
Backstop: A Tool for Debugging Runtime Errors
Christian Murphy, Eunhee Kim, Gail Kaiser, Adam Cannon

Dept. of Computer Science, Columbia University
New York NY 10027

{cmurphy, ek2044, kaiser, cannon}@cs.columbia.edu

ABSTRACT

The errors that Java programmers are likely to encounter can
roughly be categorized into three groups: compile-time (semantic
and syntactic), logical, and runtime (exceptions). While much
work has focused on the first two, there are very few tools that
exist for interpreting the sometimes cryptic messages that result
from runtime errors. Novice programmers in particular have
difficulty dealing with uncaught exceptions in their code and the
resulting stack traces, which are by no means easy to understand.
We present Backstop, a tool for debugging runtime errors in Java
applications. This tool provides more user-friendly error messages
when an uncaught exception occurs, but also provides debugging
support by allowing users to watch the execution of the program
and the changes to the values of variables. We also present the
results of two studies conducted on introductory-level
programmers using the two different features of the tool.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and Information
Science Education – computer science education.

General Terms: Human Factors, Languages.

Keywords: Exception handling, Debugging.

1. INTRODUCTION
Despite the availability of many high-quality IDEs and
frameworks for developing Java applications, many instructors at
the introductory level prefer to focus on the Java language itself,
so that students are not overwhelmed by needing to learn both a
language and a tool (in addition to algorithmic thinking, data
structures, the compilation process, etc). Unfortunately, when left
only with the raw Java programming language, tasks such as
interpreting stack traces become quite daunting when we consider
that the language support for those was not designed with the
novice programmer in mind. This leads to frustration for the
student, and extra work for the teaching staff, who must spend
valuable time explaining the meaning of cryptic Java error
messages or debugging techniques that often amount to nothing
more than the inclusion of System.out.println statements.

In this paper we present Backstop, a debugging tool designed for

programmers studying Java at the introductory level. Backstop
produces a detailed and helpful error message when an uncaught
runtime error (exception) occurs; it also provides debugging
support by displaying the lines of code that are executed as a
program runs, as well as the values of any variables on those lines.

Figures 1 and 2 compare the debugging output produced by
Backstop and the Java debugger jdb [18], respectively. Backstop
shows the changes to the variables in each line, and also displays
the values that were used to compute them. Additionally, it does
not require the user to enter any commands in order to see that
information. On the other hand, jdb only provides “snapshots” of
the variable values on demand, without showing the results of
individual computations, and requires more user interaction.

Fib.java:27: sum = x + y; (x was 2 , y was 1) (sum is now 3)

Fib.java:29: y = x; (x was 2) (y is now 2)

Fib.java:31: x = sum; (sum was 3) (x is now 3)

Figure 1. Debugging output produced by Backstop

main[1] step

Step completed: "thread=main", Fib.fibi(), line=26 bci=32
27 sum = x + y;

main[1] step

Step completed: "thread=main", Fib.fibi(), line=29 bci=37
29 y = x;

main[1] step

Step completed: "thread=main", Fib.fibi(), line=30 bci=39
31 x = sum;

main[1] locals

Method arguments:
num = 6
Local variables:
x = 1
y = 1
sum = 2
i = 2

 Figure 2. Debugging output produced by JDB

More importantly, when a runtime error occurs, jdb only shows
the standard Java stack trace; Backstop displays a more friendly
error message with information designed to help the beginning
programmer fix the problem (see Figure 3). Unlike jdb, which is
very powerful but also very difficult to use, Backstop is a simple
application that requires very little input from the user but
produces a variety of helpful information that will assist the
novice programmer in identifying, debugging, and fixing runtime
and logical errors, as well as seeing a running program’s path of
execution.

2. RELATED WORK
There is much work in the area of making compiler errors
understandable to the novice programmer, but we are not
currently aware of any work in making runtime errors easier to
interpret. BlueJ [10], ProfessorJ [6], and DrJava [2] all
incorporate more user-friendly compile-time errors (such as
syntax and semantic errors) into their programming environments,
but none of these tools has any support for runtime errors.
Similarly, Gauntlet [5, 9], Expresso [8] and HiC [7] seek to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

identify the most common compiler errors and provide useful
messages around those, but those are pre-processors only and do
not provide any runtime support. Although Backstop has some
debugging capabilities, it is not intended to be a replacement for
visual tools like DDD [17] or JGrasp [19], which are purely front-
ends for command-line debuggers and do not address runtime
errors.

Some tools have been designed to quickly identify logical errors
but not necessarily to resolve them. InSTEP [13] provides an
analysis of a student’s running program and can help identify
some issues such as an infinite loop or incorrect output, but does
not have any tracing facility for seeing intermediate values.
DEBUG [11] was written for Pascal and provides analysis of
logical errors but does not address runtime errors.

There has also been much investigation of debugging techniques
among novice computer science students [1, 12, 15]. Although we
are not claiming to provide any new methodology, the tool we
present here can be used in conjunction with the approaches in
[3], for instance.

