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Abstract 

 
Software products released into the field typically 

have some number of residual bugs that either were 
not detected or could not have been detected during 
testing. This may be the result of flaws in the test cases 
themselves, assumptions made during the creation of 
test cases, or the infeasibility of testing the sheer 
number of possible configurations for a complex 
system. Testing approaches such as perpetual testing 
or continuous testing seek to continue to test these 
applications even after deployment, in hopes of finding 
any remaining flaws. In this paper, we present our 
initial work towards a testing methodology we call “in 
vivo testing”, in which unit tests are continuously 
executed inside a running application in the 
deployment environment. In this novel approach, unit 
tests execute within the current state of the program 
(rather than by creating a clean slate) without 
affecting or altering that state. Our approach has been 
shown to reveal defects both in the applications of 
interest and in the unit tests themselves. It can also be 
used for detecting concurrency or robustness issues 
that may not have appeared in a testing lab. Here we 
describe the approach, the testing framework we have 
developed for Java applications, classes of bugs our 
approach can discover, and the results of experiments 
to measure the added overhead.  
 
1. Introduction 
 

Thorough testing of a commercial software product 
is unquestionably a crucial part of the development 
process, but the ability to faithfully detect all defects 
(“bugs”) in an application is severely hampered by 
numerous factors. For large, complex software 
systems, it is typically impossible in terms of time and 
cost to reliably test all configuration options before 
releasing the product into the field. Furthermore, it is 
possible that the test code itself may have flaws in it, 
possibly because of oversights or assumptions by the 

authors. And, of course, despite progress in measuring 
test coverage and formal verification, it is only 
possible to detect the presence of bugs, not their 
absence. 

One proposed solution to this problem has been to 
continue testing the application in the field, even after 
it has been deployed. The theory is that, over time, 
defects will reveal themselves given that multiple 
instances of the same application may be run globally 
with different configurations, under different patterns 
of usage, and in different system states. 

In this paper, we present our initial work towards a 
testing methodology we call in vivo testing, in which 
unit tests are continuously executed inside a running 
application in the deployment environment. In this 
novel approach, tests execute within the current state 
of the program without affecting or altering that state. 
Here, we show that our approach can reveal defects 
both in the applications under test and in the unit tests 
themselves. It can also be used for detecting 
concurrency or robustness issues that may not have 
appeared in a testing lab (the “in vitro” environment).  

In vivo testing can be used to detect bugs hidden by 
assumptions of a clean state in the unit tests, errors that 
occur in field configurations not tested before 
deployment, and problems caused by unexpected user 
actions that put the system in an unanticipated state. 
Our approach goes beyond application monitoring in 
that it actively tests the application, using the same unit 
tests from the development stage, with minimal 
modification to the application and unit test code. 

Although we only present our initial findings thus 
far, our main contribution is an approach to executing 
unit tests within the environment of a running system, 
and doing so without altering that system’s state. 
 
2. The in vivo testing approach 
 

The foundation of the in vivo testing approach is 
the fact that many (if not all) software products are 
released into deployment environments with latent 
defects still residing in them, as well as our claim that 



these defects may reveal themselves when the 
application executes in states that were unanticipated 
and/or untested in the development environment. 
Furthermore, bugs may exist in the unit tests 
themselves, not just in the application code. So a unit 
test that passes in development may not necessarily 
pass when executed after deployment, and the fact that 
a unit test passes does not mean that the piece of code 
is without flaw. 

In vivo testing is an approach by which unit tests 
are executed in the deployment environment, in the 
context of the running application, as opposed to a 
controlled or blank-slate environment. Tests are run 
continuously as the application runs, at arbitrary points 
in the program execution. Crucial to the approach is 
the notion that the test must not alter the state of the 
application. In a live system in the deployment 
environment, it is clearly undesirable to have a test 
application altering the system in such a way that it 
affects the users of the system, causing them to see the 
results caused by the test code rather than their own 
actions. This is ensured by executing the test in a 
separate process, which has been created as an exact 
copy of the original.  

