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Abstract

We want to compute a worst caseε-approximation to the solution of the Helmholtz equation−1u+qu = f over
the unitd-cubeId , subject to Neumann boundary conditions∂νu = g on ∂Id . Let card(ε, d) denote the minimal
number of evaluations off , g, andq needed to compute an absolute or normalizedε-approximation, assuming that
f , g, andq vary over balls of weighted reproducing kernel Hilbert spaces. This problem is said to be weakly tractable
if card(ε, d) grows subexponentially inε−1 andd. It is said to be polynomially tractable if card(ε, d) is polynomial
in ε−1 andd, and strongly polynomially tractable if this polynomial is independent ofd. We have previously studied
tractability for the homogeneous versiong = 0 of this problem. In this paper, we investigate the tractability of the
non-homogeneous problem, with generalg. First, suppose that we use product weights, in which the role of any
variable is moderated by its particular weight. We then find that if the sum of the weights is sublinearly bounded, then
the problem is weakly tractable; moreover, this condition is more or less necessary. We then show that the problem
is polynomially tractable if the sum of the weights is logarithmically or uniformly bounded, and we estimate the
exponents of tractability for these two cases. Next, we turn to finite-order weights of fixed orderω, in which ad-
variate function can be decomposed as a sum, each term depending on at mostω variables. We show that the problem
is always polynomially tractable for finite-order weights, and we give estimates for the exponents of tractability. Since
our results so far have established nothing stronger than polynomial tractability, we look more closely at whether
strong polynomial tractability is possible. We show that our problem is never strongly polynomially tractable for the
absolute error criterion. Moreover, we believe that the same is true for the normalized error criterion, but we have
been able to prove this lack of strong tractability only when certain conditions hold on the weights. Finally, we use
the Korobov and min kernels, along with product weights, to illustrate our results.

∗This research was supported in part by a Fordham University Faculty Fellowship.
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1 Introduction

TheHelmholtz equation
Lqu := −1u+ qu = f in I d := (0,1)d , (1)

is an important problem of applied mathematics, physics, and engineering. The functionq ∈ L∞(I
d) is bounded

from below (almost everywhere) by someq0 ≥ 0. This problem can be solved subject to eitherDirichlet boundary
conditions

u = g on ∂I d (2)

or Neumannboundary conditions
∂νu = g on ∂I d , (3)

where∂ν is the outward-directed normal derivative.
How hard is it to solve this problem? Suppose that we measure error of an approximation in theH 1(I d)-sense

and that we use the worst case setting. We let card(ε, d,3) denote the minimal number of linear functionals of the
problem dataf , g, andq needed to obtain error of at mostε. The class3 of linear functionals that we use in this
paper will be either the class3all of all linear functionals (continuous linear information) or the class3std consisting
of function values (standard information).

Let us momentarily consider a restricted version of this problem, in whichg = 0 (homogeneousboundary con-
ditions) and we have complete knowledge ofq. For example,q may be fixed, having a particularly simple form
(such as a constant). We also make the more-or-less standard assumption thatf varies over the unit ball of the
Sobolev spaceH r(I d). Note that this version of the problem islinear, and so we can use the standard machinery
that information-based complexity (IBC) provides for such problems, see [15, Section 4.5]. First, suppose that we
use3all. From [18, Chapter 5], we find that card(ε, d,3all) is proportional to(1/ε)d/(r+1) for the restricted version of
our problem. Next, suppose that we use3std. Since the Sobolev embedding theorem tells us that standard information
is not well-defined unlessr > d/2, we will need to assume thatf varies over the continuous functions belonging to
the unit ball ofH r(I d) if r ≤ d/2. Once again using [18, Chapter 5], along with [6], we find that ifr > d/2, then
card(ε, d,3std) is proportional to(1/ε)d/r , whereas ifr ≤ d/2, theε-complexity is infinite for sufficiently smallε.

We now return to the original (non-restricted) problem, which isnonlinearbecause the solutionu of (1) depends
nonlinearly onq. Clearly, this problem is at least as hard as the restricted version. For the classical Sobolev formulation
of our problem, the exponent ofε−1 can be arbitrarily large for fixedr and varyingd. This means that our problem is
intractable, since (using the terminology of Bellman [2]) it suffers from thecurse of dimensionality.

If we want to vanquish the curse of dimensionality, we need to change the problem formulation. Since we are
generally loath to give up the strong assurance of the worst case setting, we will need to assume that our problem data
lie in spaces other than classical Sobolev spaces.Weighted tensor product spaceshave been successfully used in the
past as the source of input data for high-dimensional problems, see Chapter 5 ff. of [10], as well as the references
contained therein.

In [20], we studied tractability for the Helmholtz equation under homogeneous Dirichlet or Neumann bound-
ary conditions, showing that weighted tensor product spaces could snatch the Helmholtz problem from the jaws of
intractability. It is only natural to ask whether these spaces can also help for non-homogeneous boundary value
problems. In this paper, we will show that this is indeed the case for Neumann boundary conditions. Since the non-
homogeneous Dirichlet problem needs different techniques than the non-homogeneous Neumann problem, we will
treat the non-homogeneous Dirichlet problem in a future paper.

Here is a brief overview of this paper’s contents.
The purpose of §2 is twofold. First, we precisely define the Neumann problem that we will be studying. We will

assume that the problem dataf , g andq belong to reproducing kernel Hilbert spaces (RKHSs). Let us make this
idea more precise. For̀∈ {d − 1, d}, letK` be a reproducing kernel defined over [0,1]2`, and letH(K`) denote the
resultingRKHS. We will letH(K̃d−1) be aRKHSof functionsg defined on the boundary ofI d , such that the restriction
of g to any face ofI d belongs toH(Kd−1). The functionf will vary over the unit ball ofH(Kd). We will let q vary
over theρ-ball ofH(Kd), with the additional requirement thatq ≥ q0. Finally,g will vary over those elements of the
unit ball ofH(K̃d−1).

The second purpose of §2 is to precisely define what we mean by anε-approximation, which will depend on the
error criterion used. On the one hand, we can use theabsoluteerror criterion, in which we want the error in our
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solution to be at mostε; on the other hand, we can use thenormalizederror criterion, in which we want to reduce
the initial error by a factor ofε. Here, theinitial error is the minimal error over all algorithms using no information
whatsoever about the problem dataf , g, andq, which turns out to be the error of the zero algorithm. Although
the absolute error criterion can be influenced (for good or ill) by the scaling of our problem, the normalized error
criterion is less sensitive to such concerns. Obviously, card(ε, d,3) depends on the error criterion being used. We
stress that card(ε, d3) only determines theinformation complexity, i.e., the amount of information needed. Clearly,
it is important to study thetotal complexity, which also includes the combinatory cost of using information about the
problem data to obtain an approximation. Since our problem is nonlinear, it is not clear whether the total complexity
is of the same order as the information complexity. We hope to investigate this issue in a future paper.

§3 gives some a priori inequalities for our problem. Perhaps the most important is a perturbation estimate for the
difference between two solutions corresponding to different problem data. This estimate relies on the Sobolev trace
theorem. Since the usual proofs of this theorem involve partitions of unity, they suffer from several disadvantages:

• They require more smoothness than that provided by the unit cube.

• They give no clue about how the embedding constant depends on the domain in question.

• They tend to be somewhat complicated.

However, Vilmos Komornik [7] developed a simple, elegant proof of the trace theorem in 2003, which allows one to
explicitly compute the embedding constant for domains (such as the unit cube) whose boundary is only piecewiseC1.
Since his result is only available via the World Wide Web, Prof. Komornik has graciously allowed me to include his
proof in this paper.

In §4, we show that if we know how to doL2-approximation for functions defined over a unit cube, then we can
approximate the solution of our problem. We show that for a fixed value ofd, the information complexity of our
Neumann problem is dominated by the information complexity of theL2-approximation problem.

In §5, we discuss various notions of tractability, see [10] and the references cited therein. Our problem is said to
be

• weakly tractableif card(ε, d,3) grows subexponentially inε−1 andd,

• polynomially tractableif card(ε, d,3) grows polynomially inε−1 andd, and

• strongly polynomially tractableif card(ε, d,3) grows polynomially inε−1, independent ofd.

Since the information complexity tacitly depends on the error criterion being used, the same is true about the tractabil-
ity of the problem. Although generalized (i.e., not necessarily polynomial) tractability has recently been studied in [5],
the vast majority of work on tractability has dealt with polynomial tractability. Since this paper deals only with poly-
nomial tractability and strong polynomial tractability, we will omit the adjective “polynomial” in the sequel whenever
this will cause no confusion.

So far, the reproducing kernels determining our problem elements have been more or less arbitrary. If we are
going to discuss tractability, these kernels must be related to each other in some manner asd varies. In §6, we discuss
weightedRKHSs. The idea here is that we start out with a fixed “master” kernelK for the univariate case, such as
the Korobov kernel (29) or the min kernel (30). We introduce a familyγ = { γd,u : u ⊆ {1,2, . . . , d}, d ∈ Z+

} of
weights. The most well-studied weights have been

• product weights(31), in which the role of any given variable is moderated by its particular weight, and

• finite-order weights(32) of order ω, in which ourd-variate functions can be decomposed as sums, each term
being a function of at mostω variables.

Our reproducing kernelKd is then

Kd(x, y) =

∑
u⊆{1,2,...,d}

γd,u
∏
j∈u

K(xj , yj ) ∀ x, y ∈ Ī d .

Hence tractability now depends on the weight sequenceγ and master kernelK.
In §7, we give tractability results for weightedRKHSs, these results holding for any master kernelK.
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1. First, we look at product weights. We find that if the sum of the weights is sublinearly bounded ind, then
the Neumann problem is weakly tractable for both3all and3std, under both the absolute and normalized error
criteria. Moreover, if the sum of the weights isnot sublinearly bounded ind, then there is a kernelK such
that the problem is not weakly tractable under the absolute error criterion. We then show that if the sum of the
weights is logarithmically bounded ind, then the problem is tractable for both the absolute and normalized error
criteria, giving estimates for the exponents of tractability.

2. We next look at finite-order weights, assuming that the weights themselves are uniformly bounded. Under these
conditions, we prove that the problem is always tractable for both the absolute and normalized error criteria,
giving estimates for the exponents of tractability.

The results of §7 only establish tractability, and not strong tractability. This should be contrasted with the results
of [20], where we were able to show that the homogeneous Dirichlet and Neumann problems are strongly tractable
under certain conditions on the weights. Is our lack of a strong tractability result for the nonhomogeneous Neumann
problem an artifact of our proof techniques, or is it inherently characteristic of our problem? SinceI d has 2d faces,
one would expect that any “good” algorithm for this problem will need to sample at each face ofI d ; this would rule
out the possibility of strong tractability. We make this precise in §8. Regardless of whether we are using continuous
linear information or standard information, the nonhomogeneous Neumann problemcannotbe strongly tractable for
the absolute error criterion. We conjecture that this is also true for the normalized error criterion, but we have only
been able to prove this under certain hypotheses on the weights.