The debugging aspect of Backstop is most similar to that of
CMeRun [4], which produces a comparable output for C++
programs. However, Backstop includes the handling of runtime
error messages, and also provides other advantages such as
support for user-defined data types (classes). More importantly,
Backstop provides a preprocessor to ensure that the source code is
in the appropriate format, whereas CMeRun imposes more
restrictions on the formatting of the code.

3. BACKSTOP FEATURES
Backstop consists of two programs that perform the following
tasks for helping novice programmers address runtime and logical
errors respectively: display error messages concerning uncaught
Java exceptions in plain English; and print out the lines of code,
including the values of variables, as the lines are executed.

Although Backstop can perform compilation, it is not a compiler:
it merely uses the com.sun.tools.javac.Main class. As such, it does
not address compile-time errors (semantic and syntactic), and it
assumes that the code provided to it will compile. However, given
a Java program, Backstop can at once annotate it and encompass it
in order to provide debugging support.

Note that in this paper, we use “error” and “exception”
interchangeably to refer to any uncaught Java runtime error.

3.1 Interpreting Runtime Errors
The Backstop tool is designed to “catch” any uncaught
exceptions. Once the exception (or any other Java runtime error)
is caught, Backstop can interpret its meaning and provide a user-
friendly message that also seeks to provide some enlightenment as
to what caused the error.

A programmer who wants to use Backstop to catch and interpret
an uncaught runtime error need only run the Backstop program
and provide the name of the (compiled) Java class that contains
the “main” method, along with any command-line arguments.
Backstop then uses Java reflection to load the class and execute its
main method; should any runtime error occur and the ensuing
exception is uncaught in the user’s program, Backstop will catch
it (it catches anything that extends java.lang.Throwable) and use

the values in the object and its corresponding StackTraceElements
to interpret and display information about the exception.

3.1.1 Features
Some information – like the class, method, and line number in
which the error occurred – can easily be gleaned from the stack
trace, and this information is displayed first. But rather than
stating the name of the exception, Backstop tries to explain it in
layman’s terms; for instance “The code tried to use an illegal
value as an index in an array” instead of “ArrayIndex-
OutOfBoundsException”, or “The code tried to call a method or
refer to a member variable on an object which is null”, instead of
“NullPointerException”. Where possible, additional information
from the stack trace (such as the value of an out-of-bounds array
index) is given in the message as well.

In the case where the source code is available to Backstop (for
instance if the source files are in the same directory), Backstop
will show the offending line of code and then try to determine
(given the context of the exception) what variables may have
caused the error. For instance, if the line “foo[x] = 4;” causes an
ArrayIndexOutOfBoundsException and the stack trace has the
value -2, then Backstop will point out that “the code was trying to
access an element at index -2 of the array called ‘foo’” and that
“the variable ‘x’ had a value -2 when the error occurred.”

Backstop also provides some assistance to the student as a
reminder of how to possibly avoid the same problem in the future.
In the above example, it would suggest “Remember, you cannot
have a negative index in an array. Be sure the array index is
always positive”. For a NullPointerException, Backstop would
recommend that the user “may need to initialize the object by
using the keyword ‘new’.”

Lastly, so as to relate these exceptions to material that may have
been taught in lecture, and so that the student can learn to
understand these errors even without Backstop, the type of the
exception and the original Java stack trace are presented at the
end. Sample output is shown in Figure 3.

************************ ERROR **************************

An error occurred at line 124 of Test.java in the method
"main". I'm sorry, the program cannot continue.

The line of code that caused the error is
 int blah = Integer.parseInt(arg);

It seems that the code wants to convert a String to an
integer.

However, the String "4.5" appears to be a floating point
value, not an integer. You may want to use a different
datatype to store the value, like float.

This is called a NumberFormatException.

The full error is as follows:
java.lang.NumberFormatException: For input string: "4.5"
 at java.lang.NumberFormatException.forInputString(
 NumberFormatException.java:48)
 at java.lang.Integer.parseInt(Integer.java:456)
 at java.lang.Integer.parseInt(Integer.java:497)
 at Test.main(Test.java:124)

Figure 3. Runtime error as shown by Backstop

3.1.2 Design Considerations
Special care was taken when writing the error messages that
would appear to the user. Because the intended audience of this
tool consists of introductory-level programmers, we want to
ensure that the appearance of an error does not make the student
feel “guilty” or as if he or she had done something “wrong”.

Therefore, we intentionally avoid wording like “You caused an
error” or even “Your code caused an error”, but instead use
phrasing like “The code caused an error”, so as to deflect blame
away from the student, as recommended in [14].

In addition, in the part of the error message that gives hints as to
how to fix the error, we stay away from words like “must” or even
“should” (such as “the array index must be positive”), which may
come across as pushy and pedantic. Instead, the messages strive
for a friendly, more helpful tone, with wording like “don’t forget”
or “keep in mind”, which gives the impression that the student
already knows these facts.

