
An Event System Architecture for Scaling
Scale-Resistant Services

Thesis proposal

Philip N. Gross
Department of Computer Science

Columbia University
phil@cs.columbia.edu

Advisor: Prof. Gail E. Kaiser

December 9, 2005

i

Abstract

Large organizations are deploying ever-increasing numbers of networked compute de-
vices, from utilities installing smart controllers on electricity distribution cables, to the
military giving PDAs to soldiers, to corporations putting PCs on the desks of employees.
These computers are often far more capable than is needed to accomplish their primary
task, whether it be guarding a circuit breaker, displaying a map, or running a word pro-
cessor. These devices would be far more useful if they had some awareness of the world
around them: a controller that resists tripping a switch, knowing that it would set off a cas-
cade failure, a PDA that warns its owner of imminent danger, a PC that exchanges reports
of suspicious network activity to its peers to identify stealthy computer crackers.

In order to provide these higher-level services, the devices need amodelof their en-
vironment. The controller needs a model of the distribution grid, the PDA needs a model
of the battlespace, and the PC needs a model of the network and of normal network and
user behavior. Unfortunately, not only might models such as these require substantial com-
putational resources, but generating and updating them is even more demanding. Model-
building algorithms tend to be bad in three ways: requiring large amounts of CPU and
memory to run, needing large amounts of data from the outside to stay up to date, and
running so slowly that can’t keep up with any fast changes in the environment that might
occur.

We can solve these problems by reducing the scope of the model to the immediate locale
of the device, since reducing the size of the model makes the problem of model generation
much more tractable. But such models are also much less useful, having no knowledge of
the wider system.

This thesis proposes a better solution to this problem calledLevel of Detail, after the
computer graphics technique of the same name. Instead of simplifying the representation of
distant objects, however, we simplify less-important data. Compute devices in the system
receive streams of data that is a mixture of detailed data from devices that directly affect
them and data summaries (aggregateddata) from less directly influential devices. The
degree to which the data is aggregated (i.e., how much it is reduced) is determined by
calculating aninfluence metricbetween the target device and the remote device. The smart
controller thus receives a continuous stream of raw data from the adjacent transformer, but
only an occasional small status report summarizing all the equipment in a neighborhood in
another part of the city.

This thesis describes the data distribution system, the aggregation functions, and the
influence metrics that can be used to implement such a system. I also describe my current
towards establishing a test environment and validating the concepts, and describe the next
steps in the research plan.

ii

Contents

1 Introduction 1

2 Problem, Definitions and Requirements 3
2.1 Definitions . 3
2.2 Problem Statement .5

3 Hypotheses and Proposed Approach 5
3.1 Aggregation . 6
3.2 Aggressiveness .6

3.2.1 Influence . 7
3.3 Proposed Approach .7
3.4 Hypotheses .8

3.4.1 Network Hypotheses .8
3.4.2 Service Hypotheses .8

4 Model 8
4.1 Distribution Architecture . 8
4.2 Recuitment .9
4.3 Distribution Optimizations .10
4.4 Registry and Channels .10
4.5 Influence Details .11
4.6 Influence Example .12
4.7 Influence Band Reuse .13

5 Related Work 13
5.1 Scalable Event Systems .13

5.1.1 The Information Busc© . 13
5.1.2 Gryphon .15
5.1.3 Siena .15
5.1.4 ECho .15
5.1.5 REBECA .15
5.1.6 YANCEES .16
5.1.7 Astrolabe .16

5.2 Distributed Registries .16
5.3 Presence and Chat Systems .16
5.4 IP Multicast .17
5.5 Machine Learning .17

6 Feasibility 17
6.1 The ConEd Project for Predicting Feeder Cable Failure17
6.2 AUC Scoring .18
6.3 Aggregation by network results .19
6.4 Simulation of large-scale network growth and adaptation20

iii

7 Research Plan and Schedule 22

8 Contributions, Future Work and Conclusion 22
8.1 Thesis Contributions .22
8.2 Future Work .23
8.3 Conclusion .24

iv

1 Introduction

Organizations are deploying larger and larger numbers of networked computational units, with
node counts planned to increase into the millions [2]. Examples include large utilities (energy,
telecoms) installing intelligent controls, sensors, and home meters, military organizations giving
ruggedized Personal Digital Assistants to every soldier, as well as the basic inventory of desktop
PCs of large organizations such as the U.S. federal government.

These compute nodes generally have a local task, but are also contributing towards a higher-
level goal. A circuit-breaker is protecting a specific piece of equipment, but, in the ”smart grid”
of the future, will also try to maintain the health of the whole electrical distribution system [3].
A soldier has an immediate tactical goal, but is also part of a larger strategy. A particular PC
tries to protect itself from malicious outsiders, but in new Collaborative Intrusion Detection
Systems, it is also helping the whole network identify broader attacks [34].

In order to contribute to these higher goals, nodes with sufficient capability might want to have
some idea of the bigger picture in the form of a periodically-updated computationalmodelof
their wider environment. A model allows a node to answer simple “what-if” questions and
predict the effect of system changes. The frequency of model updates should be of the same
order as the rate of significant system changes, whether it is seconds or hours. The updates to
the model come in the form of data streams from other system nodes.1

Nodes might want to maintain their own independent models (and not simply depend on a
remotely-maintained model) for a number of reasons. In some cases, as with circuit-breakers,
decisions may need to be taken within milliseconds, leaving no time to consult with a remote
system. Nodes may frequently be disconnected from the wider grid, particularly in the military
context, and so need to ensure that they can operate independently. Also, there may be relevant
data known to a local node, but not intended to be shared with the wider network for reasons of
privacy or security. For instance, a smart electric meter would inform the wider grid of actual
energy use, but treat planned consumption as private information.

For low-level nodes, these models may be small and from a local perspective (e.g. a smart elec-
tric meter bidding for electricity and controlling large appliances), while large central servers
may be attempting to model and optimize the entire system (e.g. smoothing electrical demand
over the entire disribution system). Rather than hand-generate countless individualized models,
it is much more convenient for nodes to derive their own model from domain knowledge and
observation. Machine Learning algorithms such as Support Vector Machines [6] and Adaboost
[28] can do this. Further, once in possession of a model, a node can try to determine optimal
policiesfor future behavior, by using the model to evaluate outcomes of potential actions.

Unfortunately, deducing the model from data or searching for optimal policies are compute-
intensive operations, which are difficult to scale to very large data sets [19, 33]. Also, we would
like to compute these models and policies in near-real time, to keep up with the current state

1There will always be extremely simple nodes in the system as well, able to emit a sensor reading, and perhaps
react to on-off messages, but lacking the processor or memory to run a useful model. These minimal nodes will
not be discussed further, and we will only be considering nodes above a minimal threshold of CPU, memory, and
network connectivity.

1

of the system. One trivial way to cope with such computationally-intensive tasks on resource-
constrained systems is simply to ignore any data more distant than some horizonh∞, e.g. the
circuit breaker feeds its models with data from directly connected cables (at distance 1), from
transformers and joints connected to those (at distance 2), and ignores all data from anywhere
else.

Instead, I introduce an aggregation-dependent approach which I callLevel of Detail, as it is
somewhat analogous to the computer graphics technique of the same name. I assume the exis-
tence of an efficiently-computable metric I callinfluence, representing the expected impact of
one node’s data on another’s calculations. I also assume the existence ofaggregations, which re-
duce one or more input streams of data to a single stream with a bounded rate, while preserving
some useful information.

The key idea is to aggregate data streams inversely proportional to their influence. Thus for a
given node N, data streams from nodes with low influence on N will be strongly aggregated
(i.e., subject to a large amount of data reduction), while data from nodes with high influence
will be lightly aggregated if at all. Drawing data from a wider range, even if aggregated, may
benefit our model in a number of ways. While information from our first highly influential peer
may be valuable, information from the second and further may be redundant. Less influential
nodes may carry information from distant parts of the system, giving us a broader picture.