 
2.1. Conditions 

 
In order for in vivo testing to be useful in practice 

for a given unit test and a corresponding piece of 
software to be tested, three conditions must be met. 
First, the unit test must pass in the development 
environment, even though there is a defect in the 
software under test (if the unit test fails before 
deployment, then obviously in vivo testing is not 
necessary). Second, under certain potentially-
unanticipated circumstances the running application 
should give erroneous results or behavior in the 
deployment environment, but should not crash or 
otherwise fail (since in vivo testing would not be 
needed to detect such gross failures). Lastly, for some 
process state or condition of use, the unit test must 
subsequently fail. If these conditions are met, it is 
possible for in vivo testing to detect that there is a bug. 
The bug will typically be one in the application code, 
or in the unit test code, or both.  

 
2.2. Categories and motivating examples 

 
To examine the feasibility of our testing approach, 

we investigated the documented defects of some 
popular, open-source applications to see which of them 
could have been discovered using in vivo testing. The 
first, OSCache[5] version 2.3, is an open-source multi-

level caching solution designed for use with JSP pages 
and Servlet-generated web content. In addition, we 
looked at different versions of Apache Tomcat [1], a 
Java Servlet container.  

We identified five different categories of defects 
that in vivo testing could potentially detect. The 
categories are listed in Table 1. There may be other 
categories of bugs that could be found with in vivo 
testing, but these are the ones identified so far. 

The first category of defects likely to be found by in 
vivo testing are those in which the corresponding unit 
test assumes a clean slate, but the code does not work 
correctly otherwise. Generally unit tests are written in 
such a way that the objects being tested are created and 
modified to obtain a desirable state prior to testing. In 
these cases, the code may pass unit tests 
coincidentally, but not work properly once executed in 
the field, revealing bugs in both the test code and the 
code itself.  

One of the OSCache bugs notes that, under certain 
configurations, the method to remove an entry from the 
cache is unable to delete a disk-cached file if the cache 
is at full capacity. 1 In this case, the corresponding unit 
test for testing cache removal may simply add 
something to the cache, remove it, and then check that 
it is no longer there. A unit test that assumes an empty 
or new cache would pass, but when the cache is full, 
the test would fail, revealing a bug that may not have 
been caught in the development environment. 

The second category of defects concerns those that 
come about from field configurations that were not 
tested in the lab. These, too, may reveal a bug in the 
code or in the unit test. Java server applications may 
require testing on multiple platforms with multiple 
JDK versions and multiple revisions of the application 
code; this is not always feasible for testing in a single 
test lab, particularly given the frequency with which 
companies must release their applications to be 
competitive in the marketplace. Additionally, system 
administrators of such applications may have 
numerous runtime configuration options, and not all 
combinations may have been tested before release. 
This is especially true in the case of open source 
software, such as the applications we considered here. 

Another OSCache bug falls in this category. In this 
bug, setting the cache capacity programmatically does 
not override the initial capacity specified in a 
properties file when the value set programmatically is 
smaller. 2 A unit test for the method to set the cache 
capacity may assume a fixed value in the properties 
file and only execute tests in which it sets the cache 
                                                           
1 http://jira.opensymphony.com/browse/CACHE-236 
2 http://jira.opensymphony.com/browse/CACHE-158 



capacity to something larger; this test would pass. 
However, if a system administrator sets the capacity to 
a large number in the properties file, the unit test 
would fail when it tries to set the cache capacity to a 
smaller value, revealing the bug.  

 
Table 1. Categories of defects that can be 

detected with in vivo testing 
1 Corresponding unit test assumes a clean slate 
2 Field configurations that were not tested in the lab 
3 A legal user action that puts the system in an 

unexpected state 
4 An unanticipated user action breaks the system 
5 Those that only appear intermittently 

 
The third types of defects targeted by in vivo testing 

are ones that stem from a (legal) user action that puts 
the system in an unexpected state. This could happen 
when objects are shared between users, and one user’s 
activities modify that object such that it does not work 
correctly for other users.  

