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Abstract

Most general-purpose work towards autonomic or 

self-managing systems has emphasized the front end of 

the feedback control loop, with some also concerned 

with controlling the back end enactment of runtime 

adaptations – but usually employing an effector 

technology peculiar to one type of target system. While 

completely generic “one size fits all” effector 

technologies seem implausible, we propose a general-

purpose programming model and interaction layer 

that abstracts away from the peculiarities of target-

specific effectors, enabling a uniform approach to 

controlling and coordinating the low-level execution of 

reconfigurations, repairs, micro-reboots, etc. 

1.  Introduction 

Current trends in software development 

increasingly favor the construction of large-scale, 

distributed software ensembles that provide new 

services via the loosely-coupled integration of a mix of 

pre-existing and new sub-systems.1 Each sub-system 

may have been built separately by a third party, and 

may be complex on its own: for example, it may itself 

be distributed; it may rely on its own stack of 

middleware; etc.  

These large-scale systems-of-systems present a 

technological heterogeneity that poses a significant 

problem when it comes to the development and the 

execution of provisions for their runtime adaptation.

By runtime adaptation, we mean any automated set of 

                                                          
1

The Gartner Group calls these systems “composite applications”:

“Composite applications ... enable the development of new 

application systems by combining brand-new logic and transactions 

exposed by pre-existing, legacy applications” [1]. “Monolithic,

isolated application stovepipes are being left behind. New systems 

are partitioned, distributed, integrated ....” [2]. 

actions aimed at modifying the structure, behavior 

and/or performance of a target software system while it 

continues operating. Runtime adaptation can be used to 

address self-management concerns, for instance to (re-

)configure, recover from faults, tune extra-functional 

parameters, and so on. In systems-of-systems, these 

changes may impact components or modules in 

multiple different sub-systems, which may have 

diverse technological underpinnings. 

One way to cope with this heterogeneity is to 

develop the code that is used to effect a desired 

adaptation step (sometimes called an effector)

piecemeal and ad hoc for each distinct adaptation that 

can be applied to each target component. A better 

approach, when feasible, is to tailor (to each relevant 

adaptation step) generic effectors supplied by some 

technology that already interacts nicely with one or 

more of the sub-systems or sub-system components (or 

with middleware underlying those sub-systems). Either 

model, however, tends to negatively impact the level 

of generality of the autonomic techniques and 

solutions that apply runtime adaptations on systems-of-

systems by invoking these effectors. The best solution 

would be to abstract away from the peculiarities of 

individual effectors or effector technologies, with a 

uniform veneer that can be leveraged for simple and 

consistent interaction with all effectors. 

This paper introduces an abstract programming 

model, represented by a limited set of primitives that 

can be used to describe and direct the various phases 

of the work of an effector. This set of primitives can be 

reified as a generic effector API, to hide diversity in 

effectors. Each effector can still be developed 

reflecting the technology and other specifics of its 

intended target component, which ensures efficiency in 

the adaptation implementation; however, all effectors 

can be managed uniformly through the effector API 

according to the underlying programming model. This 

enables generality in the autonomic control facilities 
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that interact with their adaptation targets via the 

effectors. While conceived for complex systems-of-

systems, of course the same programming model can 

be conveniently adopted for more homogeneous 

systems. 

In the next section, we present a general model of 

self-management infrastructures, intended to be 

applicable to most autonomic computing approaches, 

within which our programming model “fits” – this 

material can be viewed as our “problem statement”. 

We then motivate the proposed programming 

abstractions using examples extracted from an 

industrial case study [12] [14], which provided the 

authors with a set of requirements, on the basis of 

which the proposed abstraction layer and its primitives 

have emerged. We then discuss the adoption of our 

programming model and the implementation of the 

corresponding generic effector API within the 

Kinesthetics eXtreme (KX) platform for the runtime 

adaptation of complex systems-of-systems. Previous 

papers on KX [7] [8] [9] [10] [11] emphasized the 

monitoring, analysis, planning and execution 

coordination aspects of its autonomic infrastructure; 

here we present our effector programming model and 

API for the first time. 

2.  Autonomic Management Model

Figure 1: IBM MAPE-K reference model. 

