
Towards In Vivo Testing of Software Applications

Christian Murphy, Gail Kaiser, Matt Chu
Dept. of Computer Science, Columbia University, New York NY 10027

{cmurphy, kaiser, mwc2110}@cs.columbia.edu

Abstract

Software products released into the field typically

have some number of residual bugs that either were
not detected or could not have been detected during
testing. This may be the result of flaws in the test cases
themselves, assumptions made during the creation of
test cases, or the infeasibility of testing the sheer
number of possible configurations for a complex
system. Testing approaches such as perpetual testing
or continuous testing seek to continue to test these
applications even after deployment, in hopes of finding
any remaining flaws. In this paper, we present our
initial work towards a testing methodology we call “in
vivo testing”, in which unit tests are continuously
executed inside a running application in the
deployment environment. In this novel approach, unit
tests execute within the current state of the program
(rather than by creating a clean slate) without
affecting or altering that state. Our approach has been
shown to reveal defects both in the applications of
interest and in the unit tests themselves. It can also be
used for detecting concurrency or robustness issues
that may not have appeared in a testing lab. Here we
describe the approach, the testing framework we have
developed for Java applications, classes of bugs our
approach can discover, and the results of experiments
to measure the added overhead.

1. Introduction

Thorough testing of a commercial software product
is unquestionably a crucial part of the development
process, but the ability to faithfully detect all defects
(“bugs”) in an application is severely hampered by
numerous factors. For large, complex software
systems, it is typically impossible in terms of time and
cost to reliably test all configuration options before
releasing the product into the field. Furthermore, it is
possible that the test code itself may have flaws in it,
possibly because of oversights or assumptions by the

authors. And, of course, despite progress in measuring
test coverage and formal verification, it is only
possible to detect the presence of bugs, not their
absence.

One proposed solution to this problem has been to
continue testing the application in the field, even after
it has been deployed. The theory is that, over time,
defects will reveal themselves given that multiple
instances of the same application may be run globally
with different configurations, under different patterns
of usage, and in different system states.

In this paper, we present our initial work towards a
testing methodology we call in vivo testing, in which
unit tests are continuously executed inside a running
application in the deployment environment. In this
novel approach, tests execute within the current state
of the program without affecting or altering that state.
Here, we show that our approach can reveal defects
both in the applications under test and in the unit tests
themselves. It can also be used for detecting
concurrency or robustness issues that may not have
appeared in a testing lab (the “in vitro” environment).

In vivo testing can be used to detect bugs hidden by
assumptions of a clean state in the unit tests, errors that
occur in field configurations not tested before
deployment, and problems caused by unexpected user
actions that put the system in an unanticipated state.
Our approach goes beyond application monitoring in
that it actively tests the application, using the same unit
tests from the development stage, with minimal
modification to the application and unit test code.

Although we only present our initial findings thus
far, our main contribution is an approach to executing
unit tests within the environment of a running system,
and doing so without altering that system’s state.

2. The in vivo testing approach

The foundation of the in vivo testing approach is
the fact that many (if not all) software products are
released into deployment environments with latent
defects still residing in them, as well as our claim that

these defects may reveal themselves when the
application executes in states that were unanticipated
and/or untested in the development environment.
Furthermore, bugs may exist in the unit tests
themselves, not just in the application code. So a unit
test that passes in development may not necessarily
pass when executed after deployment, and the fact that
a unit test passes does not mean that the piece of code
is without flaw.

In vivo testing is an approach by which unit tests
are executed in the deployment environment, in the
context of the running application, as opposed to a
controlled or blank-slate environment. Tests are run
continuously as the application runs, at arbitrary points
in the program execution. Crucial to the approach is
the notion that the test must not alter the state of the
application. In a live system in the deployment
environment, it is clearly undesirable to have a test
application altering the system in such a way that it
affects the users of the system, causing them to see the
results caused by the test code rather than their own
actions. This is ensured by executing the test in a
separate process, which has been created as an exact
copy of the original.

2.1. Conditions

In order for in vivo testing to be useful in practice

for a given unit test and a corresponding piece of
software to be tested, three conditions must be met.
First, the unit test must pass in the development
environment, even though there is a defect in the
software under test (if the unit test fails before
deployment, then obviously in vivo testing is not
necessary). Second, under certain potentially-
unanticipated circumstances the running application
should give erroneous results or behavior in the
deployment environment, but should not crash or
otherwise fail (since in vivo testing would not be
needed to detect such gross failures). Lastly, for some
process state or condition of use, the unit test must
subsequently fail. If these conditions are met, it is
possible for in vivo testing to detect that there is a bug.
The bug will typically be one in the application code,
or in the unit test code, or both.

2.2. Categories and motivating examples

To examine the feasibility of our testing approach,

we investigated the documented defects of some
popular, open-source applications to see which of them
could have been discovered using in vivo testing. The
first, OSCache[5] version 2.3, is an open-source multi-

level caching solution designed for use with JSP pages
and Servlet-generated web content. In addition, we
looked at different versions of Apache Tomcat [1], a
Java Servlet container.

