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Abstract—GloServ is a global service discovery system which within that ontology allows searching for general categories
aggregates information about different types of services in a of services and then specializing to specific services.
globally distributed network. GloServ classifies services in an These attributes make GloServ a very good candidate for
ontology and maps knowledge obtained by the ontology onto L L
a scalable hierarchical peer-to-peer network. Since services are context-aware applications. Such Cpntext-aware appllcatlons
described in greater detail, due to the ontology representation, N€ed to have access to both ubiquitous as well as pervasive
queries are matched semantically. In this paper, we describe information, thus revealing the need for a globally scalable
an enhancement to the GloServ querying mechanism which system. The underlying peer-to-peer architecture provides an
allows GloServ servers to process and issue subqueries betweenyficiant system for global distribution of services that may
servers of different classes. Thus, information about different L . .
service classes may be queried for in a single query, creating also be dy”am'c_ 'r? nature. WFf enVI§|0n all types of services
an extensible platform for service composition. The results are t0 be handled within GloServ, including those that need real-
then aggregated and presented to the user such that servicestime service description updates. For example, restaurants may
which share an attribute are categorized together. We have built want to update their available seating every 15 minutes during
and evaluated a location-based web service discovery prototype peak hours. Hence, a peer-to-peer system provides an efficient

which demonstrates the flexibility of service composition in f f ing f t writes in addition t d
GloServ and discuss the design and evaluation of this system.meanS Ol performing frequent writes In adaition 1o reads.

Keywords: service discovery, ontologies, OWL, CAN, peerto-  Furthermore, GloServ aggregates all types of services into

peer, web service composition one system. Since the high-level service classes are organized
in an ontology, adding a new service class into the system
. INTRODUCTION simply reduces to adding a class to the ontology and deploying

the servers necessary for handling the given service class. The
As more services become available and context-aware @agtwork is then automatically generated via the information
plications and ubiquitous computing becomes commonplagéthin the ontology. This attribute of GloServ provides great
service discovery in a wider area network is necessary and rgdal of generality and ease of construction of services within
work scaling becomes an issue. The proliferation of servicgég network, allowing third parties who want to add their
also creates the problem of performing more sophisticatedrvice class to GloServ the ability to do so by submitting an
query matching such as giving one the option of searching fontology for the service class and deploying a pool of servers.
exact and similar matches to a query or allowing one to quefntologies for a given service class will be designed by experts
for a combination of different services in a single search. Addyithin that domain. Since these ontologies represent high-level
tionally, services may be dynamic in nature which requires thervice classes, all services within a given class will share
service discovery system to handle frequent service updat@smmon attributes. For example, the restaurant service class
Currently, service discovery systems do not scale well and atgares the location, cuisine and price range attribute across the
limited to local area networks. They also use simple attributglobe. However, if service providers need to specify further
value pair matching in order to discover services, which limiiaformation, we have extended GloServ so that key words can
the results only to exact matches. be inserted within the ontology and a combination of text and
In order to address these problems, we have developgttology querying can be done [8].
GloServ [7], a global service discovery system, which uses theThe main contribution of this paper is describing an en-
Web Ontology Language Description Logic (OWL DL) [3] tohancement to GloServ which allows different types of services
classify services in an ontology and map knowledge obtaintal be queried for in a single search. Service composition
by the ontology onto a hierarchical peer-to-peer network. itvolves, especially for web services, involves consolidating
operates in wide as well as local area networks and supparisltiple services into a single composite service. Currently
a large range of services that are aggregated and classifieddrvice composition is done by issuing multiple queries to
ontologies. A partial list of these services include events-basedrious entities. In order to compose several services in one
physical location-based, communication, e-commerce or wgbery, systems exist which handle a limited set of closely
services. Organizing services in an ontology and searchirgjated service classes. For example, when searching for travel