As a general rule, autonomic computing techniques 

assume the presence of provisions that enable to 

dynamically adapt some aspects and elements of the 

system while it is in operation. The necessity of those 

provisions as first-class entities in an autonomic 

system is highlighted, e.g., within the MAPE-K 

(Monitor, Analyze, Plan, Execute -Knowledge) 

reference model for autonomic control loops, proposed 

by IBM [3]. Figure 1 displays a high-level view of a 

MAPE-K framework, including its interactions with 

some system component to be adapted (i.e., a managed

resource). In particular, the Execute element of a 

MAPE-K loop clearly relies on some means that can 

be used to carry out the planned changes onto the 

managed resource: in software systems terms, that 

equates to some pieces of code (some effector) that can 

be invoked or otherwise activated to effect those 

changes. Various other models and architectures for 

general-purpose autonomic systems also highlight 

effectors as first-class entities: for example, the 

Rainbow platform for architecture-based adaptation 

developed at CMU [20] (depicted in Figure 2), and the 

Accord component framework [24]. 

Figure 2: CMU Rainbow architecture. 

An effector can take many forms. Examples 

include: a resident algorithm or module running inside 

a software component; a set of proprietary operations 

that can be invoked from outside the component by 

some supervising entity or peer component(s); 

functionality exposed externally in compliance with 

some standardized programmatic interface (such the 

JMX management framework2 or the Common 

Information Model (CIM) family of standards3; mobile 

code that is dispatched to be executed onto the 

component [13]; or entirely external utilities in the 

environment that can manipulate arbitrary components 

or processes in some manner, e.g., process migration 

across hosts [21]. 

The kind and reach of the adaptation(s) made 

possible by an effector – or a related set of effectors - 

may vary considerably, ranging from the tuning of 

                                                          
2 See http://java.sun.com/products/JavaManagement.
3

See http://www.dmtf.org/standards/standard_cim.php
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internal parameters within a single module, to the re-

arrangement of the architectural configuration and the 

distribution layout of a complex distributed system, to 

the controlled shut down and/or restart of the managed 

resources, as advocated in Recovery-Oriented 

Computing (ROC) [4]. Similarly, the nature and 

characteristics of effectors can be very different, and 

depend on multiple factors, such as the choices taken 

when designing the target system and any middleware 

technology upon which that system could rely - 

choices made in many cases without automated 

adaptation in mind - as well as the scope and goals of 

the autonomic solution intended to be applied to the 

system. By influencing the availability (or lack) of 

certain features - such as introspection, extensibility, 

openness, exposition of suitable programmatic 

interfaces, etc. – those factors determine how internal 

effectors are activated and external effectors imposed. 

When the target of runtime adaptation is 

monolithic, or mostly homogeneous - for instance, a 

system developed by a single stakeholder and/or with a 

single pre-integrated suite of software technologies - it 

may be possible to select and adopt a single technique 

for all effectors and all runtime adaptation needs. In 

the context of systems-of-systems, however, many of 

the options above can co-exist; moreover, the 

technologies adopted for the adaptation provisions 

might not interoperate well, particularly when 

combined in unanticipated and “creative” ways 

designed to cope with the self-management 

requirements imposed a posteriori on the constructed 

ensemble. Since systems-of-systems are by definition 

large-scale, widely distributed, and possibly 

administered under the ownership of multiple 

stakeholders, an autonomic controller intended to exert 

end-to-end concerted runtime adaptation on the whole 

system may face  challenging heterogeneity problems. 

3. Motivating Example 

3.1. Runtime adaptation with KX  

To facilitate the definition and development of 

complex, end-to-end adaptations that require multiple 

coordinated steps and impact multiple sub-systems, our 

KX autonomic infrastructure relies on an engine, 

named Workflakes [11] [14], for the enactment of 

runtime adaptation logic in the form of a process, or 

workflow. The workflow plan is structured as a task 

decomposition hierarchy. Leaf (atomic) tasks produce 

the intended side-effects of the workflow, that is, to 

effect changes onto the target system via the selection 

and execution of a specific effector. Workflakes hence 

considers effectors as first-class resources, and its 

design includes an effector catalog, that is, a repository 

that associates each leaf task with the possible 

effectors it might instantiate. 

In the absence of our effector programming model, 

how the Workflakes engine must interface to and 

activate an effector to enact a leaf task depends entirely 

on the nature and technology of the corresponding 

effector. The same would hold for any other autonomic 

controller without an effector abstraction layer. 

The first release of Workflakes, used in the case 

study described in Section 3.2, was limited to 

orchestrating effectors that could be exposed through a 

single technology. Mobile (Java) code was our choice. 

