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Abstract. There is a considerable body of literature and technology
that provides access control and security of communication for Mo-
bile Ad-hoc Networks (MANETs) based on cryptographic authentica-
tion technologies and protocols. We introduce a new method of granting
access and securing communication in a MANET environment to aug-
ment, not replace, existing techniques. Previous approaches grant access
to the MANET, or to its services, merely by means of an authenticated
identity or a qualified role. We present BARTER, a framework that, in
addition, requires nodes to exchange a model of their behavior to grant
access to the MANET and to assess the legitimacy of their subsequent
communication. This framework forces the nodes not only to say who
or what they are, but also how they behave. BARTER will continuously
run membership acceptance and update protocols to give access to and
accept traffic only from nodes whose behavior model is considered “nor-
mal” according to the behavior model of the nodes in the MANET. We
implement and experimentally evaluate the merger between BARTER
and other cryptographic technologies and show that BARTER can im-
plement a fully distributed automatic access control and update with
small cryptographic costs. Although the methods proposed involve the
use of content-based anomaly detection models, the generic infrastruc-
ture implementing the methodology may utilize any behavior model.
Even though the experiments are implemented for MANETs, the idea of
model exchange for access control can be applied to any type of network.

Keywords. IDS in Mobile Ad-hoc Networks, IDS cooperation, Anomaly
Detection, Access Control, Threshold Cryptography

1 Introduction

We propose a novel approach to secure nodes in Mobile Ad-hoc Networks (MANETs)
based on the use of anomaly detection sensors. We put forward that each node
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in a network computes a profile of its own behavior and provides this behavior
model to request and gain access to services. A device will not only authenticate
a node on the basis of standard techniques, but will also compare the model
against normal expected behavior before granting access.

MANETs differ from wired networks in that there is no central control, no
base station, and no wireless switches, with devices entering and leaving the
network dynamically, quickly changing the network topology and administrative
domain membership. Given that, it seems clear that it is important to provide
services like authentication [20], access control [12], and key exchange [5], among
others. We study two important issues in MANETs: access control and update
control. Access control refers to the initial acceptance of devices to the MANET,
and update control to the membership update of the devices that are already
part of the MANET.

Previous work in access control and update control lies mostly in the realm
of Role-Based Access Control (RBAC) [6]. Role-based access control executes
the acceptance and update control based on the roles that each user/device has
within the organization. More complex RBAC implementations define policies
that may be modified over time, but always via human intervention. For exam-
ple, Lin et al. [14] proposed an RBAC system where initial policies implemented
by authorities may be changed via trust policy description files (TPDFs), but
these changes need to be made manually. In order to secure trust-sensitive oper-
ations and validate delegations, many RBAC approaches have introduced a PKI
infrastructure [7]. Although RBAC offers a secure access control infrastructure
for organizations with fixed roles, it does not scale well to dynamic environments
(MANETs) where behaviors and policies may have to change often and where
changes cannot be predicted over time, making it very difficult for humans to
manually create policies online.

Most of the work described for RBAC focuses on wired networks. At a wire-
less level, and at an ad-hoc wireless level, the vast majority of work implemented
for access control and update focuses on the implementation of threshold cryp-
tographic approaches. Threshold cryptography distributes the development of
certificates and PKIs among t devices in a MANET. Both certificates and shared
keys (distributed PKI) allow the MANET to control, in a distributed manner,
the acceptance of new members via collaborative creation of certificates (to iden-
tify that the user local keys are really their keys) and collaborative creation of
distributed secret keys (to secure the communication channel among devices of
the MANET). Any t random devices in the MANET will be able to recover
these secrets via Lagrange interpolation, when needed. Distributed certificates
can also be revoked at any moment by any device in the MANET, or simply
not renewed after a certain time. Distributed shared secret keys are periodically
regenerated (proactive shared key [9]) to avoid attackers that may be eavesdrop-
ping the channel for long periods of time. These works do not typically specify
how the acceptance or rejection decision is made. Kong et al. [11] proposed a
threshold cryptographic system for MANETs that supports ubiquitous security
services and scales as the size of the networks increases. This work is mostly



based on Herzberg et al. [9] who explored proactive secret sharing and key re-
generation, and on Pedersen [20] that tackled key regeneration with no trusted
party. Although threshold cryptography is necessary to secure MANETs, such
systems also need an infrastructure to decide on the acceptance or rejection of
devices to the MANET.

We present BARTER, a behavior-based access control and communication
security framework for MANETs that automatically updates the acceptance and
rejection policy based on the real-time behavior changes of its members mod-
eled by anomaly detection sensors. BARTER enhances MANET access control
schemes by allowing nodes to automatically decide how to change their member-
ship policies without human intervention. BARTER is built on top of a threshold
cryptographic infrastructure that guarantees fully distributed decision making
and secure communication among peers. The BARTER framework consists of
three phases: during bootstrap, all the devices that start the MANET agree on
a certain common normal behavior; second, during the membership acceptance,
by exchanging models among nodes, a node not only announces its identity, but
also provides a description of its typical behavior. This behavior is used by other
nodes to grant or deny access to the MANET. Third, during the membership
update (communication phase) the models exchanged are also used to detect
anomalous content in the traffic shared between any two nodes in the MANET.
We present experimental results with ENRON [4] email profiles that success-
fully merge a threshold cryptographic approach with the BARTER framework.
In our experiments, we analyze the tradeoff between the threshold cryptographic
value t (fixed or variable) and BARTER’s performance during the access control.
The BARTER framework reaches –during access control– false rejection rates of
0.03% with true rejection rates above 90% and cryptographic costs around 0.24
seconds per device accepted.

