
1

Group Round Robin: Improving the Fairness and Complexity ofPacket Scheduling

Bogdan Caprita, Wong Chun Chan and Jason Nieh
Email: bc2008@columbia.edu, wc164@cs.columbia.edu, nieh@cs.columbia.edu

Department of Computer Science
Columbia University

Technical Report CUCS-018-03
June 2003

Abstract— We introduce Group Round-Robin (GRR)
scheduling, a hybrid scheduling framework based on a
novel grouping strategy that narrows down the traditional
tradeoff between fairness and computational complexity.
GRR combines its grouping strategy with a specialized
round-robin scheduling algorithm that utilizes the proper-
ties of GRR groups to schedule flows within groups in a
manner that provides

� ���
bounds on fairness with only� ���

time complexity. Under the practical assumption that
GRR employs a small constant number of groups, we apply
GRR to popular fair queueing scheduling algorithms and
show how GRR can be used to achieve constant bounds on
fairness and time complexity for these algorithms.

Index Terms— Stochastic Processes/Queueing Theory,
Quality of Service, Scheduling, Fair Queueing

I. INTRODUCTION

Packet scheduling is a important mechanism for meet-
ing the quality-of-service requirements of competing
flows in packet-switched data networks. An important
class of packet schedulers are those that treat flows in a
proportionally fair manner. Given a set of flows with as-
sociated weights, these schedulers try to allocate network
link capacity to each flow in proportion to its respective
weight. The goal of these schedulers is to provide the
highest degree of fairness in allocating link capacity with
the lowest time complexity of scheduler execution.

Many packet scheduling algorithms have been pro-
posed with different trade-offs in fairness and time com-
plexity. The fairest one is Generalized Processor Shar-
ing (GPS) [9], which is an idealized fluid model that ser-
vices flows continuously and simultaneously, but cannot
be employed in practice since packets must be transmit-
ted as a unit. Algorithms such as Weighted Fair Queueing
(WFQ) [5] use a notion of virtual time to emulate GPS
and approximate its behavior. However, WFQ can allow
the service that a flow receives to deviate from service un-
der GPS in the worst case by� �� �, where� is the num-
ber of flows being scheduled. Since GPS provides ideal

max-min fairness, deviations in service from GPS are con-
sidered service error. Furthermore, WFQ requires at least
� ��	
 � � time complexity. Other variants of WFQ such
as Virtual-clock [14], SFQ [8], SCFQ [6], SPFQ [12],
and Time-shift FQ [4] have also been proposed. How-
ever, these algorithms share the same fairness and time
complexity bounds as WFQ, allowing service errors of
� �� � in the worst case and requiring� ��	
 � � time com-
plexity. Worst-Case Weighted Fair Queueing (WF�Q) [1]
and its variants introduce eligible virtual times to provide
stronger fairness guarantees than previous fair queueing
approaches, limiting deviations in service error to� ���.
However, these algorithms still require at least� ��	
 � �
time complexity.

Because� ��	
 � � time complexity scheduling is not
good enough for high-speed links [3], there is great
interest in developing lower complexity packet sched-
ulers that still provide good fairness guarantees. Round-
robin packet schedulers such as Deficit Round-Robin
(DRR) [11] have been developed that only require� ���
time complexity by servicing each flow for a continu-
ous amount of time proportional to its weight. However,
these round-robin schedulers deviate much more from
GPS service than virtual time fair queueing approaches,
with worst case service errors of� �
��� �, where
���
is the maximum flow weight. More recently, schedulers
such as Smooth Round-Robin (SRR) [3] have been devel-
oped that in practice provide better fairness than previous
round-robin approaches while retaining� ��� time com-
plexity. However, we show that the worst case service
error of SRR is still worse than� �� �.

We present Group Round-Robin (GRR) scheduling, a
novel scheduling framework that can be used with ex-
isting packet scheduling algorithms to improve the over-
all fairness and reduce the time complexity of schedul-
ing competing flows. GRR introduces a novel flow group
strategy that can be used to allow existing schedulers to
consider groups of flows together instead of individually.
By reducing the number of competing entities that exist-

2

ing schedulers must consider, this can improve both fair-
ness and reduce time complexity when such properties are
dependent on the number of entities scheduled. GRR’s
grouping strategy requires only simple queues for groups
of flows, allowing it to be easily implemented in an effi-
cient manner. GRR combines its grouping strategy with a
specialized round-robin scheduling algorithm that utilizes
the properties of GRR groups to schedule flows within
groups in a manner that limits service error to� ��� with
only � ��� time complexity. Under the practical assump-
tion that GRR employs a small constant number of groups,
we apply GRR to popular scheduling algorithms and show
how GRR can be used to achieve constant bounds on fair-
ness and time complexity for any of these algorithms.

This paper presents the design and analysis of GRR.
Section II provides some background and discusses more
precisely the notion of fairness. Section III describes the
GRR scheduling algorithm. Section IV analyzes the fair-
ness and time complexity of GRR. Section V describes
how GRR can be applied to several existing scheduling
algorithms to improve their fairness and time complex-
ity bounds. The algorithms described include WFQ [5],
SCFQ [6], SFQ [8], Hierarchical stride [13], WF�Q [1],
and SRR [3]. We also present and prove new results on
the fairness bounds for several of these algorithms. Sec-
tion VI discusses the delay bounds for GRR. Section VII
presents some performance results from simulation stud-
ies to compare the fairness of existing scheduling algo-
rithms with the same algorithms augmented with GRR.
Finally, we present some concluding remarks.

II. BACKGROUND

We first define the general terminology and state the as-
sumptions we will use throughout the paper. Table I is a
list of the general terminology we use. We denote� as the
server responsible for multiplexing an output link among
a set of flows. Any scheduling algorithm can be viewed
as an instance of� . We only consider work-conserving
servers, which use their maximum available bandwidth
during any busy period. A busy period for� is defined
as a time interval during which there is at least one back-
logged flow at any time. A flow is backlogged at time�

for some server� if it has bits left that are waiting to
be sent, L(Q�(t))�0. Since we are mainly concerned with
busy periods, for any function� �� � � �� �, we will use the
shorthand notation� ��� to mean� ��� � �� for a busy period
that started at t

�
. For example, W(t)=� 		

� ��
.

To compare the performance of schedulers, we need to
use a consistent measure of fairness. We describe two
measures of fairness for this purpose. We start with the

TABLE I
GENERAL TERMINOLOGY

� The server.
� Flow i.� �� The� 	� packet to have arrived for

�.� ��� The set of backlogged flows at time
�
.

� The number of backlogged flows in� .� �� � The arrival time of packet� .� �� � The departure time of packet� .�� ���� The maximum size of a packet for

�.���� The maximum size of a packet in� .��(t) The queue of S� at time t.

� ��� ����
denotes the number of bits on

�� ���.

� The weight assigned to

�.

(t) The sum of the weights of all flows

backlogged at time
�
: ��� �� �	�
� .�� �� � � �� � The total traffic that arrived for flow

�.�
The output link bandwidth of the server.�� The guaranteed rate for flow

�. �� � � �� � The total traffic served by the server.! �� � � ��) The total normalized work:

�"�# � $ �%&'(�%& ��)* +, -.&'(/
0 1* , where B(2� 3 4)
stays fixed during each interval (

�� � ��5 �)
and2� 6 � �, 2"

6 �
�. � �� � � �� � The amount of traffic served from

�.!� �� � � �� � The normalized work received by

flow

�: $* �	 (�	7 �1* .8� �� �� � � �� � The relative fairness of flows

� and

� :9! � �� � � �� � : !� �� � � �� �

9
.8� �� � � �� � The absolute fairness:9! � �� � � �� � : ! �� � � �� �
9
.;� �� � � �� � The absolute service error:
 �8 � �� � � �� �.

relative fairness of two flows since this is widely used as
an indicator of fairness. A theorem in [6] states that if a
packet-based algorithm guarantees F� �� �� � � �� � < =��� for
any interval�� � � �� � when S� and S� are backlogged, then
=��� must be at least

�
� �>?@A1* 3 >?@A1� �. This result is used

by proving that=��� is less thanB �>?@A1* 3 >?@A1� � for a
scheduling algorithm, then making the claim that a small
value ofB implies good fairness.