For one thing, that paradigm was particularly apt for an 

exo-structure like KX, which aimed from the start to 

“autonomizing legacy systems” from the outside [9], as 

opposed to infrastructure-level autonomic mechanisms, 

such as adaptive middleware (like IQ-Services [25] or 

ACT [26]), or kernel-level provisions (like Q-fabric 

[29], for resource management). Furthermore, we 

could take advantage of an in-house mobile code 

technology, named Worklets, which our lab had 

previously developed for unrelated purposes [22], and 

which we could tailor to runtime adaptation 

requirements. 

Worklets - like other mobile code systems - require at 

the receiving end of the code transfer the presence of a 

“landing dock”, which can receive and execute the 

incoming code. In Worklets, that dock is called a 

Worklet Virtual Machine (WVM) and is embedded in 

a Java Virtual Machine (JVM). WVMs allow incoming 

Worklets to be activated and also to interface to any 

adaptation code already residing within target system 

components. However, this approach had several 

drawbacks: the reach of Workflakes-orchestrated 

runtime adaptation was limited to targets into which 

WVMs could be embedded (via manual or automated 

instrumentation); we were forced to wrap with WVMs 

all kinds of effectors, even when other methods to 

expose those effectors existed natively; and, of course, 

the target system had to be implemented in Java. 

3.2. Case study description 

The case study regards a multi-channel instant 

messaging (IM) service for personal communication. 

The runtime environment (see Figure 3) consists of 

a typical three-tiered server farm, incorporating a mix 

of commercial software elements, such as a load 

balancing package at the front end; J2EE enterprise 

application servers as the backbone of the middle tier, 

and an Oracle relational database at the back end; 

proprietary applications, in particular the IM server 
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hosted in the middle tier - which may or may not be 

wrapped within a J2EE Web application - and the 

distributed shared state repository that allows multiple 

replicas of the IM server to operate in an 

undifferentiated way as a collective service; and black 

box or legacy subsystems, typically providing some 

specific functionality, for example access to the service 

through certain channels, such as SMS or WAP, and 

gateways to the mobile communication network. 

Figure 3: The IM service architecture. 

The case study aimed mainly at facilitating service 

management by the system administrators in charge of 

such a complex distributed application, and enhancing 

the QoS perceived by end-users. Runtime adaptation 

focused mostly on the middle (application) tier. Even 

in that restricted context, heterogeneity of target 

components and effector technologies represented a 

source of complications. The major adaptation targets 

were the IM servers, the corresponding Web-based 

components (proprietary), and the BEA Weblogic 

J2EE application servers hosting those Web 

applications (third-party commercial products). The 

IM software did not natively expose specific 

provisions for automated management or self-tuning; 

on the other hand, since it was under one co-author’s 

control, it was amenable to instrumentation with 

mechanisms, such as the WVMs, for the purposes of 

the case study. In contrast, the commercial BEA 

software natively exposed full-fledged and extensible 

programmatic facilities for the management of the 

application server and some general features of the 

hosted Web applications, by means of a JMX-based 

framework, with its set of MBeans. 

For some of the goals of this case study, mobile 

code turned out to be very convenient: appropriately 

coded Worklets were shipped to the various service 

elements, in accord with adaptation logic described by 

workflow plans running in the Workflakes engine. For 

example, Worklets, which carried classes and 

configuration code for the IM servers to the various 

hosts in the server farm, were appropriate to carry out 

deployment, initialize the service from scratch, execute 

re-configurations on the fly, apply patches and roll-out 

new releases of an active service. All these tasks were 

beneficial in terms of service management automation. 

Another kind of adaptation addressed 

responsiveness issues in the Web-based component of 

the IM service. KX monitored thresholds on the size of 

the queue of pending HTTP requests to the IM Web 

applications, and Workflakes responded by tuning the 

number of threads assigned by the application server to 

the Web application: this adjusted the degree of 

parallelism in processing client requests, kept the 

queue size low, and hence ensured satisfactory system 

responsiveness to Web users accessing the IM service. 

The effectors used to manipulate the threading 

model of the IM Web application were implemented as 

JMX MBeans. That approach could have permitted 

effector activation simply by remote messaging; 

however, since at that time Workflakes had adopted 

Worklets technology as the sole supported activation 

mechanism, we were forced to introduce a landing 

dock for Worklet effectors, embedded in the 

application server. This dock included a WVM and 

presented to incoming Worklets a local JMX-based 

interface to the same MBeans that could have been 

accessed remotely from Workflakes itself. Besides 

representing a substantial complication, this 

implementation was made possible only by the 

extensibility features of the BEA Weblogic 

management subsystem, and would have been 

difficult, or even infeasible, in less open contexts. 