Concurrency bugs are a very common type of 
defect in this category. We noticed one of the 
concurrency bugs in Apache Tomcat, in which a 
particular method used in the creation of a session is 
not threadsafe. 3 If the thread that invalidates expired 
sessions happens to execute at the same time as a 
session is being created, it is possible that an exception 
would occur (and not be caught) because one of the 
objects being used in the session creation could be set 
to null. A unit test that is simply testing the creation of 
sessions is not likely to detect this bug because at that 
time there may not be any other sessions to invalidate 
(this is also a case of the first type of defect targeted by 
in vivo testing, in which the unit test assumes a blank 
slate). However, in the deployment environment, this 
unit test may fail if the session invalidation thread is 
cleaning up other sessions at the same time.   

The fourth types of defects that can be found by 
using in vivo testing are ones in which an 
unanticipated (but legal) user action causes the system 
to stop running (crash) or simply stop responding 
(hang). This may generally seem more like 
“monitoring” than “testing”, but can still be addressed 
by our approach, since the unit tests call the methods at 
arbitrary times and the error may be detected before it 
affects any user. Unlike the third category, in which 
the application continues to respond to users and 
appears to run normally, these are defects that cause 
the system to stop responding or to repeatedly give 
error messages.  

                                                           
3 http://issues.apache.org/bugzilla/show_bug.cgi?id=42803 

For instance, one of the Apache Tomcat bugs we 
considered is one in which there is a resource leak in 
the database connection pool. 4  A single unit test to 
create, use, and release connections from the pool may 
not detect the leak if it is not executed enough times. 
However, in the field this error may arise if the test is 
executed repeatedly, and finally the test would fail 
when it could not obtain a connection. Because this 
does not result in a runtime error (the application just 
hangs while waiting for a free connection), a system 
monitor that is checking for uncaught exceptions 
would not detect this situation. On the other hand, a 
unit test that is run in vivo could conceivably reveal 
this bug. 

The fifth and final type of defect is one that only 
appears intermittently. These defects may be 
discovered by a continuous testing approach during the 
development phase [41], but the fact that our approach 
continuously tests the application even after 
deployment increases the chance of finding such a bug.  

One such defect appears in OSCache, whereby 
flushing the cache, adding an item, and attempting to 
retrieve the item can occasionally result in an error.5 A 
unit test that tries this sequence of actions may simply 
never encounter the error by chance during testing in 
the development environment. But by having instances 
of the application repeatedly execute this test in the in 
vivo testing approach, it may eventually appear. 

It is conceivable that some of the bugs documented 
here could have been discovered prior to release of the 
application given more time, better unit tests, and a 
little luck. But these examples demonstrate that a 
testing methodology that continues to execute unit tests 
on an application in the field can greatly improve the 
chances of the errors being detected. More 
importantly, certain bugs will in practice only manifest 
themselves in the field (because of limited time and 
resources in the testing lab), and these are the ones for 
which in vivo testing is most useful. 
 
3. Related work 
 

Our work is principally inspired by the notion of 
“perpetual testing” [35, 40, 39, 48], which suggests 
that analysis and testing of software should not only be 
a core part of the development phase, but also continue 
into the deployment phase and throughout the entire 
lifetime of the application. Perpetual testing advocates 
that analysis and testing should be on-going activities 
that improve quality through several generations of the 

                                                           
4 http://issues.apache.org/bugzilla/show_bug.cgi?id=42856 
5 http://jira.opensymphony.com/browse/CACHE-175 



product, in the development environment (the lab) as 
well as the deployment environment (the field). The in 
vivo testing approach is a type of perpetual testing in 
which the same unit tests can be used in both 
environments with only minor modifications, and the 
tests do not alter the state of the application under test.  

In vivo testing is also a form of “residual testing” 
[36]. This type of testing is motivated by the fact that 
software products are typically released with less than 
100% coverage, so testers assume that any potential 
defects in the untested code (the residue) occur so 
rarely so as not to bear consideration. Much of the 
research in this area to date has focused on measuring 
the coverage provided by this approach by looking at 
untested residue [36, 31] or by comparing the coverage 
to specifications [32]. However, this work does not 
consider the actual execution of unit tests in the 
deployment environment, as we describe here. 

