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Abstract—Traditionally, TCP has been considered unfriendly ~flows [8]; and more recently towards video streaming [9], [10].
for real-time applications. Nonetheless, popular applications such To the best of our knowledge, we are the first delay-based
as Skype use TCP due to the deployment of NATs and firewalls analytical study of TCP for real-time flows.

hat prevent UDP traffic. Thi rvation motiv . .
:hgtdpegyep;#ormatma(l:ecof Tcsptjfgffea?_tt%qe rﬁéd?giﬁ)ﬁ LZE’:;% We use both test-bed and Internet experiments tq validate
analytical model and experiments. The results obtained yield the the models and to measure the TCP delay over a wide range
working region for VoIP and live video streaming applications of paths in the Internet. We analyze how the delay depends
and provide guidelines for delay-friendly TCP settings. Further, on the congestion control and reliable delivery mechanisms
our research indicates that simple application-level schemes, sucho¢ Tcp, \We further study the impact of recent extensions
as packet splitting and parallel connections, can significantly . - L )
improve the delay performance of real-time TCP flows. such as WIndOW Va“df_it'on [:_Ll] .and limited trar_lsmlt [12].
The results obtained yield guidelines for delay-friendly TCP
|. INTRODUCTION settings and may further be used to compare the performance
The popularity of real-time applications, such as VoIP armef TCP with alternative protocols [2], [3] and experimental
video streaming, has grown rapidly in recent years. Theal-time enhancements for TCP [13]-[15]. We analyze two
conventional wisdom is that TCP may be inappropriate f@pplication-level schemes, namely, packet-splitting and paral-
such applications because its congestion controlled relialtdéconnections that can significantly improve the performance
delivery may lead to excessive end-to-end delays that violatta real-time media application.
the real-time requirements of these applications. This has ledOur research reveals that real-time applications performance
to the design of alternative UDP-based transport protocols [1gver TCP may not be as delay-unfriendly as is commonly
[3] that favor timely data delivery over reliability while still believed. One reason is that the congestion control mechanism
providing mechanisms for congestion control. used by TCP regulates rate as a function of the number of
Despite the perceived shortcomings of TCP, it has bepackets sent by the application. Such a packet-based conges-
reported that more than 50% of the commercial streamitign control mechanism results in a significant performance
traffic is carried over TCP [4]. Popular media applicationbiasin favor of flows with small packet sizes, such as VoIP.
such as Skype [5] and Windows Media Services [4] use TGPecond, due to implementation artifacts, the average conges-
due to the wide-deployment of NATs and firewalls that oftefion window size can overestimate the actual load of a rate-
prevent UDP traffic. Furthermore, TCP is by definition TCPimited flow. This overestimation results in reduced sensitivity
friendly [2], and is a mature and widely-tested protocol whode timeouts and an improvement in the delay performance.
performance can be fine tuned. The main contributions of this paper are:
The gap between the perceived shortcomings of TCP and its We present a Markov model for the delay distribution of
wide-adoption in real-world implementations motivated us to  a real-time TCP flow (Section III-B).
explore the following questions: (1) Under what conditions can « We predict the working region for VoIP and live stream-
TCP satisfy the delay requirements of real-time applications? ing flows based on our model. VoIP operates well when
(2) Can the performance of these applications be enhanced the packet drop rate is below 2% and the RTT is lower
using simple application-layer techniques? We address these than 200 ms. Live streaming operates well when the drop
questions in the context of two real-time media applications rate is under 10% (Section V).
that are characterized by timely and continuous data delivery. We show that the delay added by TCP is on the order of
VoIP and live video streaming. the network round-trip time when the flow's data rate is
To understand all aspects of the performance of these appli- roughly one third of the fair-TCP rate (Section V-A).
cations, we conduct an extensive performance study using botk We develop guidelines and simple application-level
analytical models and real-world experiments. The analytical heuristics for improving the performance of TCP-based
models allow us to systematically explore the delay perfor- real-time applications. The most promising heuristic uses
mance over a wide range of parameter settings, a challenging parallel-connections with shortest-queue first policy and
process when relying on experimentation alone. The extensive achieves up to 90% delay improvement. For a single con-
literature on TCP modeling and analysis is geared towards nection, a packet-splitting heuristic improves the delay
file transfers assuming either persistent [6], [7] or short-lived performance by 30% on average (Section VI, VII).



Sender Receiver retransmitted. Hence, packets are held in the TCP send buffer

TCP Connection due to rate m|smatch_and retransmissions. Note that only the
unsent packets held in the send buffer, hereafter referred to
:ﬂ]]m]----- Network -:”mm as the backloggedpackets, can contribute to the delay of
: newly admitted packets to the send buffer. The purpose of
Send buffer Receive buffer the receiver buffer is to hold out-of-order packets while a
ate mismatch and Head-of-line A A X N ) )
retransmissions blocking loss is being recovered. This buffering results in head-of-line
(HOL) blocking delay. Figure 1 illustrates the three delay
Fig. 1. Transport-layer queueing delays components of a TCP connection: sender-side delay, network
delay, and receiver-side delay. The sender-side delay is caused
Il. APPLICATION SETTING by the congestion control and reliable delivery mechanisms in

We Study a genera| real-time media app”cation7 with -BCP, whereas the receiver-side delay is caused by the in-order
Constant Bit Rate (CBR) source, that sends data across @¢ivery guarantee of TCP. f
network using TCP. CBR is the most basic and dominant
encoding for media flows in the Internet [16]. We assume IIl. MODELING TCP DELAY
that Nagle’s algorithm is disabled since real-time applications Our model builds upon the detailed TCP model in [20]
often disable this mechanism to improve sending delays [1#}at predicts the performance of TCP from the viewpoint
Hence, each packet can be immediately transmitted after it0fs throughput. We extend this model in three ways. First,
written by the sender application. we include the TCP buffer dynamics in order to predict the
A common characteristic of real-time applications is thef€lay performance of TCP. Second, we incorporate the limited
low tolerance for end-to-end delay, the level of which depenéf@nsmit [12] and window appropriateness [11] mechanisms
on the application. While live video streaming can tolerat® accurately capture the loss recovery latency of TCP. Third,
de|ays of a few seconds [4]' \oIP typ|Ca||y requires legye model the effect of window inflation [21] to improve the
than 200 ms of end-to-end delay [18]. The low \oIP delay&ccuracy of the model for small congestion windows.
are often obtained by using small packets corresponding to/e assume that the sender is using a NewReno TCP [22]
20ms or 30ms of audio. Real-time TCP flows differ fromimplementation. Later on in Section IlI-C we extend the
greedy TCP flows in that they are inherently rate-limited antCP model to support other commonly found TCP variants
have variable packet sizes. We discuss the implications $ich as SACK and Reno. Before describing the delay model,
these characteristics, on the delay performance of TCP Vit¢ briefly describe the mechanisms provided by TCP. For a
Section V-B. detailed description of TCP’s behavior, we refer the interested
We use the packet delay distribution to evaluate the perfégader to [17], [22].
mance of real-time TCP flows. From the delay distribution, WE Tcp Background
derive the delay jitter which is the standard deviation of the’
packet delay, and the application-level packet loss rate whichFor completeness, we now describe the basic mechanisms
is the portion of packets that arrive beyond their playbacdksed by the TCP protocol. TCP is window-based protocol that
time. These metrics are closely correlated with user-perceivéges a feedback-based rate regulation scheme. The idea is to
video and audio quality [18], [19], and hence are used as Hf€ & congestion window to regulate the amount of data that
approximate performance measure. The packet loss mef@®) be outstanding in the network at any time. TCP relies
is determined by thex-percentile delay bound, defined a$n losses as congestion feedback. It uses two mechanisms
follows: a delay valuel of a-percentile corresponds to— o 10 detect packet losses: fast retransmit and timeout. If the
portion of packets that are delayed more thiatime units. ~ Sender receives three duplicate acknowledgements, it assumes
that the data indicated by the acknowledgements is lost and
A. TCP Delay Components immediately retransmits the missing data. This mechanism is
Real-time applications that use TCP run the risk of receivirgplled fast retransmit. After sending the missing data, TCP
low perceived quality. The additive-increase-multiplicativedses the fast recovery algorithm to govern the transmission of
decrease (AIMD) rate regulation scheme of TCP may delaygw data until a non-duplicate ACK arrives. Due to the round-
data delivery by introducing throughput fluctuations whetrip time (RTT) needed for the receipt of the loss indication,
congestion occurs. Packet retransmissions, the mechanfast recovery typically takes on the order of the path’s round-
used by TCP to provide lossless data delivery, can furthiip-time [8].
introduce undesirable transport-layer delays. The other loss recovery mechanism provided by TCP is the
TCP uses two buffers to provide congestion-controlleimeout mechanism. The TCP sender sets a timer for each
reliable data delivery: the send buffer and the receive bufféransmitted packet. In case it receives less than three duplicate
The purpose of the send buffer is twofold [13]. First, iACKs and the timer expires, the packet is retransmitted and the
absorbs rate mismatches between the application sending veitedow size is reduced to one. If the first packet after a timeout
and the transmission rate of TCP. Second, it stores a capyost, TCP will double the length of the next timeout period.
of the packets outstanding in the network should they B#is doubling, usually called exponential backoff, continues



