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ABSTRACT
The efficacy of Anomaly Detection (AD) sensors depends
heavily on the quality of the data used to train them. Arti-
ficial or contrived training data may not provide a realistic
view of the deployment environment. Most realistic data
sets are dirty; that is, they contain a number of attacks
or anomalous events. The size of these high-quality train-
ing data sets makes manual removal or labeling of attack
data infeasible. As a result, sensors trained on this data can
miss attacks and their variations. We propose extending the
training phase of AD sensors (in a manner agnostic to the
underlying AD algorithm) to include a sanitization phase.

This phase generates multiple models conditioned on small
slices of the training data. We use these “micro-models”
to produce provisional labels for each training input, and
we combine the micro-models in a voting scheme to deter-
mine which parts of the training data may represent attacks.
Our results suggest that this phase automatically and sig-
nificantly improves the quality of unlabeled training data
by making it as “attack-free” and “regular” as possible in
the absence of absolute ground truth. We also show how a
collaborative approach that combines models from different
networks or domains can further refine the sanitization pro-
cess to thwart targeted training or mimicry attacks against
a single site.
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1. INTRODUCTION
Recent research indicates that signature-based network in-

trusion detection systems (NIDS) are quickly becoming in-
effective in identifying malicious traffic [13, 6, 19]. Unfortu-
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nately, the threat posed by polymorphic attack engines will
overwhelm signature-based detectors. Relying on anomaly-
based detection (AD) sensors to detect 0-day attacks has
become a necessity rather than an option. However, effec-
tive anomaly detection requires highly accurate modeling of
normal traffic — a process that remains an open problem
and the subject of this paper. Ideally, an anomaly detector
should achieve 100% detection accuracy, i.e., true attacks
are all identified, with 0% false positives. Reaching this
ideal is very hard due to the following problems:

• The generated model of normal traffic can under-fit the
actual normal traffic. Under-fitting for an AD system means
that the AD system will flag traffic as “normal” even if this
traffic does not belong to the real normal model leading
to an overly generalized model of what we deem as “nor-
mal” traffic. Attackers who have sufficient room to disguise
their exploit as normal can bypass a poorly defined normal-
ity model, thus increasing the “false negatives” of the AD
sensor.

• The model of normal traffic can over-fit the training data:
non-attack traffic that is not observed during training can
be regarded as anomalous. Over-fitting may generate an
excessive amount of false alerts or “false positives.”

• Unsupervised AD systems often lack a measure of ground
truth to compare to and verify against. The presence of
an attack in the training data “poisons” the normal model,
thus rendering the AD system incapable of detecting future
or closely related instances of this attack. In short, the AD
system may produce false negatives. This risk becomes a
limiting factor of the size of the training set [21].

• Even in the presence of ground truth, creating a single
model of normal traffic which includes all non-attack traffic
can result in under-fitting and over generalization.

These problems appear to stem from a common source:
the quality of the normality model that an AD system em-
ploys to detect abnormal traffic. This single and monolithic
normality model is the product of a training phase that tra-
ditionally uses all traffic from a non-sanitized training data
set.

Our goal in this paper is to extend the AD training phase
to successfully sanitize training data removing both attacks
and non-regular traffic, thereby computing a more accurate
anomaly detection model that achieves both a high rate of
detection and a low rate of false positives.

To that end, we generalize the notion of training for an
AD system. Instead of using a normal model generated by
a single AD sensor trained on a single large set of data,
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we use multiple AD instances trained on small data slices.
Therefore, we produce multiple normal models, which we
call micro-models, by training AD instances on small, dis-
joint subsets of the original traffic dataset. Each of these
micro-models represent a very localized view of the train-
ing data. Armed with the micro-models, we are now in a
position to assess the quality of our training data and au-
tomatically detect and remove any attacks or abnormalities
that should not be considered part of the normal model.

The intuition behind our approach is based on the ob-
servation that in a training set spanning a sufficiently large
time interval, an attack or an abnormality will appear only
in small and relatively confined time intervals. To identify
these abnormalities, we test each packet of the training data
set against the produced AD micro-models. Using a voting
scheme, we can determine which of the packets can be con-
sidered abnormal and needs to be removed from our training
set. In our analysis, we explore the efficiency and tradeoffs
of simple majority voting and more advanced weighted vot-
ing schemes. The result of our approach is a training set
which contains packets that are closer to what we consider
the “normal model” of the application’s I/O streams.

This sanitized training set enables us to generate a single
sanitized model from a single AD instance. This model is
very likely free of both attacks and abnormalities. As a
result, the detection performance during the testing phase
should improve. We establish evidence for this conjecture in
the experiments of Section 3, which show a 5-fold increase
of the average detection rate. Furthermore, data that was
deemed abnormal in the voting strategy is used for building
a different model, which we call the abnormal model. This
model is intended to represent traffic that contains attacks
or any data that is not commonly seen during a normal
execution of the protected system.

One situation where our assumptions do not hold is the
case when the training set contains persistent and/or tar-
geted attacks, or there exist other anomalies that persist
throughout the majority of the training set. To defend
against such attacks, we propose a novel, fully distributed
collaborative sanitization strategy. This strategy provides a
major advance over the closest prior work [2]. In addition,
we extend that short work by conducting a more thorough
analysis and experimental evaluation of our technique.

Our novel distributed strategy leverages the location di-
versity of collaborating sites to exchange information that
can be used to clean each site’s training data set. Indeed,
we introduce a two-phase training process: initially, we com-
pute the AD models of what we deem as “normal” and “ab-
normal” from the training set locally at each site. In the
second phase, we distribute the “abnormal” models between
sites and we use this information to re-evaluate and filter the
local training data set. If data deemed normal by the local
micro-models happens to belong to the remotely received
“abnormal” models, we inspect or redirect this data to an
oracle. Even if the identities of the collaborating sites be-
come known, attacking all the sites with targeted or blending
attacks is a challenging task. The attacker will have to gen-
erate mimicry attacks against all collaborators and blend the
attack traffic using the individual sites’ normal data models.