services, sites such as Expedia or Priceline provide flight, hotgly. Relationships can also be established between classes via
and car rental information in one query. However, if one wantggical connectives such as intersection, union, or complement.
to search for classes that are indirectly related to travel, suchThe motivation behind using ontologies for service discov-
as restaurants or theatres in the cities they are traveling to, thig rather than using simple attribute-value representations of
is not as easy to accomplish automatically in one query. data, such as in traditional databases is mainly due to the
We have enhanced GloServ to support subquerying betwaeasoning power behind ontologies. An example of a query
its servers in order to allow services which share commavhich can be done using an ontology which is difficult to do
properties to be composed into a single query. With thissing an SQL query would be something like: “Given a service
enhancement, fairly complicated queries can be issued irclass, find exact and similar matches to my query”. Service
single search. An example using location-based services wosé&hrch is evolving to cater to particular users and their context
be searching for a Chinese restaurant in the Upper West Sédal thus reasoning capabilities such as these are essential for
neighborhood of New York City which also has a nearbperforming context-aware searches. SQL also does not support
theatre playing an action movie. The results will show a#ibstract data types, thus making it difficult to determine if
Chinese restaurants and their corresponding movie theat@escertain property value belongs in a number of different
If one wants to broaden the search to include similar resuft®sses or types. Finally, ontologies can be shared, re-used
such as similar restaurants to Chinese, reasoning using #@nel changed flexibly. For example, when new relationships are
ontology produces results for Korean and Japanese restaurastablished within the ontology because of ontology migration
as well since these are all categorized under Asian cuisiig.the addition of new classes, determining new relationships
Another example would be querying for a service and iwithin the ontology simply reduces to running a reasoner on
annotations. For example, many users like to read and gthe ontology in order to reclassify the classes.
feedback pertaining to services they will use or have used.The main drawback to using an ontology is that classifi-
This review system can be deemed asPamotationservice cation is expensive. As ontologies grow large and especially
class which has any number of different rating services suchwalsen instances of classes are stored in the ontology, reasoning
Zagat for restaurants, Better Business Bureau for businessesx;omes a bottleneck. We tackle this problem by storing
or regular user reviews. Given this type of service compositiomstances in a database back-end instead of the ontology
one can search for any service which has a particular ratitigelf and using only class relationships for determining which
and give feedback for this service as well. Thus, a search adasses a query belongs in. This speeds up the classification
be issued for an Italian restaurant in New York which has bepnocess considerably. Also, a positive side-effect of the dis-
rated excellent by Zagat and by regular users. tributed architecture of GloServ allows each server to handle
Below, we describe the subguerying mechanism in detaih ontology for one service class. Thus, the size of the
and discuss the results of our initial prototype for locatiorentology always remains manageable for classification.
based services. Section Il gives background information gn
ontologies and the GloServ system. The design of the sd%‘— GloServ
querying mechanism is found in Section Ill. Sections IV We give an overview of GloServ's design in this section
and V discusses the implementation and evaluation of thet encourage the reader to refer to [7] and [6] for greater
prototype system. Related work is discussed in Section Wetail. The remaining sections of this paper concentrate on the

and we conclude in Section VII. subquerying enhancements made to GloServ which improves
upon service composition.
Il. BACKGROUND One of the main components of GloServ is the service

classification ontology. Although there are many ways to engi-
neer ontologies, we have adopted the modularization approach
An ontology is defined as a formal, explicit specification of gpecified in [14] and [17]. Modularizing ontologies into
shared conceptualization [11]. A conceptualization refers to aaparate domains allows ontologies to be re-used, maintained
abstract model of how people think about things in the worldnd to evolve with flexibility. Modularization is achieved by
The concepts and relationships are given explicit names gngiting general classes within an ontology in a pure hierarchy
definitions. These are formalized into a specification which ighere siblings are disjoint from each other. This creates
encoded in a logic-based language. Ontologies are meanttprimitive skeleton Hence, service instances will only be
be shared across different applications and communities. classified within one of the branches. At the lower levels of
An ontology specification includes a number of classdbe ontology, classes may have relationships with other classes
which represent various concepts, similar to how object orieand a pure hierarchy is not maintained. The upper hierarchical
tation or the entity-relation model consider classes. Classm#ology which defines high-level services is mapped onto a
have object or datatype properties which can be restrictbiggrarchical network and the low-level ontologies are mapped
using existential or universal quantifiers. Classes contain ito- a peer-to-peer network.
stances or individuals which represent actual data. DescriptiorAnother component of GloServ is the back-end hybrid hi-
logic ontologies, such as OWL DL, allow class relationships terarchical peer-to-peer service discovery network. A GloServ
be inferred based on established relationships within the ontsérver (GloServer) in the hierarchical network represents a