packet loss [ Abbreviation [ Definition

CBR Constant bit-rate

AL Application limited

BC Byte-counting

MSS Maximum segment size

PI Packetization interval
CvW Congestion window validation
Bps Bytes per second

pps Packets per second

ppr Packets per round-trip time

TABLE |

SUMMARY OF PAPER ABBREVIATIONS

Fig. 2. A high-level view of a model for a TCP connection with a CBR [ Notation [ Definition |
source. The sender alternates between application-limited and network-limited f load in packets per second
periods. While network limited, it moves between several congestion control r load in packets per round-trip tim@gr)
algorithms: slow-start (SS), congestion avoidance (CA), and loss recovery a packet size
(LR). w congestion window size
b backlog size
until the retransmitted packet is successfully delivered. Since :zla 'S”edg;?éif I‘ggstggb'gsmt;eco"ery Is required
the initial timeout duration is typically on the order of several Ty initial timeout duration
round-trip times (e.g4RT'T according to [2]), timeout-based L forward network delay
loss recovery is usually longer than fast recovery. TABLE |I
To regulate its sending rate, TCP uses an AIMD scheme: SUMMARY OF MODEL NOTATIONS

it increases the congestion window linearly fast as long as
there is no loss, and reduces the window size by half upon the
receipt of three duplicate ACKs. If a timeout event occurs,

reduces the window size to one. ff’le losses occurs during application-limited perfgdss is

the common case observed in our traces. Third, we do not
B. Model for TCP Delay model the effect of delayed acknowledgements (ACKSs) since

We consider a data source that sends fixed-size packetéegé'time applications will disgble.this mechan_ism to improve
regular intervals across the network using TCP. Throughﬂ? delay performanpe. Fpr S|mpI|C|ty of notation, We assume
the paper, we assume that the average throughput provi g the _ﬂOWS load Inppr is an integer. For convenience, we
by TCP satisfies the data generation rate. However, transigfnmarized the notations used in this paper in Table II. .
congestion episodes can lead to TCP throughput fluctuationéNe m?‘?'e' the behavior of a TCP source by a Markoy _chaln
and to variable delays. As long as no packet is droppe‘?i',th a finite st{:\te spacé = {(w’f)’l)} and a probablllty
TCP will not add any delay to the data delivery beyonf@nsition matrix@ = [4:), 5,8" € 5. Each state is
that of the network. After a packet drop, TCP reduces ifgpresented by an ordered triplev, b, 1), wherew is the

throughput, and introduces additional delay for as long as fhrrent congestion window siz& s the current backlog size,

throughput it provides does not satisfy the sending rate of t gdl indicates whether a loss has been detected and qeeds to
recovered fromi(> 0) or not { = 0). The backlog size

flow. Thus, transient congestion episodes cause the flow %I : q indi hether th der i licati
oscillate between an application-limited period and a networkd _uedls use btoiln 'Cﬁte wr etherlt z Senaer 1S app |(:<at|on-
limited period. A network-limited period is defined as anyMited (" < w,b = 0, wherer is the load inppr), or network-

period in which the TCP sender is limited by the congesti Hnited. Que tq flows with small packets 'Fhe window limitation
window. Otherwise, the sender is application-limited. Th an be either in bytes per RT® ¢ 0), or in packets per RTT

behavior of a TCP connection with a CBR source is depictédf < 7»0 = 0), as described in Section V-B. The window size
in Figure 2. While the TCP sender is network-limited, it move¥2!Ué iS used to distinguish between the two loss recovery
between several congestion control algorithms: slow stapfratedies employed by TCP: fast recovery 0, = 1) and
congestion avoidance, and loss recovery (e.g., fast recovézgansmlssmn timeout( = 0,1 > 1, wherel indicates the
and retransmission timeout). Our model captures the subtleffelrent exponential back-off stage). Table Il lists the rules

of the slow start algorithm [21] to improve the delay predictiof" classifying an arbitrary state= (w, b, ) according to the
accuracy. congestion control phases of TCP.

We make several simplifying assumptions as follows. First, The TCP -sender changes _the congestion window size and
the TCP sender uses a packet-based congestion control m f.congestion control _algonthm based on the packet loss
anism, an assumption motivated by the wide-deployment isedback. For example, in the absence of ;l)acket Ioss,lthe TCP
packet counting (ACK counting) TCP implementations [23 ource moves fro'm sta‘se; (w,b,1) to states - (w+1,b,1)
Second, we assume that the slow start threshold is eq df is in congestion avoidance. More specifically, each state

to _half of the. qud _in pgckets per rognd_-_trip timpp_(). 1 [21] recommends that the slow start threshold should be set to half of
This assumption is justified when a significant portion afie packets in flight when fast recovery is invoked.



[ Classification [ Condition ]

packet loss, the time spent in an application-limited state is

Application-limited r<w,b=0,l=0 . . .

Network-Limited 0<wbZ0oTw<rb=0 the mter-sendmg time of the flow,. denote_d byf. Due to
Congestion avoidancé /2 < w,l = 0 the round trip-time needed to receive the first duplicate ACK,
EIOW start SJS r/l2,l =0 the time spent in an application-limited state that receives a

ast recovery <w,l =1 . . . . .
Timeout we0l=1, . 6 ff';lst retransmit Iqss |_ndlcat|0n is RTT3Y f. _In the absenc_e (_)f
TABLE I timeout loss indications, the time spent in a network-limited

state is taken to be RTT, a common modeling assumption
[6], [8]. The time spent in a sequence of timeout states is
taken to bely, 275, . .., 64Ty, whereT, is the duration of the
has at most three outgoing transitions that correspond to thiial timeout. The initial timeout duration is approximated
following events: the receipt of a fast retransmit loss indicdy 4RT'T, as suggested in [2].
tion, the receipt of a timeout loss indication, and successfulThe delay at the sender is approximated by the backlog size,
data delivery. Detailed description of the Markov chain anas follows. Observe that the packets left behind in the send
the transition probabilities can be found in Appendix A.  buffer after a successful transition must have arrived while
Since TCP is a byte stream protocol, it can assemblette transmitted packet was backlogged. Hence, a transmitted
number of small packets into one data transmission unacket that leaves behind a backlog of dizeas been buffered
known assegment Packet assembly can occur when smalbr at leastb/(af). The delay of a packet sent in a loss-free
packets are sent and the sender is backlogged and is avoistetke is thus modeled by
when large packets are sent. Due to packet assembly a small-

STATE CLASSIFICATION

packet TCP flow reacts to congestitly adapting both the L+b/(fa) (3)
segment size and the congestion wind@s demonstrated where L is the one-way network delay, which is assumed to
below. be constant.