We consider two different defense configurations involv-
ing AD sensors. In the first case, we measure the increase in
detection performance for a simple AD-based defense sys-
tem when we use the new training phase and to sanitize

the training set. As a second scenario, we assume that we
have an latency-expensive oracle to help us classify “sus-
pect data” and to differentiate between false positives and
true positives. In practice, our oracle consists of a heavily
instrumented host-based “shadow” server system akin to a
honeypot that determines with very high accuracy whether
a packet contains an attack. By diverting all suspect data
to this oracle, we can identify true attacks by detecting ma-
licious actions performed by the server when processing the
suspicious data. However, to achieve high (close to 100%)
accuracy for the oracle, a heavily instrumented shadow sys-
tem is required. Such systems perform substantially slower,
usually orders of magnitude slower, than the native, un-
instrumented application [1]. Therefore, if we take into ac-
count the oracle constraints, we should focus on producing
a sensor that identifies few “suspect data” items that are
subjected to further but time-expensive tests. Many papers
comment on anomaly detectors having too high a false posi-
tive rate, thus making them less than ideal sensors. In light
of the above scenario, we see such comments as the “false
false positive problem.”

This second scenario is used to demonstrate that failure to
substantially reduce the false positive rate of a network AD
sensor does not render the sensor useless: the false positive
rate can be mitigated the use of an expensive host-based in-
strumented shadow server. Therefore, false positives do not
incur damage to the system under protection, and do not
flood an operational center with too many alarms. Instead,
the shadow server processes both true attacks and incor-
rectly classified packets to validate whether a packet signi-
fies a true attack. These packets are still processed by the
intended shadowed application and only cause an increased
delay for network traffic incorrectly deemed an attack.

2. LOCAL SANITIZATION
Utilizing an effective sanitization process for an AD train-

ing data set is of paramount importance if we want to gen-
erate an accurate and precise normal model. To that end,
removing all abnormalities, including attacks and other traf-
fic artifacts, from the AD training set is a crucial first step.
Supervised training using labeled datasets appears to be an
ideal cleaning process. However, the size and complexity
of the training data sets obtained from real-world network
traces makes such labeling infeasible. In addition, semi–
supervised or even un–supervised training using an auto-
mated process or an oracle is computationally demanding
and may lead to an over-estimated and under-trained normal
model. Indeed, even if we assume that the un–supervised
training can detect 100% of the attacks, the resulting normal
model can potentially contain abnormalities that should not
be considered part of the normal model. These abnormali-
ties represent data patterns or traffic that are not attacks,
but still appear infrequently or for a very short period of
time. For example, the random portion of HTTP cookies
and HTTP POST requests may be considered non-regular
and thus abnormal. This type of data should not form part
of the normal model since it does not convey any extra infor-
mation about the site or modeled protocol. Thus, in prac-
tice, both supervised and unsupervised training might fail
to identify and remove from the training set non-regular
data, therefore producing a large, over-estimated and en-
larged normal model. We introduce a new unsupervised
training approach that attempts to determine both attacks
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and abnormalities and separate them from what we deem
as the actual regular (normal) model, based on some con-
jectures.

We observe that for a training set that spans a long period
of time, attacks and abnormalities are a minority class of
data. While the total attack volume in any given trace may
be high, the frequency of specific attacks is generally low
relative to legitimate input. This assumption may not hold
in some circumstances, e.g., during a DDoS attack or during
the propagation phase of a worm such as Slammer. We can
possibly identify such non-ideal AD training conditions by
analyzing the entropy of a particular dataset (too high or
too low may indicate exceptional circumstances). We leave
this analysis for the future. Furthermore, although we can-
not predict the time of an attack in the training set, the
attack itself will manifest as a few packets that will not per-
sist throughout the dataset. Common attack packets tend
to cluster together and form a sparse representation over
time. For example, once a worm outbreak starts, it appears
concentrated in a relatively short period of time, and even-
tually system defenders quarantine, patch, reboot, or filter
the infected hosts. As a result, the worm’s appearance in the
dataset decreases [12]. We expect these assumptions to hold
true over relatively long periods of time, and this expecta-
tion requires the use of large training datasets to properly
sanitize an AD model. In short, larger amounts of training
data can help produce better models — a supposition that
seems intuitively reasonable.

However, we must be cautious because having a large
training set increases the probability that an individual da-
tum appears normal (the datum appears more frequently
in the dataset; consequently, the probability of it appear-
ing “normal” increases). Furthermore, having the AD sys-
tem consider greater amounts of training data increases the
probability of malcode presence in the dataset. As a result,
malcode data can poison the model, and its presence compli-
cates the task of classifying normal data. We describe how
we use micro-models in an ensemble arrangement to process
large training data sets in a manner that resists the effects
of malcode content in that data.

2.1 Micro-models
Our method of sanitizing the training data for an AD sen-

sor employs the idea of “ensemble methods.” Dietterich [8]
defines an ensemble classifier as “a set of classifiers whose
individual decisions are combined in some way (typically
by weighted or unweighted voting) to classify new exam-
ples.” Methods for creating ensembles include, among other
actions, techniques that manipulate the training examples.
Given our assumption about the span of attacks in our train-
ing set it seems appropriate to use time-delimited slices of
the training data.

We employ the following strategy: consider a large train-
ing dataset T partitioned into a number of smaller disjoint
subsets (micro-datasets): T = {md1, md2, . . . , mdN} where
mdi is the micro-dataset starting at time (i−1)∗ g and, g is
the granularity for each micro-dataset. We define the model
function AD: M = AD(T ) where AD can be any chosen
anomaly detection algorithm, T is the training dataset, and
M denotes the model produced by AD.