Also related to perpetual testing is “continuous 
testing”, which refers to round-the-clock execution of 
tests, though typically in the development environment 
[41, 42]. However, the Skoll project [19, 28] has 
extended this into the deployment environment by 
carefully managed facilitation of the execution of tests 
at distributed installation sites, and then gathering the 
results back at a central server. The principal idea is 
that there are simply too many possible configurations 
and options to test in the development environment, so 
tests can be run on-site to ensure proper quality 
assurance. Whereas the Skoll work to date has mostly 
focused on acceptance testing of compilation and 
installation on different target platforms, or 
performance testing, in vivo testing is different in that 
it seeks to execute unit tests within the application 
while it is running under normal operation. 

While the notion of “self-checking software” is by 
no means new [47], much of the recent work in 
executing tests in the field has focused on COTS 
component-based software. This stems from the fact 
that users of these components often do not have the 
components’ source code and cannot be certain about 
their quality. Approaches to solving this problem 
include using retrospectors [22] to record testing and 
execution history and make the information available 
to a software tester, and “just-in-time testing” [21] to 
check component compatibility with client software. 
Work in “built-in-testing” [45] has included 
investigation of how to make components testable [11, 
27, 10, 12], and frameworks for executing the tests 
[15, 29, 26], including those in embedded systems [37] 
and Java programs [16], or through the use of aspect-
oriented programming [25]. In light of all these 
important contributions, in vivo testing differentiates 
itself by providing the ability to test any arbitrary part 

of the system (not just COTS components) and by 
utilizing existing unit test code, rather than requiring 
extensive modification to the original source [7, 44] or 
enforcing a rearchitecture of the application [9, 30]. 

Other approaches to perpetual testing include the 
monitoring and profiling of deployed software, as 
surveyed in [17]. One of these, the GAMMA system [33, 
34], uses software tomography for dividing monitoring 
tasks and reassembling gathered information; this can 
then be used for onsite modification of the code (for 
instance, by distributing a patch) to fix defects. Clause 
[13] has looked at methods of recording, reproducing, 
and minimizing failures to enable and support in-house 
debugging, and Baah [8] uses machine learning 
approaches to detect anomalies in deployed software. 
All of these strategies could make use of in vivo 
testing as part of their implementation. 
 
4. Invite: The in vivo testing framework 
 

The preliminary in vivo testing framework, which 
we call Invite (IN VIvo TEsting framework), is 
developed in Java and has been designed to entirely 
separate the testing code from that of the application 
under test. In order to use Invite, the software vendor 
must first ensure that the test classes follow the JUnit 
[4] conventions, specifically that the class has “setUp” 
and “tearDown” methods, and all test methods start 
with the word “test”, take no arguments, and return 
void. These methods must all be public. 

In order for the test classes to use objects that exist 
in the running application, it is necessary for the 
constructor or the “setUp” method to get references to 
existing objects, rather than creating new ones, as is 
typical in a JUnit test suite. This allows Invite to 
execute the unit tests in the context of the current state 
of the system by using the objects that have been 
modified over the course of the program’s execution, 
rather than creating a blank slate. However, because 
the Invite code that invokes the JUnit test does not 
have references to the objects in the application, and 
the test methods do not take arguments, modification 
of the application may be necessary to provide 
arbitrary access to the objects that are necessary for 
testing.  

One possible approach is to add singleton instance 
references so that the test code can statically get access 
to an object of that type (i.e., the one being used in the 
application) without explicitly being passed a 
reference. This requires modification of the source 
code, though, unless singletons are already being used. 
Only a few extra lines need to be added to each class 
that must expose one object of that type as a singleton, 



and the modification should not affect the normal 
execution of the system, since the reference to the 
singleton need not be used anywhere else.  

However, this approach has limitations in the cases 
where multiple objects of the same class are used in 
the application (such as in a resource pool), and the 
test needs to somehow pick amongst them, or where 
objects are created using a factory class, and arbitrary 
object access may be impossible. It is important to 
note, however, that any source code modification 
would be done a priori by the vendor who plans to 
distribute an in vivo-testable system, and not by the 
customer in whose environment the tests run. 

The vendor must then select one or more Java 
classes in the application under test for 
instrumentation, such that all method calls into the 
class will be points at which a unit test could be run. 
To achieve this, Invite uses a Java component written 
in the aspect-oriented programming language AspectJ 
[2], which is woven into the instrumented classes. This 
does not require any modification of the original 
source code; it only calls for recompilation, though this 
restriction could be lifted by use of a system like [18]. 
Note that the unit tests will not necessarily be those 
written for the instrumented classes; the instrumented 
classes merely provide “jumping-off points” where 
tests may be executed. 