This idea is illustrated below. Instead of simply taking all data from our neighborhood, we take
all data from a smaller region, and join it with information that comes from a much wider span
of the system, scaled to emphasize the most relevant data.

Figure 1: A simple approach to reducing
model complexity is to accept all data from as
many nearby nodes as possible, and ignore all

other data.

Figure 2: The Level of Detail approach is to
accept all data from a smaller neighborhood,

and use our remaining model capacity on
aggregated data from a larger set of nodes.

However, intelligent data aggregation alone does not solve all of the problems of scaling scale-
resistant services. While aggregation reduces the amount of data that needs to be delivered to
any particular node, the aggregation operations may themselves be computationally expensive
and are certainly data intensive. If every node required its own unique set of aggregated data,

2

the demands on the system would still be unacceptable. We will need a limited set of influence
classes, allowing aggregations to be widely reused.

I will present results showing that when the Level of Detail technique is applied to actual data
sets from Consolidated Edison of New York (ConEd), not only can intensive Machine Learning
calculations be made more tractable via a factor of 20 reduction in input size, but in some
cases, results actually showed improvement compared with learning on all raw data (an AUC
score [defined later] of .60 compared with .51), despite a general computational learning theory
guideline that more training examples give better results [32].

The ability of the Level of Detail approach to automatically scale large amounts of remote
data to a quantity tractable for even fairly simple nodes could eventually lead to new forms of
distributed capability. For large systems,everynode of sufficient capability would now have
the possibility of modeling and analyzing the system from its own perspective and to the best
of its ability, identifying imminent problems and developing optimal policies to handle them.
David Waltz has suggested the termDistributed Awarenessfor a system with such pervasive
intelligence. Level of Detail data distribution could be a first step towards this vision.

This proposal is organized as follows: first, section 2 defines terms such asevent systemand
scale resistant, and describes the requirements for an effective system for implementing Level of
Detail. Section 3 describes the hypotheses and 4 describes the model for my solution. Section
5 discusses past and current related work as it relates to this problem. Current results in the
context of ongoing joint research between Columbia and ConEd are described in section 6. The
plan for completion of the thesis work is given in section 7. Expected Contributions, future
work and conclusions are in section 8.

2 Problem, Definitions and Requirements

2.1 Definitions

These are some of the terms used in this proposal:

• Event: Events(also known asmessagesor notifications) are encapsulated pieces of infor-
mation, usually small. The classic event representation is as an unordered set of attribute-
value pairs, akin to a record from a relational database [1, 7, 29].

A particularly important type of event describes the state of a system component at a
point in time. These events can be used to derive a model of the system, and/or drive an
existing system model. Over time, they create a time series data set, or data stream.

While there may be many other event types in the system, in a large, sensor-rich system,
these state-descriptive messages will usually comprise the vast bulk of event traffic.

• Event System:The main participants of interest in our problem domain are event stream
producers, event stream consumers, and various transforms on the event streams. Systems
for managing event streams are known asEvent Systems(and also aspub/sub systems).
Producers of event sequences are known aspublishers, and consumers of event sequences

3

aresubscribers. The primary goal of an event system is to get every published event to
each of its subscribers. For a particular published event, there may be zero, one, or many
subscribers.

• Event System Architecture:A software architecture designed to support advanced pub/sub
features is an Event System Architecture. Usually they are constructed as overlay net-
works, leveraging an existing TCP/IP internetworking substrate.

Some examples of advanced capabilities are:

– Content-Based Routing(CBR), which matches an event to subscribers based on
predicate functions (filters) that can examine the entire event, in constrast to the
older channel-based systems, where subscribers subscribe to a channel, and receive
all messages published to it [7].

– Transformations of the event stream, including aggregation, unit conversion, mes-
sage annotation, etc. [35]

– AlternateEvent Types, particularly structured events, as opposed to the typical
attribute-value pair event format [12].

– An advancedDistribution Architecture to support large numbers of participants
on a particular channel. The system will usually construct and maintain a large,
low-latency distribution tree, with limiteddegree(inputs and outputs) at any node.

– Autonomic Behavior, where the system has enough self-knowledge and control to
continually adjust and optimize itself [13].

• Service: A piece of software that does something useful. The term is used in the broad
software engineering sense, as opposed to the specific operating system sense. The ser-
vices of interest for this thesis will be useful throughout the system, from the global to the
local level, and involve a system model, constructed from and/or driven by system-status
events.

An example service might use a survivability model to try to predict infrastructure com-
ponent failures based on the current and predicted future environment. Another might
use a threat assessment model to identify and rank the most pressing dangers to a military
unit.

• Scale-resistant Service:I use the term scale-resistant to refer to model-related services
that become intractable for very large models. The particular services we have encoun-
tered during the ConEd project that fall into this category are Machine Learning (ML)
algorithms, which can construct a model of a system from observations, and Reinforce-
ment Learning (RL) algorithms to find optimal policies given a model. Note that simply
evaluating an existing model, by giving it a set of observed or hypothetical values for the
independent variables and obtaining a result, may itself be a non-trivial operation, but
is generally of a lower order of complexity than ML and RL which actually construct
models.

4

These scale-resistant algorithms are generallyO(n2) or worse, wheren is the number
of training examples for ML and the number of model features for RL. Additionally,
direct implementations of some ML algorithms, e.g., Support Vector Machines (SVMs),
will haveO(n2) space complexity as well, although more sophisticated implementations
avoid this at the cost of slower operation [32, 10, 6, 19].

2.2 Problem Statement

We would like to implement Level of Detail-based data distribution. To achieve this we must
overcome three problems:

1. Algorithmic Complexity: The services of interest are intractable when applied to a full
system model. We will need to make them tractable on a given node, possibly on a
reduced model of the system, while still producing useful results.

2. Network Traffic: The network will generally not have enough capacity to send all status
events to a single node, which will in turn be limited by have a maximum rate at which it
can accept events. We will need to limit the total traffic our data distribution requires of
the system, and also limit the event arrival rate at each participating node. We will need
to do this even for very large systems, while still providing sufficient data for our services
to produce useful results.

3. Dynamic System: We cannot assume that the structure of our system is unchanging.
Indeed, it is virtually impossible for a system of millions of nodes to remain static—nodes
are continually being added, failing, and having their interconnections rearranged. Our
solution must be able to adapt to changes in the system structure, at a speed comparable
to the rate at which significant changes occur.

Arbitrary event support is not a research goal of this thesis, but I will to support legacy and
structured event types as necessary, beyond attribute-value sets. For instance, if events are being
generated as processing-friendly fixed-format records, I will avoid expending computation in
order to force them in and out of a larger and less-efficient format such as an attribute-value
representation.

It is also worth noting that any large, distributed software system raises security issues. Event
systems are particularly tempting targets for insider threats, thanks to their ability to take a single
event and multiply it into a packet storm. However, a security framework for event systems is
beyond the scope of this thesis.

3 Hypotheses and Proposed Approach

First I will define some additional terms, and briefly describe the Level of Detail approach.
Then I will list my hypotheses, and describe the proposed model.

5

3.1 Aggregation

For the purposes of this proposal I will define anaggregationas a function that takes one or
more streams of events as input and outputs a stream with a bounded event rate. The worst-case
output rate will be lower than the worst-case sum of the input rates.

Some examples of aggregations under this definition are:

1. A bounded buffer model: Pass all incoming events through until the quota for this time
quantum is reached, then discard all events until the next time quantum. This may result
in a distorted view of the data, but is the easiest mechanism to implement.

2. For numerically-valued events, return the count, mean, and variance of all received events
over the time quantum. This is useful if we are only interested in the statistical properties
of the event stream.

3. Return a single stream synthesized from multiple streams by calculating the mean (or the
max, or the median) across all input streams each time quantum. This is useful if we
expect a number of streams to be highly correlated with each other.

4. Fit a polynomial to the incoming data points, and return its coefficients each time quan-
tum. This is appropriate when we are interested in the streams’ trend over time.