We identified five different categories of defects
that in vivo testing could potentially detect. The
categories are listed in Table 1. There may be other
categories of bugs that could be found with in vivo
testing, but these are the ones identified so far.

The first category of defects likely to be found by in
vivo testing are those in which the corresponding unit
test assumes a clean slate, but the code does not work
correctly otherwise. Generally unit tests are written in
such a way that the objects being tested are created and
modified to obtain a desirable state prior to testing. In
these cases, the code may pass unit tests
coincidentally, but not work properly once executed in
the field, revealing bugs in both the test code and the
code itself.

One of the OSCache bugs notes that, under certain
configurations, the method to remove an entry from the
cache is unable to delete a disk-cached file if the cache
is at full capacity. 1 In this case, the corresponding unit
test for testing cache removal may simply add
something to the cache, remove it, and then check that
it is no longer there. A unit test that assumes an empty
or new cache would pass, but when the cache is full,
the test would fail, revealing a bug that may not have
been caught in the development environment.

The second category of defects concerns those that
come about from field configurations that were not
tested in the lab. These, too, may reveal a bug in the
code or in the unit test. Java server applications may
require testing on multiple platforms with multiple
JDK versions and multiple revisions of the application
code; this is not always feasible for testing in a single
test lab, particularly given the frequency with which
companies must release their applications to be
competitive in the marketplace. Additionally, system
administrators of such applications may have
numerous runtime configuration options, and not all
combinations may have been tested before release.
This is especially true in the case of open source
software, such as the applications we considered here.

Another OSCache bug falls in this category. In this
bug, setting the cache capacity programmatically does
not override the initial capacity specified in a
properties file when the value set programmatically is
smaller. 2 A unit test for the method to set the cache
capacity may assume a fixed value in the properties
file and only execute tests in which it sets the cache

1 http://jira.opensymphony.com/browse/CACHE-236
2 http://jira.opensymphony.com/browse/CACHE-158

capacity to something larger; this test would pass.
However, if a system administrator sets the capacity to
a large number in the properties file, the unit test
would fail when it tries to set the cache capacity to a
smaller value, revealing the bug.

Table 1. Categories of defects that can be

detected with in vivo testing
1 Corresponding unit test assumes a clean slate
2 Field configurations that were not tested in the lab
3 A legal user action that puts the system in an

unexpected state
4 An unanticipated user action breaks the system
5 Those that only appear intermittently

The third types of defects targeted by in vivo testing

are ones that stem from a (legal) user action that puts
the system in an unexpected state. This could happen
when objects are shared between users, and one user’s
activities modify that object such that it does not work
correctly for other users.

Concurrency bugs are a very common type of
defect in this category. We noticed one of the
concurrency bugs in Apache Tomcat, in which a
particular method used in the creation of a session is
not threadsafe. 3 If the thread that invalidates expired
sessions happens to execute at the same time as a
session is being created, it is possible that an exception
would occur (and not be caught) because one of the
objects being used in the session creation could be set
to null. A unit test that is simply testing the creation of
sessions is not likely to detect this bug because at that
time there may not be any other sessions to invalidate
(this is also a case of the first type of defect targeted by
in vivo testing, in which the unit test assumes a blank
slate). However, in the deployment environment, this
unit test may fail if the session invalidation thread is
cleaning up other sessions at the same time.

The fourth types of defects that can be found by
using in vivo testing are ones in which an
unanticipated (but legal) user action causes the system
to stop running (crash) or simply stop responding
(hang). This may generally seem more like
“monitoring” than “testing”, but can still be addressed
by our approach, since the unit tests call the methods at
arbitrary times and the error may be detected before it
affects any user. Unlike the third category, in which
the application continues to respond to users and
appears to run normally, these are defects that cause
the system to stop responding or to repeatedly give
error messages.

3 http://issues.apache.org/bugzilla/show_bug.cgi?id=42803

For instance, one of the Apache Tomcat bugs we
considered is one in which there is a resource leak in
the database connection pool. 4 A single unit test to
create, use, and release connections from the pool may
not detect the leak if it is not executed enough times.
However, in the field this error may arise if the test is
executed repeatedly, and finally the test would fail
when it could not obtain a connection. Because this
does not result in a runtime error (the application just
hangs while waiting for a free connection), a system
monitor that is checking for uncaught exceptions
would not detect this situation. On the other hand, a
unit test that is run in vivo could conceivably reveal
this bug.

The fifth and final type of defect is one that only
appears intermittently. These defects may be
discovered by a continuous testing approach during the
development phase [41], but the fact that our approach
continuously tests the application even after
deployment increases the chance of finding such a bug.

One such defect appears in OSCache, whereby
flushing the cache, adding an item, and attempting to
retrieve the item can occasionally result in an error.5 A
unit test that tries this sequence of actions may simply
never encounter the error by chance during testing in
the development environment. But by having instances
of the application repeatedly execute this test in the in
vivo testing approach, it may eventually appear.

It is conceivable that some of the bugs documented
here could have been discovered prior to release of the
application given more time, better unit tests, and a
little luck. But these examples demonstrate that a
testing methodology that continues to execute unit tests
on an application in the field can greatly improve the
chances of the errors being detected. More
importantly, certain bugs will in practice only manifest
themselves in the field (because of limited time and
resources in the testing lab), and these are the ones for
which in vivo testing is most useful.