In the following sections, we provide a detailed view of how one may define
a profile (behavior model), how these may be compared to grant access, and
how they may be used to test traffic. Some of our preliminary results have been
presented in Cretu et al. [3]. We are not aware of previous work that aims to
use model exchange as a security feature. The closest concept was developed by
Necula and Lee [17][18] in their Proof-Carrying Code (PCC) approach, where
the producer (client), was required to create a formal safety proof of its own code
to conform with the safety policy defined by the server (consumer). However,
our approach differs in the fact that devices exchange behavior models and not
safety proofs. Also, a similar idea was recently introduced by the IEEE 1667(TM)
standard [10] to authenticate USB devices before downloading information from
them to a local machine. Unlike BARTER, that work focuses on USB devices,
without the complexities of a wireless ad-hoc environment.

The rest of this paper is organized as follows: in Section 2 we describe the
main features of the BARTER framework (threat scenarios and anomaly sen-
sor that we use for our experiments). In Sections 3, 4 and 5 we describe the
three phases of BARTER. Section 6 offers some experimental results using this
framework, and Section 7 presents the conclusions and future work.



2 BARTER Framework

BARTER implements a behavior-based access control and communication secu-
rity framework for mobile ad-hoc networks. BARTER works under the assump-
tion that each device in the MANET is running an Anomaly Detection sensor
that allows the device to model its local input and output behavior. The main
goal of BARTER is to enhance existing access control and communication secu-
rity layers by means of exchanging behavior models that are used to accept new
devices to the MANET and to check the security of subsequent communications.

BARTER consists of three main phases: bootstrap, membership acceptance
and membership update. The bootstrap phase is executed only once, during the
creation of the MANET. We assume that each device’s input and output profiles
represent an initial model of what normal behavior is for the MANET (although
it may change over time). During bootstrap, all initial members exchange their
profiles and compute the decision of what locally normal is for each of them and
for the group. This group of devices is initially responsible for admitting new
devices to the MANET. The membership acceptance phase takes place when a
new node approaches a MANET and requests access to its services. The protocol
executed during this phase tests whether the profile of the new, requesting node is
similar to the profiles of the nodes that are already part of the MANET, and that
have exhibited good behavior in the past. Part of the behavior profiles exchanged
between nodes includes a description or signatures of known malicious attacks.
Hence, nodes also reveal the level of awareness they may have against known
exploits. During the membership update, each node compares ingress traffic, to
its own model of input traffic as well as to the output model sent by the source of
the traffic when it first requested access to the MANET. The traffic is thus tested
twice to ensure it conforms to the expected profile, and that the source did not
lie about its own behavior. Also, devices will periodically retrain their models to
update them according to the new traffic exchanged. These new models should
be broadcasted to all the members of the MANET and will need to be accepted
by the other devices in order to renew its membership; if the model is considered
to be abnormal, the device will be expelled from the MANET.

BARTER allows the MANET to self-configure, updating the membership
of devices and expelling others, based on their behavior (and the changes of
behavior) over time. BARTER deploys a fully self-configurable network where
devices will be responsible for keeping their environment clean and safe without
manual intervention. BARTER is built on top of a threshold cryptographic in-
frastructure that guarantees: (i) fully distributed group decision making: unless
t or more devices agree on the acceptance the device will be rejected or expelled
from the MANET; and (ii) secure communication: the shared certificates and
shared secret keys guarantee a control over the identity of the devices and over
the encryption of the communication channel.



2.1 BARTER Application and Threat scenario

MANETs are highly used in military environments [15][13][2] where there may
not be any centralized or fixed infrastructure to depend on, and where commu-
nication conditions are real-time and very dynamic. In the battlefield, soldiers
may be equipped with any type of handheld devices to communicate with its
peers or superiors, continuously exchanging traffic and executing a diversity of
applications depending on the objective of the mission. Typical behaviors in a
military environment could be, for example, the exchange of maps or location
coordinates, or the exchange of emails or voice over IP.

The BARTER framework addresses two important issues. First, it detects
nodes that are trying to enter the MANET and whose handheld’s behavior is
different from the agreed normal profile i.e., the behavior that the devices that
are already part of the MANET agreed to accept as normal (certain type of
content, certain frequency,...). In a military environment, soldiers that cannot
show a good behavior in the past, will not be able to get access to the MANET,
preventing them from accessing sensitive information. Second, BARTER will
detect nodes that start to behave differently either because they have been com-
promised, or because they purposely misuse the information being exchanged in
the MANET. In a military environment, if a soldier that was accepted to the
MANET starts exchanging traffic with a different pattern than the allowed (the
device might have been infected by a worm or stolen from the soldier), it will be
caught and expelled from the MANET. If an insider attack happens and is not
detected, there is a high possibility of information leakage. This can be avoided
by having the members of the MANET screen all wireless traffic they see (and
not only incoming traffic to their devices) and check that its destination is always
a MANET member. If a MANET member is detected sending information to an
outsider, it will be kicked out of the MANET. Any outsider wanting to receive
information from a MANET member will need to gain access to the MANET
first.