The backlog evolutior(i.e., the TCP send buffer evolution) The head-of-line blocking delay at the receiver is deter-
for two successive states= (w,b,l) ands’ = (w’,b',1'), is mined by the loss recovery latency. This latency consists of

modeled by the time it takes TCP to detect a loss and the time it takes
max {0, aftyy — wM} if w >0,0'!=0 the retransmitted packets to arrive to the receiver. Due to the

b ={ max{0,aftes — (w—+3)M} if w >0 = round-trip time neede_d for the.first duplicgte ACK feedback,_
max {0, aft} if w =0,0'>1 we assume that the time required to receive a fast retransmit

(1) loss indication is at moskTT + 3/f. Further, we assume
. . . _ that fast recovery always takes a single RTT regardless of the
a ifw=r,b=0,1=0 . S .
M = MSS  otherwise number of packets lost in a transmission window, as suggested
_ _ . ~by[8]. Since TCP is an in-order protocol, the receiver does not
where is the load in packets per secondis the packet size deliver out-of-order packets to the application till the missing
of the flow, M SS is the maximum segment size (typicallypackets have arrived. Hence, the delay ofitie packet sent in

536 or 1460 bytes [27])M is the size of the sent segment state that receives a fast retransmit loss indication, is modeled
which depends on whether the sender is network-limites,

(M = MSS) or not M = a), and i, is the time taken )
for the transition froms to s, which we will soon define. L+ RTT +b/(fa) + (3+1)/f, 4)

The first term in (1)afts,» models the increase in backlogynere; — 0 represents the delay of the lost packet. Using

size due to newly admitted packets to the s_end buffer. _TEauations (3) and (4), we can express the TCP delay of the
second term (e.gz M) models the decrease in backlog sizg.th packet sent in a statethat transitions to a staté as:
due to the transmission of segments. The number of segments

sent isw for a loss-free transition and + 3 for a transition b/(fa) ‘ i wi > O,Z: =0
to fast recovery state. The latter case accounts for segmént = L+ 0/(fa) + RTT + (3 +4)/f if w'>0,I'=1
transmissions caused by the receipt of duplicate ACKs, a 0 ifw =0,0">1
mechanism known as window inflation [21]. We assume that ®)

no segments are sent during a sequence of timeout statesThe number of packets sent during this transitiqn is given
The time taken for a transition from stateto states’, by

denoted byt,.., is modeled by

| ftos ] if AL,w' >0,I'=0
1/f if AL,w' >0,I"=0 ) |min{b,wMSS} /a if AL,w’' > 0,I'=0
. ) BIT+3/f if AL,w'>0,I'=1 @ 555" =Y |min {b, (w + 3)MSS} /a if w' >0,1=1
amintl=LOTy if ALw' = 0,1 > 1 0 if w =0,1>1
RTT otherwise (6)

where for brevity we uselL £ r < w,b = 0 to denote the The first case in (6) corresponds to an application-limited state
condition for an application-limited state. In the absence @fhere a single packet is sent for every loss-free transition. The



second case corresponds to a network-limited state in whigh(w, b) and p,(w, b), respectively, can be expressed as
the number of sent packets is determined by the number of

backlogged packets that fit into the congestion window. The 0 w3 ) ; !f w<4

third case accounts for window inflation, and the forth orf(¥:t) = Zizlf?’BP(wvl)(l —p)  fd<w AL

accounts for idle timeout states. P =y Bp(w—1,i-1)(1-p)" otherwise
We obtain the stationary distribution of the Markov chain for (®)

. 9
Markov analysis; see for example [24]. L&t be the number p—pr(w,b) if AL ©

of packets successfully sent in some time interf¥iat] and \ here A7, denotes the condition for an application-limited
let N;(d) be the number of packets out 8% that experience state (see Section I1I-B) and,(w, ) is the probability to

delay ofd. Then, the portion of packets sent that experienq.gavei losses out of a window o segments and is given by
delayd is given by N;(d)/N;. Let D be the steady state delay

istri i i i i . wy w—1i

distribution Qf. a TCP connection with a CBR source defined By(w,i) = ( .)p 1-p) (10)
over some finite intervall. Using renewal theory [24], we can )

now compute the steady state delay distribution.

D=d wp.lim Ni(d)

the TCP sourcer,, using standard steady-state discrete-timgf(w b) — { 1 —ps(w,b) — By(w,0) if AL

The fast retransmit probability given in (8) accounts for
the Markov chain structure. The second case represents the
vd e A transition probability from a network-limited state whewe
t—oo N . segments are sent, and the third case represents the transition
Y ees Ts Yowes dsisr Yois La,=d probability from an application-limited state where a single
> ees Ts Dogres dsist Tsisr vie A segment is sent per loss-free transition. Complete description
(7) of the transition probabilities can be found in Appendix
A. Markov chains for TCP SACK and TCP Reno can be
where I is the indicator function,r, is the steady-state obtained by modifying (8) according to the SACK and Reno
distribution of the chain, andl,., and n.. are given in fast retransmit probabilities given by equations (4) and (2),
(5) and (6), respectively. The above equation can be solvé@spectively, in [26]. The corresponding timeout probability is
numerically to yield the application’s performance statisticéletermined by the expression in (9).
namely, the TCP delay jittes, and thea-delay percentile 2) Correlated Packet LossedJnder this model, when a
argmax , P{D < z} < «, as well as other useful statisticspacket is lost, all the following packets sent within the same
such as the average del&@( D) and the portion of time that window are also lost. This loss process is likely to arise when
. e(won) rew ™5 2 ues ssr taer the bottleneck router uses drop-tail queuing. Therefore, we
the sender is backlogged== (E;): 3 ves qets " apply this loss assumption to E/alidactle thegmodel in drop-
tail router environments (see Section IV-B). Padleyel. [6]
derived the loss recovery probability under the correlated loss
assumptiofy, which we use to obtain the transition probabil-

We now explain how to obtain the transition probabilitie§ies of the chain. According to [6], given a window size
of the Markov chain. Each state is associated with at md§€ probability that a loss indication is a timeditw) is:

=d w.p.

C. Transition Probabilities of the Markov Chain

three outgoing transitions representing the following events: 1-(1—p)3)(1 V301 (1 — o \w—3
S P +(1-p(1-(1-p

the receipt of a fast retransmit loss indication, the receipt 6f(w) = max {17 L= ol 1 _(<1 _;)EU ( )

a timeout loss indication, and successful delivery of window (11)

data. In our derivation of the transition probabilities, we

consider both correlated and random packet losses, typical @ing into account the Markov chain structure as in the ran-
FIFO and RED routers, respectively. dom packet loss case, the fast retransmit transition probability

1) Random Packet Losse$he random packet loss modelca" be modeled by:

is the most basic loss model. It assumes that a packet is Q(w)(1 — B,(w,0)) if AL
dropped independently of others with some fixed probability, ps(w,b) = { Q(w—1)p if AL (12)
denoted by. This loss behavior is likely to arise when the bot- ) ) N
tleneck router implements a RED queueing scheme [25]. wbe corresponding timeout probability formula has the same
use the random packet loss assumption to validate the moddQfm as (9).
scenarlo§ with configured packet drop rates (see Secthn IV-4. Modeling Byte-Based Network Limitations

We build on the modeling results of [26] to obtain the
transition probabilities of the Markov chain. According to
[26], a NewReno sender transitions to fast recovery if thre}
duplicate ACKs are received and none of the retransmitte
segments are lost. Thus, given a window sizeuofand a 2The timeout probability derivation in [6] assumes a TCP Reno implemen-
backlog size ob, the fast retransmit and timeout probabilitiesation.

So far we have assumed that the network-limitation is in
ackets per second i.e., the bottleneck in the network is a
aop-tail gueue in units of packets. However, if the bottleneck



is in bytes per second i.e., the bottleneck in the network isFa Modeling the Limited Transmit Mechanism
drop-tail queue in units of bytes, a small packet is less likely Here we model the effect of the limited transmit mecha-
to be dropped than a large packet flow [27]. Consequentfysm [12]. This mechanism improves the loss recovery effi-
small-packet flows may experience lower delays than Iarg@ency of TCP when a congestion window is small or when
packet flows. Since the performance may differ significantly |arge number of segments are lost in a single transmission
it is necessary to design both packet-based and byte-baggow. It allows the sender to send a new data segment upon
versions of the model. the receipt of each of the first two duplicate ACKs, thereby
When the queue size is maintained in bytes, small packgigreasing the chance to receive the three duplicate ACKs
have a higher probability to be admitted to a nearly fulieeded to trigger the fast retransmit algorithm.
queue. We assume that a small packet of siz® A/a times | imited transmit can lead to successful loss recovery using
less likely to be dropped than a large packet of s#eas fast retransmit and fast recovery if the following conditions
suggested by [28]. Recall from Section IlI-B, that a TCP flowold [26]: (a) three duplicate ACKs are received. That is,
reacts to congestion by adapting the segment size and thaé or two duplicate ACKs are received for a single trans-
the segment size depends on whether the sender is netw@fkssion window and at least two or one, respectively, of the
limited (A/SS) or not (). Hence, the packet drop probabilitycorresponding transmitted segments are not dropped in the
used to derive the transition probabilities from applicatiorhetwork (b) none of the retransmitted segments are lost. Let
limited states should be scaled so that it is proportional to tbﬁ(m b) be the probability to transition to fast recovery given
packet size. More specifically, the fast retransmit and timeogitcongestion windoww, a backlog size$, and assuming that
probabilities p'; (w, b) and p}(w, b), respectively, for a byte- |imited transmit is used. Under the assumption of random

based bottleneck are computed by: packet losses (see Section I1I-C})(w,b) can be computed
_ as
b _ [ ps(w,b) if AL )
pylw,b) = { PNV By(w—1,i —1)(1—p)' if AL pi(w,b) = B(w,w = 1)(1 = p)* "' (1 = p)* L1
(13) + B(w,w — 2)(1 = p)* 21 = p*) Lys2 + pp(w,b) >3
e 15
Ptb(w,b) _ { gti’wab) if AL (14) ( )

b H . e T
pf(uhb) if AL ~ | B(w,1) if AL
_ - _ BB = LBt if AL
wherep is the probability that a fully-sized segment is lost, (16)
P = pyres IS the probability that am-byte segment is
lost, andps(w,b) and p;(w,b) are given by (8) and (9), where ps(w,b) is the fast retransmit transition probability

respectively. assuming limited transmit is not used (e.g., (8)w,i) =
(V)p'(1 — p)»~* is the probability to have losses out of
E. Modeling Congestion Window Appropriateness a window of w segments, and is the indicator function.