3.1.3 Limitations
Backstop is designed to specifically handle 22 different types of
Java Exceptions and Errors, in particular those that we feel are
most likely to be encountered in a CS0 or CS1 course (the full list
of errors and corresponding messages is in the appendix).
However, when Backstop encounters a Throwable that it does not
understand, it will simply print out a message indicating as such,
as well as the original stack trace. A future implementation of
Backstop could point the user to the online API documentation
for the given error.

3.2 Using Backstop to Debug Errors
To aid in the debugging of runtime or even logical errors,
Backstop can display the following information for each line of
code that is executed: the file name and line number; the code as it
is written; and the value of variables in the line (on both sides of
an assignment statement, if necessary). This information will help
the student see which lines of code are executed, the order of
execution, and the values that the different variables are taking on.
Most importantly, when a runtime error occurs, the student will be
able to see the path of execution that caused the error, as well as
the values of all variables at the time of failure.

When used simply as a debugger, the student also has the option
of inserting breakpoints into the program in order to step through
it instead of seeing all output at once.

Before using Backstop, a student can use its preprocessor to
ensure that the source code adheres to the following conventions:
each line must contain only one statement; each left and right
brace must appear on a line by itself; multiple assignments on the
same line are expanded to multiple lines; and, a “case” statement
must appear on a line by itself. Students’ code must also ensure
that each statement is contained on only one line, and that blocks
of code inside loops are surrounded by curly braces (these are not
addressed by the preprocessor).

Once the code is in the appropriate format, a student who wants to
use Backstop to debug a runtime or logical error (or just to see the
execution of the program) starts Backstop and provides the name
of the files containing the source code of the Java classes.
Backstop then makes backups of the original files and reads the
files one line at a time. It copies each line of code and puts a
System.out.print command (containing the file name, line number,
and code) before the original line of code, and another (containing
the values of any variables) after it. These statements are then all
written to the new source file. Figure 4 shows an example of code
modified by Backstop.

The modified code is then compiled by Backstop, and the original
files are restored, so that the programmer can modify that code

and does not have to see the code modified by Backstop.
However, a copy of the Backstop-modified code is maintained.
The programmer then runs the program as normal and would see
the debugging output. Sample output is shown in Figure 1 above.

System.out.print("\nFib.java:27: sum = x +
y;");System.out.print(" (x was " + x);System.out.print(" ,

y was " + y);System.out.print(")"); sum = x + y;

System.out.print(" (sum is now " + sum + ")");

System.out.print("\nFib.java:29: x =
sum;");System.out.print(" (sum was " +

sum);System.out.print(")"); x = sum; System.out.print(" (x

is now " + x + ")");

System.out.print("\nFib.java:31: y = x;");System.out.print("

(x was " + x);System.out.print(")");y = x;

System.out.print(" (y is now " + y + ")");

Figure 4. Code modified by Backstop (original code in bold).

3.2.1 Design Considerations
A number of considerations were made in the design and
implementation of this aspect of Backstop. Perhaps most
importantly, it is necessary to insert any System.out.print
statements on the same line as the original source code, so as not
to affect the line numbers. This was done so that a stack trace
would have the correct line numbers with respect to the code in
the unmodified program. On a similar note, Backstop displays the
line of code before it gets executed, rather than after (as in
CMeRun), so that if the code throws an exception, the last line of
code shown will be the one that caused it.

We also considered the manner in which the debugging output
was displayed. Whereas CMeRun intersperses the variable values
with the C++ code, Backstop leaves the code untouched so that it
appears recognizable and readable; the variable values are
displayed at the end of the line. Backstop also intentionally uses
phrases like “x is now 5” (for variables on the left side of an
assignment) and “y was 9” (for those on the right) to show which
variables are changing; moreover, the use of “is now” and “was”
was chosen for statements like “x = x + 4”, so that the student can
see the value of x before and after the line is executed. Lastly, we
intentionally did not use equals signs to show variable values,
since they could be misinterpreted as more Java code.

4. USER STUDIES AND EVALUATION
We conducted two studies to measure the usefulness of the two
main features of the Backstop application: interpreting and fixing
a runtime error, and debugging a logical error. In order to test
each feature in isolation, the students were given access to only
one of the two parts of Backstop in each study. In testing their
ability to fix a runtime error, they were unable to see the
debugging output that showed the lines of code as they were
executed; in testing their ability to debug a logical error, there was
no runtime error for them to look at.

Both studies involved the same group of seventeen students (8
male, 9 female) who at the time of the study had recently
completed a CS1 course in Java at Columbia University, but had
little or no programming experience besides that. The studies were
conducted separately on each student, and were all overseen by
the first author of this paper (who was also the students’ instructor
in their CS1 course). In each study, the subject was given a task to
perform, and we recorded the time to complete the task. Upon

completion of the task, the subject was asked to answer subjective
questions about his/her experience.