The results so far have been for a more-or-less arbitrary master reproducing kernelK. In §9, we look at two
specific kernels: the Korobov kernel (29) and the min kernel (30). We restrict our attention to product weights. The
recent paper [9] considers the resultingL2-approximation problem, giving estimates on the exponents of tractability
depending on the kernel and the weights. Using these results, we derive estimates on the exponents of tractability for
the Neumann problem.

This is not the whole story for the Neumann problem; we have additional results. Since the current paper is already
so lengthy, they will be included in a separate paper. However, let us give the reader a brief overview of these results.

The results in the current paper are based onL2-approximation. We can get better results if we useL2-approximation
for f andg, andL∞-approximation forq. The results of [8, 9] give conditions under whichL2- andL∞-approximation
are related, which are illustrated for the Korobov and min kernels under product weights. We can use these results to
get better estimates for the tractability exponents of the non-homogeneous Neumann problem. In addition, we will
revisit strong tractability for this problem. We will show that the non-homogeneous Neumann problem is strongly
tractable for a slightly-reformulated definition of3all under the normalized error criterion.

2 Problem definition

In this section, we define the Neumann problem to be studied. Having done so, we then recall some basic concepts of
IBC.

Let us establish a few notational conventions. IfR is an ordered ring, thenR+ andR++ respectively denote the
non-negative and positive elements ofR. If X andY are normed linear spaces, then Lin[X, Y ] denotes the space of
bounded linear transformations ofX into Y . We write Lin[X] for Lin[X,X], andX∗ for Lin[X,R]. The unit interval
(0,1) is denoted byI . Finally, we use the standard notation for Sobolev inner products, seminorms, norms, and spaces,
found in, e.g., [11, 18].

We first start with a variational formulation of the Helmholtz equation (1) under the Neumann boundary condi-
tions (3), see (e.g.) [3, pp. 35–40]. LetLq = −1+ q, as in (1) and

Bd(v,w; q) =

∫
I d

[∇v · ∇w + qvw] ∀ v,w ∈ H 1(I d), q ∈ L∞(I
d),

so that
Bd(v,w; q) = 〈Lqv,w〉L2(I

d ) + 〈∂νv,w〉L2(∂I
d ) ∀ v ∈ H 2(I d), w ∈ H 1(I d). (4)
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Let q0 be a positive number, independent ofd. Define

Qd = { q ∈ L∞(I
d) : q ≥ q0 }.

The Lax-Milgram lemma implies that forf ∈ L2(I
d), g ∈ L2(∂I

d), andq ∈ Qd , there exists a uniqueu =

Sd(f, g, q) ∈ H 1(I d) such that

Bd(u,w; q) = 〈f,w〉L2(I
d ) + 〈g,w〉L2(∂I

d ) ∀w ∈ H 1(I d). (5)

From (4), we see thatu is the variational solution to the Neumann problem (1) and (3).
We will want to approximateSd(f, g, q) for f , g, andq belonging to certain reproducing kernel Hilbert spaces

(RKHSs), which we shall now define.
For d ∈ Z++, let Kd be a reproducing kernel defined overĪ 2d , with H(Kd) denoting the resultingRKHS, see

(e.g.) [1] for further discussion. The norm and inner product ofH(Kd) will be respectively denoted by〈·, ·〉H(Kd ) and
‖ · ‖H(Kd ). In what follows, we assume that

ess sup
x∈I d

|Kd(x, x)| < ∞ ∀ d ∈ Z++. (6)

It then follows thatH(Kd) is continuously embedded in bothL2(I
d) andL∞(I

d). More precisely, let Appd,p denote
the embedding ofH(Kd) intoLp(I d) for p ∈ {2,∞} defined by

Appd,p v = v ∀ v ∈ H(Kd).

(We use Appd,p as the name of this embedding, since we will be discussing theLp-approximation of functions
fromH(Kd) in the sequel.) From the reproducing property ofKd , we find that

‖ Appd,2 ‖Lin[H(Kd ),L2(I
d )] ≤

(∫
I d
Kd(x, x) dx

)1/2

(7)

and
‖ Appd,∞ ‖Lin[H(Kd ),L∞(I d )] ≤ ess sup

x∈I d
|Kd(x, x)|. (8)

Hence, the embeddings Appd,2 and Appd,∞ are well-defined continuous linear mappings, as claimed.
We also need a space of boundary-value functions. This will be the spaceH(K̃d−1), which consists of functions

defined over∂I d whose restrictions to any face ofI d belongs toH(Kd−1).
First, we consider the cased ≥ 2. Forj ∈ {1, . . . , d} andθ ∈ {0,1}, let I dj,θ denote the facexj = θ of the unit

d-cube, so that
∂I d =

⋃
1≤j≤d
θ∈{0,1}

I dj,θ .

Then we define

H(K̃d−1) =

{
∂I d

v
−→ R : v

∣∣
I dj,θ

∈ H(Kd−1) for j ∈ {1, . . . , d}, θ ∈ {0,1}

}
,

which is a Hilbert space under the inner product

〈v,w〉H(K̃d−1)
:=

∑
1≤j≤d
θ∈{0,1}

〈
v
∣∣
I dj,θ
, w

∣∣
I dj,θ

〉
H(Kd−1)

∀ v,w ∈ H(K̃d−1).

By our choice of notation, we are hinting thatH(K̃d−1) is anRKHS under a reproducing kernel̃Kd−1. We now define
this reproducing kernel. Letx, y ∈ ∂I d , so thatx ∈ I dj,θ andy ∈ I d

j ′,θ ′ for somej, j ′
∈ {1, . . . , d} andθ, θ ′

∈ {0,1}.
Then

K̃d−1(x, y) = δj,j ′δθ,θ ′Kd−1(x̂[j ], ŷ[j ′]),
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where
x̂[j ] = (x1, . . . , xj−1, xj+1, . . . , xd) and ŷ[j ′] = (y1, . . . , yj ′−1, yj ′+1, . . . , yd).

In other words, ifx ∈ I dj,θ , then

K̃d−1(x, ·) =

{
Kd−1(x̂[j ], ·) on I dj,θ ,

0 otherwise.

We see thatH(K̃d−1) is continuously embedded in bothL2(∂I
d) andL∞(∂I

d). More precisely, forp ∈ {2,∞}, let
Ãppd−1,p denote the embedding ofH(K̃d−1) intoLp(∂I d). Since

(
Ãppd−1,pg

) ∣∣
I dj,θ

= Appd−1,p

(
g
∣∣
I dj,θ

)
for anyg ∈ H(K̃d−1) and any faceI dj,θ of I d , we may use (7) and (8) to see that

‖Ãppd−1,2‖Lin[H(K̃d−1),L2(∂I
d )] = ‖ Appd−1,2 ‖Lin[H(Kd−1),L2(I

d−1)] ≤

(∫
I d−1

Kd−1(x, x) dx
)1/2

(9)

and
‖Ãppd−1,∞‖Lin[H(K̃d−1),L∞(∂I d )] = ‖ Appd−1,∞ ‖Lin[H(Kd−1),L∞(I d−1)] ≤ ess sup

x∈I d
|Kd−1(x, x)|.

Up to this point, we have defined the kernelK̃d−1 for the cased ≥ 2. What should we do whend = 1, i.e., how
should we define the kernel̃K0? Since the Neumann boundary conditions for can be recovered exactly, we can take
K̃0 to be the identity operator.

We want to efficiently compute approximations ofSd(f, g, q) for [f, g, q] ∈ Hd × H̃d−1 × (Qd ∩ Hd,ρ). Here,
Hd andH̃d−1 are the respective unit balls inH(Kd) andH(K̃d−1), andHd,ρ is the ball of radiusρ in H(Kd), where
ρ ∈ R++ is independent ofd.

Of course, this problem is well-defined if and only ifQd ∩ Hd,ρ is nonempty. In particular, we will assume that
the positive constant functionq0 belongs toHd,ρ .

LetUd,n be an algorithm using at mostn information evaluations from a class3 of linear functionals onH(Kd)∪
H(Kd−1). Here,3 is either3all

= [H(Kd)]∗ ∪ [H(Kd−1)]∗ (continuous linear information), or the class3std

consisting of function evaluations on̄I d (standard information).

Remark2.1. How should we count these information evaluations? For standard information, which has the form

N([f, g, q]) = [f (x1), . . . , f (xn1), g(y1), . . . , g(yn2), q(z1), . . . , q(zn3)] ∀ [f, g, q] ∈ Hd×H̃d−1×(Qd∩Hd,ρ),

the answer is straightforward: the total number of information evaluations isn1 + n2 + n3. Things get a bit trickier
when we deal with continuous linear information, which has the form

N([f, g, q]) = [N1f,N2g,N3q] ∀ [f, g, q] ∈ Hd × H̃d−1 × (Qd ∩Hd,ρ), (10)

where
N1f = [〈f, f1〉H(Kd ), . . . , 〈f, fn1〉H(Kd )] ∀f ∈ Hd ,

N2g = [〈g, g1〉H(K̃d−1)
, . . . , 〈g, gn2〉H(K̃d−1)

] ∀ g ∈ H̃d−1,

N3q = [〈q, q1〉H(Kd−1), . . . , 〈q, qn3〉H(Kd−1)] ∀q ∈ Qd ∩Hd,ρ .

(11)

Clearly the total number of information evaluations needed to calculateN1f andN3q aren1 andn3, respectively.
However, we need to be more careful when counting the number of information evaluations needed to calculateN2g.
This is because we are countingH(Kd−1)-inner products as primitive operations, rather thanH(K̃d−1)-inner products.
Writing theith information evaluation appearing inN2g as

〈g, gi〉H(K̃d−1)
=

∑
1≤j≤d
θ∈{0,1}

〈
g
∣∣
I dj,θ
, gi

∣∣
I dj,θ

〉
H(Kd−1)

,
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we see that we can evaluate〈g, gi〉H(K̃d−1)
usingki evaluations ofH(Kd−1)-inner products, whereki ∈ {1, . . . ,2d} is

the number ofI d -faces at whichgi is not identically zero. This means that we can evaluate the information (10)–(11)
using

n1 +

n2∑
i=1

ki + n3 ≤ n1 + 2d n2 + n3

information evaluations.

The worst caseerror of Ud,n is given by

e(Ud,n, Sd ,3) = sup
[f,g,q]∈Hd×H̃d−1×(Qd∩Hd,ρ )

‖Sd(f, g, q)− Ud,n(f, g, q)‖H1(I d )

and thenth minimal error is defined to be

e(n, Sd ,3) = inf
Ud,n

e(Ud,n, Sd ,3),

the infimum being over all algorithms using at mostn information evaluations from3. Since the zeroth minimal
error uses no information evaluations at all, it is independent of3, and so we simply write it ase(0, Sd), rather than
e(0, Sd ,3).

If ε ∈ (0,1), we say that the algorithmUd,n provides anε-approximationto Sd if

e(Ud,n, Sd ,3) ≤ ε · ErrCrit(Sd).