5. Use some stochastic function to reduce the data, e.g. drop each event with probabilityp,
but still subject to a strict quota per time quantum. A random sample is a prerequisite for
some statistical operations.

Note that aggregations under this definition are not necessarily lossy, as this definition considers
only the raw event rate, not the information content. As a trivial example, duplicate input
streams could be replaced with a single output stream.

3.2 Aggressiveness

We would like to characterize the data reduction achieved by a particular aggregation, which
I term aggressiveness. I indicate aggressiveness with a parameterα ∈ [0, 1] representing the
reduction in data rate. Specifically, the value ofα for an aggregation functionf operating on
input streamss1, . . . , sn with data ratesr1, . . . , rn and producing an output streamsout with rate
rout is

α(f, {si}, sout) =
rout∑n
i=1 ri

Thus a value ofα = 0 means that all input data is simply discarded, whileα = 1 means that no
aggregation is occurring.

Stochastic aggregators may takeα as a parameter, for instance letting events pass with proba-
bility α, and otherwise dropping them.

6

For deterministic aggregators,α is inversely proportional to the amount of input. If our aggre-
gator is taking average values across its set of input streams each time quantum, giving it five
input streams is less aggressive than giving it twenty input streams, assuming equal data rates.

3.2.1 Influence

When a particular node is planning to run a service e.g., machine learning, the service will re-
quire system data from which to construct a model. The node running the service may be any-
thing from a resource-constrained embedded device to a powerful compute server. In any case,
it will have a particular input budget based on how much data the service can consume while still
producing results within the needed time. We decide how to spend our input data budget based
on a metric I refer to asinfluence. Influence is a function on node pairs,Infl(Ns, Nt) → [0, 1],
that should be efficient to compute (or look up), and have some sort of correlation with the
amount of impact that data fromNs will have on the outcome of a computation at our target
nodeNt. The output value of this function can be used directly as a value forα when determin-
ing aggregation aggressiveness. IfInfl(Ns, self) = 0.5, then a randomly selected half of the
data fromNs can be discarded.

3.3 Proposed Approach

My solution is inspired by a technique from the field of computer graphics. As long ago as 1976,
J. Clark suggested rendering objects with varying degrees of detail based on their apparent size
to the viewer, allowing the display of many more objects than would otherwise be possible
[8]. This technique, known as Level of Detail, has been refined over the years by computer
graphics researchers to support automatic generation of appropriately simplified models based
on distance from the viewer [15, 21].

The Level of Detail technique for data dissemination is similar in structure to the graphics
technique, but addresses the problem of too much complexity in our data streams instead of in
our renderable objects. Instead of distance from the viewer, I use the influence metric described
above. Instead of polygon and vertex reduction, I apply scalable aggregation functions to data
streams, with increasingly strong aggregation as influence decreases.

In order to implement such a system, many event streams will need to be aggregated. Also,
the output of aggregations will need to be disseminated to many nodes. In order to support the
potentially large numbers of participants listening or sending to a single source, and potentially
high rates of event generation, we will need an event distribution architecture more complex
than a simplereflector-basedarchitecture, where a single node is responsible for relaying all
messages on a particular channel. A number of very scalable, adaptable, overlay event systems
have been developed in the last several years, such as Scribe [27], Bayeux [36], NICE [4], and
OMNI [5].

One particular requirement for Level of Detail is that the event distribution system scale for
aggregation as well as it does for dissemination. Although the two problems are symmetric, I
have not been able to find a modern overlay event system designed to handle aggregation with
the same efficiency as dissemination. I will describe a fairly simple protocol below which I can

7

use for research, but I am open to using existing systems if they can be modified for scalable
aggregation.

An additional requirement is that subscribers and aggregators need to find publishers in order
receive events. Again, scalable, robust, distributed indicies are a well-studied problem, and I
intend to use an existing solution, either SIP [16], a Peer-to-Peer (P2P) system such as Chord
[31] or the Content Addressable Network (CAN) [25], or recently developed hybrids [30].

3.4 Hypotheses

3.4.1 Network Hypotheses

1. For a large system running scale-resistant services on many nodes, dynamic data reduc-
tion techniques will allow the total amount of data moving through the system, as well as
the amount of data being processed at each node, to remain at feasible levels even as the
system grows very large, while still allowing the services to produce useful results.

2. An event distribution system can be effectively “inverted,” and used to aggregate together
many data streams with the same efficiency it uses to deliver a single data stream to many
subscribers.

3.4.2 Service Hypotheses

For an important set of scale-resistant services (specifically machine learning and reinforcement
learning):

1. There exist efficiently computable metrics (influence) to guide the aggressiveness of our
aggregations for each service.

2. There exist simple and adjustable aggregation functions that can reduce data streams to
varying degrees, while preserving essential information.

3. If these scale-resistant services use data from a broad area of the system, aggregated
proportionally to its influence, they will produce useful results of higher quality than
could be achieved by simply reducing the number of inputs to the service.

While I hope to produce some guidelines for finding appropriate influence metrics and aggre-
gation functions for any scale-resistant service, a full theoretical analysis of how to derive such
parameters from service characteristics is beyond the scope of this thesis.

4 Model

4.1 Distribution Architecture

A straightforward mechanism to distribute events in a channel is designate a node as thereflector
for that channel. All published events are sent to that node, which then sends it onward to all
other nodes. However, as the number of participants on a channel rises, the reflector may not

8

be able to either process all of its inputs or send to all of its outputs before the next event
arrives. This is especially problematic when the participants are hardware or software entities,
as opposed to humans, and capable of much higher event-generating and processing rates.

In order to support these high rates, one must trade latency for throughput. This generally
involves introducing extra nodes into the dissemination/aggregation tree. Unlike hardware mul-
ticast, overlay distribution systems must process events sequentially, so in the case of a single
incoming event that must be forwarded on ton downstream consumers costingt time each, and
an event arrival rate ofλ, we must limit the number of downstream consumers toλ

t
to ensure

that we will be finished by the time the next event arrives. Thus we will need to enforce a
limited fan-out.

In order to allow scalable multi-stream aggregation, the situation is similar. If we are, for
instance, calculating some function across multiple input streams, the time to process each
incoming event in order to access its value may be significant relative to the arrival rate of new
events. Thus we will only be able to average across a small number of streams, and must enforce
limited fan-in.

The following two sections describe a simple but scalable event system, similar to the Overlay
Multicast Network Infrastructure (OMNI) system. I intend to use this simple architecture for
the short term to carry out feasibility experiments. The goal is to use one of the more complete
systems from overlay networking specialists, if one can be found that can be easily adapted for
efficient aggregation as well as dissemination.

4.2 Recuitment

When building our distribution tree, the important participants in the process are nodes that are
capable offorwardingmessages. In the dissemination case, they need to have available at least
twice the output rate capacity as the input stream, i.e., be capable of forwarding an incoming
event to at least two other nodes. For multi-stream aggregation, the input capacity must be
at least twice the output capacity, i.e. be capable of aggregating at least two streams. Nodes
incapable of this, due to resource constraints such as limited bandwidth, are termedleaf nodes.

When a node would like to subscribe to a stream, it finds the publisher and asks to be grafted
onto the distribution tree. If the publisher has available slots, the subscriber is added as a direct
child, and receives every event directly as it is published. If the publisher is already at maximum
fan-out, it will suggest two of its non-leaf children as candidates to becomeevent forwardersfor
the subscriber. The subscriber picks one and repeats the subscription request, until an open slot
is reached. Eventually either an available slot will be found, or a node is reached that is fully
populated with leaf nodes. In the case of an all-leaf-children node, a more capable node will be
inserted above one of the leaves. Ideally this will be the subscription-requester itself, but if it is
a leaf itself, a new node will berecruitedfrom the set of registered nodes with spare capacity.

Aggregation recruitment works in a similar fashion. An aggregator subscribes to streams con-
taining data to be aggregated as it discovers them. When it reaches its maximum fan-in, it
requests that existing sources aggregate new streams on its behalf. If they lack capacity to do
so, the aggregator will recruit a new node from the available pool.