In order to create the ensemble of classifiers we use each
of the “epochs” mdi to compute a micro-model, Mi. Mi =
AD(mdi) We posit that each distinct attack will be concen-

trated in (or around) time period tj affecting only a small
fraction of the micro-models: Mj may be poisoned, having
modeled the attack vector as normal data, but model Mk

computed for time period tk, k 6= j is likely to be unaffected
by the same attack. In order to maximize this likelihood,
however, we need to identify the right level of time granu-
larity g. Naturally, the epochs can range over the entire set
of training data. Our experiments, reported in Section 3,
analyze network packet traces captured over approximately
300 hours. We find that a value of g from 3 to 5 hours was
sufficient to generate well behaved micro-models.

2.2 Sanitized and Abnormal Models
After generating the micro-models, we compute a new AD

model using the set of previously computed micro-models.
In this second phase, we produce a sanitized normal model
using the same or a second set of training data. By same we
refer to the training set used to produce the micro-models.
Splitting the training dataset into two sets represents the
worst case scenario since it assumes that we are not able to
store the large dataset necessary to build the micro-models.
Hence, the AD sensor is required to generate the micro-
models online using a fraction of the necessary space (the
models are far smaller than the raw traffic). Then, we can
sanitize the training dataset by (online or offline) testing us-
ing all the pre-computed micro-models Mi. Each test results
in a new labeled data set with every packet Pj labeled as
normal or abnormal:

Lj,i = TEST (Pj , Mi) (1)

where the label, Lj,i, has a value of 0 if the model Mi deems
the packet Pj normal, or 1 if Mi deems it abnormal.

However, these labels are not yet generalized; they remain
specialized to the micro-model used in each test. In or-
der to generalize the labels, we process each labeled dataset
through a voting scheme, which assigns a final score to each
packet:

SCORE(Pj) =
1

W

NX
i=1

wi · Lj,i (2)

where wi is the weight assigned to model Mi and W =PN
i=1 wi. We have investigated two possible strategies: sim-

ple voting, where all models are weighted identically, and
weighted voting, which assigns to each micro-model Mi a
weight wi equal to the number of packets used to train it.
The study of other weighting strategies can provide an av-
enue for future research.

To understand the AD decision process, we consider the
case where a micro-model Mi includes attack-related con-
tent. When used for testing, it may label as normal a
packet containing that particular attack vector. Assum-
ing that only a minority of the micro-models will include
the same attack vector as Mi, we use the voting scheme to
split our data into two disjoint sets: one that contains only
majority-voted normal packets, Tsan from which we build
the sanitized model Msan, and the rest, used to generate a
model of abnormal data, Mabn.

Tsan =
[
{Pj | SCORE(Pj) ≤ V }, Msan = AD(Tsan)

Tabn =
[
{Pj | SCORE(Pj) > V }, Mabn = AD(Tabn)

where V is a voting threshold. In the case of unweighted vot-
ing, V is the maximum percentage of abnormal labels per-
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mitted such that a packet is labeled normal. Consequently,
it must be the case that 1− V > Np, where Np is the maxi-
mum percentage of models expected to be poisoned by any
specific attack vector. We provide an analysis of the impact
of this threshold on both voting schemes in Section 3.

After this two-phase training process, the AD sensor can
use the sanitized model for online testing. Our approach
is agnostic to the particular AD algorithm in use. Con-
sequently, we believe that our approach can help generate
sanitized models for a wide range of anomaly detection sys-
tems.

3. EVALUATION OF SANITIZATION
In this section, we quantify the increase in the detection

accuracy of any content-based anomaly detection system
when we apply training data sanitization. We treat the AD
sensor as a “black-box” avoiding using optimizations that
are specific to an AD system. We evaluate our approach us-
ing two different scenarios. In the first scenario, we measure
the performance of the AD sensor with and without saniti-
zation. Additionally, we consider the case where we use the
AD as a packet classifier for incoming network traffic: we
test each packet and consider the computational costs in-
volved by diverting each alert to a back-end shadow server.
Both the feasibility and scalability of this scenario depend
mainly on the amount of alerts generated by the AD sen-
sor, since all “suspect-data”(those that sense the AD sen-
sor to generate an alert) are delayed significantly by the
shadow server and such data come from both real attacks
and false alerts. For our experiments, we use two content-
based anomaly detectors Anagram [23] and Payl [22]. These
AD sensors have quite different learning algorithms to de-
termine whether they have seen a particular datum before
or not. We do not describe the details of the algorithms
used during the testing phase, as they are not germane to
the topic of this paper.

Our experimental corpus consists of 500 hours of real net-
work traffic, which contains approximately four million con-
tent packets. We collected the traffic from three different
hosts which from now on we will call www, www1 and lists.
We partitioned these data into three separate sets: two used
for training and one used for testing. We use the first 300
hours of traffic to build the micro-models and the next 100
hours to generate the sanitized model. The remaining 100
hours of data, consisting of approximately 775, 000 packets
including 99 worm packets for www1, 656, 000 packets in-
cluding 70 worm packets for www and 26, 000 packets includ-
ing 81 worm packets for lists, were used for testing. Given
that www1 exhibits a larger volume of traffic we chose to
perform a more in-depth analysis on its traffic. In addition,
we applied a cross-validation strategy: we used the last 100
hours to generate the sanitized model while testing on the
other preceding 100-hour dataset.

