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Abstract— We introduce Group Round-Robin (GRR) max-min fairness, deviations in service from GPS are con-
scheduling, a hybrid scheduling framework based on a sidered service error. Furthermore, WFQ requires at least
novel grouping stratggy that narrows dow'n the traditiongl O(log N) time complexity. Other variants of WFQ such
tradeoff betyveen. falrness'and computat!onal comple?<|ty. as Virtual-clock [14], SFQ [8], SCFQ [6], SPFQ [12],
GRR combines its grouping strategy with a specialized and Time-shift FQ [4] have also been proposed. How-

round-robin scheduling algorithm that utilizes the proper- ) . .
ties of GRR groups to schedule flows within groups in a ever, these algorithms share the same fairness and time

manner that provides O(1) bounds on faimess with only complexity bounds as WFQ, allowing service errors of
O(1) time complexity. Under the practical assumption that O(V) in the worst case and requiririg(log V') time com-
GRR employs a small constant number of groups, we apply plexity. Worst-Case Weighted Fair Queueing @/@} [1]

GRR to popular fair queueing scheduling algorithms and  gnd its variants introduce eligible virtual times to prawid
show how GRR can be used to achieve constant bounds ongyronger fairness guarantees than previous fair queueing
fairness and time complexity for these algorithms. approaches, limiting deviations in service errorQel).

Index Terms— Stochastic Processes/Queueing Theory,However, these algorithms still require at leéXiog V)
Quality of Service, Scheduling, Fair Queueing time complexity.

BecauseO(log N) time complexity scheduling is not
good enough for high-speed links [3], there is great
interest in developing lower complexity packet sched-

Packet scheduling is a important mechanism for meeters that still provide good fairness guarantees. Round-
ing the quality-of-service requirements of competingpbin packet schedulers such as Deficit Round-Robin
flows in packet-switched data networks. An importaPRR) [11] have been developed that only requirél)
class of packet schedulers are those that treat flows itirae complexity by servicing each flow for a continu-
proportionally fair manner. Given a set of flows with aseus amount of time proportional to its weight. However,
sociated weights, these schedulers try to allocate netwditiese round-robin schedulers deviate much more from
link capacity to each flow in proportion to its respectiv&PS service than virtual time fair queueing approaches,
weight. The goal of these schedulers is to provide théth worst case service errors 6f(¢mqz), Whereg,qz
highest degree of fairness in allocating link capacity witls the maximum flow weight. More recently, schedulers
the lowest time complexity of scheduler execution. such as Smooth Round-Robin (SRR) [3] have been devel-

Many packet scheduling algorithms have been proped that in practice provide better fairness than previous
posed with different trade-offs in fairness and time conound-robin approaches while retainiqy(1) time com-
plexity. The fairest one is Generalized Processor Shatexity. However, we show that the worst case service
ing (GPS) [9], which is an idealized fluid model that serror of SRR is still worse tha@ ().
vices flows continuously and simultaneously, but cannotWe present Group Round-Robin (GRR) scheduling, a
be employed in practice since packets must be transnmitvel scheduling framework that can be used with ex-
ted as a unit. Algorithms such as Weighted Fair Queueirgging packet scheduling algorithms to improve the over-
(WFQ) [5] use a notion of virtual time to emulate GP&ll fairness and reduce the time complexity of schedul-
and approximate its behavior. However, WFQ can alloimg competing flows. GRR introduces a novel flow group
the service that a flow receives to deviate from service ustrategy that can be used to allow existing schedulers to
der GPS in the worst case B}(N), whereN is the num- consider groups of flows together instead of individually.
ber of flows being scheduled. Since GPS provides ideBy reducing the number of competing entities that exist-
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ing schedulers must consider, this can improve both fair-

TABLE |
GENERAL TERMINOLOGY

ness and reduce time complexity when such properties are
dependent on the number of entities scheduled. GRR’s
grouping strategy requires only simple queues for grou ,ng’ The SErver.
of flows, allowing it to be easily implemented in an effi S/i Flow L _
cient manner. GRR combines its grouping strategy with &i Thek™ packet to have arrived fd;.
specialized round-robin scheduling algorithm that stz | B(%) The set of backlogged flows at tinie
the properties of GRR groups to schedule flows withjn!¥ The number of backlogged flows ih.
groups in a manner that limits service error@¢l) with | (P) The arrival time of packep.
only O(1) time complexity. Under the practical assump-4(p) The departure time of packgt
tion that GRR employs a small constant number of groupski,maz The maximum size of a packet fo§.
we apply GRR to popular scheduling algorithms and showemaz The maximum size of a packet ih.
how GRR can be used to achieve constant bounds on faii(t) The queue of Sat time t. L(Q;(t))
ness and time complexity for any of these algorithms. denotes the number of bits @y ().

This paper presents the design and analysis of GRR The weight assigned t§;.
Section Il provides some background and discusses mor(t) The sum of the weights of all flows
precisely the notion of fairness. Section Ill describes the backlogged at timé: 3 g cp 45 -
GRR scheduling algorithm. Section 1V analyzes the fair-4;(¢1,¢2) | The total traffic that arrived for flovs;.
ness and time complexity of GRR. Section V describesR The output link bandwidth of the server
how GRR can be applied to several existing schedulingr; The guaranteed rate for flog.
algorithms to improve their fairness and time comple ‘W (t1,t2) | The total traffic served by the server.
ity bounds. The algorithms described include WFQ [ aw(ty, o) The total normalized work:
SCFQ [6], SFQ [8], Hierarchical stride [13], WO [1], I, W(Tk—1,Tk) , where B + 0)
and SRR [3]. We also present and prove new results jon T LusieB(r_140) ¥t
the fairness bounds for several of these algorithms. Sgc- stays fixed during each interval( 1)
tion VI discusses the delay bounds for GRR. Section VI andry = t1, 74 = 1.
presents some performance results from simulation stud¥i(t1,t2) | The amount of traffic served froi}.
ies to compare the fairness of existing scheduling aldow:(t1,t2) | The normalized work received by
rithms with the same algorithms augmented with GRR. flow S;: W
Finally, we present some concluding remarks. F; j(t1,t2) | The relative fairness of flows; andsS;:

|w,~(t1,t2) — wj(tl,tQ)l.
Il. BACKGROUND Fi(t1,t2) | The absolute fairness:
We first define the general terminology and state the ":oEi(tl,tZ) llq'lr):ét;’t)t;c))lut;ugelr’\/ti?e'.erroﬁgﬂ(tl,t2).