While relative fairness can be a useful measure, it is a
weak measure compared to a measure of absolute service
error which relates the work of a flow to the allocation
the flow should have received given the work done by the
scheduler. This service error reduces to a measure of ser-
vice error versus GPS assuming that all flows are back-
logged. To see that absolute service error is a stronger

3

measure, suppose we have service error
;� < B���� ,

then the relative fairness is bounded as follows:
8� �� 6 9! � : !� 9 < 9! � : ! 9 3 9!� : ! 96 � *

1* 3
��
1� < B �>?@A1* 3 >?@A1� � (1)

So an� ��� bound on error always implies an� ��� bound
on relative fairness.

To see that relative fairness is a weaker fair-
ness measure, we also show that an� ��� bound
on the relative fairness of an algorithm only trans-
lates to an� �� � bound on the absolute service er-
ror. The service error for a flow

� is
;� �� � � �� � 6

9 � �� � � �� � : 1*$ �	 (�	7 �1 �	�
9 6 91*� * �	 (�	7 � �)� +, 1��)� +, 1� :

1* �)� +, 1� �� �	 (�	7 ��)� +, 1�
9 < 1* �)� +, 1� �� * �	 (�	7 ���� �	 (�	7 � ��)� +, 1�

6

1* �)� +, 1� � * �� �	 (�	7 ��)� +, 1� . If an algorithm guarantees
8� �� �� � � �� � < B �>?@A1* 3 >?@A1� �, then

;� �� � � �� � < 1* �)� +, 1� � � �?@A� * 5 �?@A�� ��)� +, 1�6 B���� �� 3 1*1@	
 �
(2)

where
��� is the average weight of all backlogged flows.
Note that
 � can get arbitrarily large compared to
��� .
To show that the bounds on relative fairness,B �>?@A1* 3
>?@A1� �, cannot imply a service error bound of less than

� �� �, consider an example of� 3 � flows, the first
having weight N, and the rest having weights equal to
1. (2) would then result in an� �� � service error bound.
The SCFQ algorithm, for which the� ��� relative fairness
bound holds [6], has service error of
 >?@A� for this ex-
ample. To put an upper bound on the error of algorithms
with =��� = � ���, we can more formally argue based on
(1) that

;� 6 B���� �� 3
 1*1 �	� �< B���� �� 3
 1*1 * � 6 B �� 3 ������ (3)

III. G ROUP ROUND ROBIN ALGORITHM

GRR uses a novel grouping strategy to organize flows
into groups of similar weight values which can be more
easily scheduled. It then combines two scheduling al-
gorithms: an intergroup scheduling algorithm to select a
group from which to select a flow to service, and an intra-
group scheduling algorithm to select a flow from within
the selected group to service. Table II presents a list of
GRR-specific terminology we use. The Group Round

Robin algorithm can then be briefly described in three
parts:

1) Flow grouping strategy: Flows are separated into
groups of flows with similar weight values. Each
group � is assigned flows with weight value be-
tween ��� to ���5 � : �, where�� � 4. Thus,
a flow

� is inserted into group� where �� 6
��	
 �
� �.

2) Intergroup scheduling: An existing scheduling al-
gorithm is used to select a group from which to se-
lect a flow to service. A group is selected based on
the group weight. Each group behaves like a com-
posite flow with respect to the intergroup scheduler.

3) Intragroup scheduling: Once a group has been se-
lected, a flow within the group is selected for service
using a specialized round-robin algorithm.

The grouping strategy limits the number of groups that
need to be scheduled since the number of groups grows at
worst logarithmically with the largest flow weight value.
If � is the number of groups, then� < ��	
 �
� �� � 3 �
where
��� is the largest possible weight in the system.
Even a very large 32-bit flow weight would limit the num-
ber of groups to no more than 32. As a result, the inter-
group scheduler never needs to schedule a large number
of groups which limits the impact of skewed weight dis-
tributions on groups. The grouping strategy also limits the
weight distributions that the intragroup scheduler needs to
consider since the range of weight values within a group is
less than a factor of two. As a result, the intragroup sched-
uler never needs to schedule flows with skewed weight
distributions since the flows within a group must have rel-
atively similar weight values.

While GRR is designed to leverage existing scheduling
algorithms for intergroup scheduling, GRR takes advan-
tage of its grouping strategy by using a specialized deficit
round-robin algorithm for intragroup scheduling to pro-
vide good fairness and time complexity bounds. Com-
pared to DRR, the GRR intragroup scheduler has two im-
portant differences. First, all flow weights in a group G are
normalized with respect to the minimum possible weight,

� �� 6 ��� , for any flow in the group. Second, since
normalized flow weights may be non-integers, GRR can
provide fractional packet allocations that are accumulated
as part of a flow’s deficit.

The GRR intragroup algorithm considers the schedul-
ing of flows in rounds. Around is one pass through
a group’s queue of flows from beginning to end. The
group queue of flows does not need to be sorted in any
manner. During each round, the GRR intragroup algo-
rithm considers the flows in round-robin order. For each

4

TABLE II
GRR TERMINOLOGY

� The number of groups.
� ��� The group to which S� belongs.
�� The order of�.�� (t) The set of backlogged flows in group G.

� (t) The group weight:��* ��� �	�
 �.�� The guaranteed rate for group G. � �� � � �� � The amount of traffic served for

group G:��* �� � �� � � �� �.!� �� � � �� � The normalized traffic for group G:

�"�# � $� �% (�%7 ��)* +,� -.&'(/
0 1*
where

B� �2� 3 4 � stays fixed during each
interval (

�� � ��5 �) and2� 6 ��, 2"
6 �

� .8� �� �� � � �� � The relative fairness of groups�
and� :

9!� �� � � �� � : !� �� � � �� �
9
.8� �� � � �� � The absolute fairness of group G:9!� �� � � �� � : ! �� � � �� �

9
.8� �� �� � � �� � The group relative fairness of flow

�:9! � �� � � �� � : !� �� � � �� �
9
.;��� �� � � �� � The group relative error of flow

�:

 �8 � �� �� � � �� �.� �(t) The deficit of S� at time t.

backlogged flow

�, the scheduler serves a maximum

of � 1*1?*� �
���� 3 � � �� : �� bits.

� � �� �, the deficit of
flow

� after round� , is defined recursively as
� � �� � 6

� 1*1?*� �
���� 3 � � �� : �� : �� �*�#� �'(* 5 � � �� �� �, where� ��

is the number of

� packets that left the server up to and

including round� , with
� � �4 � 6 4. Thus, in each round,
� is allotted � 1*1? *� �

���� bits plus any additional left-
over from the previous round, and

� � �� � keeps track of
the amount of service that

� missed because the packet at
the head of the flow’s queue was too large to fit in the re-
maining allotted space. We observe that

� � �� � � �� ����
after any round� .

Consider the following example to illustrate further
how GRR scheduling works. Suppose we use WFQ
for the intergroup scheduler in the GRR framework.
Consider a set of six flows that need to be scheduled,
one flow

�
with weight 12, two flows

� and

	
each with weight 3, and the other three flows

,

�

,
and

�
each with weight 2. Assume that all flows are

backlogged and the size of all the packets is
���� 6 �

for simplicity. The six flows will be put into two groups
� � and � � as follows:

�� (6

�
�
	 �

 �
� �
� �

and�� 7
6

��

. The weight of the groups are� � 6 �� and
� �
6 ��. WFQ will consider the groups in this order:

� � �� �
�� � �� �

�� � �� �
�� � �� �

�� � �� �
�� � �� � . � �

will schedule flow

 �

every time� � is considered for
service since it has only one flow. We will show the order
of service for the first two rounds of� �. Rounds 3 and 4
of � � has the same order of service as rounds 1 and 2. In
beginning of round 1 in� �, each flow starts with 0 deficit
and gains 1*1? *� -� (0 and
��� �� (�

6 �. The maximum

service that flows

�
�
	 �

 �
�

, and

�

can receive in
round 1 are 1.5, 1.5, 1, 1, and 1, respectively. Since
packets have to be transmitted as a unit, the scheduler
will serve 1 packet from each flow in� � during round
1. After the first round, the deficit for

�
�
	 �

 �
�

, and
�
are 0.5, 0.5, 0, 0, and 0. In the beginning of round 2,

each flow gets another1*1? *� allocation, and the maximum
allowed service for

�
�
	 �

 �
�

, and

�

becomes 2,
2, 1, 1, and 1.