3.1 Experimental Results
Initially, we measured the detection performance for both

Anagram and Payl when used as stand-alone online anomaly
detectors without sanitizing the training data. Then, we
repeated the same experiments using the same setup and
network traces but including the sanitization phase. Ta-
ble 1 presents our findings, which show that sanitization
boost the detection capabilities of both AD sensors. The
results summarize the average values of false positive (FP)

and true positive (TP) rates. Both voting methods per-
form well. We used a granularity of 3 hours and a value of
V which maximizes the detection performance (in our case
V ∈ [0.15, 0.45]). We consider the optimal operating point
to be the one from the points that maximize the detection
of the real alerts and have the lowest false positives rate.
We study the optimal operation point later in section 3.2.
For Anagram, when the sanitized and abnormal models were
created, given the nature of the sensor, the two models were
built to be disjoint (no abnormal feature would be allowed
inside the sanitized model). The traffic contains instances
of phpBB forum attacks (mirela, cbac, nikon, criman) for
all three hosts that are analyzed.

Table 1: AD sensors comparison (A=Anagram;

A-S=Anagram+Snort; A-SAN=Anagram+sanitization;

P=Payl; P-SAN=Payl+sanitization )

Sensor
www1 www lists

FP(%) TP(%) FP(%) TP(%) FP(%) TP(%)

A 0.07 0 0.01 0 0.04 0

A-S 0.04 20.20 0.29 17.14 0.05 18.51

A-SAN 0.10 100 0.34 100 0.10 100

P 0.84 0 6.02 40 64.14 64.19

P-SAN 6.64 76.76 10.43 61 2.40 86.54

It is important to notice that without sanitization, the
normal models used by Anagram would be poisoned with
attacks and thus unable to detect new attack instances ap-
pearing in the test data. Therefore, increasing AD sensor
sensitivity, e.g. changing its internal detection threshold,
would only increase the false alerts without increasing the
detection rate. When using previously known malcode infor-
mation (using Snort signatures represented in an “abnormal
model”), Anagram was able to detect a portion of the worm
packets. Of course, this detection model is limited because
it requires that a new 0-day worm will not be sufficiently
different from previous worms that appear in the traces. To
make matters worse, such a detector would fail to detect
even old threats that do not have a Snort signature. On
the other hand, if we enhance Anagram’s training phase to
include sanitization, we do not have to rely on any other
signature or content-based sensor to detect malware.

Furthermore, the detection ability of a sensor is inherently
dependent on the algorithm used to compute the distance of
a new worm from the normal model. For example, although
Payl is effective at capturing attacks that display abnormal
byte distributions, it is prone to miss well-crafted attacks
that resemble the byte distribution of the target site [23].
Our traces contain such attacks, which is the reason why,
when we use the sanitized strategy on Payl, we can only
get a maximum 86.54% worm detection rate as opposed to
100%. The sanitization phase is necessary to clear mod-
els to reduce false negatives in detecting malcode but not
a sufficient one: the actual algorithm used by the sensor
is also very important in determining the overall detection
capabilities of the sensor.

Overall, our experiments show that the AD signal-to-noise
ratio (i.e., TP/FP ) can be significantly improved even in ex-
treme conditions, when intrinsic limitations of the anomaly
detector prevent us from obtaining a 100% attack detection,
as we can observe in table 2. Higher values of the signal-to-
noise ration imply better results. There is one exception, for
Payl, in case of host www, in which the signal-to-noise ra-
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tio is slightly decreased, but still the detection rate is higher
when using the sanitization technique as opposed to the case
in which we don’t.

Table 2: AD sensors comparison (signal-to-noise ra-
tio) - higher values mean better results

Sensor www1 www lists

A 0 0 0

A-S 505 59.10 370.2

A-SAN 1000 294.11 1000

P 0 6.64 1.00

P-SAN 11.56 5.84 36.05

To stress our system and to validate its operation, we
also performed experiments using traffic in which we artifi-
cially injected worms such as CodeRed, CodeRed II, Web-
DAV, and a worm that exploits the nsiislog.dll buffer over-
flow vulnerability (MS03-022). All instances of the injected
malcode were recognized by the anomaly detectors when
trained with sanitized data. That re-enforced our initial
observations about the sanitization phase: we can both in-
crease the probability of detecting a zero-day attack and of
previously seen malcode.

3.2 Analysis of sanitization parameters
In the previous section, we presented experimental evi-

dence that the sanitization technique can boost the perfor-
mance of the two chosen anomaly detectors. The results
summarized the false positive and the detection rates as av-
eraged values obtained for the optimal parameters. In this
section, we explore these parameters and their impact on
performance, with a more detailed analysis in case of Ana-
gram. Furthermore, we show the optimal operating point
for any sensor can be identified automatically with offline
tuning that requires no manual intervention.

There are three parameters we need to fine-tune: the gran-
ularity of the micro-models, the voting algorithm and the
voting threshold. In order to determine a good granularity,
we have to inspect the volume of traffic received by each
site given also the characteristics of the chosen anomaly de-
tector, such that we do not create models that are under-
trained. In our initial experiments, we used 3-hour, 6-hour
and 12-hour granularity. For the voting algorithms, we em-
ployed the voting algorithms proposed in section 2: simple
or weighted. The threshold V is a parameter of our system
that needs to be determined once and it depends on the
training set and the site/application we model. As we show,
both the optimal values of V and the micro-model granu-
larity appear to be the same for all the sites we used in our
experiments.