4.1 Understanding a Runtime Error
In the first task, the students were given a Java program that, for
given inputs, would cause a runtime error, resulting in an
uncaught exception and termination of the program. The
algorithm was first explained to the students, then they were
shown the code, and lastly it was demonstrated that an exception
would occur for certain inputs. They were then asked to interpret
the resulting error message and find and fix the error in the
program. In this experiment, we created a control group of four
students who did not use Backstop, but only saw the default stack
trace produced by Java; the other thirteen students used Backstop.

The program used in this study was to read in a sentence from
standard input and display the number of occurrences of each
letter in the sentence. However, unbeknownst to the students, the
inclusion of any non-alphabetic character (such as a blank space
or punctuation) would cause a particular calculation to yield a
negative number that – when used as an index to an array – would
cause an ArrayIndexOutOfBoundsException. The Backstop error
message is shown in Figure 5. All of the students had had that
particular exception explained to them in their CS1 course.

**
********************** ERROR ***********************
**
An error occurred at line 30 of StringCount.java in the
method "main". I'm sorry, the program cannot continue.

The line of code that caused the error is
 occur[(int)(c - 'a')]++;

It seems that the code tried to use an illegal value as
an index in an array.

The code was trying to access an element at index -65
of the array called "occur".

The expression "(int)(c - 'a')" had the value -65 when
the error occurred.

Remember, you cannot have a negative index. Be sure
that the index is always positive.

This error is called an ArrayIndexOutOfBoundsException.

The full error is as follows:
java.lang.ArrayIndexOutOfBoundsException: -65
 at StringCount.main(StringCount.java:30)

Figure 5. Backstop output from user study.

Of the thirteen students who used Backstop, nine (76%) were able
to identify and fix the cause of the error within eight minutes; the
other four could not complete the task within the allotted fifteen
minutes. All of the students were able to realize quickly (within
two minutes) which calculation was resulting in a negative
number, which in turn was causing the exception when used as an
array index. The problem some struggled to solve was the issue of
“how did this calculation come to produce a negative number?”
and they needed to find the answer by debugging the error on
their own, since we did not provide them with the debugging
functionality of Backstop. Students mainly debugged the problem
by inserting System.out.println statements on their own, trying
different inputs to see if they could reproduce the error, or
thinking about the algorithm. Most likely, of course, the students
would have performed better if they had access to the line-by-line
debugging output. This particular test is left as future work.

We then asked the thirteen students who had used Backstop
questions about the tool. When asked whether they found it

“useful”, all of the students said “yes”. When asked whether the
output had misled them, two of the students who did not complete
the task said that it had, but admitted that they had not read the
error message very carefully. We also asked for the students’
comments on the tone of the error message produced by Backstop.
Six of the thirteen (46%) claimed that it was “friendly” compared
to the stack trace produced by Java. However, four said that the
error message was too long, and two more pointed out that anyone
but a novice programmer may not appreciate the “pedantic” nature
of the message (however, Backstop is indeed targeted to novice
programmers). Three of the students said that they did not pay any
attention to the tone of the message, but they were merely
concerned with getting the appropriate information.

For our control group (who did not use Backstop), we selected
four of the top students from the CS1 course. We expected that,
even without Backstop and just by looking at the Java stack trace,
this group would outperform the other group in terms of the time
to complete the task. This proved to be the case, as all four were
able to fix the error in under five minutes (one student fixed it in
less than two). However, upon seeing the error message produced
by Backstop, three of the four said that they probably could have
solved the problem faster because they were somewhat confused
by the stack trace (the array index that caused the exception is
displayed but its meaning is not explained, leading some students
to think it was some sort of error code); the only student who said
that Backstop may not have helped her claimed that the error
message was too long.

Although five of the 17 students said that the error message was
too long, we feel that all of the information provided by Backstop
is necessary for fixing the runtime error; an alternative suggested
by one student is to show only the most crucial information (line
number and exception type) and then give the user the option of
seeing more (such as the advice for fixing the error).

4.2 Finding a Logical Error
In the next task, all 17 students were asked to find a logical error
in a program designed to produce the nth Fibonacci number, where
n was an argument to the Java program. As in the previous study,
the algorithm was explained, the students were shown the code
and its output, and lastly it was demonstrated that the output was
clearly wrong. They were then asked to use Backstop to debug the
code and trace the values of variables in order to see where the
logical error had been introduced (we should note that the version
of Backstop used in the study did not have the “breakpoint”
feature described above; however, the debugging output of the
program was small enough to fit into one console window).

The most impressive result of the study was that eight of the 17
students (47%) were able to find the logical error (two lines of
code had been juxtaposed) in one minute or less. All of them
claimed that the debugging output helped them find the error and
that they probably could not have found the error as quickly
without the Backstop tool. It bears emphasizing that the students
were, in one minute or less, able to find an error in code that they

did not originally write.

Of the remaining nine students, five completed the task in five
minutes or less, two took six to ten minutes, and two did not
complete the task within the fifteen minute time limit. The two
students who did not complete the task commented that the

debugging output was hard to read/understand, but said that the
output did not hinder them in trying to find the error.