2.2 Behavior modeling

BARTER assumes that each device in the MANET uses an anomaly detection
sensor to model its behavior. The anomaly detection sensor builds a profile of
the typical behavior of the device in previous transactions. The profile can be
built using the payload or other characteristics of the communication. The input
model is a representation of the typical traffic a device receives from the multiple
devices it communicates with. The output model is a representation of the typical
traffic it sends to the other devices in its environment. Both input and output
models are saved by each device as a Bloom Filter (BF) [1] (vector of 0s and 1s)
in order to preserve privacy whenever the models are exchanged among devices
in the BARTER framework. The way the traffic is mapped to a BF depends
on the anomaly sensor used. The only requirement is that all devices use the
same sensor with the same type of mapping. Models in BARTER are easily
comparable, since AND operations allow us to discern how similar or different



the models (BFs) are, and OR operations allow us to merge models to represent
unions of profiles. The input model should not be shared or exchanged with any
other device, but saved as a secret key only available locally to the device, to
avoid attackers crafting their local behaviors according to other devices’ input
models.

Any sensor can be used to obtain the representation of the behavior. For the
purpose of this paper, we use a content-based anomaly sensor that implements
an adaptation of Shanner’s ideas [22], where we only consider two types of infor-
mation (content): good samples (goodS ) and bad samples (badS ), and we only
model with 3-grams. Although Shanner is more expensive than other anomaly
detector sensors, we chose it because it rapidly captures the significant infor-
mation of the traffic being exchanged. In MANETs, unlike in wired networks,
the flux of traffic is variable, unstable, and may disappear at times. Thus, it is
important to obtain precise models with the little traffic that may be available.
We chose 3-grams because they are less computationally expensive than higher
n-grams and because they capture well the specifics of email traffic (we provide
details in Section 6). Every time a device trains its normalcy model, the content
of the traffic received and sent by the device will be captured as 3-grams. We keep
count of the most frequently seen 3-grams during training following Shanner’s
Formula (1), where the frequency W of each 3-gram i, W(i)=F(i)×U(i)×A(i),
is expressed as,
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(1)
where F(i) measures the frequency of occurrence of each distinct n-gram i over
all the good samples Ng; U(i) measures how uniformly distributed each unique
n-gram i is spread among the set of good samples Ng; and A(i) measures how
uniformly distributed each unique n-gram i is spread across good and bad sam-
ples, L=2. We encourage the reader to check Shanner’s algorithm explanation
[22]. We just mention that the n-grams considered are those that are not only
most frequently seen on each training unit (F(i)), but also across all training
units (U(i)), and that do not appear on a set of well known bad n-grams (A(i)).
The n-grams chosen are then hashed into a Bloom Filter of size 213 ( Section 6
shows that this size together with the 3-grams give a precise way of differentiat-
ing profiles). We assume that the devices contain an initial collection of known
bad n-grams drawn from known bad models (Section 6 explains how bad models
are defined). This collection will grow over time as devices in the MANET detect
and agree on abnormal behaviors.

3 Bootstrap Phase

The bootstrap phase is run only once so that all initial devices agree on a def-
inition of normal traffic based on their personal experiences. During bootstrap,



the devices broadcast their output models to all the others. Each device calcu-
lates the similarity between its own input model and the output models from
the other devices, in order to compare the traffic that other devices are sending
out to the traffic that itself is receiving. This similarity measure will be used in
the future to either accept or reject new devices to the MANET.

Min

Min
Dist(m_in_3,m_out_2)
Dist(m_in_3,m_out_1)

3

Dist(m_in_1,m_out_3)
Dist(m_in_1,m_out_2)

1

Dist(m_in_2,m_out_3)2 Min Dist(m_in_2,m_out_1)

Fig. 1. Bootstrap Phase for MANET with initial members node 1, node 2 and node 3.

As Figure 1 shows, each device node i locally computes the minimum distance
between its own local input model m in i and everybody else’s output model
m out j as th i=Min(Dist(m in i,m out j)) for all j’s in the initial MANET,
where Dist represents the cardinality of the result vector of AND-ing the local
input model Bloom Filter m in i with other device’s output model BF m out j,
and Min represents the minimum cardinality among all the cardinalities calcu-
lated of distance vectors between m in i and all other m out j. The threshold
th i represents the minimum requirements for a device to be accepted to the
MANET by node i. At the end of the bootstrap phase, each device will have a
local similarity threshold th i to be used for future acceptance and rejection of
newcomers. Also, each device saves in a local table everybody else’s output mod-
els and the similarity measure between its local input model and each output
model in the table. The local threshold can be easily obtained by looking for the
minimum value among the distances saved in the table. These distances can also
be seen as a trust measure of the confidence that the local device has towards
everybody else’s models, i.e., a device whose output model similarity measure
to the local input model is bigger than another device’s output model similarity
will be more trusted by the local device, since their traffic flows are more similar.
This trust value will also be used in future BARTER implementations as a way
of leveraging messages coming from devices with different trust values.