The corresponding timeout probability formula has the same

The congestion window behavior during application-limitegym as (9). Note that (16) accounts for the fact that the
periods is implementation dependent. One option is that thgmper of segments sent in a state depends on whether the
congestion window size retains memory of an inflated coBender is application-limited (where a single segment is sent
gestion window used to clear the recent data backlog. Trﬁér loss-free transition) or not (where segments are sent
behavior causes the congestion window size to overestima_ggr transition). As in Section IlIl-D, we account for byte-

the actual amount of data sent by the TCP sender. It is, f3sed pottlenecks by replacingwith a scaled probability
fact, the common case observed in our test-bed and Interget pi%s When computing the transition probabilities from
experiments. Another option is that the congestion windoy, application-limited state. Similar reasoning can be applied

size reflects the actual load of the application. This is likely, {f, gerive the transition probabilities of the Markov chain when
TCP sender applies the congestion window validation (CVWrelated packet losses are assumed.

extension [11]. _ _

Since the performance of a rate-limited flow may diffef>- Computation Complexity
significantly depending on this implementation artifact, our The complexity of the TCP delay computation directly
model accounts for both variants, as follows. The congestidepends on the size of the state space of the Markov chain.
window is either decayed to the application’s load gpr We use trail and error to select a state space size that
(CVW) or left intact (non-CVW) upon a transition from ais small enough and allows us to efficiently evaluate the
network-limited state to an application-limited state. Conperformance over the set of network environments considered
plete description of the congestion window evolution can be Section IV. To solve the Markov chain, we select the
found Appendix A. The scenario where the window growsiaximum window Sizew,,., t0 be w,.. = 8r and the
arbitrarily large during application-limited periods, pointed outnaximum backlog size, measured in units of pack&ts,.
by [11], was not observed in our traces, and hence is rnot be b,,,, = 47yf = 16r. Since the state space includes
modeled. the loss recovery variablé which captures the exponential



backoff stage in timeout states, the number of states in the Configured drop rates
Markov chain is6b,,qz + 2bmaezWmaz-

@ Nistnet @
IV. M ODEL VALIDATION

CBR-TCP CBR-TCP

We evaluated the model using a controlled network envi- SO o S0 me toomesooms
ronment and Internet experiments. We use “CBR-TCP” to
denote a TCP connection with a CBR source, “FTP” forcer-tcp -
a TCP connection with bulk data transfer, and “web” for **°** -
a TCP connection with HTTP traffic. For the controlled
network environment, we consider a single CBR-TCP flow
with configured packet drops, and multiple CBR-TCP flows & & ¥
competing with FTP and web flows in a topology consisting :
of a router with a drop-tail queuing scheme. For the Internet
experiments, we consider CBR-TCP flows from broadbamily. 3. Experiment setup for model verification in a controlled environment.
residential clients with DSL access and CBR-TCP flows from
institutional clients with high-bandwidth access (i.e., Planet- Starting with Linux kernel 2.6.18, congestion window val-
Lab clients). Table IV summarizes the configurations for thdation can be enabled or disabled. As described in Sec-

}

(

. CBR-TCP

Drop-tail queue sinks

Nistnet &

Link delay: 100 ms
Link capacity: 3Mb/s, 30 Mb/s

}

(

" FTP & web
sinks

controlled environment and Internet experiments. tion V-C, the use of congestion window validation can in-
crease sensitivity to timeouts for CBR-TCP applications. We
l Experiment configurations | therefore suggest that this option be disabled.
Controlled ,\Sﬂigﬁlililélvccw Hﬂﬂi g-g, Windows XP We also configured the following session-level options. We
Plam;t b T Onux 2.6 set the TCP buffer size of the receiver application to the
Internet DSL Linux 2.6, Windows XP maximum value allowed by the system to ensure that a TCP
TABLE IV sender is never limited by the receiver window. We disabled
EXPERIMENT CONFIGURATIONS FOR MODEL VALIDATION ANDTCP Nagle’s algorithm and delayed ACKs on both ends. The above
DELAY ANALYSIS . system and session-level settings represent a delay-optimized

and aggressive configuration for TCP. For model verification

and TCP delay analysis, we present the delay distribution, 95th
We wrote a tool that can send and receive bidirectiongbrcentile delay, and mean delay.

CBR over TCP flows with different packet sizes at constant
intervals. The bit-rate of a CBR-TCP flow is determined b Model Validation Using Configured Drop Rates
the packet size and packetization interval (Pl), i.e., the inter-We performed model validation experiments for different
packet generation time. We use packet sizes of 174, 724, gratket drop rates on a test-bed that emulates a wide range of
1448 bytes and packetization intervals of 20 ms and 30 msragwork environments, as shown in Figure 3.
these choices approximately reflect one way voice (64 kb/s) [1]The router ran NIST Net [30], a network emulation program
and video flows (300kb/s and 573kb/s) [4], [13]. For easghich can introduce constant delay, and can drop packets with
of presentation, we call 174-byte, 724-byte, and 1448-bytenfigured loss ratemegardlessof their size. NIST Net was
packet flows small (VolP), medium, and large (video) flowgonfigured with drop rates of 0.1%, 0.5%, 1%, 2%, 3%, 5%
respectively. and 10% and a fixed round-trip propagation delay of 20 ms,
We conducted the experiments using Linux (kernel versiod®0 ms, and 300 ms. The delay setting choice approximately
2.6.17.8 and 2.6.9) and Windows XP machines. Both opeeflects the local, US coast-to-coast, and trans-continental de-
ating systems yielded similar delay performance and henegs. In the experiments, we do not consider loss rates greater
Windows XP results are not shown. The flexibility of Linuxthan 10% because for such high loss rates the average TCP
in configuring system and session-level TCP-related optiotitsoughput does not usually satisfy the bit-rate requirement of
allows us to assess their impact in isolation. We configuréide CBR-TCP flow. For each set of parameters, we ran the
the following system-level options for the experiments. Oexperiment for five minutes and repeated each experiment ten
the sender machine, we set the congestion control algorithimes.
to New Reno [22] and disablessthreshuse from last TCP  The results for model validation are presented in Figures 4
connection. We enabled the SACK option on both ends &md 5. Figure 4a and Figure 4b present the predicted vs.
improve the loss recovery latency. We disabled the byteieasured 95th percentile and mean TCP delay, respectively,
counting (BC) option because it causes the congestion windémw a range of network parameters. Figure 5a shows the
to increase as a function of the number of bytes sent and hepcedicted vs. measured cumulative TCP delay distribution.
results in increased delays. Detailed results on the impactRifjure 5b shows the relative prediction error with respect to
BC can be found in Section V-D. Note that disabling bytehe actual measurement for a loss rate of one percent. The
counting can make the system susceptible to ACK-divisigirediction accuracy of the model stems from capturing the
attacks [29]. send buffer dynamics using the backlog size, as described



Model Verification used to evaluate the performance of TFRC-small packets [27].