� sends two packets, followed by two

packets from

	

and one packet each from

 �
�

and

�

.
After round 2, the deficit of all the flows in� � becomes
0. The sequence of packets that the scheduler serves is
� �

�
�� �� �� �	 �� �� �� �
 ��

	� �� �� ��
� �� �� �� �� �� ��
�� �� �� 	

�
�� �� �� �	 �� �� �� 		 �� �� �� �
 �� ��� �� �� �� ��� �� �� �� ��� �

, where� �� is the� 	� packet
to have arrived for flow

�.

IV. GRR FAIRNESS AND TIME COMPLEXITY

We first analyze the fairness bounds of GRR and then
discuss its time complexity. GRR limits service error
by dividing up the scheduling problem into intragroup
scheduling and intergroup scheduling. We start with the
relative fairness of the intragroup algorithm and show that
the algorithm provides� ��� relative fairness between any
two flows. We present the following lemma.

Lemma 1: The relative fairness
8� �� of the GRR in-

tragroup round-robin scheduling algorithm between any
two flows

� and

� is bounded as follows:

8� �� <
� �>?@A1* 3 >?@A1� �.

Proof: For any interval�� � � �� � when

� is contin-

uously backlogged, let� �� be the round before the round
when

� is first considered after time
� �

, and � �
� the last

round before time
�
� when

� sends. Then

� receives dur-

ing �� � � �� � a total service equal to�� �� : � ��� � 1*1? *� �
���� 3� � �� �� � : � � �� �� �. Let

� be another session continuously
backlogged in the interval�� � � �� �, and let us assume with-
out loss of generality that

� is after

� in the group. Then� �� : � < ��� < � �� and � �

� : � < ��
� < � �

� . Subtract-
ing, we get� �� : � �� : � < ��

� : ��� < � �
� : � �� 3 �

or
9�� �� : � �� � : ���� : ��� � 9 < �. We also observe that9� � ���� �:� � ���� �

9 < ���� for any� , since
� � ��� � ����

at any time
�
. It then follows that the relative fairness8� �� between flows

� and

� is:

8� �� 6 9! � �� � � �� � :!� �� � � �� �
9 6 9
 �� �� : � ��� �>?@A1? *� � 3 �� * �� *(��� * �� *7 ��1 *

� :

5

 ���� : ��� � �>?@A1? *� � 3 ��� ���(���� ��
�
7 ��1�

� 9 < 9
 �� �� : � ��� :
���� :����� �>?@A1? *� � 93 9 �� * ��

*(��� * �� *7 ��1 *
93 9 ��� ��

�(���� ��
�
7 ��1�
9 <

>?@A1? *� 3 >?@A1* 3 >?@A1� . Because
� �� <
 �,
� � �
� �� ,

we can simplify this to the looser bounds
8� �� <

	
>?@A1? *� or8� �� < � �>?@A1* 3 >?@A1� �.

Note that if we only consider full rounds, then the
bounds on

8� �� would be only>?@A1* 3 >?@A1� . In all cases,

the relative fairness bounds are� ���.
We now consider the absolute service error of the intra-

group algorithm and show a stronger result, namely that
the algorithm provides� ��� absolute service error. We
present the following lemma.

Lemma 2: The absolute service error
;� �� of the GRR

intragroup round-robin scheduling algorithm for flow

�

is bounded as follows:
;� �� < ����� .

Proof: Consider the group relative fairness
8� �� of

a flow

� � � :

8� �� �� � � � � 6 9! � �� � � � � : !� �� � � � � 9.
To simplify the analysis, we will first consider

8��� in be-
tween rounds. Let

�� be the time round� finishes, and
let
�� 6 � �

and
�
�
6 �

. Then during round�, �
increases by� 1�1? *� �

���� 3 � � ����
�� : � � ��� � for any

flow

� in � that is backlogged during that round. We can

then write!� ����
� � �� � 6 �)� +,� -�&'(/
0 $� �	&'(�	& ��)� +,� -�&'(/
0 1�

6
�)� +,� -�&'(/
0

� � ���?*� �>?@A 5�� �	&'(���� �	& �
�

1� �	&'(5
�
�

6 >?@A1? *� 3�� �	&'(5
�
���� �	& �

�
�1� �	&'(5

�
� , where we denote by

�� ��� the
sum of the deficits of the backlogged flows in� at time�
. We make the distinction between

�� ��� : 4 � and�� ��� 3 4 � since after a round, we may adjust
�� ���

by assigning some initial deficit to a new flow that arrived
during that round. We can have three situations after each
round:

1) The backlog set
�� remains unchanged (no ses-

sion arrived or became idle). Then
�� ��� : 4 � 6�� ��� 3 4 � and
� ����

� 3 4 � 6
� ��� 3 4 �.
2) A new session

��� arrived:
� ��� 3 4 � 6

� ����

� 3 4 � 3
� �� . We place the new ses-
sion at the beginning of the queue (so that it does
not run during the current round) and after the
round, we assign it a deficit of1��� �� �	& �

�
�1� �	&'(5

�
� . Then,

�� ��� 3 4 � 6 �� ��� : 4 � 3 1����� �	& �
�
�1� �	&'(5

�
�

6
�� �	& �

�
�1� �	& 5

�
�1� �	&'(5

�
� . Thus,

�� �	&�
�
�1� �	&'(5
�
�
6 �� �	& 5

�
�1� �	& 5
�
� .

3) A session

	�
 departed (became idle):
� ��� 3

4 � 6
� ����
� 3 4 � :
	�
 . In this case, the

work that the departing flow executes during the
round is less than its quota. To keep the analysis

simple, we can assume for the purpose of keeping
track of fairness that the departing flow has received

	�
 �>?@A1? *� :

�� �	& 5
�
�1� �	& 5
�
� � which is less than1��� >?@A1? *�

and positive (since
�� �	& 5

�
�1� �	& 5
�
� <

��� �	& 5
�
� �>?@A��� �	& 5
�
� �1?*�

6
>?@A1?*� �. Then the normalized work done for round

� is >?@A1? *� 3
�� �	&'(5

�
�� ��� �	& �

�
�5

����
� -�& /
0�� -�& /
0 �
1� �	&'(5

�
� .

Since we make no changes to
�� after round� ,�� ��� 3 4 � 6 �� ��� :4 � and we have a normalized

service of >?@A1? *� 3
�� �	&'(5

�
�
�� -�&/
0
� -�&/
0�� -�& /
01� �	&'(5

�
�

6
>?@A1?*� 3

�� �	&'(5
�
�1� �	&'(5
�
� :

�� �	& 5
�
�1� �	& 5
�
� .Of course, we can have any number of sessions arrive

and depart during the same round, in which case the re-
sults in situations 2 and/or 3 still apply by superposition.
Thus, in all three cases, the normalized work during a
round can be written as>?@A1? *� 3

�� �	&'(5
�
�1� �	&'(5
�
� :

�� �	& 5
�
�1� �	& 5
�
� , so8� �� �� � � � � 6 9� ��# � �

�
1* �>?@A1

*
1? *� 3

� � ����
��:� � ��� ���:

� ��# � �>?@A1? *� 3
�� �	&'(5

�
�1� �	&'(5
�
� :

�� �	& 5
�
�1� �	& 5
�
� �
9 6 9� * �	
 ��� * �	� �1* :�� �	
 5

�
�1� �	
 5
�
� 3

�� �	�5
�
�1� �	�5
�
�
9
. We now make use of the fact

that 4 < �� ��� < 9�� ��� 9���� < �1� �	�1? *� ����� and

4 < � � < ���� to get
8��� �� � � � � < 9� * ��
 ��� * �� �1 *

9 39�� ��
 �1� ��
 � :
�� �� �1� �� �

9 < >?@A1* 3 >?@A1? *� < >?@A1* 3 �>?@A1*
6	

>?@A1* since
� �� � 1*� . The group relative error
;� ��

in between rounds is then bounded by
;� �� �� � � � � <����� . Since during a round, a flow’s normalized work!� can get ahead or behind by at most an additional

>?@A1? *� , in general
8� �� �� � � � � <

�
>?@A1* and

;� �� �� � � � � <
����� for any time interval�� � � � �.