Here, ErrCrit will be one of the two error criteria

ErrCrit(Sd) =

{
1 for absolute error,

e(0, Sd) for normalized error.
(12)

Let
card(ε, Sd ,3) = min{ n ∈ Z+ : e(n, Sd ,3) ≤ ε · ErrCrit(Sd) }

denote theε-cardinality number, i.e., the minimal number of information evaluations from3 needed to compute an
ε-approximation toSd . In what follows, we shall let denote theε-cardinality numbers for the absolute and normalized
error criteria by “cardabs” and “cardnor”, respectively. We shall write “card” when we are dealing with results that
apply to either error criterion. Note that card(ε, Sd ,3) was denoted card(ε, d,3) in the Introduction. The reason for
writing Sd instead ofd is that it will be helpful to stress the specific problem that we are considering in the sequel.

3 Some a priori estimates

In this section, we establish some a priori estimates that will be useful later. Our main goal to establish Lipschitz
continuity of our problem. More precisely, we will show that if [f, g, q] ∈ Hd × H̃d−1 × (Qd ∩Hd,ρ) and [f̃ , g̃, q̃] ∈

Hd × H̃d−1 ×Hd,ρ , then∥∥∥Sd(f, g, q)− Sd
(
f̃ , g̃, φ(q̃)

)∥∥∥
H1(I d )

≤ Cd,Lip

(
‖f − f̃ ‖L2(I

d ) + ‖q − q̃‖L2(I
d ) + ‖g − g̃‖L2(∂I

d )

)
,

with an explicit value for the Lipschitz constantCd,Lip that depends on the parameters describing our problem. Here,
φ : H(Kd) → Qd is defined as

φ(v)(x) = max{v(x), q0} ∀ x ∈ I d , v ∈ H(Kd).

We proceed in several steps.
Our first step is to give a trace theorem for the unit cube that gives an explicit value for the embedding constant.

As mentioned in the Introduction, this proof was discovered by Vilmos Komornik [7], and is presented here with his
permission.

First, we give the trace inequality for general regions�.

7



Theorem 3.1. Let � be a bounded open domain ofRd having a piecewise-C1 boundary and outer-directed unit
normalν. Suppose that there exists a functionh : � → Rd that is continuously differentiable on� such that

α := inf
x∈∂�

h(x) · ν(x) > 0.

Let

Cemb(�) =

√
‖h‖L∞(�) + ‖ div h‖L∞(�)

α
.

ThenH 1(�) is continuously embedded inL2(∂�), with

‖v‖L2(∂�) ≤ Cemb(�)‖v‖H1(�) ∀ v ∈ H 1(�).

Proof. By the usual density argument, it suffices to establish the estimate for allv ∈ C1(�). For suchv, we have

div(v2h) = ∇(v2) · h + v2(div h) = 2v∇v · h + v2(div h).

Using the divergence theorem and the definition ofα, we now find that

α

∫
∂�

v2
≤

∫
∂�

(h · ν)v2
=

∫
∂�

(v2h) · ν =

∫
�

div(v2h) = 2
∫
�

v (∇v · h)+

∫
�

v2(div h).

Using this inequality, along with the bounds

2
∫
�

v (∇v · h) ≤ ‖h‖L∞(�)

(
2‖v‖L2(�)‖∇v‖L2(�)

)
≤ ‖h‖L∞(�)

(
‖v‖2

L2(�)
+ ‖∇v‖2

L2(�)

)
and ∫

�

v2(div h) ≤ ‖ div h‖L∞(�)‖v‖
2
L2(�)

,

we obtain the desired result.

Specializing to the case� = I d , we have

Corollary 3.1. The spaceH 1(I d) is continuously embedded inL2(∂I
d), with

‖v‖L2(∂I
d ) ≤

√
2d + 1‖v‖H1(I d ) ∀ v ∈ H 1(I d).

Proof. Chooseh(x) := x −
1
2 in Theorem 3.1. If we lete1, . . . ,ed denote the standard basis vectors ofRd , we find

that
ν
∣∣
I dj,θ

= (−1)θ+1ej for j ∈ {1, . . . , d}, θ ∈ {0,1}.

Thus
α = inf

x∈∂�
h(x) · ν(x) =

1
2 and ‖h‖L∞(�) + ‖ div h‖L∞(�) =

1
2 + d,

and soCemb(I
d) ≤

√
2d + 1.

Our next step is to use a minimum principle to establish an upper bound on theL∞-norm of the solution.

Lemma 3.1. Let

η0 =
1

q0
and η1 =

1 + cosh
√
q0

√
q0 cosh

√
q0
. (13)

For f ∈ L2(I
d), g ∈ L2(∂I

d), andq ∈ Qd , we have

‖Sd(f, g, q)‖L∞(I d )
≤ η0‖f ‖L∞(I d )

+ η1d‖g‖L∞(∂I d )
.
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Proof. In the proof of this lemma, all pointwise inequalities are to be understood as holding almost everywhere.
We first claim that for anyq ∈ Qd , the minimum principle

v ∈ H 1(I d) ∧ [Bd(v,w, q) ≥ 0 for all non-negativew ∈ H 1(I d)] H⇒ v ≥ 0 in I d (14)

holds (see [13], as well as [12], for an analogous inequality over smooth regions inRd ). Indeed, suppose otherwise.
Then the setA = { x ∈ I d : v(x) < 0} has positive measure. Let

w(x) = max{−v(x),0} ∀ x ∈ Ī d .

By [21, Corollary 2.1.8], we havew ∈ H 1(I d). As in the proof of [20, Lemma 4.2], we easily see that∇w = −∇v

almost everywhere inI d . Sincew ≥ 0 on Ī d , andw = −v onA, we have

0 ≤

∫
I d

|∇v|2 = −

∫
I d

∇v · ∇w = −Bd(v,w; q)+ 〈qv,w〉L2(I
d )

≤ 〈qv,w〉L2(I
d ) = −〈qv, v〉L2(A) ≤ −q0‖v‖

2
L2(A)

< 0,

a contradiction. HenceA cannot have positive measure, which establishes the claim.
Next, we claim thatSd(0, g, ·) is antitone for anyg ≥ 0, i.e., that we have

[q1, q2 ∈ Qd with q1 ≥ q2] ∧ [g ∈ L2(∂I
d) with g ≥ 0] H⇒ Sd(0, g, q1) ≤ Sd(0, g, q2). (15)

Indeed, letvi = Sd(0, g, qi) for i ∈ {1,2}, noting thatv1 ≥ 0 by (14). Setv = v2 − v1. Now

Bd(v1, ·; q1) = 0 = Bd(v2, ·; q2) onH 1(I d),

Thus for any non-negativew ∈ H 1(I d), we have

Bd(v,w; q2) = 〈(q1 − q2)v1, w〉L2(I
d ) ≥ 0.

Using (14), we see thatv ≥ 0, as claimed.
Now fix f ∈ L2(I

d), g ∈ L2(∂I
d), andq ∈ Qd . Letu = Sd(0, g, q). Using [20, Lemma 4.3], we see that

‖Sd(f, g, q)‖L∞(I d )
≤ ‖Sd(f, ‖g‖L∞(I d )

,0)‖L∞(I d )
+ ‖u‖L∞(I d )

≤
‖f ‖L∞(I d )

q0
+ ‖u‖L∞(I d )

.

Let u0 = Sd(0, ‖g‖L∞(I d )
, q0). It is easy to check that

u0(x) =
‖g‖L∞(I d )

√
q0 sinh

√
q0

d∑
j=1

ψ(xj ) ∀ x ∈ I d ,

where
ψ(t) = cosh[

√
q0t ] + cosh[

√
q0(1 − t)]

Since
‖u0‖L∞(I d )

= η1d‖g‖L∞(I d )
,

it only remains to show that
‖u‖L∞(I d )

≤ ‖u0‖L∞(I d )
. (16)

Let u1 = Sd(0, ‖g‖L∞(I d )
, q), noting thatu1 ≥ 0 by (14). Again using (14), we see that

Bd(u1 − u, ·, q) = 0 onH 1(I d) andu1 − u = ‖g‖L∞(I d )
− g ≥ 0 on∂I d H⇒ u1 ≥ u in I d

and that

Bd(u+ u1, ·, q) = 0 onH 1(I d) andu+ u1 = g + ‖g‖L∞(I d )
≥ 0 on∂I d H⇒ u ≥ −u1 in I d ,
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and so
|u| ≤ u1 in I d .

SinceSd(0, ‖g‖L∞(I d )
, ·) is antitone andq ≥ q0, we have

u1 = Sd(0, ‖g‖L∞(I d )
, q) ≤ Sd(0, ‖g‖L∞(I d )

, q0) = u0 in I d .

Combining these last two inequalities, we easily find that (16) holds, completing the proof of the Lemma.

We now have the following perturbation estimate for the Neumann problem.

Theorem 3.2. Let [f, g, q], [f̃ , g̃, q̃] ∈ L2(I
d) × L2(∂I

d) × Qd . If we additionally know thatf ∈ L∞(I
d) and

g ∈ L∞(∂I
d), then

‖Sd(f, g, q)− Sd(f̃ , g̃, q̃)‖H1(I d )

≤
1

min{1, q0}

[
‖f − f̃ ‖L2(I

d ) + (η0‖f ‖L∞(I d )
+ η1d‖g‖L∞(∂I d )

)‖q − q̃‖L2(I
d ) +

√
2d + 1‖g − g̃‖L2(∂I

d )

]
,

whereη0 andη1 are as in(13).

Proof. Let u = Sd(f, g, q) andũ = Sd(f̃ , g̃, q̃). Settingw = u− ũ, we have

〈f − f̃ , w〉L2(I
d ) + 〈g − g̃, w〉L2(∂I

d ) = Bd(u,w, q)− Bd(ũ, w, q̃) = Bd(w,w, q)+ 〈(q − q̃)u,w〉L2(I
d ),

and so

min{1, q0}‖w‖
2
H1(I d )

≤ Bd(w,w, q) = 〈f − f̃ , w〉L2(I
d ) + 〈g − g̃, w〉L2(∂I

d ) − 〈(q − q̃)u,w〉L2(I
d ). (17)

Clearly ∣∣∣〈f − f̃ , w〉L2(I
d )

∣∣∣ ≤ ‖f − f̃ ‖L2(I
d )‖w‖L2(I

d ). (18)

Moreover, Lemma 3.1 yields∣∣〈(q − q̃)u,w〉L2(I
d )

∣∣ ≤ ‖q − q̃‖L2(I
d )‖u‖L∞(I d )

‖w‖L2(I
d )

≤ (η0‖f ‖L∞(I d )
+ η1d‖g‖L∞(∂I d )

)‖q − q̃‖L2(I
d )‖w‖L2(I

d ).
(19)

Finally, we may use Corollary 3.1 to see that∣∣〈g − g̃, w〉L2(∂I
d )

∣∣ ≤ ‖g − g̃‖L2(∂I
d )‖w‖L2(∂I

d ) ≤
√

2d + 1‖g − g̃‖L2(∂I
d )‖w‖H1(I d ). (20)

Substituting (18)–(20) into (17), the desired result follows.

We now establish our desired error bound.