Lastly, the vendor would configure Invite with a list 
of JUnit test classes. Invite is also configured with the 
percentage of method calls in the instrumented classes 
on which to execute the unit tests. In practice, this 
number would presumably be very small, but is 
heavily dependent on the number of instrumented 
methods, the frequency with which they are called, and 
the desired amount of testing to be performed.  

It is assumed that the application vendor would ship 
the unit tests and the configured testing framework as 
part of the software distribution. However, the 
customer organization using the software would not 
need to do anything at all, and ideally would not even 
notice that the in vivo tests were running; Section 6 
explores the performance overhead caused by Invite. 

At system startup, Invite uses Java Reflection to 
find all the “test” methods in the JUnit classes, and 
stores the names for later use. Whenever a method of 
an instrumented class is invoked, Invite uses the 
percentage value to decide whether to execute a test. If 
Invite decides that a test is to be run, it randomly 
chooses one method from amongst those in the 
configured JUnit test classes (alternatively, a planned 
schedule of tests could be implemented). It then forks a 
new process (which is a copy of the original) to create 
a sandbox in which to run the test code, ensuring that 
any modification to the state caused by the unit test 

will not affect the “real” application, since the test is 
being executed in a separate process with separate 
memory. As Invite is currently implemented in Java, 
and there is no “fork” in Java, we have used a JNI call 
to a native C program which executes the fork.  

Once the test is invoked, the application can 
continue its normal execution, while the unit test runs 
in the other process. In the current implementation of 
Invite, unit test modifications to files, I/O, the 
operating system, etc. cannot be undone; the sandbox 
only includes the in-process memory of the application 
(this limitation is discussed in Section 7). When the 
unit test is completed, Invite logs whether or not it 
passed, and that process is terminated. The testing 
results currently would need to be manually inspected, 
but this could be automated, and errors could be 
reported back to a central server as in [33] or [28]. 

Unlike other testing approaches that test the 
application as it is running, such as [30] or [16], Invite 
avoids the “Heisenberg problem” of having the test 
alter the state of the application it is testing. This is one 
of the major contributions and differentiating 
characteristics of the in vivo testing approach. 
 
5. Empirical Study 
 

After considering the numerous motivating 
examples listed in Section 2, we sought to apply Invite 
to a publicly-available application, in order to 
determine whether the approach would work to detect 
more defects. 

The application we instrumented for testing was 
Jetty WebServer 6.1 [3], an open-source Java HTTP 
server that also supports the Java Servlet API. We 
chose it primarily because it provides unit tests in the 
JUnit style, which we could use for our in vivo testing. 

Before conducting any tests using the in vivo 
testing approach, we selected 15 unit test classes from 
the ones that ship with the Jetty distribution, and 
executed all of them outside of the running program to 
ensure that the tests would pass under normal 
circumstances, i.e. outside of the in vivo testing 
framework.  

In order to attach Invite, we then instrumented 
Jetty’s HttpConnection class, which is used in every 
page request, so that every request had a chance of 
causing a unit test to be invoked. We configured Invite 
to use the 15 different unit test classes. Where 
appropriate, we needed to modify some of the tests to 
get references to certain objects in the running 
application, rather than creating new ones. 
Specifically, we added a reference to a singleton 
instance (three lines of code) to the Server class so that 



unit tests could access the same object used in the 
running application. Doing so has no effect on the 
user, since this just creates a static reference that is 
unused by the rest of the application during normal 
execution.  

We then modified the seven classes that need 
access to the Server so that they accessed it via the 
singleton reference instead of creating a new instance. 
Any other objects required by these tests were then 
accessed via the methods of the Server object (no code 
change was necessary). To simulate user activity on 
the Jetty web server, we used The Grinder [6], a load 
testing tool, to request a series of static and dynamic 
web pages. 