A. Ontologies



high-level service class within the pure hierarchy of the ontdbwer levels of the ontology. Each service instance has a set
ogy, described above. The high-level network works similar tif properties that are populated. According to the service’s
DNS except that the network exploits the knowledge obtainattributes, it is classified in a set of related classes within the
by the service classification ontology to establish the hierarcbgtology. Services are registered and queried for either in a
and route the messages to the correct peer-to-peer netwader-centric way through a web-based form or in an automated
A benefit of this design is that since the high-level servidashion by issuing a first-order predicate logic query. We have
classes are disjoint, a query will be routed to one of thmplemented the GloServ front-end as a web-based form.
hierarchical branches, reducing the number of hops a quédilye form generated reflects the ontology of the service class.
needs to propagate through. Service providers and users register or query for services by
The lower levels of the network architecture are organizéitling in values for each of the attributes of the service. Details
in a peer-to-peer Content Addressable Network (CAN) araf the implementation are given in IV.
also represent the class relationships within the ontology. WeAt the lower levels, maintaining a purely hierarchical on-
describe a novel mapping algorithm in [7] that combines thelogy structure becomes difficult as classes tend to overlap.
benefits of OWL DL and CAN to map content of servicéThus, in order to efficiently distribute service instances ac-
instances to nodes in a peer-to-peer network. Although thexerding to similar content, servers that hold information on
are other types of structured peer-to-peer networks suchsasilar classes are distributed in a peer-to-peer network. We
Pastry [18] and Chord [19], we have elected to use CABmploy a CAN peer-to-peer architecture to distribute classes
because it is easily constructed given a service ontology. @Quith similar content. The CAN architecture is generated as
ganizing similar classes within a peer-to-peer network causesetwork of n-level overlays, wheren is the number of
them to lie in closer proximity to each other within thesubclasses nested within the main class. An example of an
network which makes the similarity searches defined abowatology classification using thiRestaurantlass and the CAN
faster. Thus, in order to achieve load distribution, fast queoyerlay network generated is seen in Figure 2. The first CAN
and update processing time, while maintaining reliability, weverlay is ad-dimensional network which has the first level of
have elected to use a hierarchical peer-to-peer network as ssdclasses of thRestaurantlass. The number of dimensions
underlying service discovery architecture. is determined by the maximum number of nodes which can be
GloServers maintain three types of information: a serviealded into the CAN. This is estimated to Hegf, n)/2 where
classification ontology, a thesaurus ontology and, if part @f is the number of nodes in the network, to ensure that the
a peer-to-peer network, a CAN lookup table. The high-levember of query hops ar@(log, n).
service classification ontology is not prone to frequent changes

and thus can be distributed and cached across the GloServ Retaa
hierarchical network. Each high-level service will have a set O

of properties that are inherited by all of its children. As | Jemcme | [smet ] [
the subclasses are constructed, the properties become specific L
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to the particular service type. The thesaurus ontology maps
synonymous terms of each service to the actual service term
within the system. Figure 1 gives an overview of how servers -

are found in GloServ. Services are represented as instances

CAN

Fig. 2. CAN overlay network

Continuing with the restaurant example, as services register
within CAN nodes and instances are created, they are classified
into the subclasses dRestaurant When a new CAN node
joins the network, one of the CAN dimensions is split into
two and data is transfered over to the new node. If there
are ¢ classes and dimensions, classes are separated ihto
parts where each part contait)s! classes. According to some
criteria, one of these dimensions is chosen and split into two.
of the service classes and usually reside in the more specifibe current criteria we use is choosing the dimension with

Fig. 1. Finding servers in GloServ



the largest number of keys. However, in the future we wilops considerably. Once the correct GloServer is contacted,
implement network management techniques which keep trable user agent obtains the ontology pertaining to that service
of the overloaded servers and split the dimension which heass. The interface to the user can either be human-centric or
the greatest number of overloaded nodes. Thus, if the initelitomated, depending on the implementation. In either case,
node has 3 dimensions with 10 classes in each dimension, thequery is formed and sent to the GloServer. The query is a
the range of each dimension {8:— 9], [0 — 9], [0 — 9]. When first order predicate logic statement that contains restrictions
a new node joins the network, one of the dimensions is splih various properties such asials Location someNYQ and

and the resulting two nodes will have the following range dhasCuisine some (Korean or Chinese )). The server

values:[0—4],[0—9], [0—9] and[5—9], [0—9], [0—9]. Figure 3 handling that service class creates a class with this query
illustrates the joining of four CAN nodes in the network. restriction and classifies it in its ontology. Since the subclasses