sumptions we will use throughout the paper. Table | is
list of the general terminology we use. We dendtas the

server responsible for multiplexing an output link amon"gel"’?t“"_a faimess (_)f two flows since th's is widely used. as
a set of flows. Any scheduling algorithm can be viewedn indicator of falrn.ess. A theorem in [6] states that if a
as an instance ob. We only consider work-conservingPacket-based algorithm guaranteeg(f, 2;) < Ai; for
servers, which use their maximum available bandwidfl"Y interval(ty, t2) Whin S ang S are bgcklogge_d, then
during any busy period. A busy period far is defined Aij must be at Ieas}(% + ﬁ)' This resultis used
as a time interval during which there is at least one badRy proving thatA; ; is less thans(fzae + L?;%) for a
logged flow at any time. A flow is backlogged at timescheduling algorithm, then making the claim that a small
t for some servef¥ if it has bits left that are waiting to value ofx implies good fairness.
be sent, L(Q(t))>0. Since we are mainly concerned with While relative fairness can be a useful measure, it is a
busy periods, for any functiofi(¢1,t2), we will use the weak measure compared to a measure of absolute service
shorthand notatioir(¢) to meanl(¢y, ¢) for a busy period error which relates the work of a flow to the allocation
that started apt For example, W(t)aﬁfo Rdt. the flow should have received given the work done by the
To compare the performance of schedulers, we needsttheduler. This service error reduces to a measure of ser-
use a consistent measure of fairness. We describe tvice error versus GPS assuming that all flows are back-
measures of fairness for this purpose. We start with thegged. To see that absolute service error is a stronger



measure, suppose we have service eBpr< kL,.:, Robin algorithm can then be briefly described in three
then the relative fairness is bounded as follows: parts:

1) Flow grouping strategy. Flows are separated into
D) groups of flows with similar weight values. Each
group G is assigned flows with weight value be-
tween2°¢ to 2°¢+1 — 1, wheresg > 0. Thus,
a flow §; is inserted into grougy whereog =

Fi; = Iwz‘—g’jl < fwi —w| + |lw; — wl
FE; j Lmaz Loz
o+ # < :“-‘l(—m + =5 )

So anO(1) bound on error always implies &i(1) bound
on relative fairness.

To see that relative fairness is a weaker fair- logs ;. _ o _
ness measure, we also show that @fl) bound 2) Intergroup scheduling: An existing scheduling al-

on the relative fairess of an algorithm only trans- ~ 90rithm is used to select a group from which to se-

lates to anO(N) bound on the absolute service er-  €ctaflowto service. A group is selected based on
ror. The service error for a flovs; is E;(t1,t:) = the group weight. Each group behaves like a com-

bW (tta) biw;(t1,t2) ES]EB b; posite flow with res_pect to the intergroup scheduler.
\Wi(t1,t2) — ) | = S ecn® - 3) Intragroup scheduling: Once a group has been se-
6 s op diws(tist) 0 s o bilwitrta)—w; (b1 t2)] Iec_ted, aflovv_w_lthln the group is selected for service
i ®; = * ST b; = using a specialized round-robin algorithm.
S;eB S;eB
b Es.e;j’jf’i,j (t1,t2) ’e_ The grouping strategy limits the number of groups that
S If an algorithm guaranteesneed to be scheduled since the number of groups grows at
SjeB

worst logarithmically with the largest flow weight value.
If ¢ is the number of groups, then< |logy ¢maz| + 1
where ¢, is the largest possible weight in the system.

Fj(t1,t2) < ﬁ(LQ’;% + Lg‘%), then

L L
$i D5, ep Pir(Zgen+pa)

E;(t1,t2) - Even a very large 32-bit flow weight would limit the num-
Esje; & 2 ber of groups to no more than 32. As a result, the inter-
= Kl (1 + ¢alg) group scheduler never needs to schedule a large number

of groups which limits the impact of skewed weight dis-
Sributions on groups. The grouping strategy also limits the
weight distributions that the intragroup scheduler needs t
L _ _ consider since the range of weight values within a group is
?ﬁ—f)' cannot imply a service error bound of less thass than a factor of two. As a result, the intragroup sched-
O(N), consider an example dV + 1 flows, the first uler never needs to schedule flows with skewed weight
having weight N, and the rest having weights equal Wistributions since the flows within a group must have rel-
1. (2) would then result in a® (V) service error bound. atively similar weight values.
The SCFQ algorithm, for which th@(1) relative fairness  while GRR is designed to leverage existing scheduling
bound holds [6], has service error 8= for this ex- algorithms for intergroup scheduling, GRR takes advan-
ample. To put an upper bound on the error of algorithmgge of its grouping strategy by using a specialized deficit
with A; ; = O(1), we can more formally argue based oRound-robin algorithm for intragroup scheduling to pro-
(1) that vide good fairness and time complexity bounds. Com-
Ei = kLmes(l+ M) pared to DRR, the GRR intragroup scheduler has two im-

whereg,,4 is the average weight of all backlogged flow
Note that¢; can get arbitrarily large compared #,,.
To show that the bounds on relative fairnes(s,L’g% +

%(3 (3) portant differences. First, all flow weights in a group G are

< Klmee(1+ Tf) = (N +1)Lyar normalized with respect to the minimum possible weight,
bdmin = 2°¢, for any flow in the group. Second, since

[Il. GROUPROUND ROBIN ALGORITHM normalized flow weights may be non-integers, GRR can

GRR uses a novel grouping strategy to organize flowgovide fractional packet allocations that are accumdlate
into groups of similar weight values which can be moras part of a flow’s deficit.
easily scheduled. It then combines two scheduling al-The GRR intragroup algorithm considers the schedul-
gorithms: an intergroup scheduling algorithm to selectiag of flows in rounds. Around is one pass through
group from which to select a flow to service, and an intra group’s queue of flows from beginning to end. The
group scheduling algorithm to select a flow from withilgroup queue of flows does not need to be sorted in any
the selected group to service. Table Il presents a list mianner. During each round, the GRR intragroup algo-
GRR-specific terminology we use. The Group Roundthm considers the flows in round-robin order. For each



TABLE Il will schedule flowS; every timeG, is considered for
GRR TERMINOLOGY service since it has only one flow. We will show the order
of service for the first two rounds @;. Rounds 3 and 4

g__ The number of g.roups. of G1 has the same order of service as rounds 1 and 2. In
G(i) The group to which Sbelongs. beginning of round 1 it each flow starts with 0 deficit
oG The order ofG. _ and gains;—2— and ¢inG,) = 2. The maximum
Bg(t) The set of backlogged flows in group 6. , Omin(G1) ' o
- service that flowsSs, S3, S4, S5, and Sg can receive in

¢a() The group weighty_s, e o (1) - round 1 are 1.5, 1.5, 1, 1, and 1, respectively. Since
Rg The guaranteed rate for group G. packets have to be transmitted as a unit, the scheduler
We(t1,t2) | The amount of traffic served for will serve 1 packet from each flow i6'; during round

group G:3os,eq Wilt1, 2). 1. After the first round, the deficit fo$s, Ss, S, S5, and
we(ti,t2) | The normall/gzed traffic for group G: Sg are 0.5, 0.5, 0, 0, and 0. In the beginning of round 2,

Yhoy - EBG((T“TZLO) - where each flow gets anothef2— allocation, and the maximum

i G\Tkg—1

allowed service forSQ,még,S4,55, and Sg becomes 2,
2,1, 1, and 1.5, sends two packets, followed by two
packets fromS; and one packet each frofi, S and.Sg.

After round 2, the deficit of all the flows i becomes

0. The sequence of packets that the scheduler serves is
{3, p1, 03,01, i Y, D}, D1, D5, DT, D3, BT, P3, 1, 3, 1Y,

3., p3,p1° p3, p1', p5, i}, wherepf is thek'” packet

to have arrived for flows;.