3. Related work

Our work is principally inspired by the notion of
“perpetual testing” [35, 40, 39, 48], which suggests
that analysis and testing of software should not only be
a core part of the development phase, but also continue
into the deployment phase and throughout the entire
lifetime of the application. Perpetual testing advocates
that analysis and testing should be on-going activities
that improve quality through several generations of the

4 http://issues.apache.org/bugzilla/show_bug.cgi?id=42856
5 http://jira.opensymphony.com/browse/CACHE-175

product, in the development environment (the lab) as
well as the deployment environment (the field). The in
vivo testing approach is a type of perpetual testing in
which the same unit tests can be used in both
environments with only minor modifications, and the
tests do not alter the state of the application under test.

In vivo testing is also a form of “residual testing”
[36]. This type of testing is motivated by the fact that
software products are typically released with less than
100% coverage, so testers assume that any potential
defects in the untested code (the residue) occur so
rarely so as not to bear consideration. Much of the
research in this area to date has focused on measuring
the coverage provided by this approach by looking at
untested residue [36, 31] or by comparing the coverage
to specifications [32]. However, this work does not
consider the actual execution of unit tests in the
deployment environment, as we describe here.

Also related to perpetual testing is “continuous
testing”, which refers to round-the-clock execution of
tests, though typically in the development environment
[41, 42]. However, the Skoll project [19, 28] has
extended this into the deployment environment by
carefully managed facilitation of the execution of tests
at distributed installation sites, and then gathering the
results back at a central server. The principal idea is
that there are simply too many possible configurations
and options to test in the development environment, so
tests can be run on-site to ensure proper quality
assurance. Whereas the Skoll work to date has mostly
focused on acceptance testing of compilation and
installation on different target platforms, or
performance testing, in vivo testing is different in that
it seeks to execute unit tests within the application
while it is running under normal operation.

While the notion of “self-checking software” is by
no means new [47], much of the recent work in
executing tests in the field has focused on COTS
component-based software. This stems from the fact
that users of these components often do not have the
components’ source code and cannot be certain about
their quality. Approaches to solving this problem
include using retrospectors [22] to record testing and
execution history and make the information available
to a software tester, and “just-in-time testing” [21] to
check component compatibility with client software.
Work in “built-in-testing” [45] has included
investigation of how to make components testable [11,
27, 10, 12], and frameworks for executing the tests
[15, 29, 26], including those in embedded systems [37]
and Java programs [16], or through the use of aspect-
oriented programming [25]. In light of all these
important contributions, in vivo testing differentiates
itself by providing the ability to test any arbitrary part

of the system (not just COTS components) and by
utilizing existing unit test code, rather than requiring
extensive modification to the original source [7, 44] or
enforcing a rearchitecture of the application [9, 30].

Other approaches to perpetual testing include the
monitoring and profiling of deployed software, as
surveyed in [17]. One of these, the GAMMA system [33,
34], uses software tomography for dividing monitoring
tasks and reassembling gathered information; this can
then be used for onsite modification of the code (for
instance, by distributing a patch) to fix defects. Clause
[13] has looked at methods of recording, reproducing,
and minimizing failures to enable and support in-house
debugging, and Baah [8] uses machine learning
approaches to detect anomalies in deployed software.
All of these strategies could make use of in vivo
testing as part of their implementation.

4. Invite: The in vivo testing framework

The preliminary in vivo testing framework, which
we call Invite (IN VIvo TEsting framework), is
developed in Java and has been designed to entirely
separate the testing code from that of the application
under test. In order to use Invite, the software vendor
must first ensure that the test classes follow the JUnit
[4] conventions, specifically that the class has “setUp”
and “tearDown” methods, and all test methods start
with the word “test”, take no arguments, and return
void. These methods must all be public.

In order for the test classes to use objects that exist
in the running application, it is necessary for the
constructor or the “setUp” method to get references to
existing objects, rather than creating new ones, as is
typical in a JUnit test suite. This allows Invite to
execute the unit tests in the context of the current state
of the system by using the objects that have been
modified over the course of the program’s execution,
rather than creating a blank slate. However, because
the Invite code that invokes the JUnit test does not
have references to the objects in the application, and
the test methods do not take arguments, modification
of the application may be necessary to provide
arbitrary access to the objects that are necessary for
testing.

One possible approach is to add singleton instance
references so that the test code can statically get access
to an object of that type (i.e., the one being used in the
application) without explicitly being passed a
reference. This requires modification of the source
code, though, unless singletons are already being used.
Only a few extra lines need to be added to each class
that must expose one object of that type as a singleton,

and the modification should not affect the normal
execution of the system, since the reference to the
singleton need not be used anywhere else.

However, this approach has limitations in the cases
where multiple objects of the same class are used in
the application (such as in a resource pool), and the
test needs to somehow pick amongst them, or where
objects are created using a factory class, and arbitrary
object access may be impossible. It is important to
note, however, that any source code modification
would be done a priori by the vendor who plans to
distribute an in vivo-testable system, and not by the
customer in whose environment the tests run.