Given the� ��� relative fairness and absolute service er-
ror bounds for the GRR intragroup scheduling algorithm,
we can now analyze the overall GRR algorithm. We first
show the following theorem that states the GRR algorithm
relative fairness is bounded by the relative fairness of the
intergroup scheduler plus a constant factor.

Theorem 1: The relative fairness
8��� of the GRR

scheduling algorithm between any two flows

� and

�
is bounded by a constant plus the relative fairness be-
tween the respective groups containing the flows as fol-
lows:

8� �� <
�
>?@A1* 3

�
>?@A1� 3 8� ��� �� �� �.

Proof: For any two flows

� and

� in
groups G(i) and G(j) and continuously backlogged
in the interval �� � � �� �, we have:

8� �� �� � � �� � 69! � �� � � �� � : !� �� � � �� �
9 6 9! � �� � � �� � : !� ��� �

� � � �
� � 3!� ��� �

� � � �
� �:!� �� � �

� � � �
� �3!� �� � �

� � � �
� �:!� �� � � �� �

9 <9! � �� � � �� � :!� ��� �
� � � �

� �
93 9!� �� � �

� � � �
� � :!� �� � � �� �

939!� ��� �
� � � �

� � : !� �� � �
� � � �

� �
9 < 8� �� ��� 3

8� �� �� � 38� ��� �� �� �. Since the intragroup relative fairness between

6

two flows is bounded by Lemma 1, it follows that the rel-
ative fairness of the overall GRR algorithm between any
two flows is bounded by

8� �� �� � � �� � <
�
>?@A1* 3

�
>?@A1� 38� ��� �� �� �. Of course, if both flows are part of the same

group, then
8� �� < �>?@A1* 3 �>?@A1� . This is a special case,

but one that would occur frequently in practice, where
many flows tend to have the same or similar weights.

In a similar manner, we can show the following theo-
rem which states the stronger result that the overall GRR
algorithm service error is bounded by the service error of
the intergroup scheduler plus a constant factor.

Theorem 2: The absolute service error
;� of the GRR

scheduling algorithm of flow

� is bounded by a constant

plus the absolute service error of the intergroup schedul-
ing algorithm as follows:

;� < ����� 3 ;� .
Proof: Let flow

� be backlogged in group
G during the interval �� � � � �. Then

8� �� � � � � 69! � �� � � � � : ! �� � � � � 9 6 9! � �� � � � � : !� �� � � � � 3!� �� � � � � : ! �� � � � � 9 < 9! � �� � � � � : !� �� � � � � 9 39!� �� � � � � : ! �� � � � � 9 6 8� �� �� � � � � 3 8� �� � � � �.
The overall error will be at most

;� �� � � � � 6

 �8 � �� � � � � < ;� �� �� � � � � 3
�8� �� � � � � 6
;��� �� � � � � 3 � 1*1� �;� �� � � � � < ;� �� �� � � � � 3;� �� � � � �. We have shown that

;� �� < ����� for the
intragroup round robin scheduler. Thus, the overall error
will be on the order of the overall error of the intergroup
scheduler used:

;� �� � � � � < ����� 3 ;� �� � � � �.
We now analyze GRR time complexity. Using GRR,

scheduling the next packet to transmit entails choosing
the group and picking the appropriate flow from within
the group that gets to send a packet. The time for the
GRR intragroup scheduler to select a flow for service
from a group is� ���. This follows from the fact that
the round robin always considers backlogged flows in the
same order, and serves each with at least one packet since� �� �� � < ���� and 1*1? *� � �. Non-backlogged flows
are logically removed from the queues so that the sched-
uler does not waste any time looping through flows with
no packets to send. Since selecting a flow is� ��� for the
intragroup round-robin algorithm, the overall complexity
will be the same as that of the intergroup scheduler.

V. USING GRR WITH OTHER SCHEDULING

ALGORITHMS

We describe how GRR can be used with a number of
existing scheduling algorithms by incorporating those al-
gorithms as the GRR intergroup scheduling algorithm.
We show how using GRR in conjunction with these algo-
rithms can improve their fairness and service error bounds

and reduce their time complexity. Applying GRR is sim-
ple, provided that the intergroup algorithms handle dy-
namically changing weights properly. This is true for all
the six popular schedulers we consider in this context:
WFQ, SCFQ, SFQ, hierarchical stride (HS), WF�Q, and
SRR. We discuss the relative fairness and absolute ser-
vice error bounds for each of these algorithms, present-
ing for the first time consistent bounds using the same
fairness and service error measures for all of these algo-
rithms. The more extensive proofs for these results are
included in the Appendix. We combine these algorithms
with GRR to construct six new scheduling algorithms:
GWFQ, GSCFQ, GSFQ, GHS, GWF�Q, and GSRR.

A. GWFQ

WFQ [5], [10] is a virtual time fair queueing algorithm.
WFQ emulates GPS by serving packets in the order in
which they would finish service under GPS. WFQ intro-
duced virtual finishing times (VFT) for this purpose and
services the flow with the packet with the earliest VFT.

For WFQ, the relative fairness between any two flows
� and

� is bounded by>?@A1* 3 >?@A1� as shown by the

proof for Lemma 3 in the Appendix. (3) then implies
that the absolute service error of WFQ is bounded by
�� 3 ������ , where� is the number of flows being
scheduled. We can see that the service error bound is
not less than� �� � by considering the example of� 3 �
flows, the first with weight� and the rest weight 1. If
all packets are of size

���� , WFQ will service� pack-
ets from the first flow before servicing any other flows,
resulting in service error of
 >?@A� . Because WFQ must
order the flows based on their VFTs, the time complexity
of scheduling is� ��	
 � �.

We can combine WFQ with GRR to derive a new
scheduling algorithm GWFQ that has both a lower service
error bound and lower time complexity. GWFQ is simply
the GRR scheduler using WFQ as the intergroup schedul-
ing algorithm. GWFQ only uses WFQ for scheduling
among groups, reducing the number of entities that are
considered by the WFQ algorithm. This reduces service
error and time complexity since the service error bound
and time complexity of WFQ grow with the number of
entities being scheduled.

For GWFQ, the relative fairness between any two flows
� and

� is bounded by� �>?@A1* 3 >?@A1� �, as computed

based on Theorem 1. This is an upper bound but may
not be a tight bound. Theorem 2 shows that the absolute
service error is a constant factor plus the absolute service
error of the intergroup scheduler. Since the WFQ inter-
group scheduler has absolute service error�� 3 ������ ,

7

where� is the number of groups, the absolute service error
of GWFQ is �� 3 ������ 3 ����� , which is� �� �. Sim-
ilarly, the time complexity of GWFQ is� ��	
 � �. If we
assume that the number of groups is bounded by a con-
stant, this reduces to a� ��� bound on absolute service
error and time complexity.

B. GSCFQ

SCFQ is another virtual time scheduling algorithm. For
SCFQ, the relative fairness between any two flows

� and
� has been shown to be bounded by>?@A1* 3 >?@A1� [6].
[6] did not show a service error bound, but as in the case
of WFQ, (3) implies the absolute service error bound of
SCFQ is�� 3 ������ , where� is the number of flows
being scheduled. The time complexity of SCFQ schedul-
ing is � ��	
 � �. The basic fairness and time complexity
properties of SCFQ are similar to WFQ.