Moreover, at all times when thread tuning was 

required for the runtime adaptation of the IM service, 

Workflakes had to ship a new instance of the same 

mobile code snippet to the application server, an 

unnecessary overhead. 

Figure 4 illustrates the complications that we had 

to introduce in order to force upon that situation the 

specific model mandated by Worklets mobile agent 

effectors. Case a) in that Figure represents a 

hypothetical situation that would have occurred if the 

adaptation engine had been able to exploit the native 

JMX activation mechanisms of the provided MBeans; 

Case b), instead, shows the more convoluted 

interaction model required by Worklets. 

At the same time we recognized that drawback, we 

also realized that moving away completely from 

Worklet effectors to embrace a technique that could be 

a better fit in that specific case would have not been a 

solution, since we would have likely lost the afore 
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mentioned benefits of using Worklets for other 

purposes we had observed in the same case study.  

In retrospect, the general lesson that could be 

drawn from the case study was clear: it is implausible, 

in particular in the context of systems-of-systems, to be 

able to select a single “one size fits all” effector 

technology that can be re-used efficiently across 

diverse technological settings and for all application 

requirements. Therefore, we began to consider how we 

could instead accommodate and hide diversity with a 

model that could approach the interaction with 

effectors in an abstract, uniform way. 

Figure 4: Interfacing JMX adaptation 
provisions to Worklets. 

4. Proposed Model 

Three main principles contribute to our effector 

programming model. They are: 

1. The distinction between the activation 

mechanisms and the adaptation provisions of

effectors.

2. The strict separation in runtime adaptation 

between the computations effecting changes and 

the adaptation logic according to which those 

computations are invoked. 

3. The generalization of the work carried out by an 

effector according to a limited number of phases. 

The first principle allows distinguishing within 

effectors two parts: the computation (i.e., the piece of 

code) that carries out in practice the desired changes, 

and which represents the actual adaptation provision

available on the target component; and the activation 

mechanism that can be used to expose that 

computation to a variety of autonomic applications. 

That distinction can be expressed in terms of interface 

vs. implementation and information hiding: it helps 

isolate the heterogeneity problem within the 

technological underpinnings of activation mechanisms, 

and provides a focus for resolving that heterogeneity 

through abstraction. 

The second principle is about separation of 

concerns: coupled with the first, it allows to regard the 

end-to-end runtime adaptation of large-scale 

distributed systems as the interplay between a 

repertoire of known and available effector 

computations that had been variously coded in or 

around the different subsystems, and adaptation logic 

that is capable and in charge of coordinating those 

computations as needed, by acting on their activation 

mechanisms. In terms of the MAPE-K reference 

model, the adaptation logic corresponds to the Plan 

element, as opposed to the Execute element, which 

activates the effectors. In order to make explicit and 

strengthen that separation, our model advocates the 

presence within an autonomic control system of an 

adaptation engine, whose role is to enact the logic that 

governs each runtime adaptation, and that remains 

disjoint from effector invocation mechanisms. 

Those first two principles inspired our adaptation 

engine from the start, and can be already recognized in 

the first release of Workflakes, as described in Section 

3.1. WVMs represent the activation mechanism for 

Worklet-based effectors, since they allow running 

incoming code that interfaces to any adaptation 

provisions residing on target system components. 

Furthermore, the presence of Workflakes within KX 

satisfies the second principle, since it takes the role of 

the engine that enacts the adaptation logic, and directs 

– but remains separate from – effector computations. 

Finally, the third principle – and the main 

contribution of our model – derives from the 

observation that the work of an effector onto its target 

can be often segmented in a handful of operations, 

which – at a high level of abstraction – do not depend 

on implementation choices. The interplay between the 

adaptation engine and some effector, requires, at a 

minimum, the following: the engine must instantiate

the effector, or otherwise bind to a pre-existing 

instance; optionally, it can pass parameters to it; it then 

invokes its activation mechanism; on the other side, the 

effector needs to report back to the engine any results 

that become available as the byproduct of its 

execution. Those operations provide an abstract view 

of major phases or stages that can be recognized in the 

cycle of activity of an effector, and have hence 

inspired the set of primitives employed by our 

programming model. 
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4.1. Operational semantics 

We have turned the conceptual phases of an 

effector activity outlined above into a small set of 

primitives that constitute a common interface for all 

activation mechanisms, fully decoupling the adaptation 

logic and the effectors. Each activation mechanism 

used for some given effector technology must be 

standardized to expose these same primitives, and 

implement them in the most convenient way, given the 

characteristics and constraints of that technology.  