The bootstrap phase is based on the assumption that the initial devices used
to create the MANET represent well-behaved and well-intentioned devices, and
that the devices have an accurate representation of what typical traffic in the
MANET type being monitored looks like. We assume that initial behavior models
for the devices at the bootstrap phase come either from training in a simulated
environment, or from industry, i.e., devices are sold with a built-in pre-defined
model of a certain application. We also assume that the application models have
a measure of the typical density (cardinality of BF) for each type of application.
This application cardinality can be used as a countermeasure against attackers



sending out fake models containing all 1’s that would trick the AND similarity
calculations.

The bootstrap phase runs over a threshold cryptographic layer where a
trusted dealer (TD) computes an RSA (or other type) private key to form the
group secret key SKgroup and uses Shamir’s secret sharing scheme [21] to ran-
domly generate a polynomial f(z) over Zq of degree t-1, and compute each user’s
secret share key i as (SKgroup,i) = f(i) mod q. The secret key is securely trans-
ferred from the dealer to each of the users. The TD also issues a group mem-
bership certificate for each of the initial devices, which is sent securely to each
of them together with the secret share, (GMCi;SKgroup,i). The trusted central
dealer is not used after the establishment of the ad-hoc network, leaving the sys-
tem as fully distributed. From this moment on, any group of t or more devices
in the MANET will be able to recover the secret using Lagrange’s interpolation
formula. The group distributed secret keys and certificates force the MANET to
collaborate in the acceptance or rejection of devices to the MANET. A single
device will not be able to generate or revoke certificates or secret keys without
the help of t-1 devices in the MANET. The merger between the cryptographic
layer and BARTER implies that each of the devices in the bootstrap phase will
also receive a set of individual secret and public keys, as well as an individual
certificate for these keys. The individual keys and certificate will be used during
communications with other devices in the MANET, to guarantee that the de-
vice is who it claims to be (using the certificate) and that the communication is
encrypted, using (SKlocal,i; PKlocal,i).

4 Membership Acceptance

When a new device attempts to enter the MANET, it needs to broadcast its
own local output model to the MANET. The MANET members first check to
see whether the device is blacklisted or not, which means that the device has
already been rejected from the MANET a maximum number of times max ;
and whether the cardinality of the model is bigger than the known application
cardinality. If it passes both checks, each device node i in the MANET computes
the similarity between their local input model m in i and the output model of
the newcomer device m out new, as can be seen in Figure 2. Each device will then
either accept or reject the newcomer depending on whether or not the similarity
measure is within its local similarity threshold th i calculated during bootstrap,
Dist(m in i,m out new) <= th i . If a minimum number of t devices agree, the
device is accepted to the MANET.

If the device is accepted, all the members of the MANET send their output
models to the new member. The new member saves the models together with the
distances between its own input model and everybody else’s output models, thus
calculating its own threshold of similarity, th new=Min(Dist(m in new,m out j))
for all j’s in the MANET, and building its own local table. The other members
of the MANET save the newcomer’s output model in their local tables, to-
gether with a measure of the similarity between their local input models and



Dist(m_in_3,m_out_4)<=th_3 ?

Dist(m_in_1,m_out_4)<=th_1 ?

3

1
2 4

Dist(m_in_2,m_out_4)<=th_2 ?

Fig. 2. Membership Acceptance of node 4 to the MANET formed by devices node 1,
node 2 and node 3.

the newcomers’ output model. The local thresholds of the existent members are
unchanged since the device has been accepted based on the assumption that the
local threshold th i for each node i is smaller than the distance between its local
input model and the newcomer’s output model.

If the newcomer’s behavior is similar enough, each device sends its new partial
shared key and its partial signature to the newcomer (following a set of rounds
of information exchange [16][23]) . If the newcomer receives partial signatures
and partial secret shares from at least t devices in the MANET, it will be able to
compute the new GMC (Group Membership Certificate) by summing the partial
signatures modulo q and its new share key by summing the shared keys from the
other t devices. If the newcomer is not accepted by at least t devices, the devices
that computed a rejection are responsible for adding the device to a grey list,
which will keep track of the number of attempts by a device to enter the MANET.
If a device attempts more than max times, it will be blacklisted. The devices
that reject the newcomer, broadcast both black and grey lists to all the other
members in the MANET so that all members maintain an updated common list.
BARTER’s decision making process is fully distributed and based on a group
agreement. BARTER only allows communications to take place via a secured
channel. There may be nodes that do not agree with the group’s decision to reject
a device and may still want to communicate with it. However, if they are running
the BARTER framework, only communications via a secured channel (whose
keys are given out after acceptance) are allowed, making the traffic exchange with
non accepted nodes impossible unless the BARTER framework is tampered. The
experiments in Section 6 are an attempt to estimate the value of t that represents
a good merger point between the cryptographic layer and the BARTER layer.

5 Membership Update

The membership update represents a stage in which the MANET is already
formed, and the devices that are part of it need to be continuously screened to
make sure their behavior does not change drastically over time. Going back to
the military environment, what happens when a device has been infected and
starts sending out abnormal traffic? How can one detect that a device’s profile is
not normal anymore? The BARTER framework implements two different checks
on the data: a model-traffic check to continuously screen the traffic received from



other devices; and a model-model check that updates the membership status of
the devices based on new profiles obtained after periodic training.