Ba (7 + 0) stays fixed during each
interval (tk, tk+1) andry = tq, Tqg = 9.
Fg u(t1,t2) | The relative fairness of grougs
andH: "lug(tl, t2) — ’U)H(tl,tg)|.
Fa(t1,t9) The absolute fairness of group G:
|’wc;(t1,t2) — ’LU(tl, t2)|.

F; c(t1,t2) | The group relative fairness of flog:
|wi(t1, t2) - wg(tl, t2)‘.

E; ¢(t1,t2) | The group relative error of flow;:
iF;q(t,t2). IV. GRR FAIRNESS AND TIME COMPLEXITY

Di(®) The deficit of S at time t. We first analyze the fairness bounds of GRR and then

backlogged flowS;, the scheduler serves a maximunqliscgs_s_its time complexity_. GRR Iimit_s ser_vice error
of (&)me + Di(r — 1) bits. D;(r), the deficit of by leld'lng up the scheduling prqblem into mtragroup

flow 8; after roundr, is defined recursively aB;(r) = scheduling and intergroup scheduling. We start with the
i T L k r relative fairness of the intragroup algorithm and show that
_(¢mm)Lm‘” +Di(r —1) Zk:kf I L(pi), wherek; the algorithm provide® (1) relative fairness between any

is the number of5; packets that left the server up to an

X ) X i %VO flows. We present the following lemma.
including roundr, with D;(0) = 0. Thus, in each round,

: o ‘ - Lemma 1: The relative fairnesd’ ; of the GRR in-
S; is allotted (/%) Limas bits plus any additional left- 00615 round-robin scheduling algorithm between any

over from the previous round, and;(r) keeps track of . " fows S; and S; is bounded as follows:F,; <
the amount of service th&}; missed because the packet af Lia. + Lonaz) WIS
¢ 7

the head of the flow’s queue was too large to fit in the re- 9i

- Proof: For any interval(t1,t2) whensS; is contin-
maining allotted space. We observe tia(r) < Li maz uously backlogged, let: be the round before the round
after any round-.

when S; is first considered after timg, andr the last

Consider the following example to illustrate furthet} und before time, whens; sends. Thers; receives dur-

how GRR scheduling works. Suppose we use WF! , N b
Ing (1, t2) a total service equal to4 — %) (-2 )L

for the intergroup scheduler in the GRR frameworezag(.l’ 2) qual tos — 1) (5, ) Lmaa +

Consider a set of six flows that need to be schedul f(ri) B D"(.Té)' LetS; be another session continuogsly
one flow S, with weight 12, two flowsS, and Ss acklogged in the intervdt,, t2), and let us assume with-

each with weight 3, and the other three flods, Ss, oyt loss of generality thafi; is afterS; in the group. Then

and S, each with weight 2. Assume that all flows arél — 1 < 71 < rf andry —1 < ry < rj. Subtract-
backlogged and the size of all the packetdjs,, = 1 "9 We getr; — ;i - } <ryg—r] <rp-ri+1
for simplicity. The six flows will be put into two groups °' K’"% - ri) r (rz —r1)| < 1. We also observe that
G; and G, as follows: Bg, = {S, 53,54, 55,56} and  [Pi(r1)=D;(r2)] < Linag foranyj, sinceD;(t) < Lmas
Bg, = {S1}. The weight of the groups aeg = 12 and at any timet. It then follows that the relative fairness

o9 = 12. WFQ will consider the groups in this orderFij between flowsS; and §; is: Fy; = |wi(t1,t2) —

G1,Ga, G, Ga,G1,Ga,G1,G,G1, G, G, Gy, Gy wyltnta)] = [{(r} — r)(Lmaz) 4 (DI

¢min




{(rd — ) (fguaz) + oDy <

{(rs —r) -

¢mzn
i (D; (D i
(T%—T{)}(éﬁ?j”_l_' (7"1 )|+| ](T1¢ (7‘2))| <
LZ?;: _|_ Lmacc + Lma:c BecaUSﬁmzn < ¢Z’ ¢] < 2¢mzn1
we can S|mpI|fy thls to the looser bounds,; < %ﬁ& or
Lmaw Lma.’v
Fij < 2(7gee + 2gox), |

Note that if we only consider full rounds, then the
bounds on¥; ; would be only£zas + Ly In all cases,

the relative fairness bounds apg1).

We now consider the absolute service error of the intra-
group algorithm and show a stronger result, namely that
the algorithm provide$)(1) absolute service error. We

present the following lemma.

Lemma 2: The absolute service errdf; ¢ of the GRR

intragroup round-robin scheduling algorithm for flcsy
is bounded as followsE; ¢ < 5Lz -

Proof: Consider the group relative fairnesyq of
aflows; € G: E’G(To,T) = |wi(T0,T) — ’wg(T(),T)|.
To simplify the analysis, we will first considéf; ; in be-

tween rounds. Let, be the time round finishes, and

let ¢t = To andt, = T. Then during roundk, W;
increases b)(—J—)LmaI + Dj(tx—1) — D;(tx) for any

simple, we can assume for the purpose of keeping
track of fairness that the departing flow has received

Paep(Lmaz — De(tx£9)) \which is less thar?M

¢min ¢G(tk+0) (t 0) |B (t 0)|L

it + + maxr
and positive (SINCETSE0) < BG4 +0) gmin —
%ﬁff). Then the normalized work done for round

baep D (te+0)
D (te—1+0)—(De (s —0)+ =157 —57—)

kis Lmae 4

. ¢mzn ¢G(tk—1+0)
Since we make no changes i, after roundk,
D¢(tx+0) = Dg(tp—0) and we have a normalized

t+0) D (ty+0
Dg(ty—1+0) ¢l ¢G()¢kf(§) )

service of%m%m +
main

#G (ty—1+0) -
Loz DG(tk—1+0) o DG(tk-f—O)
Pmin G (tk—110) o (te+0)

Of course, we can have any number of sessions arrive
and depart during the same round, in which case the re-
sults in situations 2 and/or 3 still apply by superposition.

Thus, in all three cases, the normalized work during a

flow S; in G that Is backlogged during that round. We cafl < D; < L4, t0 getF; (1o, T) < |M| +

. ZS W](tk lytk)
then writewg (tp_1, ty) = —leocth=1+9 =
S EBG(tk 1+0) ¢]
)Lmaa:+D (tk 1) D (tk)} L
— Lmax

¢mzn

) (oL
S EBG(tk 1+0) Pmin

¢ (tk—1+0)
Dot ¢(1:(“t°) =~ G)(t’“ 9 where we denote byg(t) the
sum of thé deficits of the backlogged flowsGhat time
t. We make the distinction betweebg(t, — 0) and

D¢ (tr + 0) since after a round, we may adjuBl;(¢)

round can be written akmaz |- Zg((f: 1118)) ?g((flfig)) , SO
Fi(To,T) = | Sy (L[ E20380 4 Dyt 1) Dy(1)])
ST [Lmaz_|_DG(tk 1+0) DG(tk+0)]| _ |D¢(t0)—Di(tr)_
Dk(:1 ¢)mm D¢?(tk—1)+0) ¢a(tp+0) i

a(to+0 a(tr+0

Gt T Galito) |. We now make use of the fact
that0 < Dg(t) < |Ba(t)|Lmas < ($22)Lpmas and
DG(TO DG(T) Lmaac Lmaz Lmaa: 2Lmaz
|¢G(T0) ¢G’(T | - ¢ + ¢m1n S + ¢1 -