In figures 1 and 2, we present the performance of the sys-
tem when using Anagram enhanced with the sanitization
method applied on the www1 traffic. Between the two vot-
ing techniques, we notice a slight improvement in case of the
weighted algorithm. We seek a value for V that maximizes
detection achieving the lowest possible false positive rate.
We can observe that the sanitized model built using the
3-hour micro-models shows better performance, achieving
a detection rate of 100% and minimizing the false positive
rate. The granularity and the voting threshold are inversely
proportional since for the same dataset less models are built
when the granularity is increased. In figures 3 and 4 we
present the results for www and lists for granularity of 3-hour
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Figure 1: Performance for www for 3-hour granular-
ity when using simple voting and Anagram
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Figure 2: Performance for www1 when using
weighted voting and Anagram

and for both types of voting techniques. We can observe that
the best cases for these two sites are reached at almost the
same value as the ones obtained for www1. To verify that,
we study the impact of the granularity has on the perfor-
mance of the system. We fix the voting threshold, and we
sample a large range of granularity values. This is a quality
analysis that allows us to determine the best granularity.
In figure 5, we can observe that indeed the granularity of
3-hours performs the best, given the two threshold bounds
0.15 and 0.45 obtained from the previous experiments. For
all other values of V ∈ (0.15, 0.45), the granularity of 3 hours
seemed to be the optimal choice. Notice that for V = 0.45,
all values of granularity from 3-12 hours are optimal but not
for V = 0.15.

When using Payl, again the granularity of 3-hours per-
forms the best, given the two threshold bounds 0.15 and
0.55. Payl behaves differently than Anagram though, due
to the different type of learning algorithm that it performs.
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Figure 3: Performance for www for 3-hour granular-
ity when using Anagram
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Figure 4: Performance for lists for 3-hour granularity
when using Anagram

The way the models are built is more dependent on the
number of training samples given that models are created
for each packet length.

We mentioned in the previous sections that our technique
assumes the use of a large training dataset in order to in-
crease the probability that an individual datum which is nor-
mal is not deemed as a false anomaly. To analyze the impact
on performance given by the size of the training dataset, we
tested our methodology on Anagram using a certain per-
centage of the micro-models, starting from randomly chosen
position in the training dataset, as shown in table 3. We
consider the case in which we have the 300 hours of training
data and we use a granularity of 3 hour per micro-model,
we use the weighted voting algorithm and we fix the thresh-
old V = 0.45. We can observe that the false positive rate
degrades when only a percentage of the 100 models is used
in the voting scheme and also the impact appears on the
detection rate as well. Another factor is the relationship
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Figure 5: Granularity impact on the performance of
the system for www1 when using Anagram
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Figure 6: Granularity impact on the performance of
the system for www when using Payl

between the internal threshold of the sensor, τ and the vot-
ing threshold, V and the way it influences the performance
of the system. Intuitively, if the anomaly detector is more
relaxed, the data seen as anomalous by the micro-models
will decrease, thus the sanitized model will actually increase
its size, exhibiting a smaller false positive rate as shown in
figure 7. Although this can be a method to actually improve
the false positive rate, it cannot be taken to the extreme. In
our experiments the threshold for Anagram was set to τ =
0.4, and we analyzed the effect that the increase/decrease
of the internal threshold had over the performance of our
system. We can observe that if we increase too much the in-
ternal threshold, the false positive decreases along with the
detection rate.

3.3 Computational Performance Evaluation
Another aspect of an anomaly detection system that we

would like to analyze is its impact on the average time that

6



Table 3: Impact of the size of the training dataset
for www1

#micro-models FP rate TP rate

100% 0.0986% 100%
75% 0.1188% 100%
50% 0.1305% 100%
25% 0.1602% 91.91%
10% 0.3025% 100%
1% 99.3159% 100%

it takes to process a request. In addition, we estimate the
overall computational requirements of a detection system
consisting of an AD sensor and a host-based sensor (shadow
server). The AD sensor acts as a packet classifier divert-
ing all packets that generate alerts to the host-based sensor
while allowing the rest of the packets to reach the native
service. Our goal is to create a system that does not incur
prohibitive increase in the average request latency and at the
same time can scale to millions of service requests. There-
fore, we would like the AD to shunt only a small fraction of
the total traffic to the expensive shadow servers.

For our performance estimation, we used two well-known
instrumentation frameworks: STEM [18] and DYBOC [1].
STEM exhibits a 4400% overhead when an application such
as Apache is completely instrumented to detect attacks. On
the other hand, DYBOC has a lighter instrumentation, pro-
viding a faster response, but still imposes at least a 20%
overhead on the server performance. Given that we know
the ground truth, we can estimate what the answers of the
shadow servers would be. Also based on the declared per-
formance of two frameworks in [18] and [1] we can estimate
the overall overhead. To compute the overall overhead, we
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Figure 7: Impact of the anomaly detector’s internal
threshold for www1 when using Anagram

used the same method used in [23] where the latency of such
an architecture is defined as following:

l′ = (l ∗ (1− fp)) + (l ∗Os ∗ fp)

where l is the standard (measured) latency of a protected
service, Os is the shadow server overhead, and fp is the AD
false positive rate.

To quantify the performance loss/gain from using the san-
itization phase, we compare the average latency of the sys-
tem when using Payl and Anagram with sanitized and non-
sanitized training data. From Table 4, we see that for both
sensors the alert rate does not increase by much after sani-
tizing the training data, and in some cases fewer number of
packets will have to be processed by the shadow server (in
case of lists when using Payl).

Table 4: Latency for different anomaly detectors

Sensor
STEM DYBOC

www1 www lists www1 www lists

N/A 44 44 44 1.2 1.2 1.2

A 1.0301 1.0043 1.0172 1.0001 1.0000 1.0000

A-S 1.0172 1.1247 1.0215 1.0000 1.0005 1.0000

A-SAN 1.0430 1.462 1.0430 1.0002 1.0006 1.0002

P 1.3612 3.5886 28.5802 1.0016 1.0120 1.1282

P-SAN 3.8552 5.4849 2.0320 1.0132 1.0208 1.0048

3.4 Long-lasting training attacks
We presented experiments on real traffic with real worm

and attacks each one appearing in a small fraction of the
micro-models we generated. However, there can be cases
where some worms appear in all micro-models and also in
the training dataset of the sanitized model. This scenario
represents what is called a long-lasting training attack, where
the adversarial continuously targets a particular site such
that the modeling process is disturbed.