The vendor must then select one or more Java
classes in the application under test for
instrumentation, such that all method calls into the
class will be points at which a unit test could be run.
To achieve this, Invite uses a Java component written
in the aspect-oriented programming language AspectJ
[2], which is woven into the instrumented classes. This
does not require any modification of the original
source code; it only calls for recompilation, though this
restriction could be lifted by use of a system like [18].
Note that the unit tests will not necessarily be those
written for the instrumented classes; the instrumented
classes merely provide “jumping-off points” where
tests may be executed.

Lastly, the vendor would configure Invite with a list
of JUnit test classes. Invite is also configured with the
percentage of method calls in the instrumented classes
on which to execute the unit tests. In practice, this
number would presumably be very small, but is
heavily dependent on the number of instrumented
methods, the frequency with which they are called, and
the desired amount of testing to be performed.

It is assumed that the application vendor would ship
the unit tests and the configured testing framework as
part of the software distribution. However, the
customer organization using the software would not
need to do anything at all, and ideally would not even
notice that the in vivo tests were running; Section 6
explores the performance overhead caused by Invite.

At system startup, Invite uses Java Reflection to
find all the “test” methods in the JUnit classes, and
stores the names for later use. Whenever a method of
an instrumented class is invoked, Invite uses the
percentage value to decide whether to execute a test. If
Invite decides that a test is to be run, it randomly
chooses one method from amongst those in the
configured JUnit test classes (alternatively, a planned
schedule of tests could be implemented). It then forks a
new process (which is a copy of the original) to create
a sandbox in which to run the test code, ensuring that
any modification to the state caused by the unit test

will not affect the “real” application, since the test is
being executed in a separate process with separate
memory. As Invite is currently implemented in Java,
and there is no “fork” in Java, we have used a JNI call
to a native C program which executes the fork.

Once the test is invoked, the application can
continue its normal execution, while the unit test runs
in the other process. In the current implementation of
Invite, unit test modifications to files, I/O, the
operating system, etc. cannot be undone; the sandbox
only includes the in-process memory of the application
(this limitation is discussed in Section 7). When the
unit test is completed, Invite logs whether or not it
passed, and that process is terminated. The testing
results currently would need to be manually inspected,
but this could be automated, and errors could be
reported back to a central server as in [33] or [28].

Unlike other testing approaches that test the
application as it is running, such as [30] or [16], Invite
avoids the “Heisenberg problem” of having the test
alter the state of the application it is testing. This is one
of the major contributions and differentiating
characteristics of the in vivo testing approach.

5. Empirical Study

After considering the numerous motivating
examples listed in Section 2, we sought to apply Invite
to a publicly-available application, in order to
determine whether the approach would work to detect
more defects.

The application we instrumented for testing was
Jetty WebServer 6.1 [3], an open-source Java HTTP
server that also supports the Java Servlet API. We
chose it primarily because it provides unit tests in the
JUnit style, which we could use for our in vivo testing.

Before conducting any tests using the in vivo
testing approach, we selected 15 unit test classes from
the ones that ship with the Jetty distribution, and
executed all of them outside of the running program to
ensure that the tests would pass under normal
circumstances, i.e. outside of the in vivo testing
framework.

In order to attach Invite, we then instrumented
Jetty’s HttpConnection class, which is used in every
page request, so that every request had a chance of
causing a unit test to be invoked. We configured Invite
to use the 15 different unit test classes. Where
appropriate, we needed to modify some of the tests to
get references to certain objects in the running
application, rather than creating new ones.
Specifically, we added a reference to a singleton
instance (three lines of code) to the Server class so that

unit tests could access the same object used in the
running application. Doing so has no effect on the
user, since this just creates a static reference that is
unused by the rest of the application during normal
execution.

We then modified the seven classes that need
access to the Server so that they accessed it via the
singleton reference instead of creating a new instance.
Any other objects required by these tests were then
accessed via the methods of the Server object (no code
change was necessary). To simulate user activity on
the Jetty web server, we used The Grinder [6], a load
testing tool, to request a series of static and dynamic
web pages.

Our testing appears to have revealed one new,
unreported bug in the “copyThread” method of the IO
utility class. This method is given an input stream and
an output stream as arguments, creates a new thread,
reads from the input stream in its entirety, and writes to
the output stream. The corresponding unit test creates
and initializes a byte array input stream, invokes the
“copyThread” method, waits 1.5 seconds, and then
reads from a byte array output stream to see if the data
were correctly copied.

This unit test generally passed during in vivo
testing, but occasionally (approx. 15% of the time)
failed when there was load on the web server, because
the byte array of the output stream would sometimes
be empty. We speculated that the 1.5 second waiting
time in the unit test was not enough to copy over the
bytes from the input stream to the output stream, and
increased the value to 10 seconds but still the error
occasionally appeared (there were only 44 bytes being
copied and this certainly should not take 10 seconds).