9

4.3 Distribution Optimizations

“The Power of Two Random Choices” is a phenomenon popularized by Michael Mitzenmacher[22].
If we haven balls andn bins, and throw each ball into a randomly chosen bin, the largest num-
ber of balls in any bin, with a high probability, will belog n

log log n
. If instead we put each ball into

the least loaded ofd ≥ 2 bins, again chosen randomly, the most loaded bin is now likely to
contain only log log n

log d
+ θ(1). Thus by giving just two choices, we get a large improvement in

worst-case performance, with only a constant factor of improvement for having more than two
choices.

We leverage this when growing the distribution tree. If a publishing node has no further room
for direct children, rather than either picking a random child or telling the subscriber to evaluate
all the children to determine its next hop, it picks two randomly, and lets the subscribe choose
between them. This captures most of the benefits of choice without a burdensome amount
of evaluation. The primary metric for the sample implementation is latency, as that is what
our staged architecture tends to add. Thus if fully-populated node A suggests child nodes B
and C as candidate forwarding nodes to us, we compare latency(A, B) + latency(B, self) with
latency(A, C)+latency(C, self). We then resend our subscription request to the node with the
lower latency sum.

Distribution trees built in this fashion are unlikely to be optimal, and nodes may leave the system
at any time. Therefore, I introduce mechanisms to try and reduce latency after tree construction.
Periodically, special events are produced by publishers, allowing each forwarding node along
the way to append its latency from its parent to the list. If a lower level node discovers that it has
less latency to an ancestor node than that node’s current child event forwarder, the lower level
node can suggest switching places. The threshold for making such a such a swap is dependent
on the magnitude of the improvement.

Additionally, leaf nodes are pushed to the bottom of the tree. Nodes with leaf children (or
vacated slots) periodically announce this to their descendants. Should the node also have non-
leaf grandchildren, they can be swapped with the leaves.

4.4 Registry and Channels

I assume the existence of a distributed, scalable registration facility that supportsput andget
operations. There has been extensive research in this area in recent years, and I believe the
best option is to use one of the existing, well-developed systems. Peer-to-Peer (P2P) systems
such as Chord [31] and CAN [25] provide a distributed repository with proven scalability prop-
erties. SIP [16] is a broadly-supported protocol for, among other things, storing and locating
information about entities. Recent research has combined the two [30], using a P2P system as
a substrate for SIP.

Nodes join the system (and thus enter the pool of recruitable nodes) by informing the distributed
registry of their existence. Each node has associated identity value, which can be used for
calculating influence metrics, an in-data-rate capacity and an out-data-rate capacity. As nodes
participate in aggregation or dissemination trees which use up their capacity, the registration is

10

updated. Registering also automatically subscribes a node to the system notification channel.
A future goal would be to look at giving nodes an attribute corresponding to CPU capability, to
indicate their ability to handle CPU-intensive aggregation operations.

I also require publishers to register. Some event systems, notably Siena [7], are so-calledpure
content-based-routingsystems. Such event systems typically do not require registration for
event publishers. Any node can publish any sort of event at any time, and it will be evaluated
against currently known subscriptions to determine routing. In contrast,channel-based systems
require publishers toadvertisetheir intentions ahead of publication, allowing the establishment
of organized distribution trees. The two approaches could be seen as analogous to run-time
versus compile-time evaluation.

For the scope of this thesis, I will be using a channel based system, as I am trying to set up
efficient distribution structures. I use a flexible definition of channel, which is simply a tem-
plate event that every published event will match. For instance, a transformer might advertise
{type=‘xfmrReading’, network=‘24M’, source=‘V2077’, amps, timeOfReading}. Events may
include more information than the template, but never less.

Node subscriptions are against channels. A node submits its subscription request, which is
in the form of a predicate to be matched against channel descriptions, and receives back a
list of matching publishers. It can optionally create a persistent subscription request, and it
will be notified should any matching publishers appear while the request is active. When a
publisher registers, the advertisement is compared against persistent subscription requests and
aggregations. If a match is found, aNEWSOURCEmessage is sent to the subscribers and
aggregators, giving them the opportunity to join the distribution tree. Note that the system
design does not preclude the possibility of clients declaring customcontent-based filtersfor the
events on a channel, but these are not in the scope of this thesis.

Aggregations are also registered as individual entities. An aggregation may be eitheruniver-
sal or grouped. Universal aggregations apply over all channels that match somepredicate(a
boolean-valued function). Grouped aggregations have a predicate as well as afree field, which
functions similarly to an SQLGROUP BYclause. When the predicate matches, the free field
is used to create a particular aggregation. For instance if the aggregationcurrent-by-net
has predicatevalueType = ‘amps’ and our free field isnetwork , channels with a val-
ueType of ‘amps’ and network of23M will be aggregated into a (current-by-net ,23M)
stream, while channels with a valueType of ‘amps’ but a network of8Qwill be aggregated into
a (current-by-net ,8Q) stream.

4.5 Influence Details

While in some cases we will calculate individual pairwise influence values, we can gain effi-
ciencies by organizing the world as seen from the perspective of a particular node into “bands
of influence,” whereI0 is the class of nodes with the most influence on us,I∞ is the class
of nodes with the least influence, andI1, I2, . . . , In are classes of nodes with intermediate in-

11

fluence.2 When describing computations from the perspective of a particular node, I will use
the notationInfl(Ns, self) to represent the influence of nodeNs’s data on “my” computation.
NodesN0 in classI0 often haveInfl(N0, self) = 1, indicating that no aggregation should be
performed on the data from these nodes. At the other extreme, nodesN∞ in classI∞ may have
Infl(N∞, self) = 0, indicating that data from these nodes should simply be discarded.

Establishing aninfluence horizon, I∞, has a substantial effect on the scalability of the system.
Regardless of how many nodesn are in the system as a whole, the number of nodes sending
data to a particular node remains bounded byk, the maximum number of nodes with a non-zero
influence on a target node. With all nodes generating data each time step, the total amount of
data that the network must move changes fromO(n2) to O(nk) and the amount of data any
node receives is reduced fromO(n) to O(k), k << n.

A given influence band may beflat, with all nodes in the band having the same influence on
us, or it may be agradient, with influence varying among nodes in the band. In all cases, the
invariant holds for all nodesNx ∈ Ix, Ny ∈ Iy,

x < y ⇒ Infl(Nx, self) > Infl(Ny, self)

In English, all nodes in bandI2, say, will have greater influence than any node in bandI3.

4.6 Influence Example

To give a concrete example in the case of our electric utility (see section 6.1 for an explanation
of energy distribution terms), if we are attempting to run our machine learning model of the
primary grid from the perspective of a particular feeder cable section, the data sources with the
highest influence,I0, will be those in our own feeder, as we are directly connected to them.I0

is flat with all nodes having influence 1 (i.e. raw, unaggregated data). For the next band,I1,
network engineers have calculated a value for each feeder cable called “shifted load”. If my
feeder fails, other feeders in my network will have to pick up the load I’m no longer serving.
Shifted load gives a breakdown of which feeders will take what amount of my load if I fail, and
serves as an excellent scaling factor for the next stage of influence. ThusI1 is a gradient band,
varying from 0.6 to 0.9 as a function of the shifted load.

The feeders that are in my network, but don’t directly pick up my shifted load, formI2,
Infl(N2, self) = 0.5. I3 consists of feeders in other networks in my region,Infl(N3, self) =
0.3. I4 is feeders in other regions,Infl(N4, self) = 0.2. And finally, any data coming from
outside my own distribution utility is outside my universe inI∞, with zero influence. See sec-
tion 6.1 for further discussion.

2The notation ofI0 for the most influential band andI∞ for the least may seem counterintuitive. The concept
of influence was originally termed “distance,” but was deemed too suggestive of simple Cartesian distance. The
band designations remained, however.