5.1 Model - Traffic Security Check

Each device continuously checks the incoming traffic from any device against its
local input model and against the sender’s output model, which was saved when
the sender was accepted. The Shanner anomaly sensor checks incoming n-grams
against the local input model and the local copy of the sender’s output model,
and raises an alert when the number of abnormal n-grams exceeds a threshold.
During communication, it may be the case that one or more devices raise an
alert while receiving traffic from another device in the MANET. If this is the
case, each device should send the set of n-grams that generated the alert to the
devices that they trust more in the MANET, which are inferred from the trust
values in the local table. Since the threshold cryptographic layer running below
will need at least t devices to expel another one from the MANET, each device
raising an alert will broadcast it to its t most trusted devices. If any t devices
agree on the fact that it is an alert, each of them will add the source device to
their local CRL (certificate revocation list) and will generate new partial secret
keys and new partial certificates. These values will be broadcasted to all other
devices in the MANET except for the ones in the CRL, so that the rejected
device will not be able to communicate with any other device in the MANET
anymore. All the devices will also update the greylist and blacklist accordingly.

As an example, Figure 3 shows a MANET with 4 devices and t with a value
of 3. In the Figure, we see that node 2 ’s sensor S generates an alarm when
comparing node 4 ’s traffic against its local input model m in 2. This alarm is
then broadcasted to the t=3 most trusted devices of node 2, which are node 1
and node 3 since node 4 is the sender. Node 1 and node 3 will receive the alert
n-grams from node 2 and if their local sensors also generate an alert (as it
happens), node 4 will be greylisted or blacklisted. On the other hand, if neither
node 1 nor node 3 raises an alert from the n-grams received, node 4 will not be
expelled from the MANET, since a minimum of t devices did not agree on the
decision.

S(m_in_3,alert_from_2) alert
S(m_out_4,alert_from_2) noalert

S(m_out_4,alert_from_2) noalert
S(m_out_4,input_4) noalert
S(m_in_2,input_4) alert

S(m_in_1,alert_from_2) alert
alert_from_2

input_4

alert_from_23

1
2 4

Fig. 3. Model-Traffic Security Check on traffic from node 4 to node 2.



5.2 Model - Model Security Check

The anomaly sensor located within each device in the MANET, periodically
retrains on the data exchanged to generate new profile models. The model re-
training is scheduled to happen at different times so that no two devices generate
a model simultaneously. Every time a model update happens, the new profile is
broadcasted to all the MANET members. Each member will execute again the
membership acceptance phase calculating the similarity distance between their
local input models and the device’s new output model Dist(m in i,m out new).
If this distance is above their normalcy threshold th i, the device is rejected
by node i, otherwise it is be accepted. The threshold cryptographic layer under
BARTER forces the MANET to generate at least t rejection responses to be
able to expel the device from the MANET. Hence, if t devices in the MANET
consider that the new output model does not comply with their local similarity
threshold (th i), the model’s certificate will be revoked and added to the CRL
(certificate revocation list) and a new set of shared keys and certificates will be
created and shared with all the other devices in the MANET except for those in
the revocation list. Each member of the MANET will also update their greylist
and blacklist as well as their local tables.

6 Experiments: Description and Analysis

The main purpose of this section is to understand the performance of the merger
between a threshold cryptographic layer and the BARTER layer, i.e., how to
add a profile exchange layer on top of a cryptographic layer to enhance access
control incurring in low costs and with a good performance. With that purpose,
we investigate possible values of the cryptographic threshold parameter t that
was described in previous sections, and the performance of the BARTER access
control in terms of devices correctly or incorrectly accepted to the MANET, or
rejected from it. The cryptographic infrastructure running below the BARTER
layer requires an initial number of devices to set up the distributed shared keys to
secure the access control of new devices to the MANET. From a cryptographic
and wireless network point of view, a lower value of t is more advantageous
because it implies that in order to make any decision, any t devices in the
environments of the newcomer will be enough. The bigger t is, the less probable
that there will be sufficient devices to make a decision in a one-hop distance,
and hence delays may occur until t decisions are gathered, maybe even forcing
the newcomer to roam until it locates enough devices. On the other hand, the
BARTER layer will work more accurately (with higher true rejection rate of bad
profiles and lower false rejection rates of good profiles) when a high number of
devices intervene in the acceptance or rejection decision of a newcomer to the
MANET.

The value of t is initially defined by the cryptographic layer as the minimum
number of devices that are needed to accept or reject newcomers. If during
membership acceptance t never changes, the management of the MANET will be



less expensive because key regeneration and size recalculation will not be needed
(key regeneration may be used but not as often), But, if t is kept fixed with its
initial value, the more the MANET grows in size, the bigger the risk of a Denial-
of-Service (DoS) attack is. This is due to the fact that the smaller the value of
t with respect to the total size of the MANET (percentage of devices making
the access control decision), the easier the MANET could be compromised and
put down, e.g., if t=2 for a MANET size of 100 (only 2% of the devices make
the decision), the attacker would only need to compromise any two nodes in the
MANET to jeopardize the ad-hoc network. Hence, we also study the performance
of the system when t is updated according to the total size of the MANET during
the membership acceptance phase.