Tyl | ‘D | We used SRI and ISI traffic generator [31] to generate ex-
Z < X 010331448 ponentially distributed web traffic with a mean duration of
é s N § S I 50ms and a constant packet size of 512 bytes. The round-trip
g ¥y % o ¥ oo propggation de_lay was set to 100 ms for all experiments, and
Sosp 00, > < 4 omisars | the link bandwidth was set to 3Mb/s and 30 Mb/s for small
& * {50 > O [> 03015174 and large-packet flows. For each configuration, we ran the
% 02 o4 o8 o8 1 12z 12 1s 18 experiment for five minutes and repeated it five times.
(a) 95% measurement delay [sec] For small CBR-TCP flows, the packet and byte queues
were configured as 100 packets and 50,000 bytes respectively.
T1s) 1 ldeally, the byte queue size should be MSS*100 packets or
F < owazws|| 1,500,000 bytes (MSS is 1500 bytes for Ethernet [32]). How-
% 1h 4 8:2851‘3;1332 1 ever, this number overestimates the packet queue equivalent
3 * 01033174 since the packet sizes of CBR-TCP and web flows are less than
§ 05 1 D> O <>] 3’28&2&?3 I one MSS. Thus, we set it to 50,000 bytes which approximately
= g ‘ ‘ ‘ Reference reflects the average of CBR-TCP (174 bytes), web (512 bytes),

06 08 1 12 14 16 18 and FTP (1448bytes) flows, a choice motivated by [27].
(b) Avg measurement delay [sec] L

Similarly, for large-packet flows, we set the byte queue to
Fig. 4. (a) predicted vs. measured 95th percentile TCP delay for a ran§@0,000 bytes which approximately reflects the average of
of RTTs (leftmost value in the legend label), packets per round-trip tim€BR over TCP (1448 bytes), web and FTP flows.

(middle value in the legend label), and packet sizes (rightmost value in the .
legend label). (b) predicted vs. measured mean TCP delay for the same seTabIe VandVi present the measured and predlcted 95th per-

of parameters as in (a). centile delay for small and large packet flows, respectively for
Prediction Accuracy a packet and byte-based queue. The 95th percentile statistics
! ot > i 5 are abbreviated with 95%. From these tables and Figure 5 we
724 .
§°'95 S sl 1 g 0 observe that the prediction accuracy of the model decreases as
g% g 4. o & o the available network bandwidth seen by the TCP connection
208 g s ! o~ . decreases. More specifically, the accuracy decreases as the
§ 08 e 205 s d' connection utilization, the ratio of the flow’s bit-rate to the fair-
G075 Mz 8 TCP bit-rate [27], increases. The model prediction accuracy is
0 s 1 B = o+ low when the connection utilization is close to one, because
(2) TCP delay [sec] (b) Packet loss rate the actual delay grows arbitrary large and hence the size of

the state-space of the model should be increased accordingly.

Fig. 5. (a) predicted (M) vs. measured (E) cumulative TCP delay distributi e ; _
for small (174-byte) and large (1448-byte) packet sizes. (b) relative errorc'(_;!fowever’ this is not the case, since we truncate the state Space

the model for small, medium (724-byte) and large packets. size to reduce the computational complexity.

Note that the percentile delays for small and large flows are
in Section 11I-B. In general, the modeling error increases as thet directly comparable because the link bandwidths for the
packet loss rate increases. This is intuitive because an incretige settings were different, and hence loss rates and queuing
in the packet loss rate results in more frequent throughpiglays are different. Also note that we present results for a
fluctuations and hence in larger variations in the backlog sizeacket and byte-based queue for large-packet flow. This is
We elaborate on the model prediction accuracy in the ndxgcause our experiment setting comprised of competing web
section. flows whose packet size was 512 bytes.

B. Model Validation Using Routers with Drop-Tail Queues C. Model Validation Using Internet Experiments

We consider a scenario where multiple CBR-TCP flows We performed model validation using Planet-Lab environ-
compete with FTP and web flows for a bottleneck router withnent, and machines connected to home DSL. For Planet-Lab
a drop-tail queueing scheme, as shown in Figure 3. The dra@xperiments, we ran our sender and receiver application on
tail queue can be maintained in units of packets and bytesachines located at US (California, New York), Europe (UK,
When the queue size is maintained in bytes, small-packets &rance), Asia (China). For each sender and receiver pair, we
less likely to be dropped than large-packets, and hence smadin our tool for small and large-packet flows for thirty minutes
packet flows perform better than large-packet flows under thad repeated the experiments five times over randomly selected
same network conditions. days from February to June, 2007. For DSL experiments, we

We used the Linux test-bed from Section IV-A and modifiechn sender on machines located in US, Israel, and Pakistan
NIST Net to incorporate a drop-tail queue. We devised and receiver application was in New York.
multi-flow setting in which five small and large CBR-TCP Surprisingly, for the majority of Planet Lab flows we
flows compete with five long-lived FTP and varying numbeobserved a handful of losses< (0.5%). Hence, the 95th
of web flows. This choice was inspired by the configuratiopercentile delay was close to the network delay for which



[ Model validation for small-packet flow (174 bytes)

Web Packet queue Byte queue
flows

LR RTT (s) 95% jit- | 95% de- | Model (s) | Con. LR RTT (s) 95% jit- | 95% de-| Model (s) | Con.

(%) ter (s) lay (s) Util. (%) ter (s) lay (s) util.
0 1.02 0.317 0.136 0.410 0.487 0.272 0.20 0.172 0.069 0.135 0.122 0.065
10 1.60 0.380 0.169 0.498 0.690 0.408 0.55 0.178 0.099 0.183 0.128 0.112
15 231 0.371 0.205 0.644 0.721 0.479 0.81 0.180 0.111 0.233 0.130 0.137
20 3.39 0.383 0.263 1.335 1.853 0.601 1.24 0.182 0.140 0.308 0.192 0.172
25 5.61 0.385 0.447 6.173 2.255 0.774 2.41 0.185 0.204 3.057 0.755 0.244

TABLE V
MODEL VALIDATION FOR FIVE SMALL CBR-TCPFLOWS COMPETING WITH FIVEFTP FLOWS AND VARYING NUMBER OF WEB FLOWS
[ Model validation for large-packet flow (1448 bytes)

Web Packet queue Byte queue
flows

LR RTT(s) 95% jit- | 95% de- | Model (s) | Con. LR RTT (s) 95% jit- | 95% de- | Model (s) | Con.

(%) ter (s) lay (s) Util. (%) ter (s) lay (s) Util.
0 0.75 101 0.101 0.215 0.309 0.618 1.25 101 0.151 0.460 0.57 0.798
10 0.81 101 0.093 0.265 0.401 0.642 1.28 101 0.159 0.594 0.59 0.808
25 0.90 101 0.094 0.289 0.431 0.677 1.34 101 0.174 0.914 0.61 0.826
50 1.20 101 0.110 0.608 0.610 0.782 1.79 101 0.229 1.890 0.67 0.955
100 291 101 0.310 4.880 1.670 1.218 3.18 101 0.544 5.978 191 1.273

TABLE VI

MODEL VALIDATION FOR FIVE LARGE CBR-TCPFLOWS COMPETING WITH FIVEFTP FLOWS AND VARYING NUMBER OF WEB FLOWS

the model provided a good match. Similar low loss rates weitge assumption that the bottleneck limitation is in packets per
observed for DSL experiments. The DSL losses were clustersgtond. Hence, the working region can be larger when the
and resulted in consecutive retransmission timeouts. Sinmattleneck limitation is in bytes per second. Note that a non-
these clustered loss events were rare, we did not have enodglay friendly setting of TCP (see Section V) can significantly
data to reliably apply the model. The low loss rate observed @onstrain the working region.
the DSL measurements may stem from over-provisioning in The loss rate and the round-trip time jointly determine the
the Internet and the low-bandwidth requirement of CBR-TCR.ir-TCP rate [27]. The ratio of the CBR rate to the fair-TCP
flows. rate, hereafter called tteonnection utilizationrepresents how
much the CBR rate is lower than the throughput provided by
the TCP connection. This ratio can be viewed as an approxi-
In this section, we present the working region for VoIP anchate measure for the delay performance of TCP, as suggested
live video streaming flows carried over TCP and discuss tly [9]. Therefore, we characterize the working region using
key factors that influence the performance of CBR-TCP flowthis measure. Figure 7 shows the delay performance as a

V. DISCUSSION

deduced using our model and experiments. function of the connection utilization and the packet size of the
) ) flow for a loss rate of one-percent. We observe that the delay
A. Working Region curves have similar shapes. At first, the delay increases little or

We now identify the conditions under which TCP can satisfiynearly with the connection utilization. However, as network
the delay requirements of VolP and live media streamingongestion increases, queueing delays at the TCP sender start
For WoIP, we assume that the interactive latency limit ibuilding up and the TCP delay increases drastically, exhibiting
200 ms [18] and for live video streaming we assume it is 5exponential-like growth. The results indicate that, in general,
a choice motivated by [4]. The working region for VoIP andhe delay added by TCP is on the order of the path’s round
live video streaming is defined as the range of loss rates anig time when the connection utilization is below one third.
RTTs where the 95th percentile delay and the maximum delay ]
is below 200ms and 55, respectively. B. The Effect of Packet Size on Performance

Figure 6 demonstrates the working region for the two Our traces indicate that small-packet flows perform signifi-
applications, which was obtained using the random-drop esantly better than large-packet flows under the same network
perimental setup described in Section IV-A. We observe thednditions. In this section, we explain the reason for the
the VoIP delay threshold is satisfied when the RTT is lesbserved performance bias using TCP traces taken from our
than 200 ms and the packet drop rate is lower than 2%. Ttest-bed environment.
streaming threshold is satisfied when the loss rate is belowFigure 8 demonstrates the performance improvement when
10%. The RTT has marginal effect on the streaming threshdhie flow’s packet size is reduced. The figure shows the TCP
and hence can be ignored. These regions were obtained urdiday and the corresponding window size vs. time for a large
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Fig. 7. Average TCP delay as a function of connection util. and packet Si%'e sender-incurred delay as a percentage of TCP delay. RTT is 100 ms.