Like GWFQ, we can use SCFQ as the intergroup
scheduling algorithm with GRR to derive a new schedul-
ing algorithm GSCFQ that has both a lower service er-
ror bound and lower time complexity. Since SCFQ and
WFQ have the same relative fairness and service error
bounds, GSCFQ has the same relative fairness and ser-
vice error bounds as GWFQ, namely relative fairness
bounded by� �>?@A1* 3 >?@A1� � and absolute service error

of �� 3 ������ 3 ����� . Similarly, the time complexity
of GSCFQ is� ��	
 � �.
C. GSFQ

SFQ is another virtual time scheduling algorithm. For
SFQ, the relative fairness between any two flows

� and
� has been shown to be bounded by>?@A1* 3 >?@A1� [8].
[8] did not show a service error bound, but as in the case
of WFQ and SCFQ, (3) implies the absolute service error
bound of SCFQ is�� 3 ������ , where� is the number
of flows being scheduled. The time complexity of SFQ
scheduling is� ��	
 � �.

Like GWFQ and GSCFQ, we can use SFQ as the in-
tergroup scheduling algorithm with GRR to derive a new
scheduler GSFQ that has both a lower service error bound
and lower time complexity. Since SFQ and WFQ have
the same relative fairness and service error bounds, GSFQ
has the same relative fairness and service error bounds as
GWFQ, namely relative fairness bounded by� �>?@A1* 3
>?@A1� � and absolute service error of�� 3 ������ 3 ����� .

Similarly, the time complexity of GSFQ is� ��	
 � �.
D. GHS

A different group approach than that of GRR was pre-
viously proposed in the context of stride CPU schedul-

ing [13]. We discuss an adaptation of that algorithm for
packet scheduling that we refer to as HS. HS arranges
flows in a balanced binary tree, where the flows are the
leaves, and any internal node behaves with respect to its
parent like a flow with a weight equal to the sum of the
weights of its children. When an internal node is selected,
then it in turn selects one of its children, until a leaf node
is reached and serviced. Normalized work counters for
the flow and all of its ancestors are incremented with the
amount of bits transmitted by the flow. A parent node
selects from its children� and� the node whose normal-
ized work is less than the normalized work of the parent.
If !
 6 !"

6 ! , then some tie-breaking policy can be
used, for example, select the node with the higher weight,
or select the left node, etc. The benefit of this hierarchi-
cal approach can be most easily illustrated by the case of
� 3 � flows, the first with weight� and the rest weight
1. If all packets are of size

���� , a non-hierarchical stride
scheduler would service� packets from the first flow be-
fore servicing any other flows, resulting in� �� � service
error. However, HS aggregates multiple flows so that it
ends up interleaving the execution of the weight� flow
with the other flows of weight 1, resulting in a smaller
� ��	
 � � service error.

For HS, the relative fairness between any two flows

�

and

� is bounded by

���� �
 ��>?@A��� �1* �1� � where� is the number
of flows being scheduled, according to Lemma 5. The ab-
solute service error of HS is bounded by��	
 �� ������
as stated in Lemma 4. Both lemmas are prove in the Ap-
pendix. Since HS must do a traversal of the balanced bi-
nary tree from the root to a leaf, the time complexity of
HS scheduling is� ��	
 � �.

The hierarchical grouping strategy of HS provides
some of the same benefits of the GRR framework, though
it requires more complex data structures. However, we
can combine HS with GRR to derive a new scheduling al-
gorithm GHS that provides even lower service error and
time complexity. GHS is simply the GRR scheduler us-
ing HS as the intergroup scheduling algorithm. GHS only
uses HS for scheduling among groups, reducing the num-
ber of entities that are considered by the HS algorithm.
This reduces service error and time complexity since the
service error bound and time complexity of HS grow with
the number of entities being scheduled.

For GHS, the relative fairness between any two flows
� and

� is

8� �� < 8� ��� �� �� � 3
�
>?@A1* 3

�
>?@A1� <� ���� �� �>?@A��� �1� -*0 �1� -� 0 � 3

��>?@A��� �1* �1� � < >?@A � ���� ��5 ������ �1* �1� � , where�
is the number of groups of flows being scheduled. The
absolute service error of GHS is

;� < ;� �� ��� 3
;� ��� <����� 3 � ��	
 � � ����� 6 � ��	
 � � 3 ������ . The time

8

complexity of GHS is� ��� 3 � ��	
 � � 6 � ��	
 � �.
Note that the motivation of hierarchy in HS to reduce

GPS service error bounds is different from the conven-
tional notion of hierarchical packet scheduling algorithms
which seek to provide H-GPS fairness [2]. The idea of
grouping flows together is also at the heart of these al-
gorithms, but their goal is to emulate H-GPS instead of
GPS. The aim is to provide isolation in link sharing and
to implement different policy-based service classes. Thus,
fairness is provided among the children groups of a node,
but not across the entire system, and unused service from
a group is distributed solely inside the parent group. How-
ever, the idea of using an instance of the same type of vir-
tual time server at each node can also be adapted to sim-
ulate GPS, by letting the weights of the group nodes vary
when flows enter or leave the groups. Still, such an ap-
proach gives error and computational complexity bounds
that are a factor of� larger than those for the individual
server, where� is the height of the tree, and are not well-
suited for our purpose.

E. GWF�Q
WF�Q is a virtual time algorithm that is identical to

WFQ, except it considers for service only the packets that
would have already started service under the equivalent
GPS. This difference though enables WF�Q to provide the
lowest service error of all fair queueing algorithms. For
WF�Q, the absolute service error has been shown to be
bounded by

���� [1], which is � ���. As a result, (1)
implies for WF�Q that its relative fairness between any
two flows

� and

� is bounded by�>?@A1* 3 >?@A1� �. The

time complexity of WF�Q scheduling is� ��	
 � �.
We can combine WF�Q with GRR to derive a new

scheduling algorithm GWF�Q that preserves the� ��� ser-
vice error bound while providing lower time complexity.
GWF�Q is simply the GRR scheduler using WF�Q as
the intergroup scheduling algorithm. GWF�Q only uses
WF�Q for scheduling among groups, reducing the num-
ber of entities that are considered by the WF�Q algorithm.
This reduces time complexity since the time complexity of
WF�Q grows with the number of entities being scheduled.

For GWF�Q, the relative fairness between any two
flows

� and

� is bounded by� �>?@A1* 3 >?@A1� �, as com-

puted based on Theorem 1. Theorem 2 shows that the
absolute service error is a constant factor plus the ab-
solute service error of the intergroup scheduler. Since
the WF�Q intergroup scheduler has absolute service er-
ror
���� , the absolute service error of GWF�Q is �

���� ,
which is� ���. Similarly, the time complexity of GWF�Q
is � ��	
 � �. If we assume that the number of groups is

constant, this reduces to a� ��� bound on absolute service
error and time complexity.

F. GSRR

SRR is a scheduling algorithm that services flows in a
fixed order similar to round-robin scheduling. SRR intro-
duces a Weight Matrix and uses the concept of a�-order
Weight Spread Sequence (WSS), where� is the number of
bits needed to store the weight of the flows. The Weight
Matrix consists of binary vectors coded from the weights
of the flows. SRR then scans the elements of the Weight
Matrix in a fixed order specified by WSS and selects the
flow to execute whose weight corresponds to the matrix
element selected.

For SRR, the relative fairness between any two flows

�

and

� has been shown to be bounded by

��5��>?@A� ��� �1 * �1� � [3].

The absolute service error of SRR is
;� < � �
 5

�
��
6

� �� � �, as stated in Lemma 6, which we prove in the Ap-
pendix . The time complexity of SRR scheduling is� ���.

We can combine SRR with GRR to derive a new
scheduling algorithm GSRR that can preserve the� ���
time complexity of SRR while providing a lower service
error bound. GSRR is simply the GRR scheduler using
SRR as the intergroup scheduling algorithm. However,
since the weight of a group increases with the number of
flows, we cannot have a bound for� as assumed in SRR,
so we cannot use a pre-computed WSS. We can have SRR
simulate in real time the WSS, allowing theoretically for
any size weights, at the expense of computational com-
plexity. In the Appendix, we present a method of dynam-
ically generating the WSS that preserves the� ��� time
complexity of SRR and improves the space complexity
from � ��� � to � �� �, while also making the algorithm
more scalable for our purpose.

For GSRR, the relative fairness between any two flows
� and

� is bounded by

��5���>?@A� ���)� +-� -*0�� -� 00 �1� � , where� 6
�	
� �
� ���� � and
� ���� is the largest group weight. In
worst case,� is � ��	
 � �. The absolute service error of
SRR is

;� < ����� 3 ��
�
���� 6 � �� �	
 � �. Applying

the grouping strategy to SRR thus reduces the error from
� ��� � to � �� �	
 � � where� 6 � 6 �	

��� , while
maintaining the� ��� time complexity.