%@rm SiNCe ¢min > 4. The group relative erroF; ¢

in between rounds is then bounded By (7,,T) <

3Lmar- Since during a round, a flow’s normalized work

w; can get ahead or behind by at most an additional

ﬁ in generalF; (Ty, T) < %M andE; (T, T) <

5Lpqz for any time interval 7Ty, 7'). |
Given theO(1) relative fairness and absolute service er-

by assigning some initial deficit to a new flow that arrivegor hounds for the GRR intragroup scheduling algorithm,
durlng that round. We can have three situations after eaﬁ@ can now analyze the overall GRR algorithm. We first

round:

show the following theorem that states the GRR algorithm

1) The backlog seBB; remains unchanged (no sesrelative fairness is bounded by the relative fairness of the

sion arrived or became idle). Thdd;(t, — 0) =
Dq(tr, +0) andgg (tx—1 + 0) = dc (¢ + 0).

2) A new sessionS,., arrived: ¢g(ty + 0) =
¢G(tk71 + O) + Pnew-

intergroup scheduler plus a constant factor.
Theorem 1: The relative fairnessF; ; of the GRR
scheduling algorithm between any two flows and S

We place the new ses-is bounded by a constant plus the relative fairness be-

sion at the beginning of the queue (so that it dodween the respective groups containing the flows as fol-
not run during the current round) and after théows: F; ; < 5L$” + 5Lm‘” + Fai),6()-

round, we assign it a deficit d?r(;euktDGitkO Then,

Dot +0) = Dot -0+ ih —
Da(t=0)6a(te+0) Thys. Lelte=0)  _ Da(tt0)
¢c(t-140) '¢c(tk—110) T ¢ (tx+0)

3) A sessionS,, departed (became idle}pa(tr + wg)(t1,t2)

O) = QbG(tk—l + O) - deep-

work that the departing flow executes during thgog ;)

In this case, the |w;(t1,t2) —w

Praoof: For any two flows S; and S; in
groups G(i) and G(j) and continuously backlogged
in the interval (t1,t2), we have: F,;(ti,t2) =
lwi(t1,ta) — wj(t1,t2)| = |wi(t1,t2) — wa)(t,t2) +
—wg(j)(tl,t2)+wg(j) (tl,tg)—wj(tl,t2)| <
a(i) (t1, to) |+ |we) (B, to) —wj(te, t2) |+
(t1,t2) — wag)(t,t2)| < Figu + Fiey) +

round is less than its quota. To keep the analyslg; ;) q(;)- Since the intragroup relative fairness between



two flows is bounded by Lemma 1, it follows that the reland reduce their time complexity. Applying GRR is sim-
ative fairness of the overall GRR algorithm between amle, provided that the intergroup algorithms handle dy-
two flows is bounded by ;(t1,t2) < 5Lg“ + E’Lq;"” + namically changing weights properly. This is true for all
Faa),a()- Of course, if both flows are part of the saméhe six popular schedulers we consider in this context:
group, thenF; ; < 2Lmaz 4 2Lmas This is a special case, WFQ, SCFQ, SFQ, hierarchical stride (HS), ¥ and
but one that would ocecur frequently in practice, wheréRR. We discuss the relative fairness and absolute ser-
many flows tend to have the same or similar weightll Viceé error bounds for each of these algorithms, present-
In a similar manner, we can show the following theghd for the first time consistent bounds using the same
rem which states the stronger result that the overall GRRMess and service error measures for all of these algo-

algorithm service error is bounded by the service error Bf'Ms. The more extensive proofs for these results are
the intergroup scheduler plus a constant factor. included in the Appendix. We combine these algorithms

Theorem 2: The absolute service errdi; of the GRR with GRR to construct six new scheduling algorithms:
scheduling algorithm of flows; is bounded by a constant®VFQ. GSCFQ, GSFQ, GHS, GW@, and GSRR.

plus the absolute service error of the intergroup schedul-
ing algorithm as followsE; < 5Lnq: + Eg-. A. GWFQ

Proof: Let flow S; be backlogged in group WFQ [5], [10] is a virtual time fair queueing algorithm.

G during the interval(Ty,T). Then F;(To,T) = WFQ emulates GPS by serving packets in the order in
lwi(To,T) — w(To,T)| = |wi(To,T) — we(To,T) + which they would finish service under GPS. WFQ intro-
we(To, T) — w(To, T)| < |wi(To,T) — wa(To,T)| +  duced virtual finishing times (VFT) for this purpose and
lwa(To, T) — w(To,T)| = Fia(To,T) + Fa(To,T). services the flow with the packet with the earliest VFT.
The overall error will be at mostE;(To,T) =  For WFQ, the relative fairness between any two flows
¢:Fi(To, T) <  Eia(To,T) + ¢:Fa(To,T) = g, andS; is bounded bytsae - Lmas gs shown by the
Eic(Ty,T) + (;%)EG(TO,T) < Eie(To,T) + proof for Lemma 3 in the Appendix. (3) then implies
Eq(Ty,T). We have shown thak; ¢ < 5Ly for the that the absolute service error of WFQ is bounded by
intragroup round robin scheduler. Thus, the overall €PN + 1)L,nqz, Where N is the number of flows being
will be on the order of the overall error of the intergrougcheduled. We can see that the service error bound is
scheduler used®;(To,T') < 5Lmas + Ec(To,T). M notless tha)(IN) by considering the example of + 1

We now analyze GRR time complexity. Using GRRflows, the first with weightV and the rest weight 1. If
scheduling the next packet to transmit entails choosiag packets are of sizé,,q,, WFQ will service N pack-
the group and picking the appropriate flow from withirts from the first flow before servicing any other flows,
the group that gets to send a packet. The time for thesulting in service error ofigaz . Because WFQ must
GRR intragroup scheduler to select a flow for servicgrder the flows based on their VFTs, the time complexity
from a group isO(1). This follows from the fact that of scheduling i) (log N).
the round robin always considers backlogged flows in thewe can combine WFQ with GRR to derive a new
same order, and serves each with at least one packet sigsifeduling algorithm GWFQ that has both a lower service
L(p¥) < Lyas and f’ > 1. Non-backlogged flows error bound and lower time complexity. GWFQ is simply
are logically removed from the queues so that the scheHe GRR scheduler using WFQ as the intergroup schedul-
uler does not waste any time looping through flows witing algorithm. GWFQ only uses WFQ for scheduling
no packets to send. Since selecting a flo@{g) for the among groups, reducing the number of entities that are
intragroup round-robin algorithm, the overall complexityonsidered by the WFQ algorithm. This reduces service
will be the same as that of the intergroup scheduler.  error and time complexity since the service error bound
and time complexity of WFQ grow with the number of
entities being scheduled.