Our testing appears to have revealed one new, 
unreported bug in the “copyThread” method of the IO 
utility class. This method is given an input stream and 
an output stream as arguments, creates a new thread, 
reads from the input stream in its entirety, and writes to 
the output stream. The corresponding unit test creates 
and initializes a byte array input stream, invokes the 
“copyThread” method, waits 1.5 seconds, and then 
reads from a byte array output stream to see if the data 
were correctly copied. 

This unit test generally passed during in vivo 
testing, but occasionally (approx. 15% of the time) 
failed when there was load on the web server, because 
the byte array of the output stream would sometimes 
be empty. We speculated that the 1.5 second waiting 
time in the unit test was not enough to copy over the 
bytes from the input stream to the output stream, and 
increased the value to 10 seconds but still the error 
occasionally appeared (there were only 44 bytes being 
copied and this certainly should not take 10 seconds). 

Further inspection of the “copyThread” code 
revealed that the output stream was never being 
“flushed”; this could possibly be the error, though we 
have not yet verified this (adding the “flush” call 
seems to have made the error go away, but we are 
concerned that it may reappear if the test were run for 
a longer time). This has been the only new bug we 
have found in Jetty to date, but our testing is 
continuing, and we expect that we may find others in 
the future. This is one example of an intermittent bug 
that would not be revealed in traditional unit testing in 
the development environment, but could appear in the 
deployment environment, and may be detected with in 
vivo testing.  
 
6. Performance Evaluation 
 

We are concerned with the performance impact of 
our approach, particularly in using aspect-oriented 

programming to instrument potentially numerous 
method calls (perhaps all of them), and the overhead 
incurred by forking a process through a native method 
call to create a sandbox in which the test would be run. 
We conducted some performance tests to measure the 
feasibility of such an approach. 

 
6.1. Test setup 

 
For our performance testing, we instrumented Jetty 

WebServer 6.1 [3] with Java 1.5.0 on a Linux RedHat 
2.6.9 server with four 3.2 GHz CPUs and 1 GB of 
memory. Only minimal background system processes 
were executing during our tests. 

To place load on the web server, we used The 
Grinder [6] installed on a Microsoft Windows XP 
system with a single 3 GHz processor and 1 GB of 
memory. The server and the client machines were 
connected over our department’s gigabit LAN. 

 
6.2. Baseline testing 

 
We first tested Jetty in our configuration without 

the in vivo testing framework attached, to determine a 
baseline. The test consisted of 10,000 requests for a 
JSP page of 20 kilobytes, which is approximately the 
average size of an HTML page [23]; the page was 
dynamically generated to avoid any caching by Jetty. 
The mean time for page requests was 6.35ms and 
throughput of HTTP response bytes was 3910kBps. 

We then instrumented one Java class in Jetty 
(HttpConnection), which is used on every page 
request, but did not specify any unit tests to run. In this 
case, we could measure the overhead of the 
instrumentation itself (from the inserted AspectJ code), 
but did not need to consider the forking of new 
processes or parallel execution of any test code, since 
there were no unit tests from which to choose. This 
time, the mean time for page requests was 6.43ms 
(1.2% increase) and a throughput of 3800kBps, which 
indicated very little impact overall. 

 
6.3. Performance impact of in vivo testing 

 
Next, we configured Invite to use 15 JUnit test 

classes (part of the Jetty distribution) with a total of 52 
test methods. We instrumented the HttpConnection 
class, in which there are approximately 50 method 
calls on each page request, meaning 50 possible 
chances to launch a unit test. Note that the JUnit test 
classes did not necessarily test the HttpConnection 
class; it was simply used as a launching point for the 
test methods. 



We first configured Invite to execute unit tests on 
only 0.02% of the method calls in the instrumented 
class, so that each page request would have about a 1% 
chance of executing a unit test (no precautions were 
taken to ensure that a single page request did not result 
in the execution of more than one test, however). 
Using the same test environment as above, we saw that 
the mean time to complete a page request was 6.65ms 
(4.7% increase), though the overall throughput stayed 
the same at 3800kBps. The most telling statistic was 
the mean time to the first byte, which rose to 3.89ms 
(8.3% increase) compared to the baseline. The reason 
for the increase is that the class we instrumented is 
used before any bytes are sent back to the client, so 
any unit test would be launched during that time, hence 
the initial overhead.  