All 17 students were asked questions about their experience at the
end of the study. When asked whether the output produced by
Backstop was “helpful”, sixteen said “yes”, whereas the only
student who did not was one who did not complete the task
because he did not understand the output. When asked “did the
output mislead you in any way?”, all but five of the students said
“no”, though four of the others said “only at first”. The same
student who said Backstop was not “helpful” was the same one
who claimed to have been misled by the output.

We also asked the students whether there was any other
information that could have helped them solve the problem faster.
Somewhat surprisingly, five of the students said that it would
have been useful for the program to indicate that a logical error
had occurred; of course, the program cannot know that a logical
error has occurred without knowing what the expected output
should be, but the students did not realize that. This indicates that
perhaps the students did not fully understand the task, or at least
overestimated the tool’s capabilities.

The students were split on their opinions concerning the
appearance of the output. Five students (29%) said that more
spacing would have helped make it easier to read; however,
another four (23%) claimed that more spacing would have made it
harder to read. Three (17%) said that the spacing would not make
a difference (the remaining students had no opinion).

5. CONCLUSIONS AND FUTURE WORK
We have presented Backstop, a debugging tool targeted at novice
and introductory-level Java programmers. The results of our study
suggest that it facilitates the interpretation of runtime errors and
aids in the debugging of logical errors. The primary contribution
of our tool is its ability to make the error messages produced by
uncaught Java exceptions easier to understand, and to provide
friendlier and more useful information about how to fix the cause
of the error. We have also demonstrated that addressing the
debugging of runtime errors is necessary and helpful to CS1
students, who clearly could benefit from tools that allow them to
understand the cause of such errors and then get assistance in how
to fix them.

Backstop could conceivably have been implemented using the
Java Platform Debugger Architecture and the JVM Tools
Interface, which may provide tighter integration between its two
main parts. Additionally, the exception handling feature could be
integrated into other debugging and error handling frameworks
such as JGrasp [19], or IDEs such as NetBeans [20] and Eclipse
[16]. We leave this as future work.

Further studies are necessary to evaluate the usefulness of
Backstop, using a larger group of students and by comparing
results against other debugging tools like jdb. Additionally, a
study needs to be conducted in which the runtime error handling
is combined with the debugging feature to see how the students
perform when using the combination of tools.

6. ACKNOWLEDGMENTS
The authors would like to thank Phil Gross and the students who
participated in the user studies. Murphy and Kaiser are members
of the Programming Systems Lab, funded in part by NSF CNS-

0717544, CNS-0627473, CNS-0426623 and EIA-0202063, NIH
1 U54 CA121852-01A1, and are also affiliated with the Center
for Computational Learning Systems (CCLS), with funding by
Consolidated Edison Company of New York.

7. REFERENCES
[1] M. Ahmadzadeh, D. Elliman, C. Higgins, “An Analysis of

Patterns of Debugging Among Novice Computer Science
Students”, Proc. of ITiCSE ’05, Portugal, June 2005, 84-88.

[2] E. Allen, R. Cartwright, B. Stoler, “DrJava: A lightweight
pedagogic environment for Java”, Proc. of SIGCSE 2002,
Covington KY, Feb 2002, 137-141.

[3] R. Chmiel, M.C. Loui, “Debugging: from novice to expert”,
Proc. of SIGCSE 2004, Norfolk VA, Mar 2004, 17-21.

[4] J. Etheredge, “CMeRun: Program Logic Debugging
Courseware for CS1/CS2 Students”, Proc. of SIGCSE 2004,
Norfolk VA, March 2004, 22-25.

[5] T. Flowers, C. Carver, J. Jackson, “Empowering Students
and Building Confidence in Novice Programmers through
Gauntlet”, 34th ASEE/IEEE Frontiers in Education

Conference, Savannah GA, Oct 2004, T3H-10 – T3H13.

[6] K. Gray and M. Flatt, “ProfessorJ: A Gradual Introduction to
Java through Language Levels”, Proc. of OOPSLA ’03,
Anaheim CA, Oct 2003, 170-177.

[7] R. Hasker, “HiC: A C++ Compiler for CS1”, Journal of

Computing Sciences in Colleges 18:1, Oct 2002, 56-64.

[8] M. Hristova, A. Misra, M. Rutter, R. Mercuri, “Identifying
and Correcting Java Programming Errors for Introductory
Computer Science Students”, Proc. of SIGCSE 2003, Reno
NV, Feb 2003, 153-156.

[9] J. Jackson, M. Cobb, C. Carver, “Identifying Top Java Errors
for Novice Programmers”, 35th ASEE/IEEE Frontiers in

Education Conf., Indianapolis IN, Oct 2005, T4C-24 – 27.

[10] M. Kolling and J. Rosenborg, BlueJ, http://www.bluej.org

[11] T. Lukey, K. Loose, D.R. Hill, “Implementation of a
debugging aid for logic errors in Pascal Programs”, Proc. of

SIGCSE 1987, St. Louis MO, 1987, 386-390.