To test our methodology in such extreme case, we artifi-
cially injected every micro-model and also the dataset from
which the sanitized model was computed with with one spe-
cific worm packet (in our case mirela). In table 5 we present
the results obtained with the sanitized model un-poisoned
and poisoned. The results were obtained when using Ana-
gram, weighted voting, granularity of 3-hour and V=0.35.

Table 5: Long lasting training attacks
Sanitized www1 www lists
model FP(%) TP(%) FP(%) TP(%) FP(%) TP(%)

un-poisoned 0.13 100 0.26 100 0.10 100

poisoned 0.10 29.29 0.26 38.27 0.10 35.80

It is obvious that this method of evading our architecture
would have an impact on the performance of our system.
That is the reason why we need to further investigate ways to
alleviate the impact of the the long-lasting training attacks.

4. COLLABORATIVE SANITIZATION
As observed in section 3.4, a weakness of the local sani-

tization architecture arises in the presence of a long-lasting
attack in the initial set of training data. Because this attack
data spans multiple micro-models, it can poison a large por-
tion of them. Since we predicate our cleaning capability on
micro-model voting, extensive poisoning of the training data
would seriously deteriorate our ability to detect long-lived or
frequently occurring attack payloads. We hypothesize, how-
ever, that the distribution of such long-lived attacks among
Internet hosts at large would require an adversary with sig-
nificant time and resources (e.g., a potentially large number
of source IP addresses) — a requirement that effectively lim-
its the scope of such attack to few target hosts or networks.
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Given this hypothesis, we can counter the effects of such
attacks by extending our sanitization mechanism to sup-
port sharing models of abnormal traffic among collaborat-
ing sites. Sharing these models enables a site to re-evaluate
its local training data1. Our goal is to enhance the local
view of abnormal behavior characteristics (rather than nor-
mal behavior characteristics, which cannot be meaningfully
shared because they are unique to an individual site). As
we will show, “cross-sanitization” between sites boosts
our ability to remove long-lived or frequent attacks from the
training data (regardless of whether or not the attack data
is “targeted”, i.e., injected specifically to blind the sensor).

4.1 Cross-Sanitization
In some sense, attack vectors that saturate training data

define normal traffic patterns. Local knowledge alone may
not provide enough evidence to weed out some long-term
attack vectors in training data. To isolate and remove these
vectors, we need to incorporate knowledge from some other
remote source. This information sharing is the essence of
cross-sanitization: comparing models of abnormality with
those generated by other sites.

Cross-sanitization compares models of abnormality be-
cause normal models are tightly coupled with an individual
site’s traffic. In contrast, the consistency of characteristics
of abnormal packets across sites can help filter out attacks
that saturate the training data. Individual sites can utilize
this external knowledge to cross-sanitize their training set
and generate a better local model of normal data.

For an attacker to successfully blind each sensor in this
type of environment, she would need to identify each col-
laborator and launch the same training attack on all partic-
ipating sites for the same time period. Accomplishing this
goal requires a significant amount of resources and knowl-
edge. Therefore, we postulate that when a particular site
experiences a targeted training attack, the attack data will
not appear at all collaborating sites at the same time. As
a result, with a large enough group of collaborators, some
fraction of sites will have seen the attack, but not had their
model corrupted by it. In this case, sharing abnormal mod-
els helps cleanse the local models of sites in the group that
have been corrupted. When a site with sanitized model
Msan receives the abnormal models Mabn1 . . . MabnM from
its collaborators, it needs to compute a new model, Mcross.
The methods to compute this model are presented in sec-
tions 4.2 and 4.3.

Polymorphic attacks present a special challenge because
each propagation attempt will display a distinct attack vec-
tor that may be captured in different abnormal models. We
conjecture, however, that a polymorphic attack targeting
a single site can still be captured by the local sanitization
scheme presented in this paper. Section 5 explores how well
both our approaches (i.e., local and collaborative sanitiza-
tion) can cope with polymorphism.

4.2 Direct Model Differencing
Collaborative cross-sanitization requires us to define a method

of directly comparing and “differencing” AD models. How-
ever, the composition of models may vary across sites de-
pending on the particular AD algorithm in use and the

1To alleviate the privacy concerns of sharing content, these
models may incorporate privacy-preserving representations
[14].

specific representation of the model. If models are directly
comparable or a translation method exists (although a full
treatment of such a mechanism is beyond the scope of this
work, we consider how to deal with complex models in Sec-
tion 4.3), then we can construct a new local sanitized model
from the shared abnormal models as follows:

Mcross = Msan −
[
{Mabni ∩Msan} (3)

where Mabni∩Msan represents the features common to both
models.

4.3 Indirect Model Differencing
When models are more complex, e.g. probabilistic or sta-

tistical models, the model differencing computation cannot
be applied analytically, but indirectly. Equation (3) is ex-
pressed differently, not as model differencing, but as a dif-
ference of sets of packets used to compute the models.

We re-compute the sanitized model using the information
from Msan and Mabn1 . . . MabnM . The dataset used in the
second phase of the local sanitization is tested against Msan

(we identify the packets that are normal, respectively, used
for actually computing Msan). The packets labeled as nor-
mal (TEST (Pj , Msan) = 0) are also checked against each of
the collaborative abnormal models, Mabn1 . . . MabnM . Note
that TEST (Pj , Mabni) = 0 means that the packet is labeled
normal by an abnormal model, which translates in the fact
the packets is abnormal. If at least one of the abnormal
models labels a packet Pj as normal (i.e., the packet is con-
sidered abnormal by at least one collaborator), then features
are extracted from the packet and used for computing the
new local abnormal model; otherwise they are used for com-
puting the cross-sanitized model.