Further inspection of the “copyThread” code
revealed that the output stream was never being
“flushed”; this could possibly be the error, though we
have not yet verified this (adding the “flush” call
seems to have made the error go away, but we are
concerned that it may reappear if the test were run for
a longer time). This has been the only new bug we
have found in Jetty to date, but our testing is
continuing, and we expect that we may find others in
the future. This is one example of an intermittent bug
that would not be revealed in traditional unit testing in
the development environment, but could appear in the
deployment environment, and may be detected with in
vivo testing.

6. Performance Evaluation

We are concerned with the performance impact of
our approach, particularly in using aspect-oriented

programming to instrument potentially numerous
method calls (perhaps all of them), and the overhead
incurred by forking a process through a native method
call to create a sandbox in which the test would be run.
We conducted some performance tests to measure the
feasibility of such an approach.

6.1. Test setup

For our performance testing, we instrumented Jetty

WebServer 6.1 [3] with Java 1.5.0 on a Linux RedHat
2.6.9 server with four 3.2 GHz CPUs and 1 GB of
memory. Only minimal background system processes
were executing during our tests.

To place load on the web server, we used The
Grinder [6] installed on a Microsoft Windows XP
system with a single 3 GHz processor and 1 GB of
memory. The server and the client machines were
connected over our department’s gigabit LAN.

6.2. Baseline testing

We first tested Jetty in our configuration without

the in vivo testing framework attached, to determine a
baseline. The test consisted of 10,000 requests for a
JSP page of 20 kilobytes, which is approximately the
average size of an HTML page [23]; the page was
dynamically generated to avoid any caching by Jetty.
The mean time for page requests was 6.35ms and
throughput of HTTP response bytes was 3910kBps.

We then instrumented one Java class in Jetty
(HttpConnection), which is used on every page
request, but did not specify any unit tests to run. In this
case, we could measure the overhead of the
instrumentation itself (from the inserted AspectJ code),
but did not need to consider the forking of new
processes or parallel execution of any test code, since
there were no unit tests from which to choose. This
time, the mean time for page requests was 6.43ms
(1.2% increase) and a throughput of 3800kBps, which
indicated very little impact overall.

6.3. Performance impact of in vivo testing

Next, we configured Invite to use 15 JUnit test

classes (part of the Jetty distribution) with a total of 52
test methods. We instrumented the HttpConnection
class, in which there are approximately 50 method
calls on each page request, meaning 50 possible
chances to launch a unit test. Note that the JUnit test
classes did not necessarily test the HttpConnection
class; it was simply used as a launching point for the
test methods.

We first configured Invite to execute unit tests on
only 0.02% of the method calls in the instrumented
class, so that each page request would have about a 1%
chance of executing a unit test (no precautions were
taken to ensure that a single page request did not result
in the execution of more than one test, however).
Using the same test environment as above, we saw that
the mean time to complete a page request was 6.65ms
(4.7% increase), though the overall throughput stayed
the same at 3800kBps. The most telling statistic was
the mean time to the first byte, which rose to 3.89ms
(8.3% increase) compared to the baseline. The reason
for the increase is that the class we instrumented is
used before any bytes are sent back to the client, so
any unit test would be launched during that time, hence
the initial overhead.

We then configured Invite to execute unit tests on
0.2% of method calls to the instrumented class, which
meant that each page request would have
approximately a 10% chance of executing a unit test.
In this case, the mean time to complete a page request
rose to 7.98ms (25.6% increase), and the throughput
was 3030kBps. The mean time to the first byte
increased to 5.04ms (40.3% increase), demonstrating
that this value was the one most affected by having the
unit test execute at the beginning of a response to a
page request. We also ran a test in which 100% of the
page requests launched unit tests, to get an idea of the
worst case overhead. As shown in Table 2, the
differences in the mean times to complete a page
request are mirrored in the mean times to the first byte.

Table 2. Load tests with pages of 20kB

Percent of
page
requests
that execute
tests

Mean
time
to
serve
page
(ms) % diff

Throughput
of response
data (kBps)

Avg time to
start
sending
response
(ms) % diff

Baseline 6.35 - 3910 3.59 -
0% 6.43 1.2 3800 3.62 0.1
1% 6.65 4.7 3800 3.89 8.3
10% 7.98 25.6 3030 5.04 40.3
100% 13.6 114 1810 10.4 189

Despite the 25% overhead between the

uninstrumented baseline and the configuration to run
unit tests on 10% of the page requests, we note that
there is less than 5% overhead when running unit tests
on 1% of the page requests, and contend that 1% is
probably sufficient for detecting defects on a heavily-
used application. Of course, there is a tradeoff between
executing more tests (and increasing the likelihood of
finding bugs) and performance, and careful planning
would need to be employed when configuring the
testing framework.

6.4. Tests with large web pages

Clearly the process forking is the cause of much of

the overhead in this implementation of the in vivo
testing framework. We measured an average of 4.34ms
for the completion of the fork call during the setup
with 10% of the requests resulting in unit test
execution. However, it should be noted that the
overhead of executing the tests is not related to the size
of the web page being requested; it is more or less
constant, according to how fast the fork can be
executed.