To make a practically useful interface that 

effectively enables transparent interaction with 

effectors, the primitives must present clear and 

consistent operational semantics. We have defined the 

following primitives: 

Lookup: this primitive represents a preliminary 

step for the adaptation engine, which is used to 

identify the type of effector that is necessary at 

each specific stage during some runtime 

adaptation and – if applicable – even the particular 

instance of that type that must be activated. 

Recruit: this primitive allows the adaptation 

engine to get a handle on the effectors that have 

been identified through the Lookup primitive. 

Depending on the situation, as well as on the kind 

of effector involved, it may be sub-categorized in 

one of two ways: 

o as Instantiate: implements the Recruit 

semantics in cases where a new instance 

is needed by the adaptation engine; 

o as Bind: implements the Recruit 

semantics in cases in which a suitable 

instance already exists and is available to 

the adaptation engine. 

Configure: this primitive carries out any 

initialization and customization work that may be 

necessary on the recruited effector; for example, it 

may pass to it the parameters suitable for the 

adaptation task at hand. 

Activate: this primitive is in charge of actually 

launching the execution of the effector 

computation; this may include the deployment of 

the effector onto the target component that needs 

to be adapted.

Relay: this primitive provides a way for the 

effector, once it is activated and its work is under 

way, to report back to the engine any relevant data 

that it generates or observes. Since the work of an 

effector can have a relatively long duration and 

can occur asynchronously with respect to its 

activation, it is not usually convenient to model 

the passing of results in a request/response 

fashion. It seems more appropriate and general to 

equip the effectors in use with a data conduit 

(established during the configuration phase), 

which the effectors can employ whenever they 

need to relay data back to the task processor.

With the exception of Lookup, all primitives clearly 

tend to be strongly dependent in their implementation 

on the technologies employed to develop the various 

effectors. However, they collectively represent a 

uniform and abstract mode of interaction. 

Lookup is the only primitive that does not require 

direct coupling between the adaptation engine and the 

effectors. Their relationship is in that case mediated, 

since Lookup assumes the availability of an effector

catalog (see Section 3.1), which becomes therefore an 

integral part of our model That catalog is a repository 

of knowledge about effectors (types as well as 

instances) and responds to queries issued by the 

engine, whenever the engine needs some effector to 

proceed with the runtime adaptation. Each query must 

result in enough information to enable the Recruit 

stage that follows to either Instantiate the effector (e.g., 

a class name or identifier, or an address from which 

the corresponding executable code can be 

downloaded), or Bind to it (e.g., a reference to an 

active effector instance, or an address of a registry 

where the active instance is indexed).

In practice, the effector catalog must include some 

mechanism (such as associated meta-data) for the 

purpose of describing, discriminating among, and 

selecting suitable effectors for each task of a runtime 

adaptation process, and for the computing environment 

to be effected. No specific assumptions are, however, 

imposed at this level on the nature and format of the 

effector catalog; also the queries by the engine may in 

principle derive from a variety of application-

dependent situations and can be expressed in a 

multitude of ways. For those reasons, Lookup remains, 

like the other primitives, an abstract operation in our 

model, and its implementation is fully dependent on 

the implementation chosen for the catalog itself. 

4.2. Programming model for an effector API 

As a counterpart to the conceptual interface 

represented by the primitives described in Section 4.1, 

and in order to facilitate its application, we have 

devised a design, according to which the activation 

mechanisms of effectors can be organized into a 

generic effector API, and a programming model that 

goes with it. 

The main idea is the organization of the primitives 

comprised in the interface into three subsets (or slots),

which become available at different times during the 
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execution cycle of an effector and that are 

implemented separately. The API slots – as shown in 

Figure 5 – are: 

The Catalog slot, which comprises only the 

Lookup primitive. Since the implementation of 

this slot depends only on the nature of the effector 

catalog, and not on any specificity of the effectors 

listed in that catalog, that slot is always available, 

as it provides a conduit to issue queries to the 

catalog. A discussion on implementation options 

for the catalog follows in Section 5. 