VI. D ELAY BOUNDS FORGRR

Even though the main goal of GRR is to improve fair-
ness and time complexity, we can also show reasonable
delay bounds that make GRR well-suited for guarantee-
ing QoS in high-speed networks. Since we cannot predict
network usage in the future, we give our delay bounds

9

without making any assumption about the incoming traf-
fic envelope, or other flow control characteristics.

We will show that GRR belongs to the�� (guaranteed
rate) class of algorithms [7] by showing that for any packet� �� that arrives for flow

�, � �� �� � : ��� �� �� � < � ���� ,
where� ���� is constant.��� , the guaranteed rate clock,
is defined in [7] and is similar to the concept of ex-
pected arrival time used in [8].��� �� �� � 6 ��� �� �� �� �,
��� �� ��

�
� �� 3 > �

&* �� * and ��� �� �� � 6 4. We observe

that��� �� �� � � � * �� �

(* � �� �
 &* ��� * , with equality if all flows

are continuously backlogged under GPS. Also, we note
that��� �� �� � � ��� � �� �� � [7].

We also use the concept of a WFI as defined in [2]: a
server guarantees for

� a WFI of � � if for any packet� �� ,
the following holds

 � �� � � � �� �� �� � �1*1 � �� � � � �� �� �� :
� � for any

� �
such that

� is continuously backlogged dur-
ing �� � � � �� �� ��.

Let us consider the time interval�� � � � where � 6
� �� �� � and

� 6 � �� �� �. Since
� ��� �� : 4 �� 6

4, the work of

�, � �� � � � equals the total length

of the first � packets arrived at the flow’s queue,�� �� � � �� �� �� < ����� �� �� �. On the other hand, we have � �� � � � � � 1*1� -*0 �
 � ��� ��

� � � : ����� due to the er-

ror bounds proven for the intragroup round-robin. Also, � ��� ��
� � � � �1� -*01 � �� � � � : �� ���, where�� ��� is

the group’s WFI in the intergroup algorithm. Since the
server is busy during�� � � � and work-conserving, we have 6 � �� : � �. Combining the above relations, we obtain����� �� �� � � � �� � � � � � 1*1� -*0 � ��1

� -*01 � �� � � � :
�� ��� � : ����� 6 �1*1 �� �� : � � : � 1*1� -*0 ��� ��� : ����� .

Hence,
�� �� : ��� �� �� �� < ����� 3 � 1*1� -*0 ��� ���, or� : ��� �� �� � <

�
>?@A� * 3 	� -*0 1*� * 1� -*0 . Thus, � ���� 6

�
>?@A� * 3 	� -*0 1*� * 1� -*0 .
For WF�Q and WF�Q5 , � � is

�� ���� 3�>?@A�>* �?@A �1 *1 . Therefore,� �$ � 7
� can be bounded by�
>?@A� * 3 >� -*0 �?@A� * 3 �1*1 � �>?@A �>� -*0 �?@A �� * .

For WFQ, SCFQ, and SFQ,�$ �
� 6 >?@A� [7],

� �� �
� 6 � �� �� �� �#� >� �?@A� [7], and � ��
� 6
� �� �� >� �?@A� : > �

&* �� * [8]. However, WFQ, SCFQ, and
SFQ all have� � that can grow as� �� �, where� is the
number of entities scheduled [2]. We can still bound the
WFI by observing that for any algorithm, WFI� < ;�.
This allows us to bound� ���� for WFQ, SCFQ, and SFQ
by

�
>?@A� * 3 � 1*1� � �� 3 �� >?@A� * . We see that compared to

the � � bounds for the standalone WFQ, SCFQ, and SFQ
servers,� ���� increases as

��5 ��� * . The
�
� * factor is due to

the round robin, and algorithms such as SRR have a sim-
ilar delay dependency. We can actually improve the de-
lay bounds of SRR from� �� �

�
� * to � �� �	
 � �

�
� * since; ����� is � �� �	
 � �. � �� � factor is the effect of the hi-

erarchy: the WFI, and therefore the delay bounds in GRR,
takes into account how far ahead of its fair share a group
has gotten, whereas� � only depends on how far behind a
flow is in terms of its ideal service. Intuitively, while in a
standalone server, packets arriving at an empty queue are
delayed because packets from the same session received
more service in a previous time period, with the group-
ing strategy, a flow within a group may observe increased
delay because of extra service that was received by other
flows in that group. WF�Q is the only algorithm whose
service error is bounded both above and below by a max-
imum size packet, and thus has an� ��� WFI.

Assuming � is small, we can provide good delay
bounds for the standalone GRR server with any intergroup
scheduler, and good network end-to-end delay bounds
when the router nodes employ GRR servers. It is shown
in [7] that the end-to-end delay of a packet� �� through
a network of
 servers�� is bounded by��� � �� �� � :� �� �� �3 �� �

�
�> * �?@A1* 3 ���# � �� �� 3 2 � ��5

�
�, where2 � ��5 �

is the propagation delay from�� to ��5 �.

VII. E XPERIMENTAL RESULTS

To show the performance of GRR in practice, we
present some results that quantify the resulting service
error for various combinations of weights and flows for
some of the algorithms presented in Section V. We com-
pare the service errors of WFQ, WF�Q, and SRR against
their respective GRR counterparts, GWFQ, GWF�Q, and
GSRR. For this purpose, we developed a scheduling sim-
ulator to examine the scheduling behavior of these differ-
ent algorithms across hundreds of thousands of different
combinations of flows with different weight values.

The simulator takes four inputs, the scheduling algo-
rithm, the number of flows� , the total number of weights

, and the number of flow-weight combinations. The
simulator randomly assigns weights to flows and scales
the weight values to ensure that they add up to

. It

then schedules the flows using the specified algorithm and
tracks the resulting service error. The simulator runs the
scheduler until the resulting schedule repeats, then com-
putes the maximum (most positive) and minimum (most
negative) service error across the nonrepeating portion of
the schedule for the given set of flows and weight as-
signments. This process of random weight allocation and
scheduler simulation is repeated for the specified number

10

 0 50 100 150 200 250
Number of flows

 0
 500
 1000

 1500
 2000

Sum of weights

 0
 25
 50
 75

 100
 125

Error

Fig. 1. WFQ service error

 0 50 100 150 200 250
Number of flows

 0
 500
 1000

 1500
 2000

Sum of weights

-1
-0.5

 0
 0.5

 1

Error

Fig. 2. WF7Q service error

 0 50 100 150 200 250
Number of flows

 0
 500
 1000

 1500
 2000

Sum of weights

-70
-35

 0
 35
 70

Error

Fig. 3. SRR service error

 0 50 100 150 200 250
Number of flows

 0
 500
 1000

 1500
 2000

Sum of weights

-2
-1
 0
 1
 2
 3
 4

Error

Fig. 4. GWFQ service error

 0 50 100 150 200 250
Number of flows

 0
 500
 1000

 1500
 2000

Sum of weights

-2
-1
 0
 1
 2

Error

Fig. 5. GWF7Q service error

 0 50 100 150 200 250
Number of flows

 0
 500
 1000

 1500
 2000

Sum of weights

-2
-1
 0
 1
 2

Error

Fig. 6. GSRR service error

of flow-weight combinations. We then compute an aver-
age maximum service error and average minimum service
error for the specified number of flow-weight combina-
tions to obtain an “average-case” error range.

Since the absolute service error of a scheduler is often
most clearly illustrated with skewed weight distributions,
we ran simulations for each scheduling algorithm consid-
ered on 32 different combinations of� and

, with one

of the flows given a weight equal to 50 percent of

. All
of the other flows were then randomly assigned weights
to sum to the remaining 50 percent of

. For each set of

�� �
 �, we ran 2500 flow-weight combinations and deter-
mined the resulting average error ranges. For simplicity,
all simulations were run with all flows backlogged at all
times and all packets of equal size. The average service
error ranges normalized by packet size for WFQ, WF�Q,
SRR, GWFQ, GWF�Q, and GSRR with these skewed
weight distributions are shown in Figures 1 to 6. Each
figure shows two surfaces representing the maximum and
minimum service error as a function of� and

for the

respective scheduling algorithm.