Table 3. Load tests with pages of 600kB

Percent of
page
requests
that execute
tests

Mean
time
to
serve
page
(ms) % diff

Throughput
of response
data (kBps)

Avg time to
start
sending
response
(ms) % diff

Baseline 61.5 - 9770 0.960 -
0% 61.8 0.4 9340 0.961 0.1
1% 62.0 0.8 9770 1.20 25.0
10% 62.3 1.3 9770 1.49 55.2
100% 64.2 4.4 9340 3.22 235

To demonstrate this, we conducted another test

using a large (static) web page of 600kB. As shown in
Table 3, with no test instrumentation, the average time
to serve a page request of this size was 61.8ms. This
number rose only to 62.0ms (0.8% increase over
baseline) if 1% of the page requests were resulting in
unit tests being executed; 62.3ms (1.3% increase)
when 10% resulted in unit tests; and only 64.2ms
(4.4% increase) in the case where 100% of the requests
caused unit tests to run. This average overhead is still
on the order of a few milliseconds, but is very small
compared to the total time to serve the page.

6.5. Areas for performance improvement

We are continuing to seek ways in which to reduce

the overhead of the Invite testing framework. Forking
a process is programmatically simple but incurs a large
cost, and a transactional rollback strategy may be
preferable [43]. With any strategy, though, care must
always be taken to ensure that the test does not affect
the system state.

It may be possible to reduce the overhead by
distributing the testing load across multiple instances
of the application. One solution may be to use a tool
like the GAMMA system [33, 34] for distributing the
tests and determining which tests should be run under
different circumstances. Another approach would be
similar to the “application communities” idea [24], in
which application instances in a software monoculture
share information. This would allow in vivo testing to

distribute the testing load in space as well as in time.
As part of future work, we intend to consider these
solutions and develop a new, distributed
implementation of the Invite framework.

7. Limitations and future work

The most critical limitation of the current Invite
framework implementation is that anything external to
the application process itself, e.g. files, database tables,
network I/O, etc., is not replicated by forking the
process and modifications made by any unit test
therefore cannot be undone. Though this somewhat
limits the type of testing that can be performed
currently, there are still many categories of defects
(listed in Section 2) that can be detected when
considering tests that only utilize and affect the state of
the process in memory, of course. However, in order to
add more robustness to the testing approach, changes
must be made to the Invite framework so that it does
not modify the state of external systems at all.

One possible way to solve this problem is to use
speculative execution at the system level, such as in
[43], with the OS kernel modified to allow for the
rollback of system calls. An alternative would be to
use a virtual machine with a copy of the entire
operating system state, and then run the test in the
virtual machine [38]. This has the advantage of seeing
how the unit tests fare in the context of the entire
system state, rather than just the process state, though
it does not address any concerns related to external
databases or network I/O.

The in vivo testing approach has been designed to
call for minimal modification of the source code (both
the unit tests and that of the software under test), but
because most unit tests are written such that they create
new instances of objects, modification would generally
be needed so that they refer to existing objects within
the running application. Whereas this often requires
only small changes to existing test code, the more
concerning issue is that the application source code
may not be equipped to provide arbitrary access to
objects, as explained in Section 4. In order to avoid
major modification of the existing source code, one
approach could be to inject code at runtime with a
system like [18] so that references to objects can be
stored in a central location within the application,
accessed by the test code; however, this may require
more modification of the unit tests.

Currently the Invite framework has only been
implemented in Java and designed to work with Java
applications. Porting it to C or C++ could present a
challenge because the framework uses reflection

techniques to discover and execute the unit test
methods (though it could conceivably be easily
implemented with aspect-oriented programming and
reflection in other managed languages like C#).
Additionally, it may not always be desirable or even
possible to recompile the target source code, as made
necessary by our use of aspect-oriented programming.
An approach to modify the compiled code dynamically,
such as in Kheiron/C [18], could be used instead.

To date we have not made efforts to determine the
adequacy [46] of our testing approach, for instance by
measuring path/statement coverage. Further work
could more precisely categorize the prospective defects
that could be found, and establish success criteria.

Also, we have not yet considered what action to
take once a unit test fails and a defect is found. A
simple approach would be to use an online crash
reporting system like the Mozilla Quality Feedback
Agent or Microsoft XP Error Reporting to gather state
when the system crashes and send the data back to the
development team. Another option would be similar to
that of Skoll [19, 28], in which defects are reported to
a central server, which manages the distribution of
tests.

Future work could also investigate which classes to
instrument, the percentage of method calls that should
launch unit tests, or the optimal timing for when tests
should be run, since the current framework arbitrarily
chooses random tests to execute on each method call of
the instrumented classes. This would vary greatly
depending on the type of application and the defects
that are being targeted, however. A further
enhancement could consider the automatic selection of
test cases at the time of execution, rather than just
selecting unit tests randomly.

Lastly, one possible future direction for this work is
to consider only the case of executing unit and/or
regression tests after an automatic repair policy is
invoked in self-healing systems, as in [14] and [23], to
ensure that the repair did not adversely affect the
system. The approach could also be applied to the
domain of security testing: it could detect invalid states
that are a result of an attack or intrusion attempt.