Figure 5: Design of the effector API. 

The Activation slot, so called because it 

encompasses the actual activation mechanism of 

an effector, by grouping together the Recruit, 

Configure and Activate primitives. Their 

implementation is technology-dependent: to 

accommodate multiple implementations, this slot 

can be filled by adopting a plugin mechanism. 

Multiple plugins that expose those primitives can 

be developed according to the various available 

effector technologies, and can be loaded into the 

slot dynamically. A plugin is selected and used 

every time a certain effector is looked up from the 

catalog, to allow the adaptation engine to interact 

with the effector respecting the semantics of the 

primitives in the slot, and at the same time in 

compliance with the technology of that effector. 

The Relay slot, which comprises the Relay 

primitive, is also implemented by means of 

technology-dependent plugins. The plugin for this 

slot is selected, and passed to the instantiated 

effector as part of its Configure stage. It creates a 

communication channel from the effector back to 

the adaptation engine. To support the semantics of 

the Relay primitive and at the same time comply 

with the technological underpinnings of each 

activated effector, that communication channel 

must be implemented differently for each plugin, 

taking into consideration, whether the effector 

operates synchronously or asynchronously with 

respect to its invocation, or even whether the 

effector is able to pass back any data at all. For 

asynchronous cases, like in pub/sub messaging or 

mobile code dispatching, a callback on the 

adaptation engine that is activated when the Relay 

primitive communicates result data back can be 

appropriate. For synchronous cases, like for 

example remote method invocation, the invocation 

of Relay can be implemented as a necessary post-

condition of Activate operation.  

With the introduction of those slots and the related 

plugin-based programming model, we keep the 

interaction with effectors not only simple, but also 

independent from implementation concerns from the 

point of view of the adaptation engine. 

To describe in detail how the programming model 

works, we rely on the sequence diagram in Figure 6. 

That diagram shows in detail how each of the stages of 

the execution of an effector proceeds. Specifically, it 

depicts a use case in which the Recruit primitive is 

mapped onto Instantiate, i.e., it requires the creation of 

a new instance of some type of effector, following the 

query to the effector catalog performed in the Lookup 

stage. The diagram also shows that the Relay stage in 

this case leverages a callback mechanism to transmit 

back the results of the effector execution. Notice that 

the diagram distinguishes the invocation of the 

primitives (displayed in bold italic font) by the 

adaptation engine through the API and onto the 

various plugin-based slots, from the implementation-

dependent actions are carried out as a result of those 

invocations. 

5. Implementation

Workflakes has been completely implemented in 

Java, extending the Cougaar open source platform4,

and customizing it towards the requirements of 

orchestrating runtime adaptations. 

All of our experimental work to date has been done 

with effector technologies that can be programmed in 

Java; to integrate non-Java effectors, one can rely on 

the cross-platform interoperability facilities made 

available by Java, such as the Java Native Interface 

(JNI)5.

                                                          
4 See http://www.cougaar.org/. 
5http://java.sun.com/j2se/1.4.2/docs/guide/jni/spec/jniTOC.html. 
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Figure 6: The various stages of effector execution. 

Figure 7 shows a view of the main classes in the 

effector API framework, which are used to 

implement the programming model described in 

Section 4.2. 

The ExecutableTask interface is used to wrap 

all kinds of effectors and to expose the primitives of 

our model. The GenericEffectorAPI class 

implements that interface and is the container for the 

three slots that provide the interaction channels with 

each individual effector. It also includes code for the 

management of those slots: the Figure displays the 

abstract base classes for the three slots. In order to 

accommodate some effector technology, it is 

necessary only to specialize those three classes. 

With respect to the Activation and Relay slots, 

several specializations have been produced for a 

variety of interaction models and technologies (not 

shown in the Figure due to space limitations). We 

have experimented with event-based asynchronous 

messaging, SOAP-based remote invocation, native 

Java invocation, besides our original mobile effectors 

based on Worklets. For the Catalog Slot, a 

specialization is shown, i.e., a catalog that wraps a 

Hashtable. That is a utility, representing the 

simplest option that enables to directly associate the 

signature of a leaf task to the corresponding effectors. 
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Figure 7: Java framework for the generic effector API. 