We then configured Invite to execute unit tests on 
0.2% of method calls to the instrumented class, which 
meant that each page request would have 
approximately a 10% chance of executing a unit test. 
In this case, the mean time to complete a page request 
rose to 7.98ms (25.6% increase), and the throughput 
was 3030kBps. The mean time to the first byte 
increased to 5.04ms (40.3% increase), demonstrating 
that this value was the one most affected by having the 
unit test execute at the beginning of a response to a 
page request. We also ran a test in which 100% of the 
page requests launched unit tests, to get an idea of the 
worst case overhead. As shown in Table 2, the 
differences in the mean times to complete a page 
request are mirrored in the mean times to the first byte. 
 

Table 2. Load tests with pages of 20kB 

Percent of 
page 
requests 
that execute 
tests 

Mean 
time 
to 
serve 
page 
(ms) % diff 

Throughput 
of response 
data (kBps) 

Avg time to 
start 
sending 
response 
(ms) % diff 

Baseline 6.35 - 3910 3.59 - 
0% 6.43 1.2 3800 3.62 0.1 
1% 6.65 4.7 3800 3.89 8.3 
10% 7.98 25.6 3030 5.04 40.3 
100% 13.6 114 1810 10.4 189 

 
Despite the 25% overhead between the 

uninstrumented baseline and the configuration to run 
unit tests on 10% of the page requests, we note that 
there is less than 5% overhead when running unit tests 
on 1% of the page requests, and contend that 1% is 
probably sufficient for detecting defects on a heavily-
used application. Of course, there is a tradeoff between 
executing more tests (and increasing the likelihood of 
finding bugs) and performance, and careful planning 
would need to be employed when configuring the 
testing framework. 

 

6.4. Tests with large web pages 
 
Clearly the process forking is the cause of much of 

the overhead in this implementation of the in vivo 
testing framework. We measured an average of 4.34ms 
for the completion of the fork call during the setup 
with 10% of the requests resulting in unit test 
execution. However, it should be noted that the 
overhead of executing the tests is not related to the size 
of the web page being requested; it is more or less 
constant, according to how fast the fork can be 
executed.  

 
Table 3. Load tests with pages of 600kB 

Percent of 
page 
requests 
that execute 
tests 

Mean 
time 
to 
serve 
page 
(ms) % diff 

Throughput 
of response 
data (kBps) 

Avg time to 
start 
sending 
response 
(ms) % diff 

Baseline 61.5 - 9770 0.960 - 
0% 61.8 0.4 9340 0.961 0.1 
1% 62.0 0.8 9770 1.20 25.0 
10% 62.3 1.3 9770 1.49 55.2 
100% 64.2 4.4 9340 3.22 235 

 
To demonstrate this, we conducted another test 

using a large (static) web page of 600kB. As shown in 
Table 3, with no test instrumentation, the average time 
to serve a page request of this size was 61.8ms. This 
number rose only to 62.0ms (0.8% increase over 
baseline) if 1% of the page requests were resulting in 
unit tests being executed; 62.3ms (1.3% increase) 
when 10% resulted in unit tests; and only 64.2ms 
(4.4% increase) in the case where 100% of the requests 
caused unit tests to run. This average overhead is still 
on the order of a few milliseconds, but is very small 
compared to the total time to serve the page. 

 
6.5. Areas for performance improvement 

 
We are continuing to seek ways in which to reduce 

the overhead of the Invite testing framework. Forking 
a process is programmatically simple but incurs a large 
cost, and a transactional rollback strategy may be 
preferable [43]. With any strategy, though, care must 
always be taken to ensure that the test does not affect 
the system state. 

It may be possible to reduce the overhead by 
distributing the testing load across multiple instances 
of the application. One solution may be to use a tool 
like the GAMMA system [33, 34] for distributing the 
tests and determining which tests should be run under 
different circumstances. Another approach would be 
similar to the “application communities” idea [24], in 
which application instances in a software monoculture 
share information. This would allow in vivo testing to 



distribute the testing load in space as well as in time. 
As part of future work, we intend to consider these 
solutions and develop a new, distributed 
implementation of the Invite framework. 