12

4.7 Influence Band Reuse

Consider a situation where the influence metric is based on physical Cartesian distance. Nodes
cover a vast area, arranged in a rectangular grid, each one unit apart. We define three bands of
influence, whereI0 is nodes within 30 units of us,I1 is nodes between 30 and 60 units away,
andI∞ is nodes greater than 60 units away. All three are flat bands. This presents a scalability
problem, because each node’sI0,1,∞ are different from every other node’s. We get no benefit
from aggregation, because there’s no reuse.

There are a number of ways to fix this. One is to organize the nodes into a hierarchy, possibly
using pre-existing organizational boundaries. Organizational boundaries may be a good choice
when available, as these may well have been defined to make influence boundaries and adminis-
trative boundaries coincide. Good organizational components (like good software components),
have high internal cohesion and low external connectivity.

In the aggregation example above, we used the network boundary as a natural influence bound-
ary, since not only is it an administrative unit, it is mostly isolated from surrounding networks.

The administrative definition of a hierarchy for dissemination of aggregated information is at
the core of the Astrolabe system [26]. Aggregates only need to be calculated once per organiza-
tional unit and reuse is maximized. However, there is a cost in administrative complexity, and
some organizational layers may still be too large to aggregate as a whole.

I support an alternative approach which I callfollower bias, where one node’s established bands
of influence exert a slight attractive force on the attempts of later nodes to find their own bound-
aries, tending to pull them into the previously established bands. In the previous example of a
regularly spaced grid of nodes, a cluster of nearby nodes might end up sharing the sameI1 and
I∞ definitions, trading accuracy for a substantial boost in efficiency.

To implement follower bias, we have new nodes first identify their own “local neighborhood”
of I0. They then ask up tok randomly selected nodes already present in theirI0 what the
boundaries of their own local neighborhood look like. If one is similar enough to that of the
new node, (e.g. 80% commonality), it subscribes to the other’s existing aggregations instead of
defining its own. See the illustration below.

5 Related Work

5.1 Scalable Event Systems

5.1.1 The Information Busc©

The Information Busc©was primarily described in single paper from ACM SIGOPS in 1993
[24]. The authors went on to found TIBCO (http://www.tibco.com), which has grown into the
largest purveyor of commercial publish/subscribe software systems. Their client roster includes
many Wall Street firms, AT&T, Intel, and many others.

13

1

2
4

6

5
3

1

2
4

6

5
3

In the top set, each node (joining the system in numeric sequence) defines its own
influence bands

In the lower set, with follower bias, nodes 3-6 reuse the influence bands defined by 1 and
2

Figure 3: In the top set, each node (joining the system in numeric sequence) defines its own
influence bands.

In the lower set, with follower bias, nodes 3-6 reuse the influence bands defined by 1 and 2

A primary contribution of their paper was to identify the set of problem requirements best suited
to an event-based solution:

• Continuous operation: It is unacceptable to bring down the system for upgrades or main-
tenance.

• Dynamic system evolution: The system must be capable of adapting to changes in appli-
cation architecture and in the type of information exchanged. It should also support the
dynamic integration of new services and information.

• Legacy system integration: New software must be able to interact smoothly with existing
software, regardless of the age of that software.

• Fault-tolerance + scalability: it must not have a single point of failure. The system must
scale in terms of both hardware and data.

• Tolerance for non-Byzantine failures: Nodes and the network may fail, and it is assumed
that these failures are fail-stop and not Byzantine

From the last bullet above, another contribution of the paper was the identification of pub/sub
systems Achilles heel for fault tolerance: Byzantine failures could be devastating.

14

5.1.2 Gryphon

The Gryphon system [1] was developed by Robert Stroms group at IBM Research. Like TIB,
Gryphon has been used in commercial systems. IBM has used it for sporting-event websites, so
that client browsers can be updated with the latest scores by means of a Gryphon-client applet,
and thus without burdening the HTTP server.

Gryphon models event streams from producer to consumer as an information flow graph, along
which various transformations, aggregations, etc. may occur. The Gryphon work is among the
first to define Content-Based Routing. The project was also among the first to formally define
the matching problem: given a large set of predicates and a message, how can one efficiently
find the subset of the predicates that is satisfied by the message.

Gryphons primary model for events and queries is what I call the database event model: events
are unordered sets of attribute-value pairs, similar to a database record, and filters are variants
on SQL-WHERE clauses over the event space. For efficient matching, Gryphon organizes the
filters into a Trie structure, so that multiple predicates can be tested in parallel.

5.1.3 Siena

The Siena Event System, developed at the University of Colorado at Boulder, has an elegant
approach to routing events under the database event model [7]. Siena routers are organized by
an administrator into an acyclic tree structure. Events are unordered attribute-value sets, and
queries are similar to SQL WHERE clauses.

Siena is a pure content-based routing system, allowing any participant to emit any message
at any time, and determining appropriate routing based on run-time examination of published
messages.

5.1.4 ECho

The ECho system from Georgia Tech [9] is a minimal but extremely fast system designed for
Grid computing, where many computing elements are exchanging data, and low latency is crit-
ical. ECho is a distributed publish/subscribe events system. The main distinctive aspect is its
focus on lowering latency by delivering data in its original raw binary form (native data repre-
sentation) whenever possible. ECho supports user defined functions written in a C-like language
operating on event streams, which would be useful for aggregation implementation. However,
it uses a static, administratively configured network topology, making it more suited to small
distributed systems.

5.1.5 REBECA

The REBECA system from the Darmstadt University of Technology uses covering and merging
techniques similar to Siena [23]. They have introduced the idea of scopes, which group seg-
ments of the publish-subscribe network into higher-level constructs, bearing some resemblance
to influence bands [11]. However, their vision of “scopes” is more of an abstract namespace,

15

as opposed to a aggregation-scaling mechanism. They have done work on formal correctness
proofs for portions of their system.

5.1.6 YANCEES

YANCEES (Yet ANother Configurable Extensible Event Service) is a fully modular event sys-
tem [12]. The system itself is focused on full configurability and pluggability, which makes it
a good candidate for constructing “overlays on overlays.” It can run support user-defined event
types running over standard or custom event substrates, such as Siena or the Java Messaging
System.

5.1.7 Astrolabe

Astrolabe [26] is a distributed information management system using administratively-defined
hierarchical aggregation to make vast amounts of data tractable. The aggregation functional-
ity is restricted to an SQL-like language, and latency is higher than with systems using event
distribution trees, as it uses a gossip protocol for data dissemination. Nonetheless, it is highly
scalable, robust, and secure.

5.2 Distributed Registries

The Level of Detail technique needs some sort of distributed registry so that aggregators can
find publishers. Two major candidates are Peer to Peer systems and SIP. P2P systems such
as Chord [31] and CAN [25] present a simple put/get interface to the user, while using clever
functions on hashes of the item’s key to locate the data on a potentially large set of participating
peer systems. SIP [16] is a versatile protocol for establishing sessions between entities on the
internet, including locating them despite movement and multiple user names. Recent work
has applied some of the structures of P2P systems to SIP messages directly [30], blending the
scalability and robustness of Distributed Hash Table systems with the capabilities of SIP.

5.3 Presence and Chat Systems

Chat and presence systems, such as Internet Relay Chat (IRC), AOL Instant Messenger, MSN
Messenger, ICQ, and others, probably carry the most event-like traffic on the Internet. When a
member connects to or disconnects from the system, his or her status change is published to all
of that users friends. During a chat session, particularly multiway, each message sent by a user
is published to the other participants. These systems have been engineered to scale to millions
of simultaneous users.

In the research and open source communities, SIMPLE [18], an extension of the SIP signaling
protocol, and XMPP [17], an IETF version of the Jabber protocol, have developed protocols and
standards for instant-message and presence applications. SIMPLE is a sophisticated standard
based on a peer-to-peer architecture. Jabber is a simple and centralized architecture which has
proven popular for casual use.