8. Conclusion

We have presented in vivo testing, a novel testing
approach that allows for the execution of unit tests
within a running application in the deployment
environment, without affecting that application’s state.
We have classified the types of defects that could be
found by our approach, and described a Java
framework called Invite used for implementation.

Through our initial findings and investigation, we have
presented some real-world examples of bugs that could
be detected, and shown the usefulness of the approach.
Additionally, we have demonstrated that our approach
and the current implementation add limited overhead
in terms of system performance and code modification.

As this is just a report of our initial work in this area,
we expect that in vivo testing will provide a foundation
for other work in perpetual testing.

9. Acknowledgements

The authors would like to thank Phil Gross for his
assistance. Murphy and Kaiser are members of the
Programming Systems Lab, funded in part by NSF
CNS-0717544, CNS-0627473, CNS-0426623 and
EIA-0202063, NIH 1 U54 CA121852-01A1.

10. References

[1] Apache Tomcat: http://tomcat.apache.org/

[2] AspectJ: http://www.eclipse.org/aspectj/

[3] Jetty WebServer: http://www.mortbay.org/

[4] JUnit: http://www.junit.org/

[5] OSCache: http://www.opensymphony.com/oscache

[6] The Grinder: http://grinder.sourceforge.net/

[7] C. Atkinson and H.-G. Groß. “Built-in contract testing in
model-driven, component-based development”, In ICSR
Workshop on Component-Based Development Processes,
2002.

[8] G.K. Baah, A. Gray, M.J. Harrold, “On-line anomaly
detection of deployed software: a statistical machine learning
approach”, In Proc. of the 3rd International Workshop on
Software Quality Assurance, Portland OR, 2006, pp. 70-77.

[9] F. Barbier and N. Belloir, “Component behavior
prediction and monitoring through built-in test”, In Proc. of
the 10th IEEE International Conference and Workshop on the
Engineering of Computer-Based Systems, April 2003, pp. 17-
12.

[10] S. Beydeda, “Research in testing COTS components -
built-in testing approaches”, In Proc. of the 3rd ACS/IEEE
International Conference on Computer Systems and
Applications, 2005.

[11] S. Beydeda and V. Gruhn, “The self-testing COTS
components (STECC) strategy – a new form of improving
component testability”, In Proceedings of the Seventh

IASTED International Conference on Software Engineering
and Applications, 2003, pp. 222–227.

[12] D. Brenner, C. Atkinson, et al., “Reducing Verification
Effort in Component-Based Software Engineering through
Built-In Testing”, Information System Frontiers vol. 9 issue
2-3, 2007, pp. 151-162.

[13] J. Clause and A. Orso, “A Technique for Enabling and
Supporting Debugging of Field Failures”, In Proc. of the 29th
ICSE, Minneapolis MN, 2007, pp. 261-270.

[14] B. Demsky and M. C. Rinard, “Automatic data structure
repair for self-healing systems”, In ACM Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, 2003.

[15] G. Denaro, L. Mariani, M. Pezz`e, “Self-test
components for highly reconfigurable systems”, In
Proceedings of the International Workshop on Test and
Analysis of Component-Based Systems (TACoS’03), vol.
ENTCS 82(6), April 2003.

[16] D. Deveaux, P. Frison, J.-M. Jezequel, “Increase
software trustability with self-testable classes in Java”, In
Proc. of the 2001 Australian Software Engineering
Conference, Aug 2001, pp. 3-11.

[17] S. Elbaum and M. Hardojo, “An empirical study of
profiling strategies for released software and their impact on
testing activities”, In Proc. of ISSTA 2004, Boston MA,
2004, pp. 65-75.

[18] R. Griffith and G. Kaiser, “A Runtime Adaptation
Framework for Native C and Bytecode Applications”, 3rd
IEEE International Conference on Autonomic Computing,
June 2006, pp. 93-103.

[19] A. Krishna, et al., “A Distributed Continuous Quality
Assurance Process to Manage Variability in Performance-
intensive Software”, 19th ACM OOPSLA Workshop,
Vancouver, 2004.

[20] S. Lawrence and C.L. Giles, “Accessibility of
Information on the Web”, Intelligence vol. 11 issue 1, Spring
2000, pp. 32-39.

[21] C. Liu, D.J. Richardson, “RAIC: Architecting
Dependable Systems through Redundancy and Just-In-Time
Testing”, ICSE Workshop on Architecting Dependable
Systems (WADS), Orlando FL, 2002.

[22] C. Liu and D. Richardson, “Software components with
retrospectors”, In Proc. of International Workshop on the
Role of Software Architecture in Testing and Analysis, June
1998, pp. 63-68.

[23] M.E. Locasto, G.F. Cretu, A. Stavrou, A.D. Keromytis,
“A Model For Automatically Repairing Execution Integrity”,

Tech Report CUCS-005-07, Department of Computer
Science, Columbia University, January 2007.

[24] M.E. Locasto, S. Sidiroglou, A.D. Keromytis, “Software
Self-Healing Using Collaborative Application Communities”,
In Proceedings of the Internet Society (ISOC) Symposium on
Network and Distributed Systems Security (NDSS 2006), San
Diego CA, Feb. 2006, pp. 95-106.