 
7. Limitations and future work 
 

The most critical limitation of the current Invite 
framework implementation is that anything external to 
the application process itself, e.g. files, database tables, 
network I/O, etc., is not replicated by forking the 
process and modifications made by any unit test 
therefore cannot be undone. Though this somewhat 
limits the type of testing that can be performed 
currently, there are still many categories of defects 
(listed in Section 2) that can be detected when 
considering tests that only utilize and affect the state of 
the process in memory, of course. However, in order to 
add more robustness to the testing approach, changes 
must be made to the Invite framework so that it does 
not modify the state of external systems at all. 

One possible way to solve this problem is to use 
speculative execution at the system level, such as in 
[43], with the OS kernel modified to allow for the 
rollback of system calls. An alternative would be to 
use a virtual machine with a copy of the entire 
operating system state, and then run the test in the 
virtual machine [38]. This has the advantage of seeing 
how the unit tests fare in the context of the entire 
system state, rather than just the process state, though 
it does not address any concerns related to external 
databases or network I/O.  

The in vivo testing approach has been designed to 
call for minimal modification of the source code (both 
the unit tests and that of the software under test), but 
because most unit tests are written such that they create 
new instances of objects, modification would generally 
be needed so that they refer to existing objects within 
the running application. Whereas this often requires 
only small changes to existing test code, the more 
concerning issue is that the application source code 
may not be equipped to provide arbitrary access to 
objects, as explained in Section 4. In order to avoid 
major modification of the existing source code, one 
approach could be to inject code at runtime with a 
system like [18] so that references to objects can be 
stored in a central location within the application, 
accessed by the test code; however, this may require 
more modification of the unit tests.  

Currently the Invite framework has only been 
implemented in Java and designed to work with Java 
applications. Porting it to C or C++ could present a 
challenge because the framework uses reflection 

techniques to discover and execute the unit test 
methods (though it could conceivably be easily 
implemented with aspect-oriented programming and 
reflection in other managed languages like C#). 
Additionally, it may not always be desirable or even 
possible to recompile the target source code, as made 
necessary by our use of aspect-oriented programming. 
An approach to modify the compiled code dynamically, 
such as in Kheiron/C [18], could be used instead. 

To date we have not made efforts to determine the 
adequacy [46] of our testing approach, for instance by 
measuring path/statement coverage. Further work 
could more precisely categorize the prospective defects 
that could be found, and establish success criteria.  

Also, we have not yet considered what action to 
take once a unit test fails and a defect is found. A 
simple approach would be to use an online crash 
reporting system like the Mozilla Quality Feedback 
Agent or Microsoft XP Error Reporting to gather state 
when the system crashes and send the data back to the 
development team. Another option would be similar to 
that of Skoll [19, 28], in which defects are reported to 
a central server, which manages the distribution of 
tests. 

Future work could also investigate which classes to 
instrument, the percentage of method calls that should 
launch unit tests, or the optimal timing for when tests 
should be run, since the current framework arbitrarily 
chooses random tests to execute on each method call of 
the instrumented classes. This would vary greatly 
depending on the type of application and the defects 
that are being targeted, however. A further 
enhancement could consider the automatic selection of 
test cases at the time of execution, rather than just 
selecting unit tests randomly. 

Lastly, one possible future direction for this work is 
to consider only the case of executing unit and/or 
regression tests after an automatic repair policy is 
invoked in self-healing systems, as in [14] and [23], to 
ensure that the repair did not adversely affect the 
system. The approach could also be applied to the 
domain of security testing: it could detect invalid states 
that are a result of an attack or intrusion attempt. 
 
8. Conclusion 
 

We have presented in vivo testing, a novel testing 
approach that allows for the execution of unit tests 
within a running application in the deployment 
environment, without affecting that application’s state. 
We have classified the types of defects that could be 
found by our approach, and described a Java 
framework called Invite used for implementation. 



Through our initial findings and investigation, we have 
presented some real-world examples of bugs that could 
be detected, and shown the usefulness of the approach. 
Additionally, we have demonstrated that our approach 
and the current implementation add limited overhead 
in terms of system performance and code modification. 

As this is just a report of our initial work in this area, 
we expect that in vivo testing will provide a foundation 
for other work in perpetual testing. 
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