This experimental section analyzes the tradeoff between the value of the
cryptographic parameter t (fixed or updated) together with its related commu-
nication, regeneration and size calculation costs, and the false rejection and true
rejection rates achieved by BARTER during membership acceptance for that
value of t. The false rejection rate refers to the number of devices with normal
behaviors that are incorrectly rejected by the BARTER layer every time a new-
comer initiates the membership acceptance phase. The true rejection rate refers
to the number of devices with abnormal behaviors that are correctly rejected
by the BARTER layer from entering the MANET. Dynamic thresholds allow
us to change the value of t according to the size of the MANET [8]. To avoid
the saturation of the system due to the expensive process of modifying t, in the
experiments we use an idea proposed by Narasimha et al. [16][23] where the
value of t is recomputed only when the difference between the previous and the
current processed size of the MANET is bigger than a certain window value.

We approximate the cost (in seconds) of the threshold cryptographic execu-
tion as follows. The cost of renewing shared keys using proactive key generation
is a function of the number of devices in the neighborhood: each device regener-
ates a partial key and communicates it to the other devices [20]. In other words,
if there are t devices in the neighborhood, the cost is the communication/spread
time, otherwise the cost is increased by the time spent roaming around look-
ing for the t devices which may not be in its neighborhood. Hence, we assume
that the cost of key regeneration for a device every time a newcomer joins the
MANET is proportional to the number of t devices in the group,

keyRegeneration(node i) = K × t (2)

where K is the factor of proportionality that also depends on the type of threshold
cryptography approach used (TS-RSA, TS-DSA,...). For a fixed value of t, the
total key regeneration and communication cost for the MANET can be calculated
with Equation 2 at each device, but since it is done in parallel, this is also the



total MANET cost (Equation 3).

cost(t fixed) = K × t (3)

cost(t updated) = [

totSize−t0/window∑

j=1

K × (change + t)] + K × t (4)

If t changes over time, the average cost can be calculated with Equation 4 where
window is the number of devices accepted or rejected before renewing keys,
change is how much t is incremented or decremented, t is the number of devices
that make the access control decision (t0 is the initial value of t), and totSize
is the final size of the MANET once all the newcomers have been accepted or
rejected. The expression between square brackets represents the value of t before
being incremented every time window newcomers have been accepted.

6.1 Testbed Description

We use as testbed a pool of 140 possible users that represent either the initial
t devices in the MANET or newcomers trying to get access to the MANET.
The devices are part of a real 140-node grid of devices running Debian Linux
and AODV routing in the ORBIT architecture [19], a grid located in Rutgers
University. The application that the devices execute in the MANET is email:
each device will exchange emails with others in the MANET. We chose email
because it is one of the primary applications on handhelds and a good approx-
imation of other popular text messaging applications. To construct as realistic
traffic behavior models as possible, the emails exchanged are emails from the
ENRON dataset [4]. This dataset was selected because it is publicly available
and experiments can be repeated by other researchers. Each device in the grid
represents a user in the ENRON dataset (there are 140), running a MUA (mail
user agent, mailx) and a MTA (mail transfer agent, sendmail), and exchanging
emails with all or some of the other devices in the grid. Each device locally
captures the input and output traffic via tcpdump on port 25 (SMTP, Simple
Mail Transfer Protocol). The input and output traffic represent the emails that
are received from or sent to other devices in the MANET. The devices’ profiles
that are going to be used in the experimental analysis are calculated using the
adaptation of Shanner’s algorithm [22] and the ENRON dataset. Each device
gathers all of its input and output emails’ content as n-grams, hashing the most
frequent ones to Bloom Filters in order to build their input and output profiles.

Figure 4(a) and Figure 4(b) represent the number of input and output n-
grams (3-grams) that each of the ENRON users (140) in the dataset sends and
receives. As we can observe, the users are very spread in terms of number of
training n-grams that are used to build each input and output behavior profile.
This is a common case in MANETs where communications are unstable with
devices coming in and out of the MANET, and where sensors may have very
different amounts of training data. The 140 profiles that we calculate for the
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Fig. 4. Training Data for the Input and Output Profiles of the 140 ENRON users.

experiments, have an average cardinality (number of 1’s in the Bloom Filter) of
1475 with a standard deviation of 349. Devices with more training emails will
have more accurate models of what normal behavior (and normal traffic) is. For
experimental purposes, the set of profiles modeled with the content of emails
from the ENRON dataset (140 normal users) is referred to as pool of normal
users. Similary, we refer to pool of bad users, i.e, profiles that should not be
accepted to the MANET, as the set of profiles modeled with emails exchanging
either code (Java,C) or executable files. It is important to highlight that the
results presented here are limited by the fact that the profiles defined as normal
(ENRON profiles) are very spread. More confined sets will definitely improve
the experimental performance described.

6.2 Tradeoff Analysis

We recall that t is the number of initial devices in the cryptographic system
responsible for the creation of the distributed group keys, as well as the num-
ber of devices that make an acceptance or rejection decision in BARTER. We
want to explore the tradeoff between BARTER’s performance in terms of access
control false rejection and true rejection rates, and the value of t. We analyze
scenarios where t is fixed over time, and where t is updated over time. Full mesh
connectivity is assumed in our experiments.