Node1

spliton DO| [0-9]
[0-9]
[0-9]

Nodel — Node2

of the Restaurantclass are restricted by location, the query
class gets classified as a subclass ofNN€Restaurantlass.
The query is then forwarded to the nodes that haridife
CRestaurantlasses. When a node is found, the query class is
classified again. Since ti¢Y CRestaurantlass has subclasses

N
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Node:

that have cuisine restrictions, when the reasoner classifies the

[04]
s.,.i..,nm Lios1 ) query class, it becomes a subclassNdfCRestauranand a
Modes Nodes superclass oKoreanNYCRestaurargnd ChineseNYCRestau-
rant classes. The classification indicates that the query must be
[04] [5-9]

routed to the servers handling Chinese and Korean restaurants.
In order to route the query within a CAN, the query needs
to reduce to a dimension and key. We use the dimension
and key values assigned to each of these classes during the
CAN network generation to convert the ontology class to a
< dimension, key > pair

A service registration instance is a unique URI which refers \we ijjustrate ontology querying with the following example.
to the service’s description. Service instances are distributed (& s assume we haveNly CRestaurandntology that has 30
all CAN nodes that handle their service classes and Storedslﬁbclasses, separated into 3 dimensions with 10 subclasses
a database. Since we are using a CAN distributed hash taljdeeach dimension. Each subclass is assigned a unique key.
not every node within the system needs to be updated. Fgyys, keys are separated into [0-9], [10-19] and [20-29] for
queries, when a query is matched exactly, the first matchiggnensions 1, 2 and 3 respectively and a class is represented
node will have the complete data set for that particular qUeRY its < dimension, key > pair. Furthermore, th€hineseNY-
restriction and thus further nodes need not be traversed. k@$estauransubclass is assigned to dimensiomith key 0
a related match query, only the servers that hold logically,q KoreanNYCRestaurartb dimensionl with key 0. If a
similar information will be searched. Figure 4 gives a graphicgker queries for:HasLocation someNYQ and (asCuisine
overview of the query propagation in the CAN. We eXP|ai§ome(Korean or Chinese )) the query message 8; 0; =].
the details of ontology querying by looking at tRestaurant ag seen in Figure 4, Nodel receives the query and stops
ontology as our running example. propagating it because it handles these classes.

If a user relaxes her query requirements to not only include
equivalent, superclass or subclass relationships but sibling
oy 0 eg relationships as well, Nodel looks at the sibling classes
AN o0/ 0 and issues query messages for each. For example, if the

N, /’/ query messagéx;4;«] comes into Nodel where semantic

e matches to the query are classes that are numbered 4, 5 and

W 6 in dimension 1, then the query message is converted to
. [*;4,5,6; %], processed in Nodel and propagated to Node3.
A query continues to propagate until the original node is
reached. Since a dimension is circular, it is guaranteed that
the query will return back to its original position with at most
O(n'/?%) hops. For example, each of these siblings have certain
restrictions on various properties. The related query matching

When a user initially contacts a GloServ user agent adhorithm finds properties that are related to theeryclass’s
enters a service name, the initial GloServer is found aftproperties and looks into the siblings that have these property
following the steps outlined in Figure 1. Since each hierarestrictions.
chical node handles a class which is disjoint from its siblings, Each property has a domain class and a range class. In
the query is routed down only one branch reducing the quessder to find a related property, the range is classified and