1448-byte (left side plots) and a medium 724-byte packet
flow. Both send 100 packets per second over a link with RTflows experience the same throughput fluctuations in pps, the
of 200ms. We used Nist Net to drop a single packet frofroughput fluctuations in Bps can be significantly smaller for
each flow so that both flows detect a loss at time 0.5s afife small-packet flow. The smaller the packet size, the smaller
become network-limited. Since the loss is recovered using faisé magnitude of the throughput fluctuations, and the lesser
retransmit, the HOL blocking delay, given in (5), is at moshe delay. Thus, packet-based congestion control results in a
1.5- RTT + 3 -20ms = 360 ms. significant performance bias favor of small-packet flows.
Although both flows are limited by the same congestion In general, the delays of small-packet flows tend to be
window size during network-limited period, their loads irdominated by loss recovery latency, whereas those of large-
bytes per second (Bps) differ; the load in Bps of the mediurpacket flows tend to be dominated by the delays induced by
packet flow is half of the load in Bps of the large-packet floncongestion control, as demonstrated in Figure 9.
For the large-packet flow, the rate mismatch between the theThe performance bias described above creates an incen-
constant load and linearly increasing throughput of TCP willve for real-time applications to improve their performance
result in data backlog buildup with gquadratic-like shape, agithout network assistance. The reasoning is simple: if a
shown in time interval [0.76s, 2.4s]. For the medium-packédrge packet flow experiences worse performance than a small
flow, the packet assembly capability of TCP kicks in angacket flow, then why not masquerade a large packet flow as a
reduces backlog buildup. The resulting delays are now on téfall packet flow? The application can simply send few small
order of the packet inter-sending time, i.e., 20ms. We onplckets at evenly spaced intervals instead of a large packet,
similar results for small-packet flows. thus improving its own performance while still maintaining
The reason for the performance gain observed is that e same sending rate in bytes per second.
congestion control mechanism varies the TCP throughput ad-igure 10 demonstrates the potential performance improve-
a function of the number opacketsin flight, rather than as ment obtained via such an approach. The flow in left side
a function of the number obytesin flight. Although both plots is the baseline. It sends 100 packets per second over a
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common case observed in our traces. The scenario where
the window grows arbitrarily large during application-limited

Fig. 10. TCP delay and congestion window size for a large-packet flow (IeRtenOds’ pointed out by [1,1]’ WQS not Obser\_/ed _m our traces.
side plots). The right side plots shows delay and window size for a similkiOr €xample, the congestion window value in Figure 8 over-
flow where each MSS-size packet is split by half. estimates the actual load of large and medium-packet flow by
30% and 40%, respectively. Alternatively, a TCP sender can
use congestion window validation [11] and have the window

300ms RTT Symmetric network and uses MSS-sized pack&ge reflect the actual amount of data sent. This will result in
The flow in the right side plots sends 200 packets per secom@re timeouts. Retransmission timeouts can also be avoided
and uses a half MSS-sized packets. Both flows have thden the limited transmit mechanism [12] is used, which

same bandwidth requirement in bytes per second and béthenabled by default in Linux 2.6 and Windows XP. This
experience two close-by losses. mechanism enables a TCP sender to send a new data segment

As expected, both flows exhibit the same performance dfen the receipt of each of the first two duplicate ACKs,
ing application-limited and loss recovery periods. Since TCI}_qereby increasing the chances of the three duplicate ACKs to

adapts its throughput based on the number of packets in f|ig?1"[five- For instance, when the window overestimates the load

the magnitude of the throughput fluctuations is significantRy 40% and the pa(():ket loss rate is 10%, our model yields
smaller for the medium packet flow, resulting in lower delay: at, on average, 15% of the timeouts are avoided by window

(e.g., the peak delay in our example is lower than that g}validation and 35% are avoided when both mechanisms are

the large packet flow by 45%). From these examples it ol use. The magnitude of savings is significant for lower loss

be clearly seen that the performance gain of packet splittiffeS and for smaller windows.
comes from the reduction in the AIMD-induced delays.

0
0 08162432 4 438
Time [sec]

0
0 08162432 4 438
Time [sec]

D. Sensitivity to Bottleneck Router Limitation and Byte-
counting

As Internet router behavior is not well specified, bottlenecks
in the network can include limitations in pps, in Bps, and even

Since a real-time flow is rate-limited, it has the potentidl POth [27]. Different network limitations produce different

of causing the connection’s congestion window to be smajacket drop rates: large and small packets will experience
same packet drop rates when the network limitation is

Hence, the chance of sending enough segments for the receﬁb@r ;
to generate the three duplicate ACKs becomes small, 88, PPS, whereas, in the other case, small-packet flows can

This can harm the delay performance as the sender may ngéee,rience lower drop rates than large packet flows. Since
to rely on lengthy retransmission timeouts for loss recoveryCP’s delay performance improves as the packet drop rate

Nonetheless, our traces show that the likelihood of timeoufgduces, a byte-based bottleneck is biased in favor of small

is low. packet flows, as shown in Table VII . A typical TCP sender
\é\éll most likely operate in the lower two quadrants of the table

One reason for the small number of timeouts observg ue to the dominance of packet-based congestion control TCP

is TCP’s use of an invalid congestion window which over: .
implementations.

estimates the actual amount of data sent. This overestima:

. L . ~Allman [29] proposed a modification to how TCP increases
tion happens implicitly for CBR-TCP flows, because durmﬂs congegticgnp wFi)ndow during slow-start and congestion-

application-limited periods, the TCP sender retains memory

of an ‘inflated’ conggstion WindO\_N used_ to Cl_ea'j the recentsgjnce windows XP does not allow applications to sample the window
data backlog. This implementation artifact is in fact thetate, we used similar techniques to those in [23] to verify this observation.

C. The Effect of Timeout on Performance
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VI. DELAY REDUCTION APPROACHES

- o) B . oo ) We discuss two application-level heuristics that can improve
o6 o o : 6 «1 the delay of Iarge-packet flows by reducing the delays induced
o, ; 2, . by the congestion control mechanism.
(>5\4 E %4 =
2 ‘ v g A. Packet-Splitting
2 . 2 . . . L
e As described in Section V-B, TCP has a bias in favor of
o\“\ = -190- = L ;0’ oo’ 0 20 small packet flows. The bias for small packet flows comes from
Number of ETP flows Number of ETP flows the fact that fjurl_ng network-I!m|ted periods, TCP can combine
several application packets into one transmission segment. A
Fig. 12. 95% end-to-end delay for five VoIP and varying number of FTHUestion arises whether a large CBR-TCP flow can improve its

flows. The 95% statistics are averaged over five VoIP flows. delay performance by Sp“ttlng every MSS-sized packet into

smaller packets, while maintaining the same workload byte
rate. We call this schemsplitN, whereN is the packet-split
factor.

Using our model and test-bed, we analyzed the performance
of this scheme with various split factors for a wide-range of
network environments. The results presented in Table VIII
are for the bottleneck router considered in Section IV-B that
maintains its queue in units of packets and bytes. We find
) - that there is a tradeoff between the delay performance and the
avoidance. The proposed modification known as byte-countiggjit factor. A split2 scheme gives the best performance under a
increases the congestion window based on the number of byjgge-range of network settings, whereas schemes with a higher
being acknowledged by each arriving ACK, rather than thg,it factor yielded diminishing gains or performed even worse
number of ACKs. The purpose of this mechanism is to ensUgyn a no-split scheme. The performance degradation occurs
that TCP rate-increase fairly represents the application raige to the increase in the burstiness of the flow.