Corollary 3.2. Let

Cd,Lip = d ·

max
{√

3, (η0 + η1) · max
{
‖Ãppd−1,∞‖Lin[H(K̃d−1),L∞(∂I d )], ‖ Appd,∞ ‖Lin[H(Kd ),L∞(I d )]

}}
min{1, q0}

,

whereη0 andη1 are as in(13). If [f, g, q] ∈ Hd × H̃d−1 × (Qd ∩Hd,ρ) and[f̃ , g̃, q̃] ∈ Hd × H̃d−1 ×Hd,ρ , then∥∥∥Sd(f, g, q)− Sd
(
f̃ , g̃, φ(q̃)

)∥∥∥
H1(I d )

≤ Cd,Lip

(
‖f − f̃ ‖L2(I

d ) + ‖q − q̃‖L2(I
d ) + ‖g − g̃‖L2(∂I

d )

)
.
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Proof. For [f, g], [f̃ , g̃] ∈ Hd × H̃d−1, we clearly have

|f ‖L∞(I d )
≤ ‖ Appd,∞ ‖Lin[H(Kd ),L∞(I d )] and ‖g‖L∞(∂I d )

≤ ‖Ãppd−1,∞‖Lin[H(K̃d−1),L∞(∂I d )] .

From the proof of [20, Lemma 4.5], we have

‖q − φ(q̃)‖L2(I
d ) ≤ ‖q − q̃‖L2(I

d ).

The desired result now follows from Theorem 3.2 and these inequalities, along with the fact thatd ∈ Z++.

The form we have chosen for the Lipschitz constantCd,Lip was dictated by convenience. It is easy to see that
Theorem 3.2 can give us a somewhat better value forCd,Lip , but the improvement is very slight.

Having established a value for the Lipschitz constantCd,Lip , we now establish bounds on the initial error. In what
follows, we let Intd−1 : H(Kd−1) → R and Intd : H(Kd) → R and denote the integration problems defined by

Intd−1 z =

∫
I d−1

z(y) dy ∀ z ∈ H(Kd−1)

and

Intd z =

∫
I d
z(y) dy ∀ z ∈ H(Kd),

respectively.

Theorem 3.3. The initial error e(0, Sd) satisfies the inequality

max

{
‖ Intd ‖[H(Kd )]∗ ,

√
2d ‖ Intd−1 ‖[H(Kd−1)]∗

max{1, q0}

}
≤ e(0, Sd)

≤
‖ Appd,2 ‖Lin[H(Kd ),L2(I

d )] +
√

2d + 1‖ Appd−1,2 ‖Lin[H(Kd−1),L2(I
d−1)]

min{1, q0}
.

Proof. We first consider the lower bound. Since the relatione(0, Sd) ≥ ‖ Intd ‖[H(Kd )]∗ was established in [20,
Lemma 4.10], we only need to prove that

e(0, Sd) ≥

√
2d ‖ Intd−1 ‖[H(Kd−1)]∗

max{1, q0}
.

Choosez in the unit ball ofH(Kd−1) such that

Intd−1 z = ‖ Intd−1 ‖[H(Kd−1)]∗ .

Defineg : ∂I d → R by

g(x) =
(−1)θ
√

2d
z(x̂[j ]) if x ∈ I dj,θ for somej ∈ {1, . . . , d}, θ ∈ {0,1}.

Then

‖g‖2
H(K̃d−1)

=

∑
1≤j≤d
θ∈{0,1}

∥∥∥∥g∣∣I dj,θ
∥∥∥∥2

H(Kd−1)

=
1

2d

∑
1≤j≤d
θ∈{0,1}

‖z‖2
H(Kd−1)

= ‖z‖2
H(Kd−1)

= 1,

and sog ∈ H̃d−1. Now letu = Sd(0, g; q0). Since‖1‖H1(I d ) = 1, we have

max{1, q0}‖u‖H1(I d ) ≥ Bd(u,1; q0) = 〈g,1〉L2(∂I
d ) =

∫
∂I d

g(x) dx =

∑
1≤j≤d
θ∈{0,1}

∫
I dj,θ

(−1)θg(x) dx

= 2d ·
1

√
2d

·

∫
I d−1

z(y) dy =
√

2d
∫
I d−1

z(y) dy =
√

2d ‖ Intd−1 ‖[H(Kd−1)]∗ .
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Hence

e(0, Sd) ≥ ‖u‖H1(I d ) ≥

√
2d ‖ Intd−1 ‖[H(Kd−1)]∗

max{1, q0}
,

as required.
We now turn to the upper bound. Choose [f, g, q] ∈ Hd×H̃d−1×(Hd,ρ ∩Qd), and letu = Sd(f, g, q). From (5),

we see that
Bd(u, u; q) = 〈f, u〉L2(I

d ) + 〈g, u〉L2(∂I
d ).

By the definition ofBd and Corollary 3.1, we see that

min{1, q0}‖u‖
2
H1(I d )

≤ ‖f ‖L2(I
d )‖u‖L2(I

d ) + ‖g‖L2(∂I
d )‖w‖L2(∂I

d )

≤ [‖f ‖L2(I
d ) +

√
2d + 1‖g‖L2(∂I

d )]‖u‖H1(I d ),

and so

‖S(f, g, q)‖H1(I d ) = ‖u‖H1(I d ) ≤
‖f ‖L2(I

d ) +
√

2d + 1‖g‖L2(∂I
d )

min{1, q0}

≤
‖ Appd,2 ‖Lin[H(Kd ),L2(I

d )] +
√

2d + 1‖ Appd−1,2 ‖Lin[H(Kd−1),L2(I
d−1)]

min{1, q0}
.

Since [f, g, q] ∈ Hd × H̃d−1 × (Hd,ρ ∩Qd) is arbitrary, the result follows immediately.

Noting the presence of the2(
√
d)-factor on both the upper and lower bounds one(0, Sd), we see that these bounds

are fairly tight, assuming that the norms involved are reasonably close to each other.

4 Reduction to theL2-approximation problem

Suppose that we know how to doL2-approximation of functions fromH(Kd) andH(Kd−1). From the latter, it follows
that we can doL2-approximation forH(K̃d−1). We can then approximateSd(f, g, q) by Sd(f̃ , g̃, q̃), where the tildes
denote approximations. Using Corollary 3.2, we can then estimate the error in this approximation, which allows us to
obtain bounds on theε-cardinality number.

Let us make this more precise. First, letWd = (Appd,2)
∗(Appd,2), which is a compact self-adjoint operator on

H(Kd) having finite trace. Let{(λd,j , ed,j )}j∈Z++ denote the eigenpairs ofWd , with {ed,j }j∈Z++ being an orthonor-
mal basis forH(Kd) and with

λd,1 ≥ λd,2 ≥ . . . 0 and lim
j→∞

λd,j = 0.

As in [17], we consider the problem Appd,2 of approximating functions fromHd in theL2-norm. We first con-
sider3all. Using results from [15, Chapter 4], we find that the algorithmAd,n,all defined by

Ad,n,allf =

n∑
j=1

〈f, ed,j,〉H(Kd )ed,j ∀ f ∈ Hd

is annth minimal error algorithm using3all, and that thenth minimal error satisfies

r(n,Appd,2,3
all) = e(Ad,n,all,Appd,2,3

all) =
√
λd,n+1.

Moreover, since
∞∑
j=1

λd,j = traceWd =

∫
I d
Kd(x, x) dx < ∞,
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we see that

r(n,Appd,2,3
all) ≤

√
traceWd
√
n+ 1

.

Letting

rd,all = sup

{
r ≥ 0 : lim

j→∞
λd,jn

r
= 0

}
,

we see thatrd,all ≥
1
2. Note that this result holds for any kernelKd satisfying (6). For smoother kernels, the eigenvalues

of Wd might decay more quickly to zero, which would give a larger value forrd,all.
Next, we consider3std. Again following [17], we can use the result for3all, along with the fact that

r(n,Appd,2,3
std) ≤ min

j∈Z+

(
r2(j,Appd,2,3

all)+
traceWd

n

)1/2

,

to see that

r(n,Appd,2,3
std) ≤

√
2 traceWd

n1/4
.

More recently, Kuo et al. [9] have shown that

2rd,all

2rd,all + 1
rd,all ≤ rd,std ≤ rd,all.

Furthermore, they have conjectured that if (6) holds, thenrd,all = rd,std.
We summarize these observations in

Lemma 4.1. Let k ∈ {all, std}. There existrd,all ≥
1
2 andrd,std ≥

1
4, as well asCd,k > 0, such that there is a linear

algorithmAd,n,k for the approximation problem usingn evaluations from3k, whose error satisfies

e(Ad,n,k,Appd,2,3
k) ≤

Cd,k

nrd,k
.

For 3all, we may take
rd,all =

1
2 and Cd,all =

√
traceWd ,

whereas for3std, we may take

rd,std =
1
4 and Cd,std =

√
2 traceWd .

We now are ready to prove a result that tells us that

card(ε, Sd ,3
k) = O

(
max{card(ε,Appd,2,3

k), card(ε,Appd−1,2,3
k)}

)
.

Theorem 4.1. The Neumann problem is no harder than theL2-approximation problem. More precisely, fork ∈

{all, std}, we find that the following hold:

1. For anyn ∈ Z+, there exists a linear algorithmUd,n,k usingn evaluations from3k, such that

e(Ud,n,k, Sd ,3
k) ≤

C∗

d,k

n
r∗d,k
, (21)

where (using the notation of Lemma4.1)

C∗

d,k = Cd,Lip [3rd,kCd,k(ρ + 1)+ (6d)rd−1,kCd−1,k]

and
r∗d,k = min{rd,k, rd−1,k}.

Hence,

card(ε, Sd ,3
k) ≤

⌈(
C∗

d,k

εErrCrit(Sd)

)1/r∗d,k
⌉
.
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2. Let
rk = inf

`∈Z++
r`,k, (22)

noting that we can always find algorithms such that

rall ≥
1
2 and rstd ≥

1
4.

Then

card(ε, Sd ,3
k) ≤

⌈(
C∗

d,k

εErrCrit(Sd)

)1/rk
⌉
,

with
C∗

d,k = 6rk (ρ + 1) drk Cd,Lip(Cd,k + Cd−1,k). (23)

Proof. Let k ∈ {all, std}. For n ∈ Z+, define an algorithmA∗

d−1,n,k for L2(∂I
d)-approximation of functions

fromH(K̃d−1) by(
A∗

d−1,n,k g
) ∣∣
I dj,θ

= Ad−1,bn/(2d)c,k

(
g
∣∣
I dj,θ

)
∀ g ∈ H(K̃d−1), j ∈ {1, . . . , d}, θ ∈ {0,1}.

We clearly have

‖g − A∗

d−1,n,kg‖L2(∂I
d ) ≤

Cd−1,k

bn/(2d)crd−1,k
‖g‖H(K̃d−1)

∀ g ∈ H(K̃d−1).

Now let [f, g, q] ∈ Hd × H̃d−1 × (Qd ∩ Hd,ρ). Pickn ∈ Z+; we assume that(6d)|n without loss of generality. We
then find that

Ud,n,k(f, g, q) = Sd
(
Ad,n/3,kf, Ãd−1,n/3,kg, φ(Ad,n/3q)

)
.