Figure 1 shows the service error range for WFQ to be
large, ranging between: � to ���. WFQ has a lower
bound of: � but no constant upper bound on the error. In
comparison, Figure 4 shows that GWFQ has significantly
less service error than WFQ, ranging only from:� ��� to
� ��� while also preserving a constant lower bound. Fig-
ure 2 shows the service error range for WF�Q, which is
bounded between: � to �. In comparison, Figure 5 shows

that GWF�Q has only slightly larger service error rang-
ing between:� ��� to � ���, which is within the derived
GWF�Q constant service error bounds and is achieved
with lower time complexity. Figure 3 shows the service
error for SRR to be quite large, ranging between:�� to
��. In comparison, Figure 6 shows that GSRR has much
less service error than SRR, ranging only between:� ���
to � ���. These results quantitatively demonstrate the ben-
efits GRR can provide in improving service error with of-
ten lower time complexity.

VIII. C ONCLUSIONS

We have presented the design and analysis of Group
Round-Robin, a packet scheduler that combines a novel
grouping strategy with a specialized deficit round-robin
algorithm to improve fairness and reduce time complex-
ity. GRR is designed to utilize existing algorithms as the
intergroup scheduler for scheduling among its groups. We
proved that GRR only adds a constant factor to the rela-
tive fairness and absolute service error of any intergroup
scheduler and also has low time complexity. As a result,
we showed that GRR can be used to reduce the service
error and time complexity of virtual time algorithms such
as WFQ, SCFQ, SFQ, maintain the constant service er-
ror bound of WF�Q while reducing its time complexity,
and reduce the service error of SRR while maintaining
its constant time complexity. Furthermore, we compare
these approaches using consistent fairness measures and
prove the fairness and service error bounds for several of

11

these algorithms. We implemented GRR and several GRR
augmented algorithms and showed for various numbers
of flows and weight distributions that GRR can reduce the
service error of existing algorithms such as WFQ and SRR
by well more than an order of magnitude. GRR’s ability
to narrow the tradeoff between fairness and computational
complexity provides an effective packet scheduling mech-
anism for data networks.

APPENDIX

We prove four new results regarding the relative fair-
ness and absolute service error bounds for various packet
scheduling algorithms. These results are stated in the fol-
lowing four lemmas.

Lemma 3: For WFQ, the relative fairness
8� �� between

any two flows

� and

� is bounded by>?@A1* 3 >?@A1� .
Proof: We first make the important observation that

for servers that reference GPS, such as WFQ, a flow is
assumed backlogged for the purpose of fairness if it is
backlogged under GPS. The distinction is important, since
otherwise, we can easily construct an example where a
flow backlogged only under WFQ receives half the ser-
vice as another flow with the same weight. Consider any
two flows

� and

� GPS-backlogged during the interval

�� � � �� �. If we denote by�� ��� the virtual finishing time of
the packet at the head of

�� ����� �� �, then

�� ��� : �� ��� < >* �?@A1* (4)

Clearly, this difference is maximal just after a packet� ��
from

� is served, and stays fixed until another packet
from

� or

� is served. Before� �� departed,�� �� �� �� � :

4 � � �� �� �� �� � : 4 �. Also, �� �� �� �� � 3 4 � 6 �� �� �� �� � :
4 � 3 > �

&/ (* �1 * and�� �� �� �� � : 4 � 6 �� �� �� �� � 3 4 �. It then

follows that �� �� �� �� � 3 4 � � �� �� �� �� � 3 4 � 3 > �

&/ (* �1* ,

which proves (4). We observe that�� �� � � 6 �� �� �
�(� � and

�� ��� � 6 �� �� �
�
7� � where by� �

�?� we denote the last packet
to have departed from flow

� before time
�� .

Because for any packet arrival in the backlog interval,

the virtual finishing time is�� �� �� � 6 �� �� ��
�

� � 3 > �

&� �1� ,

� �
� � � �, we have�� �� �
*
7� � 6 �� �� �

*(� � 3 !� �� � � �� �
and�� �� �

�
7� � 6 �� �� �

�(� � 3 !� �� � � �� �. Subtracting, we get
!� �� � � �� � : !� �� � � �� � 6 �� �� �

*
7� � : �� �� �

*(� � : ��� �� �
�
7� � :

�� �� �
�(� �� 6 �� ��� � : �� ��� � 3 �� �� � � : �� �� � � < >* �?@A1* 3

>* �?@A1� . Similarly, !� �� � � �� � : !� �� � � �� � < >* �?@A1* 3
>* �?@A1� . It follows that

8� �� �� � � �� � 6 9! � �� � � �� � :!� �� � � �� �
9 < >* �?@A1* 3 >* �?@A1� .

Lemma 4: For HS, the absolute service error
;� of

flow

� is bounded as follows:

;� < �� : ������ , where
� 6 ��	
 �� �� 3 �.

Proof: Let � be the height of the HS tree. Define� � 6
�, which is a leaf node, and� � = parent(� � �
�
) for

� 6 � � ���� � : �. For some� < � : �, !
 � : !
 � / (6
1� ���� �� � ��1�� 51� � where� is the sibling of� � . Since� � 5 � always

selects the child with the smaller normalized work, at any
time, !
 � : ! " < >?@A1�� and!" : !
 � < >?@A1� . Using

"
6

 � / (:

 � , we get�>?@A1�� / (<

!
 � :!
 � / (< >?@A1�� :>?@A1�� / (. Since!� 6 !
 (and! 6 !
 &'(, we have!� :
! 6 ����� #� �!
 � : !
 � / (� which is then bounded above

by ����� #� �>?@A1�� : >?@A1�� / (�
6 ���� �

�
1* :

�
1 �. Also, !� 6

!
 (� ����� #� �: >?@A1�� / (� � :���� ���
	

� #�
�
1� (3 >?@A1 �

: ���
�
�>?@A1* , since

 * �

 (. Thus, the error
 � �!� : ! �

can get only as large as
���� , and cannot be less than

: �� : ������ . Thus,
;� 6 � �� � 6 � ��	
 � �.

We will now show that this bound is tight. Consider
the case with a flow

�
of weight � and � flows of

weight 1, and assume fixed packet sizes
�

for simplic-
ity. The first time,

�
is selected, and the work of the

leaf � � corresponding to

�

as well as the work of� � ,
� 6 � � ���� � : � will become

�
. The next� : � pack-

ets will be served from the siblings of� � , � 6 4 � ���� � : �
since the!
 � � 4 6 !" where� is the sibling of� � . Thus,
after the first� packets have been served, the error of

�
will be

9� : �1 (1
9 6 9� : �
�

9 6 9� : ��
9
. Thus, the error is

worst case� �� � 6 � ��	
 � �.
Lemma 5: For HS, the relative fairness

8� �� is bounded

by
���
�
�>?@A��� �1 * �1� � <

���� �
 ��>?@A��� �1 * �1� � , where� is the number of

flows being scheduled and� 6 ��	
 �� �� 3 �.
Proof: Assuming without loss of generality that!� � !� , using the results in Lemma 4, we have

8� �� 6! � :!� 6 ! � :! 3! :!� < ���� �
�
1* :

�
1 �3

�����>?@A1� 3
>?@A1 < ���

�
�>?@A��� �1* �1� � .Lemma 6: For SRR, the absolute service error

;� of
flow

� is bounded as follows:
;� < �
 5

�
���
6 � �� � �,

where� is the number of flows being scheduled and� is
the number of bits needed to store the maximum weight
of any flow.

Proof: We will first show a� �� � � bounds for
;�

of SRR. For this, we introduce the equivalent complete bi-
nary tree associated with the WSS. This tree has� levels,
and each node on level� corresponds to the WSS num-
ber � (where ’� ’ is the root and ’�’ are the leaves). We
notice that the inorder traversal of this tree corresponds to
the � 	� order WSS (this observation will allow us to later

12

describe an algorithm to dynamically generate the WSS).
In the following discussion, we assume

� 6 ���� 6 �.
The error bounds can be scaled afterwards by

���� .