[25] C. Mao, “AOP-based Testability Improvement for
Component-based Software”, In 31st Annual International
COMPSAC, vol. 2, July 2007, pp. 547-552.

[26] C. Mao, Y. Lu, J. Zhang, “Regression testing for
component-based software via built-in test design”, In Proc.
of the 2007 ACM Symposium on Applied Computing, Seoul,
South Korea, 2007, pp. 1416-1421.

[27] L. Mariani, M. Pezze, D. Willmor, “Generation of
integration tests for self-testing components”, In Proceedings
of FORTE 2004 Workshops, Lecture Notes in Computer
Science, Vol.3236, 2004, pp. 337-350.

[28] A. Memon, A. Porter, et al., “Skoll: distributed
continuous quality assurance”, In Proc. of the 26th ICSE,
Edinburgh, UK, May 2004, pp. 459-468.

[29] M. Merdes et al., “Ubiquitous RATs: how resource-
aware run-time tests can improve ubiquitous software
systems”, In Proc. of the 6th International Workshop on
Software Engineering and Middleware, Portland OR, 2006,
pp. 55-62.

[30] M. Momotko, L. Zalewska, “Component+ built-in
testing: A technology for testing software components”,
Foundations of Computing and Decision Sciences 29(1–2),
2004, pp. 133-148.

[31] L. Naslavsky, et al., “Multiply-Deployed Residual
Testing at the Object Level”, In Proc. of IASTED
International Conference on Software Engineering (SE2004),
Innsbruck, Austria, 2004.

[32] L. Naslavsky, R.S. Silva Filho, et al. “Distributed
Expectation-Driven Residual Testing”, Second International
Workshop on Remote Analysis and Measurement of Software
Systems (RAMSS'04), Edinburgh, UK, 2004.

[33] A. Orso, D. Liang, M.J. Harrold, “Gamma System:
Continuous Evolution of Software after Deployment”, In
Proc. of ISSTA 2002, Rome, Italy, 2002, pp. 65-69.

[34] A. Orso, T. Apiwattanapong, M.J. Harrold, “Leveraging
field data for impact analysis and regression testing”, In
Proc. of the 9th European Software Engineering Conference,
Helsinki, Finland, 2003, pp. 128-137.

[35] L. Osterweil, “Perpetually Testing Software”, The Ninth
International Software Quality Week (QW'96), San
Francisco, May 1996.

[36] C. Pavlopoulou and M. Young, “Residual Test
Coverage Monitoring”, In Proc. of the 21st ICSE, Los
Angeles CA, May 1999, pp. 277-284.

[37] I. Pavlova, M. Åkerholm, J. Fredriksson, “Application
of built-in-testing in component-based embedded systems”,
In Proc. of the 2006 ISSTA Workshop on the Role of
Software Architecture for Testing and Analysis, Portland
ME, 2006, pp. 51-52.

[38] S. Potter and J. Nieh, “Reducing Downtime Due to
System Maintenance and Upgrades”, In Proc. of the 19th
Large Installation System Administration Conference (LISA
2005), San Diego CA, Dec 2005, pp. 47-62.

[39] D. Richardson, L. Clarke, L. Osterweil, M. Young,
Perpetual testing project,
http://www.ics.uci.edu/~djr/edcs/PerpTest.html

[40] D. Rubenstein, L. Osterweil, S. Zilberstein, “An
Anytime Approach to Analyzing Software Systems”, In
Proc. of the 10th International FLAIRS Conference (Florida
Artificial Intelligence Research Society), Daytona Beach FL,
May 1997, pp. 386-91.

[41] D. Saff, “Automated continuous testing to speed
software development”, Master’s thesis, MIT Department of
Electrical Engineering and Computer Science, Cambridge
MA, Feb. 2004.

[42] D. Saff and M.D. Ernst, “An experimental evaluation of
continuous testing during development”, In Proc. of ISSTA
2004, Boston MA, 2004, pp. 76-85.

[43] S. Sidiroglou, M.E. Locasto, S.W. Boyd, A.D.
Keromytis, “Building A Reactive Immune System for
Software Services”, In Proceedings of the USENIX Annual
Technical Conference, April 2005, pp. 149-161.

[44] J. Vincent, G. King, P. Lay, J. Kinghorn, “Principles of
Built-In-Test for Run-Time-Testability in Component-Based
Software Systems”, Software Quality Journal vol. 10 no. 2,
Sept. 2002.

[45] Y. Wang et al., “On built-in test reuse in object-oriented
framework design”, ACM Computing Surveys vol. 32 no. 1,
March 2000.

[46] E. Weyuker, “Axiomatizing software test data
adequacy”, IEEE Trans. Software Eng., SE-12, Dec 1986,
pp. 1128-1138.

[47] S.S. Yau and R.C. Cheung, “Design of self-checking
software”, In Proc. of the International Conference on
Reliable Software, Los Angeles CA, 1975, pp. 450-455.

[48] M. Young, “Perpetual Testing”, AFRL-IF-RS-TR-2003-
32 Final Technical Report, February 2003,
[http://handle.dtic.mil/100.2/ADA412542].