For GWFQ, the relative fairness between any two flows
Si andS; is bounded by§(£zaz + Luaz), as computed

We describe how GRR can be used with a number based on Theorem 1. This is an upper bound but may
existing scheduling algorithms by incorporating those atot be a tight bound. Theorem 2 shows that the absolute
gorithms as the GRR intergroup scheduling algorithrservice error is a constant factor plus the absolute service
We show how using GRR in conjunction with these algeerror of the intergroup scheduler. Since the WFQ inter-
rithms can improve their fairness and service error boungup scheduler has absolute service efgo# 1) Ly,qz,

V. USING GRRWITH OTHER SCHEDULING
ALGORITHMS



whereg is the number of groups, the absolute service errimg [13]. We discuss an adaptation of that algorithm for
of GWFQ is(g + 1) Lynaz + 5Lmaz, Which isO(g). Sim- packet scheduling that we refer to as HS. HS arranges
ilarly, the time complexity of GWFQ i®)(log g). If we flows in a balanced binary tree, where the flows are the
assume that the number of groups is bounded by a céeaves, and any internal node behaves with respect to its
stant, this reduces to @(1) bound on absolute serviceparent like a flow with a weight equal to the sum of the

error and time complexity. weights of its children. When an internal node is selected,
then it in turn selects one of its children, until a leaf node
B. GSCFQ is reached and serviced. Normalized work counters for

SCFQ is another virtual time scheduling algorithm. Fdhe flow and all of its ancestors are incremented with the
SCFQ, the relative fairness between any two fl&yand amount of bits transmitted by the flow. A parent node
S; has been shown to be bounded h@& + Lmaw [6]. selects from its childrep andq the node whose normal-
[6] did not show a service error bound, but as in the cai@d work is less than the normalized work of the parent.
of WFQ, (3) implies the absolute service error bound &f wp, = w, = w, then some tie-breaking policy can be
SCFQ iS(N + 1) Lynaz, WhereN is the number of flows used, for example, select the node with the higher weight,
being scheduled. The time complexity of SCFQ schedfit select the left node, etc. The benefit of this hierarchi-
ing is O(log N). The basic fairness and time complexitgal approach can be most easily illustrated by the case of
properties of SCFQ are similar to WFQ. N + 1 flows, the first with weightV and the rest weight

Like GWFQ, we can use SCFQ as the intergroup If all packets are of siz&,,.., a non-hierarchical stride
scheduling algorithm with GRR to derive a new scheduscheduler would servic packets from the first flow be-
ing algorithm GSCFQ that has both a lower service diere servicing any other flows, resulting () service
ror bound and lower time complexity. Since SCFQ areiror. However, HS aggregates multiple flows so that it
WFQ have the same relative fairness and service ergitds up interleaving the execution of the weightflow
bounds, GSCFQ has the same relative fairness and #éth the other flows of weight 1, resulting in a smaller
vice error bounds as GWFQ, namely relative fairne$d(log V) service error.
bounded by6(Lmam + Lm]aw) and absolute service error For HS, the relative fairness between any two fladys

of (¢ + 1) Linag + 5Lmae. Similarly, the time complexity andsS; is bounded b lfri(nNqu&m;” whereN is the number

of GSCFQ isO(log g). of flows being scheduled, according to Lemma 5. The ab-
solute service error of HS is bounded Ayg(N)|Lmaz
C. GSQ as stated in Lemma 4. Both lemmas are prove in the Ap-

SFQ is another virtual time scheduling algorithm. Fdpendix. Since HS must do a traversal of the balanced bi-
SFQ, the relative fairness between any two fldiysand nary tree from the root to a leaf, the time complexity of
S; has been shown to be bounded Jgg@ + Lzaw [8]. HS scheduling i€)(log N).

[8] did not show a service error bound, but as in the caseThe hierarchical grouping strategy of HS provides

of WFQ and SCFQ, (3) implies the absolute service err§pme of the same benefits of the GRR framework, though
bound of SCFQ i§N + 1) L,,qz, WhereN is the number it requires more complex data structures. However, we
of flows being scheduled. The time complexity of SF@an combine HS with GRR to derive a new scheduling al-
scheduling i< (log N). gorithm GHS that provides even lower service error and

Like GWFQ and GSCFQ, we can use SFQ as the iime complexity. GHS is simply the GRR scheduler us-
tergroup scheduling algorithm with GRR to derive a neidg HS as the intergroup scheduling algorithm. GHS only
scheduler GSFQ that has both a lower service error boukes HS for scheduling among groups, reducing the num-
and lower time complexity. Since SFQ and WFQ haver of entities that are considered by the HS algorithm.
the same relative fairness and service error bounds, GSH®s reduces service error and time complexity since the
has the same relative fairness and service error boundsewyice error bound and time complexity of HS grow with
GWFQ, namely relative fairess bounded @fme= +  the number of entities being scheduled.

Lgaw) and absolute service error @f+1) Lyaz +5Linaz For GHS, the relative fairness between any two flows
) . ] .. 5Lmaz S5Lmaz
Similarly, the time complexity of GSFQ ©(log g). Si and §j is Fij < Fga)a() + 25 + 25 <
([log g1) Lmaz 10Lmar _ « Lmaaz([log g]+10) . where
min(baa)bagy) | min(¢ié) ~  min(éi;) g
D. GHS is the number of groups of flows being scheduled. The

A different group approach than that of GRR was prebsolute service error of GHSIs; < E; g(;) + Egiy <
viously proposed in the context of stride CPU schedWdL, ;.5 + ([10g ¢1)Lmaz = ([log g] + 5)Limag- The time



complexity of GHS is0(1) + O(log g) = O(log g). constant, this reduces ta¥1) bound on absolute service
Note that the motivation of hierarchy in HS to reducerror and time complexity.

GPS service error bounds is different from the conven-

tional notion of hierarchical packet scheduling algorithme GsRR

which seek to provide H-GPS fairness [2]. The idea of

: : SRR is a scheduling algorithm that services flows in a
grouping flows together is also at the heart of these %I'ed order similar to round-robin scheduling. SRR intro-
gorithms, but their goal is to emulate H-GPS instead af/( g

GPS. The aim is to provide isolation in link sharing an uces a Weight Matrix and uses the concept &tarder

. . . . eight Spread Sequence (WSS), whierethe number of
to implement different policy-based service classes. Thus . .