Fig. 3. CAN node splitting into two nodes

Exact Query

Fig. 4. Query propagation in the GloServ CAN



the equivalent classes and subclasses of the range are lodaghisticated where one can search for details given the
into. For instance, th€uisineclass has the subcla#iglian ontology of each service class which can result in exact and
which has subclassdgizzaand Pasta When a query comes similar matches. Thus, a search for Chinese Restaurants can
in for a pizzeria with a five star rating in NYC, the queryalso produce results for Asian restaurants such as Japanese
class will have the following restrictionh@sLocation some or Korean. We have also added the capability of combining
NYQ and QasCuisine somePizza ) and QasRating some ontology querying with text search [8]. Thus, service providers
FiveStar ). This query class is classified according to howre not limited to the ontology description but can add their
the ontology is constructed. In our ontology, it first getewn set of key words as well. Users can then add key words
classified under thétalianNYCRestaurantlass. If there are in addition to filling out the ontology form.
no instances within this class that haveP&zacuisine and  Finally, because all these services are distributed in a global
FiveStarrating, then the related classes of the Biezaclass network and can be accessed rather quickly, combining more
are analyzed. Since thBastaclass is related to th®izza than one service in a given search becomes possible. A few
class, the query is reformulated to inclueéestaas the cuisine. challenges exist in accomplishing this: 1) creating a query
Alternately, a user may choose to have related information lemguage which allows servers to distinguish different parts
the query even if exact ones exist in which case the resultsthe query, namely, the part belonging to its own service
given are both exact and related matches. class, the parts belonging to other service classes and shared
properties between each part; 2) routing the query to the other
] servers, collecting all the results from the various servers and
A. Motivation processing them such that those with matching attributes are
Currently, outside of GloServ, service composition is dordisplayed to the user in a easy to understand graphical user
mainly within one service class. For example, travel sites suittierface. We describe the design of our solution below.
as expedia.com and priceline.com allow one to search for_a
combination of travel services such as tickets, hotels and &
rentals. The menupages.com site gives information on restauTwo services can be matched only if they share a com-
rants in certain major cities in the United States which alsoon property. Combining two services in one search only
include menus, price ranges and ratings for each restaurant er@kes sense if there is a relationship between them. As all
restaurants can be searched for either by location or cuisinetvice classes are described in ontologies within GloServ,
Additionally, the seamlessweb.com site also allows one #orelationship between two services means that they share a
place an order at a restaurant for delivery. When searchiptpperty. For example, th€heatre, Restaurarand Weather
for movies, sites such as movies.com or fandango.com givelasses share theocation property. Thus, a search can be
list of movies in a certain location along with ratings and #ssued for an outdoor restaurant which has a nearby theatre
link to purchase tickets. playing an action movie in a region of NYC which does not
There are many other examples of web services, sughow rain in the forecast.
as these, which allow one to search and invoke a numbeAnother example of matching properties in a combined
of different services. However, the main drawback to thesearch occurs when searching for annotations for a given
systems is that they exist as separate entities on the web. Tisesyice, such as reviews. The matching property will be the
when one wants to search for a restaurant and a nearby mdagtancelD of a given service. Every service has a unique
theatre, one will need to first go to the restaurant site, find thHe which distinguishes it from others. Th&nnotationclass
restaurant and then go to the movie site and search for thas a service instance ID property as well in order to identify
theatre near the restaurant’s location that is playing a movlie service being annotated. Thus, a search for a “Japanese
that interests him. restaurant in NYC which has an excellent rating by Zagat”
Additionally, when searching for a service using Googleeduces to matching the service instance IDs of the restaurants
the type of search is limited to key words which does natbtained to the service instance IDs of the annotations.
allow specificity or greater reasoning as mentioned above.Additionally, the shared property might have different mean-
Thus, besides not being able to search for a combinationings in the two service classes and the semantic relationship
services at once, it is also not possible to reason over the daay often be invisible to the ontologies. For example, the
in order to search for similar services. So a restaurant seaNfme property of a person could be matched to #ghor
in local.google.com is limited to search terms such as “chinegmperty of a restaurant review.
restaurant” or “pizza” which returns results with these terms To match two services based on a shared property, only
in them, but can not extend the search to include price rangfee type of the properties in two services classes have to
cuisine, or ratings. match. For our prototype, we use thecation property and
GloServ’s subqguerying extension solves the above prdbe InstancelD property as the shared properties since these
lems. Since service information from different classes aese used to search for location-based services as well as
aggregated, categorized in an ontology and distributed acrfissling annotations on services such as reviews. Jdwtion
a global network, multiple services can be searched for moperty is an object property that has therationclass as its
a single query. The search for services can also be quigmge. ThdnstancelD property is a datatype property which

IIl. SERVICE COMPOSITION IN GLOSERV

Matching services



is a string datatype. Because matching is done based on ttethod, JOIN (for node joins), QUERY, REGISTER, as well
type of a property, this not only requires, but also promotes oae a payload. A query that is sent to a a CAN network for the
of the fundamental ideas of ontologies, namely that ontologifist time is labeled as aserqueryand contains the full logical
can be reused and become common “vocabulary”. To adhergtry statement. This initialiserqueryis classified within
our example, théocationclass is envisioned to be engineerethe ontology and is then converted into &mernalquery
once and then reused by every service class that needsThe internalquery consists of a numeric representation of
express a physical location. We have designed this class totlhe matching classes<(dimension, key > pairs described
categorized by country, county/state, city. Additionally, theri@ section 1I-B) along with the logical query statement. The
attributes for street, zip, longitude and latitude. While oniaternalqueryis routed in the CAN internally so that further
could argue that this type constraint limits the ability to freelglassification is avoided.