From Corollary 3.2, we see that

‖Sd(f, g, q)−Ud,n,k(f, g, q)‖H(I d )

≤ Cd,Lip [‖f − Ad,n/3,kf ‖L2(I
d ) + ‖q − Ad,n/3,kq‖L2(I

d ) + ‖g − A∗

d−1,n/3,kg‖L2(∂I
d )]

≤ Cd,Lip

[
Cd,k(‖f ‖H(Kd ) + ‖q‖H(Kd ))

(n/3)rd,k
+
Cd−1,k‖g‖H(K̃d−1)

[n/(6d)]rd−1,k

]
≤
C∗

d,k

n
r∗d,k

,

which implies that (21) holds. The remainder of the theorem follows immediately.

5 Notions of tractability

So far, we have treated the number of variablesd as a fixed parameter. In the remainder of this paper, we consider a
sequenceS = {Sd}d∈Z++ of Neumann problems, studying the dependence of card(ε, Sd ,3) on bothε andd.

First, we describe various levels of tractability for our Neumann problem, see (e.g.) [10] for discussion. The
problemS is said to beweakly tractablein the class3 if

lim
ε−1+d→∞

ln card(ε, Sd ,3)

ε−1 + d
= 0.

A problem is weakly tractable iff the cardinality number grows subexponentially inε−1 andd. The problemS is said
to be (polynomially)tractablein the class3 if there exist non-negative numbersC, perr, andpdim such that

card(ε, Sd ,3) ≤ C

(
1

ε

)perr

dpdim ∀ ε ∈ (0,1), d ∈ Z++. (24)
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Numbersperr = perr(3) andpdim = pdim(3) such that (24) holds are calledε- andd-exponents of tractability; these
need not be uniquely defined. Finally, the problemS is said to bestrongly (polynomially) tractablein the class3 if
pdim = 0 in (24); in this case, we define

pstrong(3) = inf

{
perr ≥ 0 : ∃C ≥ 0 such that card(ε, Sd ,3) ≤ C

(
1

ε

)perr

∀ ε ∈ (0,1), d ∈ Z++

}
to be theexponent of strong tractability.

Using Theorem 4.1, we immediately have

Corollary 5.1. Letk ∈ {all, std}. Suppose that(22)holds. Using the notation of Lemma4.1, the following hold:

1. If

lim
d→∞

1

d
ln
Cd,Lip(Cd,k + Cd−1,k)

ErrCrit(Sd)
= 0, (25)

then the Neumann problem is weakly tractable.

2. If there existsπk > 0 such that
C∗

d,k

ErrCrit(Sd)
= O(dπk ),

then the Neumann problem is tractable, with

perr(3
k) ≤

1

rk
and pdim(3

k) ≤
πk

rk
.

3. If

lim sup
d→∞

C∗

d,k

ErrCrit(Sd)
< ∞,

then the Neumann problem is strongly tractable, with

pstrong(3
k) ≤

1

rk
.

Of course, a problem’s weak tractability, tractability, or strong tractability will depend on the error criterion used.
Hence we letpabs

err , pabs
dim, andpabs

strongdenote theε- andd-exponents of tractability and the exponent of strong tractability
under the absolute error criterion. When we are using the normalized error criterion, we shall denote these exponents
by pnor

err , pnor
dim, andpnor

strong.

6 Weighted reproducing kernel Hilbert spaces

Up until this point, we have assumed very little about the reproducing kernelKd . Other than condition (6), the
kernelsKd can be arbitrary. If we want to study tractability, we will need to say something about how the kernelsKd
are related ford ∈ Z++. The standard approach is to use weighted kernels.

LetH(K) be a separableRKHS of functions defined over̄I , where the “master” reproducing kernelK is a mea-
surable non-zero function defined onĪ × Ī . We will require thatK ∈ L∞(I × I ), so that

κ0 := ess sup
t∈I

K(t, t) < ∞. (26)

It then follows that
0 ≤ κ2 ≤ κ1 ≤ κ0,

where

κ1 =

∫ 1

0
K(t, t) dt (27)
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and

κ2 =

∫ 1

0

∫ 1

0
K(s, t) dt ds. (28)

Note thatκ0 andκ1 are positive, but thatκ2 may be equal to zero. As we shall see, tractability results will be different
for the casesκ2 > 0 andκ2 = 0.

Example.The Korobov and min kernels are defined as follows:

1. Letr ∈ Z++. Therth Korobov kernelKKor,r is defined as

KKor,r(s, t) =
(−1)r+1B2r({s − t})

(2r)!
∀ s, t ∈ [0,1], (29)

whereB2r is the Bernoulli polynomial of order 2r and{s} denotes the fractional part ofs ∈ R. ForKKor,r , we
find κ0 = κ1 = B2r/(2r)! andκ2 = 0, whereB2r is the 2rth Bernoulli number.

2. Themin kernelKmin is defined as

Kmin(s, t) = min{s, t} ∀ s, t ∈ [0,1]. (30)

ForKmin, we find thatκ0 = 1, κ1 =
1
2, andκ2 =

1
3.

These kernels have been extensively studied in many papers, see [10] and the references cited therein.

We let|u| denote the size ofu ⊆ [d], where [d] = {1, . . . , d}. Let

γ = { γd,u : u ⊆ [d], d ∈ Z++
}

be a set of non-negativeweightsγd,u.

Example.What kinds of weights have been most thoroughly studied?

1. Product weights[14]. Here,

γd,u =

∏
j∈u

γd,j with γd,1 ≥ γd,2 ≥ · · · ≥ γd,d ≥ 0. (31)

2. Finite-order weights[4] of orderω ∈ Z++. Here

γd,u 6= 0 only if |u| ≤ ω ∀ u ⊆ [d], d ∈ Z++, (32)

whereω is the smallest positive integer such that (32).

Other classes of weights (such as finite-diameter weights and order-dependent weights) have been studied as well;
again, see [10].

For eachd ∈ Z++, the spaceH(Kd) will be theRKHS whose reproducing kernel is

Kd =

∑
u⊆[d]

γd,uKd,u,

with
Kd,u(x, y) =

∏
j∈u

K(xj , yj ) ∀ x, y ∈ Ī d , u ⊆ [d].

Recall that we requireq0 ∈ Hd,ρ for all d ∈ Z++. It is known (see, e.g., [17]) that ifγd,∅ > 0, then the constant

function 1 belongs toH(Kd), with ‖1‖H(Kd ) ≤ γ
−1/2
d,∅ . Hence we needq0γ

−1/2
d,∅ ≤ ρ to hold for alld. Sinceq0 andρ

are to be independent ofd, this latter condition can hold iff

γmin,∅ := inf
d∈Z++

γd,∅ > 0. (33)
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Hence we shall assume that condition (33) holds in the rest of this paper, and thatq0 andρ satisfy

q0 ≤ γ
1/2
min,∅ ρ. (34)

Since (33) and (34) both hold, we now know thatq0 ∈ Hd,ρ for all d ∈ Z++.

Remark6.1. The intuition behind the definition ofH(Kd) is that any function belonging to this space can be decom-
posed as a sum of simpler functions. Let us make this precise, under the simplifying assumption that 16∈ H(K),
which happens iffκ2 > 0 (see, e.g., [17, Lemma 1]). Foru ⊆ [d], let H(Kd,u) denote theRKHS whose reproducing
kernel isKd,u, noting that a function belonging toH(Kd,u) depends only on the variablesxi for i ∈ u. Then for any
f ∈ H(Kd), there is a unique decomposition of the form

f =

∑
u⊆[d]

fu,

with fu ∈ H(Kd,u) for all u ⊆ [d], with

‖f ‖
2
H(Kd )

=

∑
u⊆[d]

1

γd,u
‖fu‖

2
H(Kd,u)

,

once again see [17]. Note that for this last sum to be finite, thenfu must be zero wheneverγd,u = 0, and we must
use the notational convention that 0/0 = 0. Thus a function belonging to a weightedRKHS can be written as a sum of
simpler functions. In particular, note that for finite-order weights of orderω, we have

f =

∑
u⊆[d]
|u|≤ω

fu

with

‖f ‖
2
H(Kd )

=

∑
u⊆[d]
|u|≤ω

1

γd,u
‖fu‖

2
H(Kd,u)

.

Thus a function belonging to a weightedRKHS based on finite-order weight of orderω can be written as a sum of
simpler functions, with each term depending on at mostω variables.

For` ∈ Z++, let us defineσ` : R+
→ R+ by

σ`(θ) =

( ∑
u∈[`]

γd,u θ
|u|

)1/2

∀ θ ∈ R+.

We can use the functionsσd−1 andσd to estimate various norms, as well as the Lipschitz constant for our Neumann
problem. Before doing this, it will be useful to letW = (App)∗(App) ∈ Lin[H(K)], where App∈ Lin[H(K),L2(I )]
is the embedding operator. More explicitly,

Wf =

∫ 1

0
K(·, y)f (y) dy ∀f ∈ H(K).

Lemma 6.1. The following estimates hold for weightedRKHSs:

1. σd(κ2) ≤ ‖ Appd,2 ‖Lin[H(Kd ),L2(I
d )] ≤ σd(κ1).

2. If κ2 = 0, then

‖ Appd,2 ‖Lin[H(Kd ),L2(I
d )] = max

u⊆[d]

[
γd,u‖W‖

u
Lin[H(K)]

]1/2
.

3. σd−1(κ2) ≤ ‖Ãppd−1,2‖Lin[H(K̃d−1),L2(∂I
d )] ≤ σd−1(κ1).
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4. ‖ Appd,∞ ‖Lin[H(Kd ),L∞(I d )] ≤ σd(κ0).

5. ‖Ãppd−1,∞‖Lin[H(K̃d−1),L∞(∂I d )] ≤ σd−1(κ0).

6. ‖ Intd ‖[H(Kd )]∗ = σd(κ2).

7. ‖ Intd−1 ‖[H(Kd−1)]∗ = σd−1(κ2).

8. Let

η2 =
max

{
η0 + η1,

√
3/γmin,∅

}
min{1, q0}

, (35)

whereη0 andη1 are as in(13). The Lipschitz constantCd,Lip for our Neumann problem satisfies

Cd,Lip ≤ η2d max{σd(κ0), σd−1(κ0)}. (36)

9. The initial error satisfies the inequality

max

{
σd(κ2),

√
2d σd−1(κ2)

max{1, q0}

}
≤ e(0, Sd) ≤

σd(κ1)+
√

2d + 1σd−1(κ1)

min{1, q0}
.

Proof. The norm estimates may be found in [17].
Using the bounds on‖ Appd,∞ ‖Lin[H(Kd ),L∞(I d )] and‖Ãppd−1,∞‖Lin[H(K̃d−1),L∞(∂I d )] along with the fact that

σl(θ) ≥ γmin,∅ for anyl ∈ Z++ andθ ∈ R+, we get the bound onCd,Lip .
The bounds on the initial error follows from Theorem 3.3 and the bounds on the various operator norms found in

the rest of the Lemma.