. . . . its needed to store the weight of the flows. The Weight
fairness is provided among the children groups of a no

. . atrix consists of binary vectors coded from the weights
but not across the entire system, and unused service fro y g

o e Of'the flows. SRR then scans the elements of the Weight
agroup is distributed solely inside the parent group. HOVK/I_atrix in a fixed order specified by WSS and selects the
ever, the idea of using an instance of the same type of virs

. ow to execute whose weight corresponds to the matrix
tual time server at each node can also be adapted to si 9 P

. . Clement selected.
ulate GPS, by letting the weights of the group nodes vary e . SRR, the relative faimess between any two fisis

when flows enter or leave the groups. Still, such an ap- Hﬁ N Lomas
proach gives error and computational complexity bounggdsﬁ' has been shown to be bounded £y (¢i,05) [3]-

that are a factor ok larger than those for the individual The absolute service error of SRR < w =

server, wherg is the height of the tree, and are not wellO(Nk), as stated in Lemma 6, which we prove in the Ap-

suited for our purpose. pendix . The time complexity of SRR scheduling1é1).
We can combine SRR with GRR to derive a new
E. GWF2Q scheduling algorithm GSRR that can preserve @He)

time complexity of SRR while providing a lower service

. , ) bound. GSRR is simply the GRR schedul [
WFQ, except it considers for service only the packets t ap o Doun 'S SIMply the scheduier using

. ) R as the intergroup scheduling algorithm. However,
would have already started service under the equivalen droup g ay

e , Since the weight of a group increases with the number of
GPS. This difference though enables ¥Fto provide the flows, we cannot have a bound feras assumed in SRR,

Iowgst service error of aII_ fair queueing algorithms. For0 we cannot use a pre-computed WSS. We can have SRR
WF=Q, the absolute service error has been shown to

bounded byLug, [1], which is O(1). As a resul, (1) Sfulate in real time the WSS, allowing theoretically for

o . . . any size weights, at the expense of computational com-
implies for WPQ that its relative fairness between an y g P P

. L Lmas 1 Loea ¥)Iexity. In the Appendix, we present a method of dynam-
two flows $; and.5; is bounded by o 74 ). The ically generating the WSS that preserves @) time

time complexity of WFQ scheduling i€ (log N). complexity of SRR and improves the space complexity
We can combine WAQ with GRR to derive a new from 0(2%) to O(k), while also making the algorithm

scheduling algorithm GWAR that preserves th@(1) ser- ore scalable for our purpose.

vice error bound while providing lower time complexity. For GSRR, the relative fairness between any two flows

GW_FQQ is simply the GRR scheduler using WE as S, ands; is bounded by ——(++22) Lo wherek =

the intergroup scheduling algorithm. GWA® only uses ! “mins,e 6()06() (9r) :

WF2Q for scheduling among groups, reducing the nu 082(¢G,maz) BNA¢G,maz IS the largest group weight. In

ber of entities that are considered by the ¥@Falgorithm. worst_ casek is O(log J;Q' The absolute service error of

This reduces time complexity since the time complexity ﬁ_‘RR 'SEi.S 5Lmaz + 5 Lmaz = O(glog N). Applying

WF2Q grows with the number of entities being schedule 1€ grouping strategy to SRR thus reduces the error from
For GWPRQ, the relative fairness between any & (EN) 10 Olglog N) whereg = k = log ¢maa, While

flows S; and S, is bounded byﬂ)(L:Z% i LZ?%)’ as com- maintaining theD (1) time complexity.

puted based on Theorem 1. Theorem 2 shows that the

absolute service error is a constant factor plus the ab- VI. DELAY BOUNDS FORGRR

solute service error of the intergroup scheduler. SinceEven though the main goal of GRR is to improve fair-

the WPQ intergroup scheduler has absolute service eress and time complexity, we can also show reasonable

ror Lymaz, the absolute service error of GRE is6L,,.,, delay bounds that make GRR well-suited for guarantee-

which isO(1). Similarly, the time complexity of GWAQ ing QoS in high-speed networks. Since we cannot predict

is O(log g). If we assume that the number of groups isetwork usage in the future, we give our delay bounds

WF?Q is a virtual time algorithm that is identical to




without making any assumption about the incoming trafhe round robin, and algorithms such as SRR have a sim-

fic envelope, or other flow control characteristics. ilar delay dependency. We can actually improve the de-
We will show that GRR belongs to ti&R (guaranteed lay bounds of SRR fron@(N)Rii to O(g log N)R%_ since

rate) class of algorithms [7] by showing that for any pack@“SER is O(glog N). O(g) factor is the effect of the hi-

p¥ that arrives for flows;, d(pf) — GRC(pF) < BZEE,  erarchy: the WFI, and therefore the delay bounds in GRR,

whereg&ER is constantGRC, the guaranteed rate clocktakes into account how far ahead of its fair share a group

is defined in [7] and is similar to the concept of exhas gotten, whereas; only depends on how far behind a

pected arrival time used in [8[7RC(p¥) = max(a(p¥), flow is in terms of its ideal service. Intuitively, while in a

GRO(FY)) + i}%’?_) andGRC(p)) = 0. We observe standalone server, packets arriving at an empty queue are

& Ai(a(p)),a@k)) . L delayed because packets from the same session received
that GRC (pf) > R; » With equality if all flows more service in a previous time period, with the group-

are continuously backlz)gged under GPS. Also, we note - .
trategy, a fl th b d
that GRC(pk) > dOPS (pF) [7]. INg strategy, a flow within a group may observe increase

We al h ¢ 2 WEI as defined in [2 _delay because of extra service that was received by other
e also use the concept of a /Il as define mk[ ]'fPows in that group. WEQ is the only algorithm whose
server guarantees fé; a WF of; if fpr any packetpy, service error is bounded both above and below by a max-

the following holdsWi (1, d(pf)) > (%)W (t1,d(pf)) —

‘ h thatS, i i v backl 4d imum size packet, and thus has@fil) WFI.
a; foranyt; such thab; Is continuously backlogged dur- Assuming g is small, we can provide good delay

ing (t1, d(py)). i i i bounds for the standalone GRR server with any intergroup

Llet us consider thi time mtervaﬂh,d) whereq = scheduler, and good network end-to-end delay bounds
a(p;) and d = d(p;). Since L(Qi(a — 0)) when the router nodes employ GRR servers. It is shown
0, the work of 5;, Wi(a,d) equals the total length;, [7] that the end-to-end delay of a packst through

of the first £ packets arrived at the flow’s queue : 1/ k&
a network of K servers¥™ is bounded byGRC" (p;}) —
Ai(a,a(pF)) < R;GRC(pF). On the other hand, we have ARG (py)

k (K_]-)Li,mam K n n,n+1 n,n+1
Wila,d) > (5%)We)(a:d) — 5Lmas due to the er- AP)+ =5 420y (B 47" ), wherer

- ¢G(i) i H n n+1
ror bounds proven for the intragroup round-robin. Alsé,S the propagation delay from™ to W

WG(’L) (G,,d) > (%)W(G/,d) — QG(4)> WhereOth(i) is
the group’s WFI in the intergroup algorithm. Since the VIl. EXPERIMENTAL RESULTS
server is busy durinfu, d) and work-conserving, we have

7 ). Comoining e above laions,we ovain, 19 101 1€ peromarce of GRR n practce, we
i Zeld
RGRC(pf) 2 Wila,d) > (&)((%)W(a’d) ~error for various combinations of weights and flows for
aG(i)) —5Lmaz = (§)R(d—a) — (¢2§“ )aG@) —5Lmaz-  some of the algorithms presented in Section V. We com-
Hence,R;(d — GRC(p¥)) < 5Lmas + (%)QG(i)’ or pare the seryice errors of WFQ, W@, and SRR against
. - acd: ® GRR their respective GRR counterparts, GWFQ, G\@Fand

d — GRC(pi) < 5% + Rgo,,- Thus, B = GSRR. For this purpose, we developed a scheduling sim-
5%{% % ulator to _examine the scheduling behavior of these_differ—