[12] R.F. Mathis, “Teaching Debugging”, Proc. of SIGCSE 1974,
1974, 59-63.

[13] E. Odekirk-Hash, J. Zachary, “Automated Feedback on
Programs Means Students Need Less Help From Teachers”,
Proc. of SIGCSE 2001, Charlotte NC, 2001, 55-59.

[14] B. Shneiderman, “Designing computer message systems”,
Communications of the ACM 25:9, Sept 1982, 610-611.

[15] J. Wilson, “A Socratic approach to helping novice
programmers debug programs”, Proc. of SIGCSE 1987, St.
Louis MO, 1987, 179-182.

[16] http://www.eclipse.org

[17] http://www.gnu.org/software/ddd/

[18] http://java.sun.com/javase/6/docs/technotes/tools/windows/jd
b.html

[19] http://www.jgrasp.com

[20] http://www.netbeans.org

8. APPENDIX
Here we provide the error messages produced by Backstop for the 21 different types of runtime errors that it specifically handles.

********************************* ERROR *********************************

An error occurred at line 24 of Test.java in the method "main".
I'm sorry, the program cannot continue.

The line of code that caused the error is
 System.out.println(foo[x]);

It seems that the code tried to use an illegal value as an index to an array.

The code was trying to access an element at index -2 of the array called "foo".
The variable "x" had the value -2 when the error occured.
Remember, you cannot have a negative index. Be sure that the index is always positive.

This error is called an ArrayIndexOutOfBoundsException.

The full error is as follows:
java.lang.ArrayIndexOutOfBoundsException: -2
 at Test.main(Test.java:24)

********************************* ERROR *********************************

An error occurred at line 31 of Test.java in the method "main".
I'm sorry, the program cannot continue.

The line of code that caused the error is
 System.out.println(food[xd]);

It seems that the code tried to use an illegal value as an index to an array.

The code was trying to access an element at index 2 of the array called "food".
The variable "xd" had the value 2 when the error occured.

The size of the array may be less than 2. Keep in mind that if the array size
is N, the biggest index you can access is N-1.

This error is called an ArrayIndexOutOfBoundsException.

The full error is as follows:
java.lang.ArrayIndexOutOfBoundsException: 2
 at Test.main(Test.java:31)

********************************* ERROR *********************************

An error occurred at line 37 of Test.java in the method "main".
I'm sorry, the program cannot continue.

The line of code that caused the error is
 list.add("foo");

It appears that the code was trying to call a method or refer to a member
variable on an object called "list", which is null.

Make sure the variable has been initialized in your code.
Remember, declaring the variable isn't the same as initializing it.
You may need to initialize the object using the keyword "new".

This error is called a NullPointerException.

The full error is as follows:
java.lang.NullPointerException
 at Test.main(Test.java:37)

********************************* ERROR *********************************

An error occurred at line 42 of Test.java in the method "main".
I'm sorry, the program cannot continue.

The line of code that caused the error is
 int sfs = 5 / 0;

The code was trying to perform an illegal arithmetic operation.
The code has tried to divide by zero, which can't be done, of course!

This error is called an ArithmeticException.

The full error is as follows:
java.lang.ArithmeticException: / by zero
 at Test.main(Test.java:42)

********************************* ERROR *********************************

An error occurred at line 48 of Test.java in the method "main".
I'm sorry, the program cannot continue.

The line of code that caused the error is
 int c = 5 / (2 - (int)Math.sqrt(ax)) + 4;

The code was trying to perform an illegal arithmetic operation.
It appears as if the expression "(2 - (int)Math.sqrt(ax))" evaluates to zero,
but of course you cannot divide by zero.
You may want to add some code to check that the expression is not zero before dividing.

This error is called an ArithmeticException.

The full error is as follows:
java.lang.ArithmeticException: / by zero
 at Test.main(Test.java:48)

********************************* ERROR *********************************

An error occurred at line 55 of Test.java in the method "main".
I'm sorry, the program cannot continue.

The line of code that caused the error is
 String y = (String)(list.get(0));

It appears that the code tried to cast a variable to the wrong type.

The object you are trying to cast is of type java.lang.Integer.
Remember, if you are casting, the object must be the same class as (or a
subclass of) the type you are trying to cast to.

This error is called a ClassCastException.

The full error is as follows:
java.lang.ClassCastException: java.lang.Integer
 at Test.main(Test.java:55)

********************************* ERROR *********************************

An error occurred at line 61 of Test.java in the method "main".
I'm sorry, the program cannot continue.

The line of code that caused the error is
 char cd = "Test".charAt(ax);

It appears that the code was trying to access an element at index -5
of the String ""Test"".

Remember, you cannot have a negative index for accessing String characters.

This error is called a StringIndexOutOfBoundsException.

The full error is as follows:
java.lang.StringIndexOutOfBoundsException: String index out of range: -5
 at java.lang.String.charAt(String.java:558)
 at Test.main(Test.java:61)

********************************* ERROR *********************************

An error occurred at line 67 of Test.java in the method "main".
I'm sorry, the program cannot continue.