I. Value of t is fixed over time. We randomly choose sets of users’ profiles
from the pool of normal users of sizes t= 2, 8, 13, 20 and 50 respectively. These
t devices first run the bootstrap phase to agree on a definition of what normal
behavior is for the group, and then run the membership acceptance phase by
accepting or rejecting profiles randomly chosen from the remaining profiles in
the pool of normal users and from the pool of bad users. At any time, any t
devices can execute the membership acceptance phase. For each possible value
of t, the process of bootstrap and membership acceptance is repeated 60 times
to compensate for the random selection, and averaged over all runs. As we can
observe in Figure 5(a), for t=2 and t=8, 43% and 23% of the 10 first newcomers
trying to enter the MANET with normal profiles are rejected (false rejection



t FR,TR for first 10 devices FR,TR for last 10 devices Crypto Cost

2 0.433 0.985 0.05 0.999 2 ∗ K

8 0.23 0.905 0.04 0.997 8 ∗ K

13 0.103 0.950 0.035 0.998 13 ∗ K

20 0.035 0.900 0.0265 0.998 20 ∗ K

50 0.065 0.852 0.0286 0.964 50 ∗ K
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Fig. 5. (a) False Rejection (FR) and True Rejection Rate (TR) averaged over the first
ten and last ten newcomers trying to enter the MANET, together with the associated
cryptographic costs. At any time, any t devices make the access control decision. (b)
Evolution of FR and TR for different t ’s every time a newcomer tries to enter the
MANET.

rate), despite the fact that the costs of key generation are reasonable. For t=13
and t=20, the false rejection rates of good profiles are reduced to only 10%
and 3% respectively. Obviously, this improvement in the BARTER performance
comes at a cost: the key generation costs are 6 and 10 orders of magnitude bigger
than for smaller values of t (calculated following Equation 3). In a bad case
scenario e.g., K=1, the total cost of running the membership acceptance phase
for all accepted devices is 20 seconds when t=20, or approximately 0.24 seconds
per device. This is to be compared with a total cost of 2 seconds when t=2, or
0.02 seconds per accepted device. Over time, as more devices are accepted, these
rates improve to more acceptable rates. Third column in Figure 5(a) shows false
rejection rates averaged over the last 10 newcomers which are under 5% for any
value of t. We can observe that at much larger values e.g., t=50, there is an
inflection point where the false rejection and true rejection rates are worse than



for smaller values of t. This is due to the fact that it is more difficult to initially
have so many devices in agreement, which typically happens when the pool of
normal users is very spread (like the ENRON dataset). Figure 5(b) represents
the evolution of the false rejection and true rejection rates every time a newcomer
tries to enter the MANET, for various values of t. As explained, larger values
of t (up to the inflection point) result in better false and true rejection rates
specially for the first newcomers.

Table 1 shows results for a similar experiment but with half of the initial
profiles having been trained with a fixed maximum of 100 input and 100 output
emails. The profiles in this dataset are more spread, in terms of number of input
and output emails, than the profiles used in the initial dataset. The average
cardinality for this new testbed is 1042 with a standard deviation of 616 (as
opposed to 1475 and 349 in the initial dataset). There is a clear increase in
the false rejection rates compared to the values seen in Figure 5(a), as well
as a decrease in the true rejection rate. The larger the spread among the initial
profiles i.e., larger standard deviation, the worse the BARTER framework access
control will perform for the same t.

t FR,TR for first 10 devices FR,TR for last 10 devices Crypto Cost

2 0.654 0.885 0.064 0.952 2×K
8 0.312 0.845 0.052 0.948 8×K
13 0.191 0.910 0.041 0.958 13×K
20 0.095 0.900 0.0287 0.990 20×K
50 0.104 0.840 0.0325 0.920 50×K

Table 1. False Rejection (FR) and True Rejection Rate (TR) averaged over the first
ten and last ten newcomers trying to enter the MANET, together with the associated
cryptographic costs. At any time, any t devices make the access control decision. Half
of the total devices have been trained with very little traffic.

II. Value of t is updated over time. If the MANET evolves into a value of
t that represents either a very small or a very large portion of the total size of
the MANET, the risk of a DoS attack increases. In this Section, we study the
changes in BARTER’s performance when t is updated over time to avoid DoS
attacks. The BARTER framework has the option of updating the value of t such
that

(change/window) ≥ DecMakers (5)

(t0/window) ≥ DecMakers (6)

where DecMakers represents the percentage of devices relative to the total size
of the MANET, that are needed to make a distributed decision for the access
control to the MANET, change is the increment amount of t, window is the
number of devices that has been accepted every time t is updated , and t0 is the



t0 FR,TR first 2*window devices FR,TR last 2*window devices Crypto Cost

2 0.452 0.986 0.064 0.999 1260*K
8 0.242 0.898 0.058 0.972 360*K
13 0.133 0.920 0.043 0.996 195*K
20 0.064 0.881 0.0328 0.967 200*K

(a)

t0 FR,TR first 2*window devices FR,TR last 2*window devices Crypto Cost

2 0.494 0.983 0.19 0.999 2256*K
8 0.28 0.890 0.062 0.974 960*K
13 0.183 0.911 0.054 0.994 715*K
20 0.0702 0.860 0.0304 0.957 420*K

(b)

Fig. 6. (a) FR and TR averaged over the first and last 2×window devices and crypto-
graphic cost. DecMakers=0.5 (50% of total devices make the access control decision).
t0= 20, 13, 8, 2 increases with window= 40, 26, 16, 4 and with increments of 20, 13,
8 and 2 respectively. (b) As (a) but DecMakers=0.95, t0= 20, 13, 8, 2 increasing with
window= 21, 14, 9, 3 and with increments of 20, 13, 8, and 2 respectively.