Table 6: Recalculating Sanitized and Abnormal Mod-
els. These routines use the abnormal models of collab-

orating peers to regenerate models of both normal and

abnormal local data.

routine crossSanitized()
∀i ∈ [1..M ]

if 0=test(Pj , Msan) and 1=test(Pj , Mabni)
Tcross ← Pj

Mcross ← AD(T ′
san)

routine crossAbnormal()
∃i ∈ [1..M ]

s.t. 0=test(Pj , Msan) and 0=test(Pj , Mabni)
Tcabn ← Pj

Mcabn ← AD(T ′
san)

4.4 Additional Optimizations
Although direct/indirect model differencing can help iden-

tify abnormal samples that have poisoned a site, we must
take care during the comparison. Because sites exhibit con-
tent diversity [22], (i.e., they do not experience identical
traffic flows), an abnormal model from site B may include
some common but ultimately legitimate data from site A.
In other words, data items that are indeed normal for a par-
ticular site can be considered abnormal by others. If site
A attempts to identify abnormal content in its local model
using cross-sanitization with site B, then A may incorrectly
remove legitimate data patterns from its model along with
truly abnormal or malicious data patterns. Doing so in-
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creases the false positive rate — an increase that may not
be matched by an increase in detection rate.

An alternative approach to reconciling different models or
disagreements between models involves the use of a shadow
server. If the sanitized model and an abnormal model dis-
agree on the label of a packet (for example, the sanitized
model labels it normal and the abnormal one as abnormal),
we redirect the traffic to the shadow server to determine if
the packet causes a real attack. Based on this information
the packet is used in the construction of either the local
sanitized model or the local abnormal model. Our exper-
iments explore the use of vanilla “model differencing” and
leave analysis of complex models as future work.

5. PERFORMANCE OF COLLABORATIVE
SANITIZATION

In this section we show that even if the local sanitiza-
tion fails to detect an attack, we can compensate by using
the external information received from other collaborating
sites. Furthermore, we show that in case of polymorphic
attacks the performance of local architecture cannot be af-
fected. For the experiments presented in this section, we
used only Anagram, leaving Payl as a future work. Our
tests were conducted on a PC with a 2GHz AMD Opteron
processor 248 and 8G of RAM, running Linux.

5.1 Training Attacks
We will assume that some of the collaborative sites are

poisoned by a long lasting training attack, but still oth-
ers were able to filter it and use it for building the abnor-
mal model. If the targeted site receives an abnormal model
that contains an attack vector, the local sanitized model
can be “cross-sanitized” by removing the common grams
between the two models(direct model differencing). Given
the diversity in content exhibited by different sites, the same
gram can be characterized differently by different sites. That
means that it is possible that after cross-sanitation the san-
itized model becomes smaller, and as an immediate conse-
quence, the false positive rate will increase

We consider all the possible cases in which each of our
three hosts’ model is poisoned by each of the four worms
that are exhibited by our data. When one site is poisoned,
we consider that the other two are not. Every poisoned host
receives from its collaborative sites their abnormal models
Mabn in order to cross-sanitize its own model, Mpois. Table 7
presents the average performance of the system before and
after cross-sanitization, when using the direct and indirect
model differencing.

Table 7: Performance when the sanitized model is
poisoned and after it is cross-sanitized when using
direct/indirect model differencing

Model
www1 www lists

FP(%) DR(%) FP(%) DR(%) FP(%) DR(%)

Mpois 0.10 44.94 0.27 51.78 0.25 47.53

Mcross
0.24 100 0.71 100 0.48 100

(direct)

Mcross
0.10 100 0.26 100 0.10 100

(indirect)

In case of the direct model differencing, once the cross-
sanitization is done, the detection rate is improved, but

the false positive rate degrades. To further investigate how
the cross-sanitization influences the performance of the lo-
cal systems, we analyze the size of the models(presented in
table 8).

Table 8: Size of the sanitized model when poi-
soned and after cross-sanitization when using di-
rect/indirect model differencing

Model
www1 www lists

#grams file size #grams file size#gramsfile size

Mabn 2,289,888 47M 199,011 3.9M 6,025 114K

Mpois 1,160,235 23M 1,270,009 24M 43,768 830K

Mcross
1,095,458 21M 1,225,829 24M 37,113 701K

(direct)

Mcross
1,160,004 23M 1,269,808 24M 43,589 828K

(indirect)

To be noted that for our implementation, we stored the
Anagram models as hash sets. In case of space constraints
there are other data structures that can be used to store the
models, like bloom filters used in [23], which do not store
the whole information. As we can observe in table 8, the
size of the models has decreased, which led to an increase
in the false positive rate. As we mentioned before this is a
big disadvantage of the method, as it is very dependent on
sites diversity and in the same time it can be used as an
attack tool by an adversarial collaborator (we need to have
a credential system for the collaboration).

In order to improve our method for cross-sanitization, we
can use the indirect model differencing approach, which as-
sumes testing the poisoned local model and the collaborative
abnormal models against the second training dataset used
in our local methodology. The goal of this method is to
determine and eliminate from the training dataset used in
computing the local poisoned model the packets that actu-
ally poisoned the model. The most challenging part of this
method is to set the internal threshold of Anagram when
testing the traffic against the abnormal models. A very in-
tuitive approach is to actually use the inverse value of the
normal thresholding. That means that if the internal thresh-
old for Anagram when testing against the normal model was
τ the threshold for abnormal models would be 1-τ . In our
experiments we used the internal threshold as 0.4, which led
for the abnormal models to a threshold of 0.6 (analyzing the
scores given by the packets that contributed to the poison-
ing 0.5 would have been also enough). As we can observe in
table 7, the false positive rate is improved while having the
same detection rate of 100%. The improvement of the false
positive rate is reflected in the size of the cross-sanitized
models (see table 8).