The line of code that caused the error is
 cd = "Test".charAt(ax);

It appears that the code was trying to access an element at index 5
of the String ""Test"".

The size of the String may be less than 5. Keep in mind that if
the String size is N, the biggest index you can access is N-1.

This error is called a StringIndexOutOfBoundsException.

The full error is as follows:
java.lang.StringIndexOutOfBoundsException: String index out of range: 5
 at java.lang.String.charAt(String.java:558)
 at Test.main(Test.java:67)

********************************* ERROR *********************************

An error occurred at line 73 of Test.java in the method "main".
I'm sorry, the program cannot continue.

The line of code that caused the error is
 bob.get(-2);

It seems that the code tried to use an illegal value as an index to an object.

The code was trying to access an element at index -2 of an array
(or other object) on that line.
Remember, you cannot have a negative index. Be sure that the index is always positive.

This error is called an ArrayIndexOutOfBoundsException.

The full error is as follows:
java.lang.ArrayIndexOutOfBoundsException: -2
 at java.util.ArrayList.get(ArrayList.java:323)
 at Test.main(Test.java:73)

********************************* ERROR *********************************

An error occurred at line 80 of Test.java in the method "main".
I'm sorry, the program cannot continue.

The line of code that caused the error is
 bob.get(2);

It appears that the code was trying to access an element at index 2.
However, the object only has a size of 1, so the biggest index you can
have is 0 (remember, the maximum index can only be one less than the size).

This error is called an IndexOutOfBoundsException.

The full error is as follows:
java.lang.IndexOutOfBoundsException: Index: 2, Size: 1
 at java.util.ArrayList.RangeCheck(ArrayList.java:546)
 at java.util.ArrayList.get(ArrayList.java:321)
 at Test.main(Test.java:80)

********************************* ERROR *********************************

An error occurred at line 87 of Test.java in the method "main".
I'm sorry, the program cannot continue.

The line of code that caused the error is
 sca.next();

It appears that the code was trying to access an element but none exists.
Try to use a method like hasNext or hasMoreElements before trying to
access each element.

This error is called a NoSuchElementException.

The full error is as follows:
java.util.NoSuchElementException
 at java.util.Scanner.throwFor(Scanner.java:817)
 at java.util.Scanner.next(Scanner.java:1317)
 at Test.main(Test.java:87)

********************************* ERROR *********************************

An error occurred at line 93 of Test.java in the method "main".
I'm sorry, the program cannot continue.

The line of code that caused the error is
 int xzx = scan.nextInt();

The code may have been expecting the user to enter an integer.
However, the user entered something that was not an integer.
Make sure you do not enter a String or a floating-point number.
If floating-point values are okay, use a method like nextFloat instead.

This error is called an InputMismatchException.

The full error is as follows:
java.util.InputMismatchException
 at java.util.Scanner.throwFor(Scanner.java:819)
 at java.util.Scanner.next(Scanner.java:1431)
 at java.util.Scanner.nextInt(Scanner.java:2040)
 at java.util.Scanner.nextInt(Scanner.java:2000)
 at Test.main(Test.java:93)

********************************* ERROR *********************************

An error occurred at line 100 of Test.java in the method "main".

I'm sorry, the program cannot continue.

The line of code that caused the error is
 xzx = scan.nextInt();

The code may have been expecting the user to enter an integer.
However, the user entered something that was not an integer.
Make sure you do not enter a String or a floating-point number.
If floating-point values are okay, use a method like nextFloat instead.

This error is called an InputMismatchException.

The full error is as follows:
java.util.InputMismatchException
 at java.util.Scanner.throwFor(Scanner.java:819)
 at java.util.Scanner.next(Scanner.java:1431)
 at java.util.Scanner.nextInt(Scanner.java:2040)
 at java.util.Scanner.nextInt(Scanner.java:2000)
 at Test.main(Test.java:100)

********************************* ERROR *********************************

An error occurred at line 106 of Test.java in the method "main".
I'm sorry, the program cannot continue.

The line of code that caused the error is
 float xzxt = scan.nextFloat();

The code may have been expecting the user to enter a floating-point number.
However, the user entered something that was not a floating-point number.
Make sure you do not enter a String.

This error is called an InputMismatchException.

The full error is as follows:
java.util.InputMismatchException
 at java.util.Scanner.throwFor(Scanner.java:819)
 at java.util.Scanner.next(Scanner.java:1431)
 at java.util.Scanner.nextFloat(Scanner.java:2267)
 at Test.main(Test.java:106)

********************************* ERROR *********************************

An error occurred at line 112 of Test.java in the method "main".
I'm sorry, the program cannot continue.

The line of code that caused the error is
 FileInputStream fis = new FileInputStream(f);

It appears that the code was trying to operate on a file called foo.txt.
However, it seems that you may not have permission to read or write it.
Check the permissions of the file and make sure you can read/write it.