For WPQ and WEQ', a; is Limus + ent aI.gorl'thms across h'undr.eds of tho.usands of different
(Lumao—Limas )5 GWEFQ ’ combinations of flows with different weight values.
gt Therefore §; can be bounded by  the gimylator takes four inputs, the scheduling algo-
5L}Tgiaw + LG(%;’”” + (%)(LW’%W. rithm, the number of flowsV, the total number of weights

For WFQ, SCFQ, and SFmZ}/VFQ _ LLRM 7, S and the number of flow—wel_ght combinations. The
BT _ oy Ljmas (7], and g°F9 — S|mulatpr randomly assigns weights to flows and scales

¢ Si€B.j7i TR ; i the weight values to ensure that they add upSto It

EsjeB Lf’;g” — L%’) [8]. However, WFQ, SCFQ, andthen schedules the flows using the specified algorithm and
SFQ all haver; that can grow a®)(N), whereN is the tracks the resulting service error. The simulator runs the
number of entities scheduled [2]. We can still bound thgsheduler until the resulting schedule repeats, then com-
WEFI by observing that for any algorithm, WFK E;. putes the maximum (most positive) and minimum (most
This allows us to boung&£E for WFQ, SCFQ, and SFQ negative) service error across the nonrepeating portion of
by E’LR% + (j—é)(g + l)LTz%. We see that compared tothe schedule for the given set of flows and weight as-
the 3; bounds for the standalone WFQ, SCFQ, and SKynments. This process of random weight allocation and

servers SR increases a‘s‘%. TheRii factor is due to scheduler simulation is repeated for the specified number
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%) %) %)
0 0 0
120005500 150 100 0 120005500 150 100 0 12000™5-"500 150 100 0
Sum of weights Number of flows Sum of weights Number of flows Sum of weights Number of flows
Fig. 1. WFQ service error Fig. 2. WFQ service error Fig. 3. SRR service error
Error Error Error

2000 20 2000 20 2000 20
Sum of weights 250 Number of flows Sum of weights 250 Number of flows Sum of weights 250 Number of flows

Fig. 4. GWEFQ service error Fig. 5. GWFQ service error Fig. 6. GSRR service error

of flow-weight combinations. We then compute an avethat GWFQ has only slightly larger service error rang-
age maximum service error and average minimum serviog between—2.14 to 2.25, which is within the derived
error for the specified number of flow-weight combinaGWFQ constant service error bounds and is achieved
tions to obtain an “average-case” error range. with lower time complexity. Figure 3 shows the service

Since the absolute service error of a scheduler is oftBHO" for SRR to be quite large, ranging betweedt to
most clearly illustrated with skewed weight distributions%' In comparison, Figure 6 shows that GSRR has much

we ran simulations for each scheduling algorithm consilfSS Service error than SRR, ranging only betweerl4
ered on 32 different combinations f and S. with one t© 2-26. These results quantitatively demonstrate the ben-

of the flows given a weight equal to 50 percentSfAll efits GRR can provide in improving service error with of-

of the other flows were then randomly assigned weigH@" loWer time complexity.
to sum to the remaining 50 percent®f For each set of
(N, S), we ran 2500 flow-weight combinations and deter- VIII. CONCLUSIONS

mingd the'resulting average error ranges. For simplicity,\ye have presented the design and analysis of Group
all simulations were run with all flows backlogged at alf-‘(ound—Robin, a packet scheduler that combines a novel

times and all packe'Fs of equal size. .The average Ser\’&%uping strategy with a specialized deficit round-robin
error ranges normalized by packet size for WFQ,AQF algorithm to improve fairness and reduce time complex-

SR_R’ G\_NF_Q’ _GW?Q’ and GSRR _W'th these skeweqty_ GRR is designed to utilize existing algorithms as the
weight distributions are shown in Figures 1 to 6. EaGerqroup scheduler for scheduling among its groups. We
figure shows two surfaces representing the maximum andy, o4 that GRR only adds a constant factor to the rela-
minimum service error as a function &f and.5 for the e faimess and absolute service error of any intergroup
respective scheduling algorithm. scheduler and also has low time complexity. As a result,
Figure 1 shows the service error range for WFQ to lvee showed that GRR can be used to reduce the service
large, ranging betweer-1 to 128. WFQ has a lower error and time complexity of virtual time algorithms such
bound of—1 but no constant upper bound on the error. las WFQ, SCFQ, SFQ, maintain the constant service er-
comparison, Figure 4 shows that GWFQ has significantigr bound of WEQ while reducing its time complexity,
less service error than WFQ, ranging only frerR.13 to and reduce the service error of SRR while maintaining
2.79 while also preserving a constant lower bound. Figts constant time complexity. Furthermore, we compare
ure 2 shows the service error range for ¥gF which is these approaches using consistent fairness measures and
bounded between1 to 1. In comparison, Figure 5 showsprove the fairness and service error bounds for several of
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these algorithms. We implemented GRR and several GRR_.emma 4: For HS, the absolute service erréf; of
augmented algorithms and showed for various numbél®wv S; is bounded as followsE; < (k — 1) Lyqz, Where
of flows and weight distributions that GRR can reduce the= [log(N)]| + 1.

service error of existing algorithms such as WFQ and SRR  Proof: Let k be the height of the HS tree. Define
by well more than an order of magnitude. GRR’s ability’ = S;, which is a leaf node, anplf = parent{)j‘l) for

to narrow the tradeoff between fairness and computatiogak 1,...,k — 1. For somej < k — i — Wpit1 =

complexity provides an effective packet scheduling mechs(w,; —w ) wherey is the sibling ofy’ . Slncep7+1 always

anism for data networks. (0,5 +dq)
selects the child with the smaller normalized work, at any
1 . Lmax _ Lma:o
APPENDIX time, wy; — wq < 5 andwg — wy; < Using
We prove four new results regarding the relative fairtq = @pi+1— ¢,,J,We get—ﬂm < Wpj —Wpi+1 < pas —

pJ

Sincew; = wj, andw = Wpk-1, W€ havew; —

ness and absolute service error bounds for various packet..
scheduling algorithms. These results are stated in the fép+r

lowing four lemmas. w = Ef —2(w wy; — wyi+1) Which is then bounded above
Lemma 3: For WFQ, the relative faires§ ; between by Zk 2(L¢§”‘J” — (ﬁ’jﬁ) = Lmax(d)L - l) Also, w; =
any two flowsS; andS; is bounded by-zaz L’m. Linag t Lmas
@ Wp1 > E ( b i ) > —Lpax ZJ 0 ¢ ) >
Proof: We first make the |mportant observation that pIH !

for servers that reference GPS, such as WFQ, a row*rs(l(;#’ sinceg,: > ¢,1. Thus, the errop; (w; — w)
assumed backlogged for the purpose of fairness if it §@n get only as large abyq,, and cannot be less than
backlogged under GPS. The distinction is important, sincek — 1) Limaz. Thus,E; = O(k) = O(log N).