combine service classes, we believe that it has the opposit&/hen combining services, each query part is sent to its
effect. By providing an incentive to reuse ontologies (i.ecorresponding CAN servers. Since the primary query of the
combining services into one query), we promote this vegombined query is just like any other GloServ query, it is
desirable concept. routed and processed like a regular query. From the example
above, the query is initially routed to the GloServers which
handle theRestauranservice class.

Thus far, we discussed the general concept of when servic®©nce a GloServer is found which has matching instances,
classes can be combined into one query. In the next step, thhese instances are retrieved but not sent to the user directly.
will elaborate how we extended our basic query langua@estead, a new query is constructed, which is related to the
to allow combining services. The query language used sgrvice class within the subquery. This new query is derived
the same as that of Protege’s [9], which is an open sourftem the old query in three steps. First, the main query is
development environment for ontologies and knowledge-basstdpped away. Second, the qualifier prefixes of the subquery
systems and this is what we have extended. are removed, transforming this into a valid main query. Third,

The first and most important design decision was to organiaad most importantly, the equals expression is resolved by
the service classes in a chain. Every query has a main sengoeating an expression for every found value of the shared
class that it is searching for. In addition it may contain ongroperty. This set of expressions is then “OR"-ed and attached
or more subqueries that relate to a different service class. Ttbethe new query.
main query part is a regular GloServ query. If the user is Continuing with the example introduced above and as-
searching for an Italian Restaurant in New York City, the maisuming that Restaurants in Manhattan and Queens were
query might be: fasLocation someNYQ and GasCuisine found, the new query for Theatres would look like this:
someltalian ). Each subquery itself is a regular GloSerfhasT HX has true ) and (QasLocation some Manhat-
query, except that all property names are qualified with then ) or (hasLocation someQueens)) As seen above, this
service class the subquery is referring to. If the user rew query is a regular GloServ query without subqueries. The
searching for a nearby theatre which is THX certified, theew Theatre query is issued to the GloServ architecture just
subquery could look likeT heatre.hasT HX has True . like any other query, but contains the Restaurant instances

Besides the main query and the subquery a third pamtits payload. Thus, it is routed through the Theatre CAN
is required that identifies the shared property. To expreasstwork until Theatre instances are found. Once this happens,
this relationship we added the equals operator to thaefinal answer containing both, the Restaurant and matching
guerying language which is similar to an SQL join operatiofheatre instances is sent to the searching user. Figure 5
Following the given example, if the user wants the Theatitustrates how the query is routed across the different CAN
to be near the Restaurant, the equals expression would hetworks. If two services are so closely related that users
Restaurant.hasLocation equals Theatre.hasLocation frequently search for them in a combined query, there are
and the overall resulting GloServ query would be: two ways to optimize routing in the GloServ architecture. In
((hasLocation some NYQ and (QasCuisine some a first step, the routing table of the Restaurant servers could
ltalian )) and ((heatre.hasTHX has true ) and have direct pointers to the servers in the Theatre network.
(Restaurant.hasLocation equalsTheatre.hasLocation) While this would reduce delays and bandwidth requirements,

As mentioned earlier, one query might contain multiplé would also require greater overhead. If two services are so
subqueries. All of them use the same syntax and can be toldsely related that the users often combine them and only in
apart by the qualifier that is used as a prefix to the propergre cases query for just one of them, the two services can be
names. The order in which the equals expressions descritiegrated into a single CAN network. While this approach is
relationships between the service classes determine in whiotally different from the approach presented thus far and is

C. Query Language

order the subqueries will be processed by GloServ. beyond the scope of this document, we implemented it in our
) prototype to demonstrate the feasibility.
D. Request Routing Since the GloServ CAN network is a black box to the user,

The GloServ message format is similar to HTTP and Siere is no way of knowing how many answers will be returned
Each message contains a list of headers which indicate fhmm a query. Similarly no GloServ node knows how many



in PHP. The interface uses Google Maps to display location-
based services. The front-end parses the OWL ontology using