initial value of t. Equations 5 and 6 guarantee that t is incremented every time
the percentage of decision makers over the total size of the MANET is smaller
than DecMakers. DecMakers = 0.05 or emphDecMakers = 0.95 represent the
extreme cases where as little as 5% or as many as 95% of the devices in the
MANET are needed to make an access control decision (any value below 5% or
above 95% is probably too risky for DoS attacks). We run the same experiments
as in the case of a fixed t, randomly choosing t0=2, 8, 13, and 20 initial users and
implementing the access control test with the rest, but this time updating the
value of t when needed. The costs of the cryptographic layer in this section are
calculated using Equation 4. We explore three specific cases: (Case 1 ) we only
require 5% of the devices of the MANET to make the access control decision
(DecMakers = 0.05 ), (Case 2 ) we require 50% of the devices to emit the decision
(DecMakers=0.5 ), and (Case 3 ) we require 95% of the devices (DecMakers=.95 )
to implement the access control. For each, the values of window and change are
calculated from Equations 5 and 6 for the different values of t0.

Case 1 : For t0= 20, 13, 8 and 2, the value of t gets updated every time
window= 400, 260, 160 and 40 devices are accepted to the MANET. Since the
ENRON dataset contains 140 users, the value of t never changes because we
always have more than a 5% of devices making the access control decision. This
is always the case except for t=2. In fact, the false rejection rates, true rejection
rates and costs for total MANET sizes smaller than the window value (like the
ENRON dataset), are the same as in the previous section (see Figure 5(a)). Case
2: In this case, the value of t is modified every time window= 40, 26, 16 and 4
devices are accepted for t0= 20, 13, 8 and 2 respectively. Table 6(a) shows the
false rejection and true rejection rates calculated for the first 2×window entries



to the MANET. We choose this size to be able to see the effects of the new
access control policy once it takes place after window users have been accepted.
As can be seen, false rejection rates, true rejection rates and costs are worse
than Case 1. But because the decision is made by a 50% of the total devices in
the MANET, it is more difficult to DoS attack the MANET. Case 3: This case
presents the worse false rejection rates, true rejection rates and costs of all three
scenarios, since 95% of the total devices are needed to make a decision (Table
6(b)). In summary, it is up to the user to choose adequate DecMakers and t0
values depending on the MANET being modeled and on the level of DoS attack
risk that the user is willing to accept.

Figure 7 shows the changes in BARTER’s performance (evolution of the false
rejection rates) as a function of DecMakers and t0 for Cases 1 through 3. As can
be seen, the larger the percentage of decision makers is: (i) the larger the false
rejection rates are for any given t, since it is more difficult for the devices to agree
on a decision (specially in spread datasets like ENRON); (ii) the more expensive
the cryptographic layer is; and (iii) the more secure against DoS attacks the
system will be because the decision making process is more distributed.
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Fig. 7. BARTER’s False Rejection Rate for different updated t ’s and DecMakers val-
ues. t0 is t ’s initial value, incremented over time.

7 Conclusions and Future Work

We have implemented and tested BARTER, a fully distributed behavior-based
access control and communication security framework for mobile ad-hoc net-
works. The framework allows the devices to exchange their behavior profiles in
order to determine whether the behavior is similar or not to the normal behavior
of the MANET and accept or reject it accordingly. BARTER’s decision making is



implemented on top of a threshold cryptographic layer that guarantees a secure
communication. This paper addresses the issue of how to merge appropriately
both BARTER and cryptographic layers in order to achieve a good tradeoff
between a) reasonable values of t to avoid expensive cryptographic computa-
tions; b) reasonable false rejection and true rejection rates during acceptance of
newcomers to the MANET; and c) reasonable values of t to avoid DoS attacks.

BARTER achieves for the ENRON dataset, false rejection rates smaller than
0.03%, true rejection rates above 90% and cryptographic costs around 0.24 sec-
onds per device accepted, for cases when approximately a 5% of the total size
of the MANET is responsible for the decision making. We have also provided a
discussion about reasonable t0 and DecMakers values, as well as adequate mea-
sures of the spread among behavior models that will avoid DoS attacks without
incrementing the cryptographic costs too much while keeping BARTER efficient.
The experiments presented here can be used as a guideline to approximate the
parameters t0 and DecMakers for any other pool of normal devices.

The profiles exchanged among devices represent a model of the content
shared. But content is not the unique possible representation of the behavior
of a device exchanging emails. We plan to model other non-payload related pa-
rameters such as volume (number of emails) and velocity (rate at which emails
are sent). Users will not only exchange models of the content they share but also
histograms of usage that together with the content will give a more accurate
definition of each device’s profile. In addition, we will study possible ways to co-
ordinate the membership decisions made according to payload and non-payload
parameters. Thus far, we have mainly studied the membership acceptance phase,
but we also plan to experiment with the membership update phase as new mod-
els are trained when more traffic is exchanged among the MANET members. We
will also investigate ways to automatically learn BARTER’s parameters from a
pool of typical behaviors. Finally, we also intend to analyze the memory, power
and bandwidth consumption of this type of framework.
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