The mechanism is not enabled by default in Linux and hasngte that the performance splitN is relatively better for

not been implemented in Windows XP. If enabled, it cag pyte-hased bottleneck queue. This stems from the fact that
reduce the performance gain of real-time small-packet flayte-pased bottleneck queue are biased in favor of small packet
such as WoIP, as the congestion window is incremented O'ﬂb!ws, as explained in Section V-D.

after MSS-sized data has been acknowledged. ~ There are at least two ways to implemerggitN scheme.

Figure 11 shows the 95% delay for small-flows competingne way is to split every generated packet iNtpackets and
with web flows in a packet vs. byte queue setting and emand them immediately. The other mechanism is to send the
pirically highlights the gain in favor of small packet flowsgpit portions of the packet over the packetization interval. In
for byte-based queues. This figure also shows that byte-bagegk:tice, this pacing may be difficult to achieve as packetiza-
queues have a relatively significant impact than disabling bytgs, intervals are typically 20 ms or 30 ms and a split factor of
counting mechanism on the performance of a small-packglyr will require sending packets at a granularity of 5ms or
flow. 7ms, a challenging task with current operating-systems. Thus,
. we use the former approach to implement #pditN scheme.

E. Sustainable FTP flows Note that even though theplitN scheme does not change

A question of interest is how many FTP flows can bghe workload byte-rate, the total byte-rate of a flow increases
sustained with CBR-TCP flows going through a bottleneclue to the overhead of TCP/IP headers for additional packets.
router, if thex percentile delay of CBR-TCP flow must beHence, a wide-scale adoption of such an approach runs the
below a certain threshold. Interactive CBR-TCP flows SUQ{’Sk of degrading the performance of all flows due to h|gher
as VoIP and video chat have low tolerance for delay, an@twork congestion.
hence a small delay threshold while streaming traffic can _
tolerate delays of few seconds. Using the bottleneck rouf@r Parallel-Connections
configuration from Section I1V-B, we run an experiment where A straight-forward approach to improve the delay perfor-
five small and large CBR-TCP flows compete with varyingnance of a CBR-TCP flow is to stripe its load across multiple
number of FTP flows for a drop-tail router. The drop-tail routeFCP connections. This scheme can be considered a ‘hack’
maintain its queue in units of packets and bytes. Figure &2 it attempts to lower delays by increasing TCP throughput.
shows the 95% and maximum delay for small and large CBR- ‘blind’ parallel-connection scheme will send packets over
TCP flows. multiple TCP connections in a round-robin fashion. This will

Note that the delays of small and large-packet flows amaprove performance if loss recovery is not dominated by
not directly comparable due to the difference in bottlenedkmeout retransmissions, which is the common case observed
bandwidth and drop-tail queue size. in our traces. However, it can potentially degrade performance

[ [| Byte-based dropg Packet-based drops

Byte-based cong. control + None
Packet-based cong. contro| +++ ++

TABLE VII
THE PERFORMANCE BIAS IN FAVOR OF SMALL PACKET FLOWS'+++’
REPRESENTS THE LARGEST BIAS ANDN ONE' REPRESENTS NO BIAS



13

[ [ No heuristic | Packet-splitting (pq) [ Packet-splitting (bq) [ Parallel-conn |

Web baseline split2 split4 split2 split4 par2 par5
flows
LR 95% | LR % LR % LR % LR % % %
(%) de- (%) Im- (%) Im- (%) Im- (%) Im- Im- Im-
lay prov. prov. prov. prov. | prov. | prov.

0 0.75 | 0.215] 0.74 | 12.2 0.81 | -154 | 0.73 | 50.4 0.65 | 43.3 41.1 75.7
10 | 0.81 | 0.265| 0.72 | 27.2 091 | 131 0.83 | 445 0.64 | 51.7 46.8 80.5
25 | 0.90 | 0.289| 0.77 | 19.7 110 | -52.8 | 0.86 | 50.2 0.82 | 47.6 50.4 82.7
50 | 1.20 | 0.608 1.10 | 17.5 158 | -90.8 | 1.32 | 1.12 121 | 214 73.6 91.7
100 | 2.91 | 4.886| 2.88 | -2.2 3.18 | -13.3 | 3.27 | -1.55 | 3.25 | -3.73 | 91.6 94.8

TABLE VI
THE RELATIVE PERFORMANCE OF PACKETSPLITTING AND PARALLEL-CONNECTION SCHEME 'PQ AND 'BQ’ ABBREVIATE PACKET-QUEUE AND
BYTE-QUEUE RESPECTIVELY

because load per-connection is reduced resulting in small TCP-level guidelines
window sizes (see Section V-C). « Nagle’s algorithm and delayed ACKs should always be

To overcome these shortcomings, we devised an ‘intelligent’  disabled.
scheme which selects a connection for packet transmission To increase the loss efficiency of TCP, we suggest that
that is not in the timeout state and has the smallest TCP gACK be enabled, limited-retransmit should be used, and
send queue. While both schemes attempt to improve the delay congestion window validation during application-limited
performance by increasing the aggregated TCP throughput, the periods and byte-counting should be disabled.
‘intelligent’ scheme outperforms the ‘blind’ scheme because, The initial window size should be set to four seg-
it dynamically avoids connections with large queues and in ments [33].
timeout states. Further, this strategy will cause the average load some operating systems (e.g., Linux) use #isthresh
on non-timeout connections to be higher than that on timeout yjue from last connection. We suggest trsathresh
connections which in turn improves loss recovery efficiency. inheritance be disabled.

We used the model to evaluate the performance of the, Application should set the TCP receiver buffer size such
‘blind” scheme over the range of network environments con-  that the TCP transmission mechanism is only limited by
sidered in Section IV. The blind scheme improved the perfor-  TCP congestion-control mechanisms.
mance only when the TCP's loss recovery was not dominatedag 4 general rule, the above TCP-level configurations should
by timeouts and yielded diminishing gains when more thaf), set on a per-connection basis if the underlying operating
four connections were used. system supports it. Note that these guidelines do not require

We implemented the ‘intelligent’ parallel connectiorypny change in the TCP stack.
scheme in Linux because unlike Windows XP, it allows to
sample the TCP state and send queue size. For simplidty Application-Level guidelines
we denote this scheme byarN, where N is the number , playout buffer Applications such as VolP and
of parallel-connections used. We evaluate the performance interactive-video have tight playout requirements whereas
of par2 and par5 schemes for small and large-packet flows jive video streaming may tolerate delays on the order of
using the experimental settings of Section IV-B, and present few seconds. Ideally, an application should dynamically
the results in Table VIIl. The RTT was 100ms and the  set the playout buffer on the order of the network round-
packetization interval was 20 ms, so the load per connections trip time. However, an application using TCP must be
for par5 scheme is one ppr. Thus, the parallelization spectrum  aware that TCP is a reliable and in-order delivery protocol
for a CBR-TCP flow ranges from a single flow to having as  and any loss it suffers adds a latency on the order of
many flows as the packet rate per RTT. network round-trip time. For a CBR-TCP application, it

Parallel-connection scheme outperforms the packet splitting  at least taked, + RT'T + 3/f* to recover from a single
scheme because it increases the aggregated throughput andTDACK loss and at least x RTT to recover from a TO
does not introduce any additional traffic apart from connection |oss.
setup and tear-down. par5 performs better than par2 because, If timeouts are uncommon and the losses TCP suffers
on average, it has more non-timeout connections to choose are likely to be TDACKs, a CBR-TCP application can

from, which increases the overall throughput. statically set its playout buffer té + RTT + 3/f. Such
a setting works rather well for small-packet flows such
VII. DELAY-FRIENDLY GUIDELINES as VolP, as during network-limited periods TCP can

] o o combine the transmission of several small packets into
We present delay-friendly guidelines for VoIP and live video 4 single packet. This is a ‘sweet spot’ which masks TCP
streaming applications using TCP. We categorize them into

TCP-level and application-level guidelines. 4L is the one-way network latency anfdis the packet sending rate
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Loss rate 1% Loss rate 3%
1000 1000k VIIl. RELATED WORK

+ VolP flow
+ - Video flow

There is an extensive literature on analytical and experimen-

2 2 tal evaluation of TCP. We present only those studies closely
> 500 > 500 rela_lte_d to ours (see [7] for a gomprehensive survey). T_he
2 g majority of TCP modeling studies are geared towards file

transfers assuming either persistent [6] or short-lived flows
oL R R of > o [8]. Our work differs from past work in that we consider non-
o o 200 © 300 o o 200 © 300 greedy rate-limited flows with real-time delivery constraints.
More recently, the performance of TCP-based video streaming
Fig. 13. Masking TCP delay variations for small and large packet flows féras been analytically analyzed by [9]. The receiver buffer size
one and three percent losses. The round-trip link delay was 100 ms. requirement for TCP streaming has been determined in [10].
These papers combine a TCP throughput and application-
layer buffering models to compute the portion of late packets,
o ) . whereas we directly model the transport-layer delay of TCP.
delay variations over a wide range of environments, &% work further differs from those above in that we consider
shown in Figure 13. applications with tight constraints such as VolP.