16

The fundamental difference between the presence and chat systems described above and the
problem domains discussed in this proposal is the nature of the participants (and the correspond-
ing consequences for the architecture). Participants in presence and chat systems are humans,
connected to social circles, usually numbering fewer than 100 people. Humans will usually not
generate data that needs to be published at a rate of more than one or two items per second.
Under these constraints, an appropriate architecture, and the one usually adopted by the above
systems, is to have a single node responsible for reflecting information to participants. E.g., in a
simplified view of the SIMPLE system, a Presence Agent accepts SUBSCRIBE messages and
issues NOTIFY messages when appropriate to all SUBSCRIBEd presentities.

5.4 IP Multicast

IP Multicast is the subject of many RFCs and IETF working groups. Much advanced research on
event dissemination occurs here, although their focus, appropriately, tends to be on embedded
systems, the devices at the heart of the Internet. Among the relevant documents are the Internet
Group Management Protocol RFCs (1112, 2236, and 3376) and Protocol Independent Multicast
– Sparse Mode (2117 and 2362), and the IETF working groups on Multicast & Anycast Group
Membership (magma), Border Gateway Multicast Protocol (bgmp), Source Specific Multicast
(ssm), Mobile Ad-Hoc Networks (manet), Multicast Security (msec), and Reliable Multicast
Transport (rmt).

5.5 Machine Learning

Learning algorithms themselves are not the focus of this thesis, so I will simply mention some
of the major papers in the field. Valiant [32] is one of the founders of computational learning
theory, the mathematical analysis of machine learning algorithms. Support Vector Machines [6]
are one of the more popular machine learning techniques in use today, along with variations on
Boosting [28]. The actual algorithm we are primarily using for the ConEd project is Martingale
Boosting [20], developed by Phil Long and Rocco Servedio particularly for the project.

6 Feasibility

6.1 The ConEd Project for Predicting Feeder Cable Failure

Electrical infrastructure has four main parts:

1. Generationinvolves a prime mover, typically the force of water or steam on a turbine,
spinning a dynamo and generating large amounts of electrical current.

2. Transmissionsends the current at very high voltage (hundreds of thousands of volts) to
substations close to the customers.

3. Theprimary grid sends electricity at high voltage (tens of thousands of volts) from sub-
stations to localtransformers, over cables calledfeeders, usually with length less than

17

10km, and with a few tens of transformers per feeder. Feeders are composed of many
feeder sectionsconnected byjoints.

4. Thesecondary gridtakes electricity at normal household voltage from local transformers
to individual customers.

These components are illustrated below.

1 2

34

Figure 4: The Electrical Distribution Grid

The primary grid is organized intonetworks, each composed of a substation and its attached
feeders. The networks are largely electrically isolated from each other, to limit the spread of
major problems.

The feeders of the primary grid are system critical and have a significant failure rate, and thus
much of the daily work of the electricity distribution utility involves their monitoring and main-
tenance, as well as their speedy repair or replacement on failure.

One of the key goals of the current ConEd-Columbia collaboration is to predict which feeders
are most likely to fail using machine learning techniques. The machine learning algorithms are
trained on learning sets that treat each feeder as one example. The feeders are described with
several hundred attributes, some of which are derived from static data, such as age and length,
and others summarized from dynamic data, such as how much current was run through the
feeder or how many outages it suffered over a particular period. Finally, the response variable
is the number of unscheduled, spontaneous outages experienced by that feeder.

The machine learning algorithms attempt to create generalizable models based on this training
set, such that if given a new, previously unseen set of data on a set of feeders, it will be able
to rank them in order of their susceptibility to failure. The machine learning techniques we are
currently using are Support Vector Machines (SVMs) [6], and a new system called Martingale
Boosting (Martiboost) [20] specifically developed for the ConEd project.

6.2 AUC Scoring

In order to evaluate our results, we need some mechanism to compare our rankings, to determine
if one is “better” than another. We will need to evaluate based on atest setof data, disjoint from

18

our training set. We put the data from the test set into each model we would like to compare,
and from each we get a ranking of all feeders. We now have each model’s predictions, and we
know what the actual outcomes were in our test period. If all actual feeder failures in the test
period are at the top of a test ranking, we know it’s the best possible ranking. If all are at the
bottom, we know it’s the worst possible. But given two rankings that spread the actual failures
around the ranking and look fairly similar, can we determine if one is doing a better job than
another?

To obtain a single comparable score, we use a graph known as aReceiverOperatingCharacteristic
curve (ROC) [14]. The Y-axis is the number of actual failures. The X-axis is our ranking. At
each step along the X-axis, the value is the number of actual failures accounted for up to that
point. Thus the curve always starts at (0,0), ends in the upper right hand corner, and increases
monotonically. In our ideal ranking described above, the curve would rise sharply to the max-
imum value, and then continue horizontally. If our predictions are completely random, we
would expect the actual failures to be uniformly distributed, giving a straight diagonal line. In
the worst-case scenario, the curve would move along the X-axis until the last possible point,
then rising sharply to the upper-right corner. Note that if we normalize the area covered by our
graph to one, the area under these three shapes is: nearly one, 0.5, and nearly zero, respectively
(See Figure 5 below). Thus theAreaUnder the ROCCurve (AUC) can function as our scoring
metric, with anything above 0.5 indicating better-than-random performance.

ROC Chart Comparison of Example Rankings
Ranking 30 Feeders, Assuming 5 Actual Failures

0

1

2

3

4

5

6

Ranking

Tr
ue

 F
ai

lu
re

s

best

uniform

worst

good

best 1 2 3 4 5

uniform 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5

worst 0 1 2 3 4 5

good 1 1 1 2 2 2 3 3 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Figure 5: Comparison of three idealized rankings (best, uniform, and worst) and an example
“good” (better than random) ranking

6.3 Aggregation by network results

Over the course of our current one-year project with ConEd, we have accumulated a large
amount of data, currently around 55GB and growing by several GB per week, containing in

19

particular over 800 million feeder section status readings. This represents a small but non-
trivial sampling of the data ConEd is reading from its network all the time. We expect to be able
to continue extensive experimentation with this data, assuming cooporation between Columbia
and ConEd continues. I describe some of those planned experiments in the Future Work section.

Much of our current effort has gone towards gaining access to the available data sources, storing
them efficiently, reducing them to a form which is tractable for machine learning, and devel-
oping new machine learning techniques to produce useful results. This has been sufficiently
successful to raise hopes of a longer-term partnership commitment which will allow much more
scope for exploratory work and a thorough investigation of the concepts described in this pro-
posal.

I have been able to do some experiments on the current data set. The goal was to test the hypoth-
esis that reduction of data based on Level of Detail principles would not have a substantially
negative effect on the Machine Learning. The training data set covered June and July 2005,
a period during which there were around 300 feeder failures. The test data was the first three
weeks of August 2005, with about 70 failures. I used ConEd’s existing administrative hierarchy
of networks to define the aggregation regions. I tried applying two very simple aggregation
functions, averaging and root-mean-square, over the values from each network. I used our Ma-
chine Learning algorithms (both Martiboost and SVMs) on each network, training them on the
raw data from that network combined with aggregated data from other networks. I compared the
AUC results from my training to the per-network results from our current approach of training
with all available data. The results are summarized in Table 1 below.

Each row shows the various AUC scores for a particular network (networks are identified by
a number and district, where district∈ {B, Q, M, X}, for Brooklyn, Queens, Manhattan, and
Bronx. Each pair of columns shows the results for Martiboost and SVMs under a particular
data reduction technique. We can see that the aggregations do not seem to impair the learning.
Indeed, the improvement of RMS aggregation on Martiboost verges on the statistically signifi-
cant, although given the high variance and small sample size, it is safer to simply say that based
on this example, there is not much evidence of any degradation.

We have a number of ideas about why we see this possible improvement, even with vastly
smaller input. My personal opinion is that some “uninfluential” feeders in distant boroughs
randomly resemble feeders in the network being modeled, and are incorrectly given extra weight
in the training, and then prove to be misleading examples. The aggregation process eliminates
these spurious matches, while still giving valid training examples.