In terms of computational performance, as expected, the
indirect model differencing is more expensive than the direct
model differencing (see table 9). There is a trade-off between
how fast the cross-sanitization needs to be done and how
high the false positive rate is. If a higher false positive rate
is allowed, a quicker cross-sanitization can be applied by
using the direct differencing; otherwise the best solution is
the indirect model differencing. Also any of the methods can
be further refined using the input from the shadow server,
but introducing more computational effort. This way we
can actually cross-sanitize the model optimizing the false
positive rate.
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Table 9: Time to cross-sanitize for direct and indi-
rect model differencing

Method www1 www lists

direct 13.98s 26.35s 16.84s

indirect 1966.68s 1732.32s 685.81s

5.2 Polymorphic Attacks
Another type of attacks are Polymorphic attacks. To

test against such attacks, we used one of the most popular
polymorphic engines in the wild, CLET [7] and we gener-
ated polymorphic samples of shellcode. A shellcode sample
has the following structure [nop...][decoder][encrypted ex-
ploit][ret address]. In our experiments we assume that an
attacker tries to perform a training attack using a polymor-
phic vector (which also would imply that the attack would
include polymorphic shellcode).

For our experiments, we used 2100 samples of shellcode
generated using CLET. We used 100 micro-models with gran-
ularity 3-hour, built on our dataset for www1 and we poi-
soned each of them with 20 samples of shellcode. We also
poisoned the second dataset from which the sanitized model
is built with the 100 shellcode samples left. We re-run the
experiments for building the sanitized model. In the vot-
ing strategy, all of the micro-models found the 100 shellcode
samples as being anomalous, given that, on average, 82%
of the grams from 100 samples were found abnormal by the
micro-models. After the sanitized model was computed we
tested it against the testing dataset of 100 hours. As ex-
pected the performance results were identical with the ones
given when the sanitized model was constructed without any
shellcode samples. According to our experiments we can as-
sume that the problem of continuous polymorphic attacks
can actually be handled by the local architecture.

6. RELATED WORK
Our approach shares elements with the ensemble method

[8] because we also construct a set of classifiers and then
classify the new data points using a (weighted) vote to de-
cide. However, we modify the training phase by generat-
ing models from slices of the training data. In addition,
the ensemble method requires the repetition of the learn-
ing algorithm several times, each time with a different sub-
set of training examples. Another similar machine learning
approach is that of Bagging predictors [3], which presents
a learning algorithm with a training set that consists of a
sample of m training examples drawn randomly for the ini-
tial data set. Cross-validated committees [15] proposes to
construct a training model by leaving out disjoint subsets
of the training data. ADABoost [9] generates multiple hy-
pothesis and maintains a set of weights over the training
example. Each iteration invokes the learning algorithm to
minimize the weighted error and returns a hypothesis, which
is used in a final weighted vote. The methods presented
above use supervised learning algorithms. In the case of net-
work traffic we do not have either labeled or purely normal
data available, and it is very expensive to classify the data
manually. Our method is applied for unsupervised learning
algorithms [16, 17], given the conjectures presented in the
previous sections.

Unsupervised anomaly detection bears similarity to work
in distance–based outliers [4, 10, 11] examine inter-point dis-

tances between instances in the data to determine the out-
liers, but the nature of the outliers is different. In network
data, the same intrusion can appear multiple times as very
similar instances, but their number is significantly smaller
than the one of normal instances.

Previous research [2] attempts to explore the feasibility of
cleaning traffic (rather than improving algorithms). More-
over, it contained limited analysis and did not address the
problem of a long-lasting attack in the training data. In con-
trast, we first perform an extended analysis on larger and
more realistic data sets to help confirm the hypothesis that
cleaning is possible. We also present alternatives that can
be used when the local architecture fails due to long lasting
training attacks.

JAM [20] focuses on developing, implementing, and eval-
uating a range of learning strategies and combining tech-
niques for fraud detection systems. The work presents meth-
ods for “meta-learning”, computing sets of “base classifiers”
over various partitions or sampling of the training data. The
combining algorithms proposed are called “class-combiner”
or “stacking” and they are built based on work presented in
[5] and [24].

The exchange of abnormal models was used in [20] for
commercial fraud detection. The results presented in that
paper show that fraud detection systems can be substan-
tially improved in stopping losses due to fraud by combin-
ing multiple models of fraudulent transaction shared among
banks. We apply a similar idea in the case of network traffic
content-based anomaly detection in order to cross-sanitize
the normal model.

7. CONCLUSIONS
We introduce a novel sanitization technique that signif-

icantly improves the detection performance of out-of-the-
box anomaly detection (AD) sensors. We are the first to
introduce the notion of micro-models: AD normal models
trained on small slices of the training data set. Using simple
weighted voting schemes, we significantly improve the qual-
ity of unlabeled training data by making it as “attack-free”
and “regular” as possible. Our approach is straightforward
and general, and it can be applied to a wide range of un-
modified AD sensors without incurring significant additional
computational cost other than in the initial training phase.

The experimental results indicate that our system can
serve both as a stand-alone sensor and as an efficient and
accurate online packet classifier using a shadow server back-
end. Furthermore, the alerts generated by the “sanitized”
AD model represent a small fraction of the total traffic. The
model detects approximately 5 times more attack packets as
the original unsanitized AD model. In addition, the AD sys-
tem can detect more threats both online and after an actual
attack, since the AD training data are attack-free. In case
the local sanitization is evaded, we extend our methodology
to support sharing models of abnormal traffic among col-
laborating sites. A site can cross-sanitize its local training
data based on the remote models. Our results show that,
if the collaborating sites were targeted by the same attack
and they were able to capture it in their abnormal models,
the detection rate can be improved up to 100%.
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