This error is called a FileNotFoundException.

The full error is as follows:
java.io.FileNotFoundException: foo.txt (Permission denied)
 at java.io.FileInputStream.open(Native Method)
 at java.io.FileInputStream.<init>(FileInputStream.java:106)
 at Test.main(Test.java:112)

********************************* ERROR *********************************

An error occurred at line 118 of Test.java in the method "main".

I'm sorry, the program cannot continue.

The line of code that caused the error is
 fis = new FileInputStream(f);

It appears that the code was trying to operate on a file called food.txt.
However, it seems that this file may not exist.
Check that the filename is spelled correctly and that the path is correct.

This error is called a FileNotFoundException.

The full error is as follows:
java.io.FileNotFoundException: food.txt (No such file or directory)
 at java.io.FileInputStream.open(Native Method)
 at java.io.FileInputStream.<init>(FileInputStream.java:106)
 at Test.main(Test.java:118)

********************************* ERROR *********************************

An error occurred at line 124 of Test.java in the method "main".
I'm sorry, the program cannot continue.

The line of code that caused the error is
 int blah = Integer.parseInt(arg);

It seems that the code wants to convert a String to an integer.
However, the String "4.5" appears to be a floating point value, not an integer.
You may want to use a different datatype to store the value, like float.

This is called a NumberFormatException.

The full error is as follows:
java.lang.NumberFormatException: For input string: "4.5"
 at java.lang.NumberFormatException.forInputString(NumberFormatException.java:48)
 at java.lang.Integer.parseInt(Integer.java:456)
 at java.lang.Integer.parseInt(Integer.java:497)
 at Test.main(Test.java:124)

********************************* ERROR *********************************

An error occurred at line 130 of Test.java in the method "main".
I'm sorry, the program cannot continue.

The line of code that caused the error is
 blah = Integer.parseInt(arg);

It seems that the code wants to convert a String to an integer.
However, the String "dog" is non-numeric and cannot be converted.

This is called a NumberFormatException.

The full error is as follows:
java.lang.NumberFormatException: For input string: "dog"
 at java.lang.NumberFormatException.forInputString(NumberFormatException.java:48)
 at java.lang.Integer.parseInt(Integer.java:447)
 at java.lang.Integer.parseInt(Integer.java:497)
 at Test.main(Test.java:130)

********************************* ERROR *********************************

An error occurred at line 136 of Test.java in the method "main".
I'm sorry, the program cannot continue.

The line of code that caused the error is

 float blahf = Float.parseFloat(arg);

It seems that the code tried to convert a String to a floating point value.
However, the String "dog" is non-numeric and cannot be converted.

This is called a NumberFormatException.

The full error is as follows:
java.lang.NumberFormatException: For input string: "dog"
 at sun.misc.FloatingDecimal.readJavaFormatString(FloatingDecimal.java:1224)
 at java.lang.Float.parseFloat(Float.java:394)
 at Test.main(Test.java:136)

********************************* ERROR *********************************

An error occurred at line 142 of Test.java in the method "main".
I'm sorry, the program cannot continue.

The line of code that caused the error is
 double ina = Double.parseDouble(null);

It appears that the code was trying to convert a String to a number.
However, that String was null. Double-check to make sure you have a valid value.

The full error is as follows:
java.lang.NullPointerException
 at sun.misc.FloatingDecimal.readJavaFormatString(FloatingDecimal.java:991)
 at java.lang.Double.parseDouble(Double.java:482)
 at Test.main(Test.java:142)

********************************* ERROR *********************************

An error occurred at line 147 of Test.java in the method "main".
I'm sorry, the program cannot continue.

The line of code that caused the error is
 int[] mike = new int[-1];

It appears that the code is trying to create an array with a negative size.
Remember, the array must have a size that is a positive number.

This error is called a NegativeArraySizeException.

The full error is as follows:
java.lang.NegativeArraySizeException
 at Test.main(Test.java:147)

********************************* ERROR *********************************

An error occurred at line 153 of Test.java in the method "main".
I'm sorry, the program cannot continue.

The line of code that caused the error is
 clyde[0] = new Integer(2);

It seems that the code tried to store an object of type java.lang.Integer
in an array of Objects that was initialized with a different type.

This is called an ArrayStoreException.

The full error is as follows:
java.lang.ArrayStoreException: java.lang.Integer
 at Test.main(Test.java:153)

	1. INTRODUCTION
	2. RELATED WORK
	3. BACKSTOP FEATURES
	3.1 Interpreting Runtime Errors
	3.1.1 Features
	3.1.2 Design Considerations
	3.1.3 Limitations

	3.2 Using Backstop to Debug Errors
	3.2.1 Design Considerations

	4. USER STUDIES AND EVALUATION
	4.1 Understanding a Runtime Error
	4.2 Finding a Logical Error

	5. CONCLUSIONS AND FUTURE WORK
	6. ACKNOWLEDGMENTS
	7. REFERENCES
	8. APPENDIX

