seek to only approach this optimal minimum.

When we increased the community size from zero to one
(i.e. having a single client perform all the tests) the over-
head of T̄1 jumped to 460%, while a community size of
two (i.e. each Invite client performing half as many tests)
resulted in an overhead of 227%. We continued this up to
four clients, and plotted Figure 1. What is of importance
is not the absolute amount of overhead but the fact that it
decreases linearly as the size of the community grows. The
graph clearly shows this; as we increase the size of the com-

3

munity, we are able to reduce the p we assign to each Invite
client, which results in a lower overhead per Invite client
while maintaining the same number of tests being run glob-
ally. That is, this lower performance overhead is achieved
without sacrificing the original goal of in vivo testing.

If we extrapolate from our data, we predict that a com-
munity size of around 18 would reduce overhead to 25%, a
size of around 45 to 10%, and a size of around 90 to 5%.

5. Future work & conclusion

Distributed in vivo testing shows great promise in alle-
viating one of the biggest problems of the in vivo testing
approach (extremely high performance penalties) by dis-
tributing the number of tests that need to be run onto the
entire community of applications. A central server coordi-
nates this effort by monitoring the size of the community
and collecting results for later analysis. This distribution
not only does not sacrifice testing to reduce the overhead
as the quantity of tests being conducted remains the same,
but it also has the additional benefit of running the tests in
more diverse environments, thereby increasing the chances
of finding an anomalous state that causes a test to fail.

Having a community of applications with a central server
enables interesting possibilities for more sophisticated test-
ing techniques. One such technique that we hope to explore
in a future work is what to do when a test fails. We en-
vision a kind of “differential diagnosis” wherein the Invite
server then assigns this test to all the members of the com-
munity. Comparing which Invite clients passed with which
failed would be of great assistance to the development team
in pinpointing the source of the defect.

We see a number of ways to further improve perfor-
mance: one way would be to modify the Invite server so
that it could more intelligently distribute the test suite, either
by offloading busy instances onto less busy instances, or by
ensuring equality across the community. Similarly, a single
instance could adjust its own p value based on its current
load. Another way which considers the community at large
is to determine the best strategies to dynamically adjust the
global workload as the size of the community changes, as in
[11]. Specifically, future work would involve experimenta-
tion with the frequency of Invite client reconnections to the
Invite server.

Another direction involves deciding what tests actually
get assigned. The current implementation requires that the
developers specify which tests get run, and then the system
arbitrarily assigns partitions of the test suite to members
of the community. However, the server could more intel-
ligently choose which tests to run and which not to. For
example, if a specific test has consistently passed for many
cycles on a given Invite client, the Invite server can then
remove this test from that client so that it focuses more at-

tention on its other tests. This should result in the discovery
of more bugs, enhancing the usefulness of the in vivo testing
approach.

6. Acknowledgments

Murphy and Kaiser are members of the Programming
Systems Lab, funded in part by NSF CNS-0717544, CNS-
0627473, CNS-0426623 and EIA-0202063, NIH 1 U54
CA121852-01A1.

References

[1] Aspectj. http://www.eclipse.org/aspectj/.
[2] The grinder, a java load testing framework.

http://grinder.sourceforge.net/.
[3] Jetty, a java web server. http://www.mortbay.org/.
[4] J. Clause and A. Orso. A technique for enabling and support-

ing debugging of field failures. 29th ICSE, pages 261–270,
2007.

[5] S. Elbaum and M. Hardojo. An empirical study of profiling
strategies for released software and their impact on testing
activities. ISSTA 2004, pages 65–75, 2004.

[6] A. Krishna et al. A distributed continuous quality assurance
process to manage variability in performance-intensive soft-
ware. 19th ACM OOPSLA Workshop on Component and
Middleware Performance, 2004.

[7] M. Locasto, S. Sidiroglou, and A. Keromytis. Software self-
healing using collaborative application communities. NDSS
2006, pages 95–106, Feb 2006.

[8] A. Memon and A. Porter et al. Skoll: distributed continuous
quality assurance. 26th ICSE, pages 459–468, 2004.

[9] C. Murphy, G. Kaiser, and M. Chu. Towards in vivo test-
ing of software applications. Technical Report cucs-037-07,
Columbia University, Dept. of Computer Science, 2007.

[10] A. Orso, T. Apiwattanapong, and M. Harrold. Leveraging
field data for impact analysis and regression testing. 9th
ESEC, pages 128–137, 2003.

[11] A. Orso, D. Liang, and M. Harrold. Gamma system: Con-
tinuous evolution of software after deployment. ISSTA 2002,
pages 65–69, 2002.

[12] L. Osterweil. Perpetually testing software. 9th ISQW, 1996.
[13] D. Richardson, L. Clarke, L. Osterweil,

and M. Young. Perpetual testing project.
http://www.ics.uci.edu/ djr/edcs/PerpTest.html.

[14] D. Rubenstein, L. Osterweil, and S. Zilberstein. An any-
time approach to analyzing software systems. 10th FLAIRS,
pages 386–91, May 1997.

[15] D. Saff. Automated continuous testing to speed software
development. Master’s thesis, MIT, Feb 2004.

[16] D. Saff and M. Ernst. An experimental evaluation of contin-
uous testing during development. ISSTA 2004, pages 76–85,
2004.

[17] J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou. Triage:
Diagnosing production run failures at the users site. 21st
SOSP, pages 131–144, Oct 2007.

[18] M. Young. Perpetual testing. Technical Report AFRL-IF-
RS-TR-2003-32, Feb 2003.

4