It should also be noted that the time to compute a model for a single network is ten to twenty
times faster than calculating the entire monolithic model. This gap will widen as the size of the
model increases.

6.4 Simulation of large-scale network growth and adaptation

A large-scale simulation of the proposed networking architecture is planned for early next year,
when a more detailed description of the projected future sensor and processor sets becomes

20

Table 1: Comparison of Level of Detail approach to training on full data set

Average RMS OriginalNet
Marti SVM Marti SVM Marti SVM

1Q 0.738 0.492 0.667 0.595 0.464 0.571
1X 0.818 0.773 0.833 0.818 0.455 0.682
2B 0.467 0.467 0.600 0.489 0.356 0.356
2M 0.491 0.509 0.667 0.537 0.565 0.519
2X 0.571 0.393 0.500 0.071 0.357 0.714
3B 0.545 0.476 0.518 0.500 0.607 0.518
3M 0.179 0.179 0.143 0.000 0.571 0.536
3Q 0.733 0.667 0.533 0.067 0.067 0.667
3X 0.881 0.667 1.000 0.810 0.524 0.571
4B 0.311 0.267 0.511 0.467 0.583 0.289
4M 0.870 0.667 0.870 0.623 0.478 0.652
5B 0.364 0.455 0.455 0.500 0.318 0.545
5M 0.400 0.689 0.689 0.578 0.289 0.733
5Q 0.546 0.583 0.554 0.596 0.565 0.648
5X 0.636 0.600 0.400 0.300 0.400 0.400
6B 0.721 0.662 0.721 0.725 0.784 0.804
6M 0.435 0.435 0.391 0.565 0.261 0.565
6Q 0.464 0.464 0.464 0.464 0.500 0.857
7B 0.909 0.727 0.818 0.818 0.818 1.000
7M 0.491 0.497 0.491 0.578 0.534 0.416
7Q 0.511 0.500 0.576 0.638 0.630 0.449
9B 1.000 0.765 1.000 0.765 0.889 0.824
9Q 0.333 0.778 0.556 0.889 0.222 0.444

10M 0.933 1.000 1.000 0.933 0.800 0.733
11M 0.608 0.559 0.765 0.804 0.441 0.686
13M 0.692 0.615 0.296 0.731 0.462 0.731
16M 0.217 0.522 0.217 0.783 0.087 0.826
18M 0.375 0.000 0.250 0.429 0.375 0.143
19M 1.000 0.909 1.000 0.909 0.818 1.000
20M 0.636 0.545 0.750 0.273 0.273 0.818
24M 0.500 0.391 0.409 0.727 0.909 0.545
26M 0.636 0.000 0.636 0.364 0.364 0.167
27M 0.957 0.917 0.761 0.729 0.891 0.792
28M 0.364 0.091 0.455 0.091 0.667 0.364
34M 0.500 0.545 0.500 0.545 0.545 0.500

Avg 0.583 0.553 0.607 0.539 0.489 0.598
Stdev 0.216 0.158 0.203 0.240 0.195 0.174

available. However, as ConEd moves on its own schedule, I am creating a local testbed using
the Boost Graph Library to quantify the effect of two-random-choice on average path latency.

21

7 Research Plan and Schedule

Table 2 shows my plan for the completion of this research.

Table 2: Research plan and schedule for completion.
(✓ indicates a complete task,◗ indicates an ongoing task, and❏ indicates an upcoming task.)

Status Task Completion Date

✓ Semantic auto-discovery and transformation for event streams2002
✓ Connectivity clique identification from network connection

events
2003

✓ Investigation of modular architectures for event distribution sys-
tems

2004

✓ Data access and organization combined with efficient machine
learning for near-real-time analysis of ConEd data

June, 2005

✓ Feeder connectivity model generation from “noisy” event dataAug. 8, 2005
✓ Conduct Level of Detail feasibility experiments Sep. 13, 2005
✓ Final end-of-year deliverables approval with ConEd for feeder

susceptibility project
Oct. 5, 2005

✓ Write thesis proposal Nov. 25, 2005
❏ Defend thesis proposal Dec. 9, 2005
❏ Set up enhanced framework for working with ConEd data February, 2006
❏ Set up network simulation testbed for evaluating Level of Detail

performance on large networks
March, 2006

❏ Extended results on various types of aggregation and influence
metrics

April, 2006

❏ characterization of effective influence metrics and aggregation
algorithms for machine learning and reinforcement learning

June, 2006

❏ Thesis defense August, 2006

8 Contributions, Future Work and Conclusion

8.1 Thesis Contributions

The expected contributions of this thesis are:

1. An event system architecturecapable of supporting large numbers of participants on
a single channel, both fordissemination and aggregation. While there currently exist
many event systems capable of efficient event dissemination, there are none that can per-
form the symmetric task for event aggregation. As smart, networked systems proliferate,
the goal will no longer be just to deliver information to those that need it, but to bring the
chatter and traffic under control, and distill information from the data.

2. An architecture for allowingscale-resistant servicesto run on constrained nodes with
high-quality results. Our smart devices have the potential to engage with the world outside

22

and offer new types of features. However, the algorithms are expensive and the amount
of data is overwhelming. With access to intelligently scaled data, constrained devices can
leverage the state of the art in machine learning.

3. Example aggregation and influence functionsthat have been shown to produce good
results for particular combinations of scale-resistant services and data sets. ConEd and
potentially other organizations are interested in making their systems smarter as fast as
possible. A real, functioning example of machine and reinforcement learning tackling
problems of the largest scale will not only help to make our electricity cheaper and more
reliable, but will provide insights towards taming other scale-resistant services in the
future.

8.2 Future Work

There are a number of aspects of event distribution which are not addressed by this proposal but
offer many interesting questions for the future.

• Security: Event systems are inherently problematic from a security perspective. One of
their main purposes is to take a single message and turn it into a blizzard of thousands.
In the hands of a rogue insider, they are perfect for a Denial of Service attack. Event
systems will not truly be welcome in corporate and government networks until we can
make a system which is resistant to these sorts of threats.

• Privacy: While we can trivially encrypt traffic between nodes, are there workable so-
lutions for truly private channels, where intermediate nodes cannot read our messages?
The problem is daunting, given the fluid presence of both people and systems in event
distribution networks. Recent research in fast, secure, group key generation is promising,
however.

• Event Types: An ideal event system would allow users to define any sort of data type as
events, and then let them supply their own predicate functions on those types for use as
subscriptions. Even better would be if they could define their own predicates for use as
filters, to be applied to every message. However, such a system would need to be resilient
to unsafe, buggy, or malicious code.

One of the most interesting areas for future research is in the interplay between Level of Detail
and the scale-resistant services. The systems in this proposal are designed to bend the data to
the needs of the algorithm, but conceivably there are algorithms that could be made “Level of
Detail-Friendly”.

The machine learning technique of Boosting takes a large number of “weak learners”, classifiers
that do barely better than random, and iteratively combines them into an effective learning
tool. Some recent work has investigated using similar techniques for combining many pairwise
rankings (including many contradictory ones) into an overall ranking.

Aggregations based on a partition of a system cannot be combined in this way — there’s no
overlap to guide the algorithm. However, we could use several different influence metrics (in-
cluding random assignment) to induce multiple, overlapping partitions of a system. Each model

23

trained on some small portion of the system, as defined by one of the metrics, would be a weak
learner. Conceivably, the resulting models could be combined to give an excellent model of the
entire system.

And finally, there is the vision of Distributed Awareness, where model-based, predictive, proac-
tive and cooperative systems are ubiquitous throughout a large system. From the large central
servers to the small devices in remote locations, they are generating data for all who are inter-
ested, and consuming the observations and insights of others. Level of Detail would enable the
most useful information to reach the most participants.