7 Tractability results for product and finite-order weights

Suppose thatK is any reproducing kernel satisfying (26). What can we say about the tractability of our Neumann
problem? We will be especially interested in knowing whether tractability ofL2-approximation implies tractability
of our Neumann problem. We remind the reader that theL2-approximation problem for problem elementsHd and
information3k (wherek ∈ {all, std}) is tractable iff

e(n,Appd ,3
k)

ErrCrit(Appd)
≤
Ck,ErrCritd

sk,ErrCrit

nrk

for any d ∈ Z++ andn ∈ Z+. Here,Ck,ErrCrit > 0, rk,ErrCrit > 0, andsk,ErrCrit ≥ 0 are independent ofd andn.
Moreover, the error criterion for approximation is defined to be

ErrCrit(Appd,2) =

{
1 for absolute error,

e(0,Appd,2) = ‖ Appd,2 ‖Lin[H(Kd ),L2(I
d )] for normalized error,

which is analogous to (12) for the Neumann problem.
Note thatL2-approximation is tractable iff we may take

rd,k = rk and Cd,k = Ck,ErrCrit ErrCrit(Appd) d
sk,ErrCrit (37)

in Lemma 4.1. The following simple lemma will be helpful in establishing tractability of the Neumann problem.

Lemma 7.1. If L2-approximation is tractable, then the Neumann problem is tractable. More precisely, letk ∈ {all, std}
and suppose that the following hold:

1. L2-approximation is tractable, so that(37)holds in Lemma4.1.
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2. There existsCLip > 0 andtLip ≥ 0 such that the Lipschitz constantCLip,d for the Neumann problem is bounded
by

Cd,Lip ≤ CLipd
tLip

for all d ∈ Z++.

3. There existsCErrCrit > 0 anduErrCrit ≥ 0 such that

max{ErrCrit(Appd,2),ErrCrit(Appd−1,2)}

ErrCrit(Sd)
≤ CErrCritd

uErrCrit

for all d ∈ Z++.

Then the Neumann problem is tractable, with

perr(3
k) =

1

rk
and pdim(3

k) = 1 +
sk,ErrCrit + tLip + uErrCrit

rk
.

Proof. This follows immediately from (23) and Corollary 5.1.

7.1 Results for product weights

In this subsection, we give tractability results for product weights

γd,u =

∏
j∈u

γd,j , ∀ d ∈ Z++,

where
γd,1 ≥ γd,2 ≥ · · · ≥ γd,d ≥ 0 ∀ d ∈ Z++.

We first consider weak tractability. Let us say that the sum of the weights issublinearly boundedif

lim
d→∞

1

d

d∑
j=1

γd,j = 0. (38)

Then we have the following result.

Theorem 7.1. Sublinear boundedness is essentially necessary and sufficient for weak tractability. More precisely:

1. If the sum of the weights is sublinearly bounded, then the Neumann problems(Sd ,3
all) and (Sd ,3std) are

weakly tractable under both the absolute and normalized error criteria.

2. Suppose that the sum of the weights is not sublinearly bounded. Then there exists a kernelK such that the
Neumann problem(Sd ,3std) is not weakly tractable under the absolute error criterion.

Proof. For the first part, note that since3std
⊆ 3all, we only need to show that the problem is weakly tractable

for 3std. Also, note that since we are using product weights, Lemma 6.1 implies thate(0, Sd) ≥ σd(κ2) ≥ 1. So, it
suffices to establish weak tractability for standard information under the absolute error criterion. We use Corollary 5.1,
noting that (22) holds withrstd =

1
4 and

C`,std ≤
√

2σ`(κ1) for ` ∈ Z++.

Using (36), we find that

Cd,Lip(Cd,std + Cd−1,std) ≤ η2d max{σd(κ0), σd−1(κ0)} ·
√

2[σd(κ1)+ σd−1(κ1)]

≤ 2η2
√

2dmax{σd(κ0), σd−1(κ0)}.
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For` ∈ Z++, we have

σ`(θ) =

∏̀
j=1

(1 + θγ`,j )
1/2,

and so

ln σ`(θ) =
1
2

∑̀
j=1

ln(1 + θγ`,j ) ≤
1
2

(∑̀
j=1

γ`,j

)
θ = σ̂`θ,

where

σ̂` =
1
2

∑̀
j=1

γ`,j .

Since we are using product weights, we haveσ`(κ1) ≥ 1 for ` ∈ Z++, and so

ln[Cd,Lip(Cd,std + Cd−1,std)] ≤ ln(2η2
√

2)+ ln d + (σ̂d + σ̂d−1)κ0.

Since (38) holds, we find that (25) holds, and so the problem is weakly tractable.
To show the second part of the theorem, consider the kernelK : Ī × Ī → R as

K(x, y) =
1
2

(∣∣∣x −
1
2

∣∣∣ +

∣∣∣y −
1
2

∣∣∣ + |x − y|
)

∀ x, y ∈ Ī .

Consider the integration problem Intd : H(Kd) → R defined by

Intd z =

∫
I d
z(x) dx ∀ z ∈ H(Kd),

noting that
‖ Intd ‖[H(Kd )]∗ = σd(κ2) ≥ 1.

From [5, Theorem 7.1], we know that for this kernelK, the problem(Intd ,3std) is not weakly tractable under the
normalized error criterion, since (38) does not hold. We claim that Intd can be reduced toSd(·,0; 1). To see this, let
f ∈ Hd , and letu = Sd(f,0, ; 1), so that

Intd f = 〈f,1〉L2(I
d ) = Bd(u,1; 1) = Intd u. (39)

For ε > 0, compute an approximatioñuε of u such that‖u − ũε‖H1(I d ) ≤ ε, using cardabs(ε, Sd ,3
std) evaluations

of f . Now define Intd,ε f = Intd ũε, noting that this uses no further evaluations off . From (39), we see that

| Intd f − Intd,ε f | = | Intd(u− ũε)| ≤ ‖u− ũε‖H1(I d ) ≤ ε ≤ ε‖ Intd ‖[H(Kd )]∗ .

Sincef ∈ Hd is arbitrary, we see that the algorithm Intd,ε produces anε-approximation to Intd under the normalized
error criterion, using at most cardabs(ε, Sd ,3

std) evaluations off . Hence

cardnor(ε, Intd ,3
std) ≤ cardabs(ε, Sd ,3

std).

Since(Intd ,3std) is not weakly tractable under the normalized error criterion, it now follows that(Sd ,3
std) is not

weakly tractable under the absolute error criterion.

Theorem 7.1 tells us that sublinear boundedness of the sum of the weights (38) is sufficient for our Neumann
problem to be weakly tractable for product weights. Moreover, it also gives us a master kernelK such that sublinear
boundedness is necessary for weak tractability. On the other hand, there are some kernels for which this condition is
not needed for any level of tractability; for example, if the master kernelK is constant, thenH(Kd) is one-dimensional,
rendering the Neumann problem (trivially) strongly tractable. It would be useful to characterize those master kernels
for which sublinear boundedness of the sum of the weights is necessary and sufficient for weak tractability.
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Although we need only assume that the sum of the weights is sublinearly bounded to infer that our problem is
weakly tractable, it is reasonable to expect that a stronger condition on the sum of the weights would yield a stronger
level of tractability.

We first ask what happens when the sum of the weights islogarithmically bounded, which means that

aγ := lim sup
d→∞

1

ln (d + 1)

d∑
j=1

γd,j < ∞. (40)

Using the notation of (37), we have

Theorem 7.2. Suppose that the sum of the weights is logarithmically bounded. Letk ∈ {all, std}. Then the Neumann
problem is tractable, with

perr(3
k) =

1

rk
,

pabs
dim(3

k) = 1 +
sk,abs+ 1 +

1
2κ0aγ

rk
+ δ,

pnor
dim(3

k) = 1 +
sk,nor +

1
2 +

1
2(κ0 + κ1)aγ

rk
+ δ

whereaγ is as in(40)andδ is any arbitrary positive number.

Proof. Since the sum of the weights is logarithmically bounded, it follows that for anyδ > 0, there exists a positive
integerdδ such that

1

ln(d + 1)

d∑
j=1

γd,j ≤ aγ + δ ∀ d ≥ dδ,

whence
σd(θ) ≤ (d + 1)θ(aγ+δ)/2

∀ θ ≥ 0, d ≥ dδ + 1. (41)

Using Lemma 6.1, we now see that

Cd,Lip ≤ η3dmax{σd(κ0), σd−1(κ0)} ≤ η2d(d + 1)κ0(aγ+δ)/2)
∀ d ≥ dδ + 1,

and so we can take
tLip = 1 +

1
2κ0aγ + δ ∀ δ > 0.

For the absolute error criterion, we always haveuabs= 0. For the normalized error criterion, Lemma 6.1 and (41) tells
us that

e(0,Appd,2) = ‖ Appd,2 ‖Lin[H(Kd ),L2(I
d )] ≤ σd(κ1) ≤ (d + 1)κ1(aγ+δ)/2

∀ d ≥ dδ. (42)

Using Lemma 6.1 along with the fact thatσd(θ) ≥ 1 for product weights, we find that

e(0, Sd) ≥

√
2d σd−1(κ2)

max{1, q0}
≥

√
2d

max{1, q0}
, (43)

and so we can take
unor =

1
2κ1aγ −

1
2 + δ ∀ δ > 0.

The Theorem follows from Lemma 7.1, along with our values fortLip , uabs, andunor.

Using this theorem, we easily see that if the sum of the weights is logarithmically bounded, then the Neumann
problem is always tractable.
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Corollary 7.1. Suppose that(40)holds. Then the Neumann problem is tractable, and we may take

perr(3
all) = 2,

pabs
dim(3

all) = 3 + (κ0 + κ1)aγ + δ,

pnor
dim(3

all) = 2 + (κ0 + 2κ1)aγ + δ,

and
perr(3

std) = 4,

pabs
dim(3

std) = 5 + 2(κ0 + κ1)aγ + δ,

pnor
dim(3

std) = 3 + 2(κ0 + 2κ1)aγ + δ

for anyδ > 0.

Proof. From Lemma 4.1, we see that the hypotheses of Theorem 7.2 hold withrall =
1
2, rstd =

1
4, andsall,nor =

sstd,nor = 0. Moreover, (42) implies thatsall,nor = sstd,nor =
1
2κ1aγ + δ for anyδ > 0. The results now follow from

Theorem 7.2.

We next ask what happens when the sum of the weights isuniformly bounded, meaning that

a∗
γ := sup

d∈Z++

d∑
j=1

γd,j < ∞. (44)

Of course, uniform boundedness implies logarithmic boundedness. Hence Theorem 7.2 immediately tells us that our
problem is tractable. However if we use the fact that the sum of the weights is uniformly bounded, we can get a smaller
value for thed-exponent.

Theorem 7.3. Suppose that the sum of the weights is uniformly bounded. Letk ∈ {all, std}. Then the Neumann
problem is tractable, with

perr(3
k) =

1

rk
,

pabs
dim(3

k) = 1 +
sk,abs+ 1

rk
,

pnor
dim(3

k) = 1 +
sk,nor +

1
2

rk
.

Proof. Since the sum of the weights is uniformly bounded, we see that

σd(θ) = exp

( d∑
j=1

ln(1 + θγd,j )

)1/2

≤ exp

( d∑
j=1

θγd,j

)1/2

≤ ea
∗
γθ/2 ∀ θ ≥ 0, d ∈ Z++.