{550 combined guery thoch GloServ PHP gnq aut_omat_ically generates a fo_rm base_d on the service
@glmeegf;gl_@ieggggt,ggsrggmggvt i degcrlptlon given in the_ ontology. Service providers and users
hi‘lrd register or query via this form. The ontology also has annota-

User tion properties which guides the front-end server in populating
the fields within the ontology. Thus, for properties that may
also have key word search enabled as mentioned in I, the
interface displays a text box underneath the form for the user
to enter key words in. The interface is seen in Figure 6 and
can be accessed on the webhdtp://gloserv.dyndns.org:8080
The query parser is implemented using JFlex and CUP.
JFlex is a lexical analyzer and offers a language to describe the

different kinds of tokens. For example, GloServ defines string

4) Return the full set of
résults to the front-end

& e . H “ LTS ”
SROME uEIy o tho othel sepvce and literal tokens, tokens for operators like “has”, “some” and
SENICSIINSTaNcEsnhespay|cad “or” and tokens for items like brackets. CUP is a parser and

offers a language to describe a grammar. The grammar uses the
tokens defined with JFlex. GloServ defines basic statements
Fig. 5. Subquery routing in GloServ like “A some B”, complex compositions like “(A some B) or
(C some D)” and so on. In the language CUP offers, Java
code is inserted to express what the parser should do when
) ) it finds the constructs defined by the grammar. Therefore,

other nodes a query will traverse once it has left the nodgiosery defines classes that represented all kinds of language
Thus, there is a need for a mechanism to keep track of answefssirycts used in queries (Identifier, SomeStatement, Has-
GloServ implements a simple mechanism to do that job. EveéYatement, OrExpression, etc.).
query has a value which could be read as "what percentaggyot, jrjex and CUP generate Java code. We have defined
of the overall answer does this query cover”. The initial query QueryParser class which calls the methods offered by the
sent by the user amounts for 100% of all answers. EVEf¥nerated code to parse queries. The generated code then cre-
GloServ node that forwards queries changes this percentdggs 5 java representation of the query based on the language
For example, if the initial query is answered by the first node,sqrct classes described earlier. The class QueryParser
(i.e., it stores instances) and sent to 4 neighboring nodes in fi8ines a number of methods to perform common tasks on
CAN, the sent answer amounts for 25% of the overall answéfey statements, e.g., Normalization (query is transformed to
and every single query sent to neighboring nodes amounts 5of g e |ist of AND-ed statements) or finding nested queries.
25% of the overall answer. If one of these queries is then splityjsg provides methods to extract subqueries and transform
into five 5 queries, each of these new queries will amoUffery in & way that the subquery can be issued individually.
for 5% of the overall answer. Using this mechanism, the USBhce the query reaches a CAN GloServer, it is classified
can measure “how much” of the overall answer he receiVggin the ontology. For query classification, the query needs
at any point in time. This is not an accurate metric in thg) e converted in the Racer syntax. If the query matches the
sense that a value of 50% does not really mean that the USgkice class of that server, then for instance retrieval, since
received 50% of the answer messages or even 50% of {he sigre the instances in a database, the query also needs to
instances. However, when the value reaches 100% the USEloonyerted into an SQL query. We have also implemented a
can be completely certain that he has received all answers;ache in order to avoid the overhead of classification in case

IV. | MPLEMENTATION the query has already been seen.
We have implemented a prototype of GloServ using Protege V. EVALUATION
and Racer-Pro [13]. Protege is an open-source developmeni/e have evaluated the querying latency of GloServ for dif-
environment for ontologies and knowledge-based systems.fément types of ontologies. Since the ontology is the principal
order to follow a real-world classification, we have writtetottleneck of the system, it is essential to determine the ideal
tools to automatically generate ontologies pertaining to tlwmtology size and type needed for optimal performance. The
restaurant classification imttp://www.menupages.conThe worst case is expected for unique queries where the query
Restauranbntology is modified to represent the CAN lookumeeds to be classified using Racer. The best case is when the
table. The subclasses withiRestaurantare assigned to a query has already seen and found in the cache.
unique (dimension, key) pair. When a node joins a server, One GloServer was run on an IBM Lenovo machine which
the server’s ontology is split across a dimension and transfettess an Intel core duo processor (2 GHz each), 1 GB RAM
over to the new node. running Windows XP. In order to measure the query latency
We have built a front-end user interface to GloServ writtefor different types of ontologies, we modified two aspects of



we expect that ontologies will range in size from 250 to 350
and have between 1 to 3 restrictions, we believe querying time
will range from 150 ms to 550 ms. For cached queries and
internal queries, processing was much faster at 30 ms for all
ontology types since classification was not done in these cases.