Consider flow

� with weight
 �. Since the leaves in

the WSS-tree are visited every other time, we can assume
that the node currently visited is a leaf node (otherwise,
the error can increase by at most 1). Let� be the
number of leaves considered thus far. Then the number
of level � nodes visited is

� �
�
� ' (3

�
� �, as can be deduced

from the WSS-tree. Then the work done for flow

� is � 6 ��� # � � �� � �

�
� ' (3

�
� � while the total work done is 6 ��� # � � � � �

�
� ' (3

�
� � where� � is the number of

flows that have a non-zero bit at position� , and� �� is the

� 	� bit of
 �. Thus,
 � : �1*1 � 6 ��� # � � �� � �

�
� '(3

�
� �:��
 *� �&'���
� �&'� �� � �

� �
�
� '(3

�
� �. Then

 � : �1*1 � <
�� � �� � �

�
� '(: �� � : ��
 *� �'���
� �'� �� � � �

�
�
� ' (3

�
� �

6
��
 *�

� 3 ��
 *� �'���
� �'�
��
�

� < �
� 3
 �� , since

�� � �� < � and �� � � < � � (each of
 � can

have at most� bits on). Also,
 � : �1*1 � �

�� � �� � �
�
� '(3

�
� � : ��
 *� �'���
� �'� �� � � �

�
�
� ' (: �� �

6

:��

*�

� : ��
 *� �'���
� �'�
��
�

� � ��� :
 �� . Therefore,
;� 6 9 � : �1*1 � 9 < � �
 5

�
��
6 � �� � �.

We will now show that in fact
;� can be� ��� �. For

this, consider the example with� 3 � flows,

�

through

 , where
 � = 11...1 101...010� = �� : �

&
7 5�	 and
 � ��� �

= 00...0 010...101� = �
&
7 �
�	 (we assume� is a multiple

of 4). The bit representations of
 � satisfy the following:
the first �� bits are 1 for
 � and 0 for
 � ��� �, while bit
� � �

� is � � 	� � for
 � and �� 3 �� � 	� � for
 � ��� �,
where bit 1 is the most significant bit. Let� be the level�
� node in the WSS-tree such that in the path from the
root to � , odd level nodes are right children, and even
level nodes are left children. For each node, because of
the inorder traversal of the WSS-tree, the left subtree will
have been visited before the node, and the right subtree
is visited after the node. Thus, at the moment we are
considering, only the even level nodes in the path and
their left subtrees will have been visited. The follow-
ing relation holds for the work done during a completely
visited subtree rooted at a node on level�� 3 � , � odd: �
 :
 � � ��
	 : �

&
7 5�
	 . (

 �
 :
 � 6 � �
 :

 � � : � : � �
 � 6 ���

&
7 5� � : ��

� 5 ��	 � ���
&
7 �
�
�
	 � :

���� : ��
	 � ��� : ��
&
7 5��	 � 6 ��5�
	 : �

&
7 5�
	 : �

&
7 5�
� :

��
� : �
&
7
� 3
� : ��5�
	 3 ��
	 3 �

&
7 5�
� : �

&
7
� : �
� 6

��
	 : �
&
7 5�
	 3 ��
	 : �

&
7 5
�

� :
� < ��
	 : �

&
7 5�
).

Then for all the completely visited subtrees up to
the time node� is considered, the difference

 �
 :
 � is less than�
&
7 �
�

� # � ���
	 � : �
&
7 �
�

� # � ��
&
7 5�
	 � 6

����
�

	 : ���5 � : �

&
7 5
�
�
	 . The

�
error at

node � is then
; � 6 � : �1 (1 � � 3 � �� �

6
$ (1�$ 1(�1 (

&
71 < �

�
1 � ���

��
�

	 : ���5 � : �

&
7 5
�
�
	 :

��� : �
&
7 5�	 ��
� � < �

�
1 � �� ���

�
� � �	 : � � <

: �
�
1 � �
��&
	 � < : ���& �� �

�
&
�
-7
&
7 /70� 5 � -7

&
7 '(0�

< :
 �� provided

that� < �� �� . Clearly, if � � �� �� , then we can use the
� , 1, 1, ..., 1 (� times) example to show that the error is
� �� �, which is unacceptably large by itself.

O(1) WSS dynamic generation: A way to generate
the WSS is by means of traversing the WSS-tree described
in Lemma 6. We describe an easy algorithm to accom-
plish this: keep a boolean array

� �� � ���� � �, initialized to
false. At each step, select level 1, and then find the least
� � � such that

� �� � is false. Reset all
� ��� with

� � �
to false, select level� , and set

� �� � to true. This method
of generating the WSS is worst case� for a step, but on
average, it is 2. To see that, note that the total work is
���
�
3 �����3 ���

	 �3 ���3 �
� � < �� ����#� �

�
� � 6 ��5 �.

Since���
�
3 �� 3 � 6 �� : �, the average work for each

number in the WSS is�
&/ (

�
& �
� � �. Since we know that the

sequence in the WSS doesn’t change, we can amortize the
cost of computing the WSS by performing 2 operations
instead of 1 each step and filling up a buffer from which
we select the next number of the WSS. The buffer will
need to be only of size�, and not

� � �� �� as [3] requires
for its static WSS. We can show that the buffer always
contains between 1 and� WSS numbers, so that no more
than 2 operations need to be performed each step.

REFERENCES

[1] J. Bennett and H. Zhang, “	
 7�: Worst-case Fair Weighted
Fair Queueing,” inProceedings of INFOCOM ’96, San Fran-
cisco, CA, Mar. 1996.

[2] J. Bennett and H. Zhang, “Hierarchical Packet Fair Queueing Al-
gorithms ,” inProceedings of ACM SIGCOMM ’96, Aug. 1996

[3] G. Chuanxiong, “SRR: An 0(1) Time Complexity Packet Sched-
uler for Flows in Multi-Service Packet Networks,” inProceed-
ings of ACM SIGCOMM ’01, Aug. 2001.

[4] J. Cobb, M. Gouda, and A. El-Nahas, “Time-Shift Schedul-
ing - Fair Scheduling of Flows in High-Speed Networks,” in
IEEE/ACM Transactions on Networking, June 1998.

[5] A. Demers, S. Keshav, and S. Shenker, “Analysis and Simula-
tion of a Fair Queueing Algorithm,” inProceedings of ACM SIG-
COMM ’89, Austin, TX, Sept. 1989.

13

[6] S. J. Golestani, “ A Self-Clocked Fair Queueing Scheme for
Broadband applications,” inProceedings of IEEE INFOCOM
’94, Apr. 1994.

[7] P. Goyal, S. Lam, and H. Vin, “Determining End-to-End Delay
Bounds in Heterogeneous Networks,” inProceedings NOSSDAV,
Apr. 1995.

[8] P. Goyal, H. Vin, and H. Cheng, “Start-Time Fair Queueing:
A Scheduling Algorithm for Integrated Services Packet Switch-
ing Networks,” inIEEE/ACM Transactions on Networking, Oct.
1997.

[9] L. Kleinrock, Queueing Systems, Volume II: Computer Applica-
tions. New York: John Wiley & Sons, 1976.

[10] A. Parekh and R. Gallager, “A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks: The
Single-Node Case,”IEEE/ACM Transactions on Networking,
1(3), June 1993.

[11] M. Shreedhar and G. Varghese, “Efficient Fair Queueing Using
Deficit Round-Robin,” inProceedings of ACM SIGCOMM ’95,
4(3), Sept. 1995.

[12] D. Stiliadis, and A. Varma, “Efficient Fair Queueing Algorithms
for Packet-Switched Networks,” inIEEE/ACM Transactions on
Networking, Apr. 1998.

[13] C. Waldspurger, Lottery and Stride Scheduling: Flexible
Proportional-Share Resource Management. PhD thesis, De-
partment of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, Sept. 1995.

[14] L. Zhang, “Virtual Clock: A New Traffic Control Algorithm for
Packet Switched Networks,” inACM Transactions on Computer
Systems, 9(2), May 1991.