Hence
Cd,Lip ≤ η2dmax{σd(κ0), σd−1(κ0)} ≤ ea

∗
γκ0/2η2 d ∀ d ∈ Z++,

and sotLip = 1. For the absolute error criterion, we always haveuabs= 0. For the normalized error criterion, we may
use (43) and

e(0,Appd,2) = ‖ Appd,2 ‖Lin[H(Kd ),L2(I
d )] ≤ σd(κ1) ≤ ea

∗
γκ1/2 ∀ d ∈ Z++ (45)

to see thatunor = −
1
2. The results now follow from Lemma 7.1.

Since uniform boundedness implies logarithmic boundedness, Corollary 7.1 already tells us that the Neumann
problem is tractable. However, we can use Theorem 7.3 to get better values for thed-exponents than those provided
by Corollary 7.1.
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Corollary 7.2. Suppose that(44)holds. Then the Neumann problem is tractable, and we may take

perr(3
all) = 2,

pabs
dim(3

all) = 3,

pnor
dim(3

all) = 2

and
perr(3

std) = 4,

pabs
dim(3

std) = 5,

pnor
dim(3

std) = 3.

Proof. From Lemma 4.1, we see that the hypotheses of Theorem 7.3 hold withrall =
1
2, rstd =

1
4, andsall,nor =

sstd,nor = 0. Moreover, (45) implies thatsall,nor = sstd,nor = 0. The results now follow from Theorem 7.3.

Recall thatL2-approximation is strongly tractable for product weights when the sum of the weights is uniformly
bounded, see [16]. One might hope that this would also be true for Neumann problem. We shall explore this question
further in §8.

7.2 Results for finite-order weights

In this section, we give tractability results for finite-order weights of orderω.
We briefly note a useful estimate forCd,Lip . Suppose that

γmax := sup
d∈Z++

max
u⊆[d]

γd,u < ∞. (46)

Let
η4 = 2 min{1, κω0 }γmax,

so that
σd(κ1) ≤ σd(κ0) ≤

√
η4dω

by [19, Lemma 6] and the monotonicity ofσd . Using (36) and the monotonicity ofσd , we see that

Cd,Lip ≤ η2
√
η4 d

ω/2+1. (47)

We will need no further conditions to prove tractability results for finite-order weights. However, we will be able to
prove stronger results for the normalized error criterion under the conditionκ2 > 0 if we make one further assumption,
namely, that there existsc∗ > 0, independent ofd, such that

‖ Appd ‖[H(Kd )]∗ ≤ c∗‖ Appd−1 ‖[H(Kd−1)]∗ (48)

Remark7.1. Condition (48) means thatL2(I
d)-approximation is not much harder thanL2(I

d−1)-approximation.
Should this not be true, we could “reduce”L2(I

d−1)-approximation problem toL2(I
d)-approximation; this would

involve treating a(d − 1)-variate function inH(Kd−1) as ad-variate function inH(Kd) that happens to not depend
onxd . So, condition (48) is fairly natural. Note that from Lemma 6.1, we see that (48) is equivalent to the condition

σd(κ1) ≤ c∗σd−1(κ1). (49)

In other words, this condition is a statement about the weightsγ. Note that (49) clearly holds if

γd,u ≤ c∗γd−1,u ∀ u ∈ [d − 1].

Of course, this latter condition is only a sufficient condition for (49) to hold; it is not necessary.
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Theorem 7.4. Suppose thatγ is a family of finite-order weights satisfying(46)and having orderω. Letk ∈ {all, std}.
Then

perr(3
k) =

1

rk
,

pabs
dim(3

k) = 1 +
sk,abs+

1
2ω + 1

rk
,

pnor
dim(3

k) =


1 +

sk,nor +
1
2(ω + 1)

rk
if eitherκ2 = 0 or (48)holds,

1 +
sk,nor +

1
2ω + 1

rk
otherwise.

Proof. We once again use the notation of Lemma 7.1. From (47), we see thattLip =
1
2ω + 1. Sinceuabs = 0, we

immediately see that the result forpabs
dim holds. It remains to determineunor.

1. Suppose thatκ2 = 0. From Lemma 6.1, we see that

max{‖ Appd,2 ‖Lin[H(Kd ),L2(I
d )], ‖ Appd−1,2 ‖Lin[H(Kd−1),L2(I

d−1)]}

e(0, Sd)

≤
γ

1/2
maxmax{1, ‖W‖Lin[H(Kd )]}

ω/2
} max{1, q0}

√
2d

,

and sounor = −
1
2.

2. Now suppose thatκ2 > 0. From [17, Theorem 2] and Lemma 6.1, we see that

e(0,Appd−1,2)

e(0, Sd)
≤

max{1, q0}
√

2d

σd−1(κ1)

σd−1(κ2)
≤

max{1, q0}
√

2d

(
ω1

ω2

)ω/2
.

If (48) holds, then

e(0,Appd,2)

e(0, Sd)
≤
c∗‖ Appd−1,2 ‖Lin[H(Kd−1),L2(I

d−1)]

e(0, Sd)
≤
c∗ max{1, q0}

√
2d

(
ω1

ω2

)ω/2
,

so thatunor =
1
2. However if (48) doesnot hold, then we only have

e(0,Appd,2)

e(0, Sd)
≤
σd(κ1)

σd(κ2)
≤

(
ω1

ω2

)ω/2
,

and sounor = 0.

The theorem now follows from Lemma 7.1, along with these values fortLip , uabs, andunor.

Using this theorem, we easily see that if finite-order weights are used, then the Neumann problem is always
tractable.

Corollary 7.3. Suppose thatγ is a family of finite-order weights satisfying(46) and having orderω. Then the
Neumann problem is tractable, and we may take

perr(3
all) = 2,

pabs
dim(3

all) =

{
3 + ω if κ2 = 0,

3 + 2ω if κ2 > 0,

pnor
dim(3

all) =

{
2 + ω if eitherκ2 = 0 or (48)holds,

3 + ω otherwise
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and
perr(3

std) = 4,

pabs
dim(3

all) =

{
5 + 2ω if κ2 = 0,

5 + 4ω if κ2 > 0.

pnor
dim(3

std) =

{
3 + 2ω if eitherκ2 = 0 or (48)holds,

5 + 2ω otherwise.

Proof. From Lemma 4.1, we see that the hypotheses of Theorem 7.4 hold withrall =
1
2, rstd =

1
4, andsall,nor =

sstd,nor = 0. We need only determinesall,absandsstd,abs.

1. If κ2 = 0, then Lemma 6.1 tells us that

e(0,Appd,2) = ‖ Appd,2 ‖Lin[H(Kd ),L2(I
d )] ≤ σd(κ1) ≤

√
η4dω,

and sosall,abs= sstd,abs=
1
2ω.

2. If κ2 > 0, then Lemma 6.1 tells us that

e(0,Appd,2) = ‖ Appd,2 ‖Lin[H(Kd ),L2(I
d )] ≤ γ

1/2
maxmax{1, ‖W‖Lin[H(Kd )]}

ω/2
},

and sosall,abs= sstd,abs= 0.

The results now follow from Theorem 7.3.

In [17], theL2-approximation was found to be strongly tractable for finite-order weights whenκ2 > 0, see [17].
As we stated at the end of §7.1, one might hope that this would also be true for the Neumann problem. We shall
explore this question further in the next section.

8 Can the nonhomogeneous Neumann problem be strongly tractable?

So far, our best results have established tractability results for the nonhomogeneous Neumann problem, without any
strong tractability results. Is this a weakness of our proofs and techniques, or does the Neumann problem fail to be
strongly tractable?

We show that the fault lies not in our proofs, but in (the formulation of) our problem. First, we show that the prob-
lem is never strongly tractable under the absolute error criterion, whether continuous linear information or standard
information is used. Then, we show that if (48) holds and if there exists a positive constantc∗∗, independent ofd, such
that

‖ Appd−1 ‖[H(Kd )]∗ ≤ c∗∗
‖ Intd−1 ‖[H(Kd−1)]∗ , (50)

then our problem is not strongly tractable under the normalized error criterion.

Theorem 8.1. Whether we are using continuous linear information or standard information, the following hold:

1. The Neumann problem is not strongly tractable for the absolute error criterion.

2. If (48)and (50)hold, then the Neumann problem is not strongly tractable under the normalized error criterion.

Proof. In what follows, we let3 denote either3all or3std, as appropriate.
First, we claim that

e(n, Sd ,3) ≥
(2d − n)‖ Intd−1 ‖[H(Kd−1)]∗

max{1, q0}
if n < 2d. (51)
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Indeed, letN be information of cardinalityn < 2d, so that our sole knowledge about the problem instance [f, g, q] ∈

Hd × H̃d−1 × (Qd ∩ Hd,ρ) when approximatingSd(f, g, q) is given byN(f, g, q). There must be at least 2d − n

facesI dj1,θ1, . . . , I
d
j2d−n,θ2d−n

of I d at whichN does not sample boundary data. Letz ∈ Hd−1. Defineg : ∂I d → R as

g(x) =

{
(−1)θz(x̂[ji ]) if x ∈ I dji ,θi

for somei ∈ {1, . . . ,2d − n},

0 otherwise.

Theng ∈ Hd andN([0, g,1]) = 0. Letu = Sd(0, g; q0). Then

max{1, q0}‖u‖H1(I d ) ≥ Bd(u,1; q0) = 〈g,1〉L2(∂I
d ) = (2d − n)

∫
I d−1

z(y) dy. (52)

Let e(N, Sd ,3) be the minimal error among all algorithms using the informationN . From [15, §4.5] and (52), we see
that

e(N, Sd ,3) ≥ ‖u‖H1(I d ) ≥
(2d − n)

max{1, q0}

∫
I d−1

z(y) dy.

Since this is true for anyz ∈ Hd−1, we find that

e(N, Sd ,3) ≥ (2d − n)
‖ Intd−1 ‖[H(Kd−1)]∗

max{1, q0}
.

Finally, sinceN is arbitrary information of cardinality at mostn < 2d, inequality (51) holds, as claimed.
We now consider the absolute error criterion. Recall the definition ofγmin,∅ from (33). Ford ∈ Z++, let

ε0 = min

{
γmin,∅

max{1, q0}
, 1

2

}
,

noting thatε0 ∈ (0,1). By Lemma 6.1 and the definition ofσd , we have

‖ Intd−1 ‖[H(Kd−1)]∗ = σd−1(κ2) ≥ γmin,∅.

Lettingn = 2d − 1 in (51), we see that

e(2d − 1, Sd ,3) ≥
γmin,∅

max{1, q0}
≥ ε0.

and so
cardabs(ε0, Sd ,3) ≥ 2d.

As a result, it follows that cardabs(ε, Sd ,3) cannot be bounded from above by a function ofε for all ε ∈ (0,1) and all
d ∈ Z++.

Finally, we consider the normalized error criterion under the condition that (48) and (50) hold. Without loss of
generality, we assume that

c∗∗(c∗ +
√

5) > 2.