From our evaluation, we can see that increasing the ontology
class size does not affect the latency as much as raising the
number of restrictions per class. Thus, if an ontology is going
to be more complicated, requiring greater logical restrictions,
then the number of classes should be kept at a minimum.
However, if the ontology has one or two restrictions per
class, the number of classes can get larger. For optimal query
time, it is best to keep both at a manageable level. However,
since query classification is done once per CAN traversal, and
since a CAN is localized, the query cache will be used often

the ontology which we suspect will be the two things most{lus decreasing the query latency considerably. Additionally,

o ’ . . since these ontologies represent high-level service classes and
modified. First, the size of the ontology was varied. For th imic categorizations seen in yellow-page directories, it is

Restaurant service class, the shared classes wetetation highly unlikely that the number of restrictions per property

CuisineandPriceRangeclasses. Th€uisineandPriceRange . o
= will me ver mpli . Thus, it i f me th
classes had a total of 50 classes. We adopted the cIas&ﬂcaﬁ:onbeco e very complicated. Thus, it is safe to assume that

X : e restrictions will average around 3 restrictions per class.
of restaurants used in the menupages.com site and categorlzei:dr . . .
the Cuisineand PriceRangeclasses accordingly or combined service queries, the value of the the number

Currently, there are around 600 cities [1] with populatioOf service classes combined in the query will be multiplied

greater than 50,000 in the United States and around 1, the latency  of an initial user query. Thus, for a typ|cal'
. : . L restaurant and movie search where each of these ontologies
urban areas in the world [2]. Since services are distributed in . ; o
.have approximately 350 classes each with 1 to 3 restrictions,
GloServ where each subnetwork handles a subset of a high- : . : . )
: . o . . the latency will be twice that of a single service query which
level service class, if we distribute these services by location

then we anticipate that each CAN will handle 100 to 208’mgeS from 500 ms to 1s. Again, with the use of caching, this

. o . ; . . value will dr nsiderably.
locations within a given region. Because of this, a Iocatlon-a ue drop considerably

based service class will have this many subclasses as well. For
example, each subclass of the restaurant class will be restric ™
by a location, thus doubling the number of location classes. .«
addition to this, there are auxiliary classes, such as cuisine ¢
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price range. Thus, in total, we expect the number of class -

to equal2C; + C,, where(; is the number of location classes _™

and C, is the number of auxiliary classes. So in total, th ¢, o

number of classes are expected to be between 250 and ¢

We tested the system on 250, 350 and 450 class ontologie .
Additionally, we varied the number of properties that ar *=

restricted per subclass within the main class. For examp ., /

if each subclass of the restaurant class has a restriction

the location, then this signifies one restriction (O1). Howeve o

the restaurant classes may be restricted in more than tic "

property, for example, location and cuisine restrictions (ie.,

ChineseNYCRestaurant has a restriction for Chinese cuisine

and NYC location). Thus, we varied the number of restrictions Fig. 7. Query Latency

per class from 1 to 10 restrictions. The query issued for one

service class was in the form (A some B or C some D or E

some F). We will continue to evaluate the system to test the through-
The results in Figures 7 shows that for the simplest ontgiut of each node. Currently, Racer blocks for each query.

ogy, which has 250 classes and one restriction per subclaskhough it can handle up to 1,500 simultaneous queries,

01, query processing took 150 ms and grew sublinearly &isbecomes very slow. We will tweak the system a bit to

the number of classes grew to 450. On the other extrenbypass the blocking in Racer and test the time it takes for all

for an ontology that had 10 restrictions per subclass, qudhese queries in order to better assess the number of servers

classification became very slow and grew at a faster rate. Simmzessary for a CAN network to function.

Query Time (ms)

600
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We have discussed the design, implementation and evalua-

tion of service combination in GloServ, an ontology-based hy-
brid hierarchical peer-to-peer global service discovery mech-
anism. GloServ is able to register and query for services
semantically using a service classification ontology. Since
these services are aggregated in a global network, combining
different services in a single search becomes possible. Our
results show that this is indeed possible as long as the number