otherwise, we can easily construct an example where aVe Will now show that this bound is tight. Consider
flow backlogged only under WFQ receives half the sefbe case with a flows; of weight N and N flows of
vice as another flow with the same weight. Consider a¥{£ight 1, and assume fixed packet siZesor simplic-
two flows S; and S; GPS-backlogged during the intervalty: The first time, S, is selected, and the work of the
(t1,12). If we denote byf..(t) the virtual finishing time of leaf p° corresponding tc5; as well as the work of’,

the packet at the head @, ¢ (; ;3. then j =1,..,k — 1 will becomeL. The nextk — 1 pack-
ets WI|| be served from the siblings pf, j = 0, ...,k — 2
fit) = f;(t) < l(;’z‘”” (4) since thew,; > 0 = w, whereq is the sibling ofp’. Thus,

o _ ) _ after the firstk packets have been served, the errofpf
Clearly, this difference is maximal just after a pacpét will be |1 — k¢1| =|1- | =|1- @‘ Thus. the error is
21 !

from S; is served, and stays fixed until another packgjq st casd(k) = Q(log N). m

from §; or Sk is served. Befor@f departedfi(d(p) = | emma5: ForHS, the relative fairess ; is bounded

) < f](kcj—(lp ) - 0) AISO fl( ( ) + 0) - fl( ( ) - b (k 1()¢L'r$a:§ < [IOg( ((;]L(Pmsm WhereN iS the number Of
Lip! min I - min 79

0) + % andf;(d(pf) — 0) = f;(d(pf) +0). Itthen  fows being scheduled arid= [log(N)] + 1.

follows that f;(d(p¥) + 0) < f;(d(pF) + 0) + L(Pd);i )’ Proof: ~ Assuming without loss of generality that

which proves (4). We observe that(t,) = f,(pii) and = wj, using the resultslljn Lerrlma14, V\(lligffﬁm R
Falts) = fo(0"? ) where byp™ we denote the last packet. " _(kl_ui)_Lerw_w’ < Lmao(Gr =) =g+
to have departed from flow,, before timet,,, Lmaz < min(gi6;) " u

Because for any packet arrival in the backlog interval, Lemma 6: For SRR, the absolute service er®y of

the virtual f|n|sh|ng time I#’U( n) — f’u( e ) + M, flow S is bounded as fO”OWSE < (N+1)k = O(Nk)

o ki ki " whereN is the number of flows being scheduled anis
n e {Z’Jj} we havefv(pﬁ) = folpi") + wit1,t2)  the number of bits needed to store the maximum weight
and f, ( f2) fv(pz )+ w](tl,tz) Subtractlng, we get of any flow.

, o B Proof: We will first show aO(Nk) bounds forE;
’wz(t;}'h) wi(t1,t5) = fup;?) = folp;") - (f’;(pj )= of SRR. For this, we introduce the equivalent complete bi-
fo(pj')) = filtz) — fi(t2) + f5(t1) — fi(t1) < =%8** + nary tree associated with the WSS. This tree/hievels,
Limaz Similarly, w;(t1,t2) — w;(t1,ta) < L(bﬂ + and each node on levglcorresponds to the WSS num-

@j . .
L; berj (where %’ is the root and 1’ are the leaves). We
—mez |t follows that F; ; = ; - . . .

% ollows that F; (1, t2) [wilt1:t2) notice that the inorder traversal of this tree corresponds t

L max L max . . .
wj (b1, t)] < =hpes 4 Zhpes, B thek' order WSS (this observation will allow us to later
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describe an algorithm to dynamically generate the WS&)’% 9% %4_ % _2k+j%+2k %+2§+J’% _9% % _2N _

In the following discussion, we assunie= L, = 1.
The error bounds can be scaled afterward€.py...

kN EyiN i N EyiN N kN EyjnN
2§—22 J§+2]§—22 §—§§2 ?—22 ]g)
Then for all the completely visited subtrees up to

Consider flowsS; with weight ¢;. Since the leaves inthe time nodep is considered, the differenc#;¢ —

L . E_ E_ .
the WSS-tree are visited every pther time, we can assURe; s less thanz?_11(2k%) _ ?_11(2§+]%)
that the node currently visited is a leaf node (otherwise 1= =

: EQR—1N  _ (gk+1 _ 25 +L) IV The S; error at
the error can increase by at most 1). Letbe the 3 3 b 1 .
number of leaves considered thus far. Then the numt@de p is then By = Wi — (9)(W + N3) =

2i—1

of level j nodes visited i$ 52+ + % |, as can be deducedW1¢*W<£1*¢1N§ < (%)(kqu% _ (k1 2§+1)% _

from the WSS-tree. Then the work done for fldy is

k
22

W =Yk, N;-'LQJ.L_1 + 1] while the total work done is (28 — 2Z2E)Ed) < (%)(N2k_1)(§ - k) <
N
W=k, NjLjS_l + 1] where N; is the number of —(1)(A2N) < _ k(“k?) < — 2 provided

flows that have a non-zero bit at positig')nandN;f is the
3t bit of ¢;. Thus, Wi — ()W = SF_, Ni| 2+ + 4] -

> Nigk—i . i
TR Njlghe + ). ThenW; — ()W <
: 1 Z4N?‘2_J‘ 1
LN ) - SRETNGE D -

2. N 3. Ni2=i YU N; i e '
Tt ZjN;2—f+ < 3 + 75, since

>N < kand};N; < Nk (each of¢; can
have at mostk bits on). Also, W; — (%)W >
3 > Nig=i
ZJN;(QJLA+%) - Z;Nja—j Eij(jS*l_%) =
. N  Ni273 Y N;
Zé i _ %JNJQ—J' 212 J > %k — % Therefore,
37

B; = |Wi — (§)W] < 2050 = 0(VR),

We will now show that in factE; can beQ(kN). For
this, consider the example witN + 1 flows, S; through
k

Sy, whereg; = 11...1 101...010= 2F — 2242 andg; ;5

k
= 00...0 010...104 = 22~ (we assumé is a multiple

of 4). The bit representations ¢f satisfy the following:
the firstg bits are 1 for¢; and O for¢; ;~1, while bit

7 > %is jmod 2 for ¢; and(j + 1) mod 2 for ¢;;>1,

where bit 1 is the most significant bit. Lgtbe the level
k

3 E E
gk_(2742)  N@Z-1)

3 3

that N < 2¢/2. Clearly, if N > 2¥/2 then we can use the
N, 1,1, .., 1 times) example to show that the error is
Q(N), which is unacceptably large by itself. [ |

O(1) WSS dynamic generation A way to generate
the WSS is by means of traversing the WSS-tree described
in Lemma 6. We describe an easy algorithm to accom-
plish this: keep a boolean array/(1, ..., k], initialized to
false. At each step, select level 1, and then find the least
j > 1 such thatA[j] is false. Reset ald[i] with i < j
to false, select level, and setA[j] to true. This method
of generating the WSS is worst cakdor a step, but on
average, it is 2. To see that, note that the total work is
2k=1 4 oh=29 4 2k =334 420k < 2K (o0, &) = 2F+L
Since2*~1 4+ .. + 1 = 2% — 1, the average work for each
number in the WSS igf%ll =~ 2. Since we know that the
sequence in the WSS doesn’t change, we can amortize the
cost of computing the WSS by performing 2 operations
instead of 1 each step and filling up a buffer from which
we select the next number of the WSS. The buffer will
need to be only of siz&, and not3 x 2¥/2 as [3] requires
for its static WSS. We can show that the buffer always
contains between 1 andWSS numbers, so that no more
than 2 operations need to be performed each step.
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