Let

ε1 =
min{1, q0}

max{1, q0}

1

c∗∗(c∗ +
√

5)
,

noting thatε1 ∈ (0,1). From Theorem 3.3 and (51) withn = 2d − d
√

2de, we find that

e(2d − d
√

2de, Sd ,3)

e(0, Sd)
≥

min{1, q0}

max{1, q0}

√
2d ‖ Intd−1 ‖[H(Kd−1)]∗

‖ Appd,2 ‖Lin[H(Kd ),L2(I
d )] +

√
2d + 1‖ Appd−1,2 ‖Lin[H(Kd−1),L2(I

d−1)]

≥
min{1, q0}

max{1, q0}

√
2d

c∗∗(c∗ +
√

2d + 1)
≥ ε1.
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Hence
cardnor(ε1, Sd ,3) ≥ 2d − d

√
de.

As a result, it follows that cardnor(ε, Sd ,3) cannot be bounded from above by a function ofε for all ε ∈ (0,1) and all
d ∈ Z++.

Remark8.1. We have already discussed the condition (48) in Remark 7.1. What can we say about (50)? This condition
says that integration is not much easier than approximation. From Lemma 6.1, we know that (50) holds if

σd−1(κ1) ≤ c∗∗σd−1(κ2). (53)

So when does (53) hold?

1. Suppose we are using product weights. Then

σd−1(κ1)

σd−1(κ2)
=

[d−1∏
j=1

1 + κ1γd−1,j

1 + κ2γd−1,j

]1/2

≤

[d−1∏
j=1

(
1 + (κ1 − κ2)γd−1,j

)]1/2

= σd−1(κ1 − κ2).

Suppose that the bounded-sum condition (44) holds. Then

σd−1(κ1)

σd−1(κ2)
≤ ea

∗
γ (κ1−κ2)/2,

and so (50) holds withc∗∗
= ea

∗
γ (κ1−κ2)/2. However if the bounded-sum condition (44) does not hold, then (53)

does not hold.

2. Suppose we are using finite-order weights of orderω. If κ2 > 0, then [17, Theorem 2] tells us that

σd−1(κ1)

σd−1(κ2)
≤

(
κ1

κ2

)ω/2
,

and so (50) holds withc∗∗
= (κ1/κ2)

ω/2. However ifκ2 = 0, then condition (53) does not hold.

So the Neumann problem is never strongly tractable for the absolute error criterion. Moreover, our problem is not
strongly tractable for the normalized error criterion, provided that the conditions (48) and (50) hold. We conjecture
that our problem is never strongly tractable for the normalized error criterion.

9 Some illustrations

Up to this point, we have given results that hold for any reproducing kernelK satisfying our conditions (26)–(28). In
this section, we give tractability exponents for two specific kernels: the Korobov kernelKKor,r and the min kernelKmin.
Our results are based on those found in [9]. We will only discuss product weights, since these were the only weights
that [9] analyzed.

From our general results in §7, we know that weak tractability depends on whether or not the sum of the weights
is sublinearly bounded. Since this is a cut-and-dried “yes-or-no” condition, there is nothing further to add when
discussing specific reproducing kernels. From the results in §8, we know that our problem is not strongly tractable.
So it only remains to determine theε- andd-exponents of tractability.

As in [9], we define the sum exponents

sγ := inf

{
s > 0 : sup

d∈Z++

d∑
j=1

γ sd,j < ∞

}
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and

tγ := inf

{
t > 0 : sup

d∈Z++

d∑
j=1

γ td,j

ln(d + 1)
< ∞

}
,

with the convention that inf∅ = 0. We also define

Rτ := lim sup
d→∞

∑d
j=1 γ

τ
d,j

ln(d + 1)
∀ τ ∈ (0,1].

Note that if the sum of the weights is logarithmically bounded, thentγ ≤ 1 andRτ < ∞ for τ ∈ [0, tγ ]. Moreover if
the sum of the weights is bounded, thensγ ≤ 1. We shall letζ denote the usual Riemann zeta function.

We first consider the Korobov kernel.

Theorem 9.1. Suppose thatK = KKor,r for somer ∈ Z++.

1. Suppose that the sum of the weights is logarithmically bounded, withaγ as in(40). For tγ = 1, takeτ = 1, and
for tγ < 1, let τ be any element of(max{1/(2r), tγ}]. For continuous linear information, we may take

perr(3
all) = 2τ,

pabs
dim(3

all) = 1 +
(
2 + (κ0 + κ1)aγ

)
τ + 2ζ(2rτ )+ δ ∀ δ > 0,

pnor
dim(3

all) = 1 +
(
1 + (κ0 + κ1)aγ

)
τ + 2ζ(2rτ )+ δ ∀ δ > 0,

and for standard information, we may take

perr(3
std) = 2τ(1 + τ),

pabs
dim(3

std) = 1 +
[(

2 + (κ0 + κ1)aγ
)
τ + 2ζ(2rτ )

]
(1 + τ)+ δ ∀ δ > 0,

pnor
dim(3

std) = 1 +
[(

1 + (κ0 + κ1)aγ
)
τ + 2ζ(2rτ )

]
(1 + τ)+ δ ∀ δ > 0.

2. Suppose that the sum of the weights is uniformly bounded. Forsγ = 1, takeτ = 1, and forsγ < 1, let τ be any
element of(max{1/(2r), sγ}]. For continuous linear information, we may take

perr(3
all) = 2τ,

pabs
dim(3

all) = 1 + 2τ,

pnor
dim(3

all) = 1 + τ,

and for standard information, we may take

perr(3
std) = 2τ(1 + τ),

pabs
dim(3

std) = 1 + 2τ(1 + τ)+ δ ∀ δ > 0,

pnor
dim(3

std) = 1 + τ(1 + τ)+ δ ∀ δ > 0.

Proof. We first suppose that the sum of the weights is logarithmically bounded. Since (42) holds, we see that we may
take

sk,abs= sk,nor +
1
2κ1aγ + δ ∀ δ > 0, k ∈ {all, std}.

From [9, Theorem 5], we have

rall =
1

2τ
and rstd =

1

2τ(1 + τ)
+ δ ∀ δ > 0

and that

sall,nor = sstd,nor =
ζ(2rτ )Rτ

τ
+ δ ∀ δ > 0. (54)
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The result now follows from Theorem 7.2.
Now suppose that the sum of the weights is uniformly bounded. Since (45) holds, we may again use [9, Theorem 5]

to see that
sk,abs= sk,nor = 0 for k ∈ {all, std}

and that

rall =
1

2τ
and rstd =

1

2τ(1 + τ)
+ δ ∀ δ > 0.

The result once again follows from Theorem 7.2.

It is natural to compare the results of Theorem 9.1 with the results of §7. In particular, what happens if we let
τ = 1 in Theorem 9.1?

1. When the sum of the weights is logarithmically bounded, we find

perr(3
all) = 2,

pabs
dim(3

all) = 3 + (κ0 + κ1)aγ + 2R1ζ(2r)+ δ ∀ δ > 0,

pnor
dim(3

all) = 2 + (κ0 + κ1)aγ + 2R1ζ(2r)+ δ ∀ δ > 0,

and
perr(3

std) = 4,

pabs
dim(3

std) = 5 + 2(κ0 + κ1)aγ + 4R1ζ(2r)+ δ ∀ δ > 0,

pnor
dim(3

std) = 3 + 2(κ0 + κ1)aγ + 4R1ζ(2r)+ δ ∀ δ > 0,

which is somewhat worse than the results reported in Corollary 7.1, since these latter results contain a term
involvingR1ζ(2r).

2. When the sum of the weights is uniformly bounded, we find

perr(3
all) = 2,

pabs
dim(3

all) = 3,

pnor
dim(3

all) = 2,

and
perr(3

std) = 4,

pabs
dim(3

std) = 5 + δ ∀ δ > 0,

pnor
dim(3

std) = 3 + δ ∀ δ > 0,

which is comparable to the results contained in Corollary 7.2.

Next, we consider the min kernel. Let

bτ =
ζ(2τ)

π2τ
+

1

2τ
∀ τ > 0.

Theorem 9.2. Suppose thatK = Kmin.

1. Suppose that the sum of the weights is logarithmically bounded, withaγ as in(40). For tγ = 1, takeτ = 1, and
for tγ < 1, let τ be any element of(max{1

2, tγ}]. Then for continuous linear information, we may take

perr(3
all) = 2τ,

pabs
dim(3

all) = 1 +
(
2 + (κ0 + κ1)aγ

)
τ + 2bτRτ + δ ∀ δ > 0,

pnor
dim(3

all) = 1 +
(
1 + (κ0 + κ1)aγ

)
τ + 2bτRτ + δ ∀ δ > 0,
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and for standard information, we may take

perr(3
std) = 2τ(1 + τ),

pabs
dim(3

std) = 1 +
[(

2 + (κ0 + κ1)aγ
)
τ + 2bτRτ

]
(1 + τ)+ δ ∀ δ > 0,

pnor
dim(3

std) = 1 +
[(

1 + (κ0 + κ1)aγ
)
τ + 2bτRτ

]
(1 + τ)+ δ ∀ δ > 0.

2. Suppose that the sum of the weights is uniformly bounded. Forsγ = 1, takeτ = 1, and forsγ < 1, let τ be any
element of(max{1/(2r), sγ}]. Then for continuous linear information, we may take

perr(3
all) = 2τ,

pabs
dim(3

all) = 1 + 2τ,

pnor
dim(3

all) = 1 + τ,

and for standard information, we may take

perr(3
std) = 2τ(1 + τ),

pabs
dim(3

std) = 1 + 2τ(1 + τ)+ δ ∀ δ > 0,

pnor
dim(3

std) = 1 + τ(1 + τ)+ δ ∀ δ > 0.

Proof. The proof is almost the same as that of Theorem 9.1, except that we now use [9, Theorem 7], rather than [9,
Theorem 5]. The only difference between these two results of [9] is that whereas we had (54) for the Korobov kernel,
we have

sall,nor = sstd,nor =
bτRτ

τ
+ δ ∀ δ > 0

for the min kernel.

Once again, it is natural to compare the results of Theorem 9.2 with the results of §7. In particular, what happens
if we let τ = 1 in Theorem 9.2?

1. When the sum of the weights is logarithmically bounded, we find

perr(3
all) = 2,

pabs
dim(3

all) = 3 + (κ0 + κ1)aγ + 2b1R1 + δ ∀ δ > 0,

pnor
dim(3

all) = 2 + (κ0 + κ1)aγ + 2b1R1 + δ ∀ δ > 0,

and
perr(3

std) = 4,

pabs
dim(3

std) = 5 + 2(κ0 + κ1)aγ + 4b1R1 + δ ∀ δ > 0,

pnor
dim(3

std) = 4 + 2(κ0 + κ1)aγ + 4b1R1 + δ ∀ δ > 0,

which is somewhat worse than the results reported in Corollary 7.1, since these latter results contain a term
involving b1R1.

2. When the sum of the weights is uniformly bounded, we find

perr(3
all) = 2,

pabs
dim(3

all) = 3,

pnor
dim(3

all) = 2,
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and
perr(3

std) = 4,

pabs
dim(3

std) = 5 + δ ∀ δ > 0,

pnor
dim(3

std) = 3 + δ ∀ δ > 0,

which is comparable to the results contained in Corollary 7.2.
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