8.3 Conclusion

This proposal has presented anevent service architecture for scaling scale-resistant systems,
with a goal of allowing advanced model-generating algorithms to run on systems of limited
capability, and to model systems that would otherwise be too large to be tractable. I have
described both an event distribution architecture and a principled method for reducing the data
needs of complex algorithms. I also showed preliminary results indicating that such scale-
resistant services can still produce useful models even when working with substantially less
input data. I hope that the work done for my thesis will bring new insights into the large-
scale delivery of information, and also lead to much wider applicability for some of the most
advanced techniques of Computer Science.

24

References
[1] Marcos K. Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley, and Tushar D. Chandra. Matching

events in a content-based subscription system. In18th Annual ACM Symposium on Principles of Distributed
Computing, pages 53–61, 1999. Atlanta, Georgia, United States.

[2] Computer Industry Almanac. PCs In-Use Surpassed 820M in 2004, 2005.http://www.c-i-a.com/
pr0305.htm .

[3] Roger Anderson and Albert Boulanger. Smart Grids and the American Way.Power and Energy, March 2004
2004.

[4] Suman Banerjee, Bobby Bhattacharjee, and Christopher Kommareddy. Scalable application layer multicast
. In Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications,
Pittsburgh, Pennsylvania, 2002.

[5] Suman Banerjee, Christopher Kommareddy, Koushik Kar, Bobby Bhattacharjee, and Samir Khuller. Con-
struction of an Efficient Overlay Multicast Infrastructure for Real-time Applications. InIEEE Infocom, San
Francisco, 2003.

[6] Christopher J. C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition.Data Min. Knowl.
Discov., 2(2):121–167, 1998.

[7] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design and evaluation of a wide-area event
notification service.ACM Transactions on Computer Systems, 19(3):332–383, 2001.

[8] James H. Clark. Hierarchical geometric models for visible surface algorithms.Commun. ACM, 19(10):547–
554, 1976.

[9] G. Eisenhauer, F.E. Bustamante, and K. Schwan. Event services for high performance computing. In9th
International Symposium on High-Performance Distributed Computing, pages 113–120, 2000. TY - CONF.

[10] Claude-Nicolas Fiechter. Efficient reinforcement learning, 1994.

[11] L. Fiege, M. Mezini, G. Mhl, and A. Buchmann. Engineering Event-Based Systems with Scopes. In16th
European Conference on Object-Oriented Programming (ECOOP’02), Mlaga, Spain, 2002.

[12] R. S. Silva Filho and D. Redmiles. Striving for Versatility in Publish/Subscribe Infrastructures. InFith
International Workshop on Software Engineering and Middleware (SEM’2005), Lisbon, Portugal, 2005.

[13] A. G. Ganek and T. A. Corbi. The dawning of the autonomic computing era.IBM Syst. J., 42(1):5–18, 2003.

[14] J.A. Hanley and B.J. McNeil. The meaning and use of the area under a receiver operating characteristic
(ROC) curve.Radiology, 143:29–36, 1982.

[15] Hugues Hoppe. Progressive meshes. InProceedings of the 23rd annual conference on Computer graphics
and interactive techniques. ACM Press, 1996.

[16] IETF. RFC3261: SIP: Session Initiation Protocol, 2002.

[17] IETF. Extensible Messaging and Presence Protocol (xmpp) Charter, 2004.

[18] IETF. SIP for Instant Messaging and Presence Leveraging Extensions (simple) Charter, 2004.

[19] Thorsten Joachims. Making large-scale support vector machine learning practical. InAdvances in kernel
methods: support vector learning, pages 169–184. MIT Press, 1999.

[20] Phil Long and Rocco A. Servedio. Martingale Boosting. In18th Annual Conference on Learning Theory,
Bertinoro, Italy, 2005.

[21] David Luebke and Carl Erikson. View-dependent simplification of arbitrary polygonal environments.
In Proceedings of the 24th annual conference on Computer graphics and interactive techniques. ACM
Press/Addison-Wesley Publishing Co., 1997.

25

http://www.c-i-a.com/pr0305.htm
http://www.c-i-a.com/pr0305.htm

[22] M. Mitzenmacher, A. Richa, and R. Sitaraman. The power of two random choices: A survey of the techniques
and results. In P. Pardalos S. Rajasekaran and J. Rolim, editors,Handbook of Randomized Computing.
Kluwer, 2000.

[23] Gero Mhl and Ludger Fiege. Supporting Covering and Merging in Content-Based Publish/Subscribe Sys-
tems: Beyond Name / Value Pairs.IEEE Distributed Systems Online (DSOnline), 2(7), 2001.

[24] Brian Oki, Manfred Pfluegl, Alex Siegel, and Dale Skeen. The Information Bus: an architecture for extensible
distributed systems. In14th ACM symposium on Operating systems principles, pages 58–68. ACM Press,
1993. Asheville, North Carolina, United States.

[25] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker. A Scalable Content-
addressable Network. InConference on Applications, Technologies, Architectures, and Protocols for Com-
puter Communications, pages 161–172, San Diego, CA, 2001.

[26] Robbert Van Renesse, Kenneth P. Birman, and Werner Vogels. Astrolabe: A robust and scalable technology
for distributed system monitoring, management, and data mining.ACM Trans. Comput. Syst., 21(2):164–206,
2003.

[27] A. Rowstron, A-M. Kermarrec, M. Castro, and P. Druschel. SCRIBE: The design of a large-scale event
notification infrastructure. InNGC2001, London, 2001.

[28] R. E. Schapire. The Boosting Approach to Machine Learning: An Overview. InMSRI Workshop on Nonlin-
ear Estimation and Classification, Berkeley, CA, 2001.

[29] B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps. Content based routing with Elvin. InAustralian
UNIX and Open Systems User Group, 2000.

[30] Kundan Singh and Henning Schulzrinne. Peer-to-Peer Internet Telephony using SIP. InNOSSDAV, Skama-
nia, Washington, 2005.

[31] I. Stoica, R. Morris, D. Karger, M Kaashoek, and H. Balakrishnan. Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications. InACM SIGCOMM, pages 149–160, San Diego, CA, 2001.

[32] L. G. Valiant. A theory of the learnable.Commun. ACM, 27(11):1134–1142, 1984.

[33] Xin Xu, Han-gen He, and Dewen Hu. Efficient Reinforcement Learning Using Recursive Least-Squares
Methods.Journal of Artificial Intelligence Research, 16:259–292, 2002.

[34] Vinod Yegneswaran, Paul Barford, and Somesh Jha. Global Intrusion Detection in the DOMINO Overlay
System. InProceedings of Network and Distributed Security Symposium (NDSS), 2004.

[35] Yuanyuan Zhao and Rob Strom. Exploiting event stream interpretation in publish-subscribe systems, 2001.

[36] Shelly Q. Zhuang, Ben Y. Zhao, Anthony D. Joseph, Randy H. Katz, and John Kubiatowicz. Bayeux:
An Architecture for Scalable and Fault-tolerant WideArea Data Dissemination. InEleventh International
Workshop on Network and Operating System Support for Digital Audio and Video, 2001.

26

	Introduction
	Problem, Definitions and Requirements
	Definitions
	Problem Statement

	Hypotheses and Proposed Approach
	Aggregation
	Aggressiveness
	Influence

	Proposed Approach
	Hypotheses
	Network Hypotheses
	Service Hypotheses

	Model
	Distribution Architecture
	Recuitment
	Distribution Optimizations
	Registry and Channels
	Influence Details
	Influence Example
	Influence Band Reuse

	Related Work
	Scalable Event Systems
	The Information Bus©
	Gryphon
	Siena
	ECho
	REBECA
	YANCEES
	Astrolabe

	Distributed Registries
	Presence and Chat Systems
	IP Multicast
	Machine Learning

	Feasibility
	The ConEd Project for Predicting Feeder Cable Failure
	AUC Scoring
	Aggregation by network results
	Simulation of large-scale network growth and adaptation

	Research Plan and Schedule
	Contributions, Future Work and Conclusion
	Thesis Contributions
	Future Work
	Conclusion