« Large-packet flows The delay performance of large- Gog| et al. [13] present an empirical study of kernel-
packet flows can be improved by parallelizing the floyeye| TCP enhancements to reduce the delays induced by
over multiple connections. If supported by the underlyingongestion-control for streaming flows. The performance of
operating system, an application should take into CORTP for real-time flows has also been considered by [14], [15].
sideration the TCP buffer size and congestion-avoidang@yever, unlike our study, these papers propose a modification
state to decide which connection to use. Splitting MS$5 the TCP stack. Application-layer heuristics for improving
sized packets by half is beneficial for large-packet flowge oss recovery latency of TCP have been suggested [34].
if a single connection is preferred. These heuristics are geared towards bursty traffic flows and

« Silence suppressioncan reduce the TCP congestionhance may not be effective for real-time flows.
window during idle periods, and hence reduce the loss

recovery efficiency of TCP [34]. We therefore suggest IX. CONCLUSION AND FUTURE WORK

that an application should continue sending minimal We have presented a Markov-chain TCP delay model for
traffic during silence periods to maintain its congestiogBR-TCP flows. The model captures the behavior of VoIP

window. Specifically, a CBR-TCP application with a rateynd streaming flows. We used the model to predict the working
of = packets per RTT should send at leastpackets region of these flows and verified it using a real-test bed and
during silence periods. The size of the packets sent durifg Planet-Lab. We explored the impact of TCP mechanisms
silence periods can be one-byte if TCP ACK-countingnd presented system and application-level guidelines for
mechanism is being used, which increases the congestigiproving the delay friendliness of CBR-TCP applications.

window based on the number of packets sent rather th@iRe delay performance of a large-packet flow can be improved
bytes. using packet-splitting or parallel-connection heuristic.

« MSS to packet-size ratioWe recommend that the ratio This study is the first-step in understanding the use of
of MSS to packet size be an integer so that the packptp for VoIP and live-video streaming applications, and by
assembly capability of TCP will yield the lowest sendingio means advocates the use of TCP over UDP for these
rate in pps during congestion. applications. We have used delay and jitter to evaluate the

« Proactive packet drop The queue buildup at the TCPperformance of CBR-TCP flows. However, user-perceived
sender can give good clues about delays packets will g@ferformance typically evaluated through Mean Opinion Score
perience. By examining the queue size, an application ca0S) is a better metric. The user-perceived performance of
potentially infer the delays a new packet will experienceeal-time CBR-TCP flows is the subject of future work.

Thus, it may choose to drop packets at the sender, if the
queue size crosses a certain inferred delay threshold. APPENDIXA

« In-order delivery mechanism The delays of small pack- MODEL FORREAL-TIME TCP R.Oows
ets tend to be dominated by in-order delivery mecha- We model a TCP connection with a CBR source using
nisms, i.e., during network-limited periods, packets lie ia finite state Markov chain. Each state represents a triple,
the receiver buffer waiting for lost packet(s) to arrive(w,b,l), wherew is the current congestion window sizk,

A potential modification to the TCP operating systens the current backlog size, arids either1 or 0 depending

API can allow the application to peek into its receiv®n whether any loss needs to be recovered in the current state
buffer and extract out-of-order packets. Although thi§ = 1), or not { = 0). Let q(y 5,1);(w’ 5,7y € the probability
modification requires changing the receive API to receivassociated with a transition from state= (w,b,l) to state
our-of-order packets, it does not change the netwosk = (w’,b’,1"). Let t(, p1):(w 1,17y D€ the time taken for this
semantics of TCP. transition. Letd,, 41,5,y D€ the delays associated with
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packets sent in this transition. Packet delays are represdmty W. R. StevensTCP/IP lllustrated MA: Addison-Wesley, Nov. 1994,

by an ordered list denoted gg;)}
element of the list andh is the list's length. For brevity, we

' ., whered; is the ith
[18]

use the notatio{z}* = max{0,z}. Our model accounts for
CVW and non-CVW TCPs by either decaying the congestidt?]
window or leaving it intact when entering an application-
limited state, as follows. For a CVW TCP, we use the notatigao]

w+1l ifr/2<w 0<V
{w+ 12w} 2 2w if w<r/2,0<¥ [21]
r if r<w,b =0

[22]

whereas for a non-CVW TCP we use

[23]
w+1l ifr/2<w, 0<b
{w+12w} 2 2w if w<r/2,0<V [24]
w if r<w,b =0

The CBR source is characterized as follows. fdte the load [25]
in packets per second,= fRT'T be the load in packets per
round-trip time, and: be the packet size. Lét be the forward [26]
network latency andy be the duration of the initial timeout.
The state transition probabilities, the delays associated with {bg
transitions, and the times taken for the transitions are given

in Table IX. The states in this table are grouped into foufr
categories that correspond respectively to the states of a TCP

sender (a) application-limited (b) network-limited and loss-frég®]

(c) fast recovery (d) and retransmission timeout

(1]
(2]
(3]
(4]

(5]

(6]

(7]
(8]
(9]
[10]
[11]
[12]
[13]
[14]

(18]

[16]

[30]
[31]
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4(w,0,0);(w,0,0) =l1-p r<w

£(,0,0);(w,0,0) =1/f r<w

d(w,0,0);(w,0,0) =L r<w
G(w,0,0);(|(r+3)/2],3,1) = 2:13 (1:-’:11);01‘(1 -p)¥ r<w

t(w,0,0);(1 (r+3)/2],3,1) =RIT+3/f r<w
d(w,0,0)5(|(r+3)/2),3,1) = (L+RTT +i/f);) r<w

4(1,0,0)5(0,Tp fa,1) =p- Z;U:_lg (?:ll)pi(l -p)* r<w

£(,0,0);(0,To fa,1) =Tp r<w

9w ,b,0);({w+1|2w},(b+RTT fa—wM SS)+,0) =(1-p* 0<w,0<borr<w,b=0
b(w,b,0):({w+1|2w}, (b+RTT fa—wMSS)+,0) =1/f A 0<w,0<borr<w,b=0
A(w,b,0);({w+1,2w}, (b+RTT fa—wMSS)+,0) =(L+ b/(fa))};nin{b’wMSS}/aJ 0<w,0<borr<w,b=0
Qb0 (L (w+3)/2) (b4 BT fa—(wi8)MSS)+11) = vy (1)PTHL=P)® 0<w,0<borr<wb=0
b w,5,0)5(L(w+3) /2] ,(b+ RTT fa—(wt3)Mss)+,1) = BIT _ O0<w,0<borr<w,b=0
Ao b,0): (L (w3) /2], (b+ RTT fa—(wi3)mss)+1) = (L+ RTT +b/(fa) + (3+ i)/ f) LAl (wEBIMESY el g 4y 0 < borr <w,b=0
9(w,6,0)5(0,b+Tp fa,1) =1-(1-p» =3 (W)t - p)v 0<w,0<borr<wb=0
L (w,b,0);(0,b+Tp fa,1) =To O<w,0<borr<w,b=0
Q(w,b,1);(w,(b-+RTT fa—wMSS)+,0) =1 0O<w

L(w,b,1);(w,(b+RTT fa—wM SS)+,0) = RIT 0<w

d . _ = (L + b/(fa))Lmin{bwMSS}/a] 0<w

(w,b,1);(w,(b+RTT fa—wMSS)*t,0) i=1

4(0,b,1);(1,(b+RTT fa— MSS)+,0) =1-p 1<1<6

(0,b,0);(1,(b+RTT fa—MSS)+,0) =RTT . 1<1<6

d(0,b,0);(1,(b+RTT fa—MSS)+,0) = (L +b/(fa))mn {0255} /al 1<1<6

4(0,b,1);(1,b4+2!Tp fa,min{I+1,6}) =p 1<1<6

L(0,b,0);(1,b4+2! Ty fa,min{l+1,6}) =2'Ty 1<1<6

TABLE IX
TCPDELAY MODEL: DEFINITION OF THE STATE TRANSITION PROBABILITIES TIMES TAKEN FOR THE TRANSITIONS AND THE DELAYS ASSOCIATED WITH
THE TRANSITIONS.