Since our model allows plugging in other means to 

select effectors against tasks, much more sophisticated 

approaches can be incorporated: for example standard 

registries like UDDI6, or ruled-based matching (as in 

[16]), or even semantic reasoning upon ontologies like 

those employed in Semantic Web contexts (e.g., using 

OWL [23]). Some of those techniques may promote a 

vision in which the execution of effectors on the part 

of the adaptation engine is not only abstract with 

respect to the mechanics of the interaction, but also 

fully virtualized. That is, the logic of the runtime 

adaptation would not need to specify any explicit 

binding information or be concerned about what 

effector computations are available: it could simply 

define – formally, but at a high level - the actions 

(correction, repairs, optimizations, etc.) that have to be 

taken at some point, their goals and their constraints. 

The catalog would then take care to “ground” those 

actions by choosing the most appropriate effectors, or 

micro-workflow of several effectors, that can satisfy 

the requirements of those actions. That kind of 

virtualization can be seen as a future objective, 

towards which a uniform abstraction for activating 

effectors and the separation between adaptation logic 

                                                          
6 http://www.uddi.org 

and effector computations represent necessary 

intermediary steps. 

6. Related work 

A classic approach to try to impose a degree of 

uniformity in the interactions between a given system 

and multiple heterogeneous counterparts is through 

instrumentation of the latter. Instrumentation can 

enable the “creation”, on board a managed resource, of 

an activation mechanism that is convenient from the 

point of view of the autonomic manager. Countless 

software instrumentation techniques exist, e.g., AIDE 

[17], ProbeMeister [18], and mediating connectors 

[19], with some others available commercially. 

Instrumentation, in general, has however a number of 

limitations. First, it requires some form of 

manipulation of the target code (either source or 

executable), which is not always feasible. Moreover, 

instrumentation techniques tend often not to port well 

across different computing platforms. Finally, as 

highlighted in our experience with the first release of 

Workflakes (see Section 3), inefficiencies and 

unnecessary design complications can arise when 

instrumentation imposes an interaction model that 

doesn’t match or wrap well native adaptation 
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provisions that abide to a different model. We have, 

however, successfully employed instrumentation for 

what MAPE-K calls sensors (and Rainbow calls 

probes), to provide input to the KX monitoring and 

analysis.

Another approach is to seek uniformity by 

restricting the adaptations supported to a few simple 

and “universal” operations: for example, as in some 

Recovery-Oriented Computing work [4], only 

shutdown and restart. That is not necessarily as limited 

as it may sound, since selective and controlled 

recursive micro-reboots on interdependent sets of 

elements of different granularity, have shown their 

effectiveness in particular with respect to self-healing, 

e.g., to improve the overall availability of complex 

software ensembles as diverse as operating systems 

(see [5]), or mission critical distributed systems (see 

[6]). However, in the case of systems-of-systems, the 

restart dependencies among components are not 

always known in advance. Moreover, even the 

relatively simple operation of rebooting a component is 

subject to the heterogeneity of platform and software 

technologies that is characteristic of systems-of-

systems. Therefore, the restart operation does not 

equate to a single effector, but rather to a category of 

effectors with possibly diverse implementations, and 

would nevertheless require a programming abstraction 

like the one we propose, in order to be applied in a 

uniform way across heterogeneous parts of a system. 

The above approaches – which are widely 

employed and successful to a degree in contexts where 

heterogeneity is limited - do not particularly promote 

any form of conceptualization or abstraction. However, 

for a general-purpose autonomic manager that must 

handle real-world applications involving systems-of-

systems, the benefits of suitable abstractions to interact 

with managed resources are increasingly recognized. 

For example, IBM, in its developerWorks 

Autonomic Computing Toolkit [15] organizes all 

interactions with its touchpoints onto the managed 

resource (effectors as well as sensors) around two 

classes: the first is called the 

ManagedResourceTouchpoint, and resides on 

the touchpoint; the second is called the 

AutonomicManagerTouchpointSupport, and 

represents its counterpart within the autonomic 

manager itself. Those two classes bind to each other 

via Java RMI, which imposes a client-server 

synchronous interaction model. The current release of 

the Toolkit provides only a single standardized 

operation for the interaction between those two 

classes: a sendEvent() method, available on the 

autonomic manager, which is suitable especially to 

implement transmission of monitoring data by sensors, 

and can possibly be used to provide functionality 

equivalent to our Relay primitive. Autonomic 

applications developed with the toolkit are free to 

specialize the Touchpoint and 

TouchpointSupport classes as they see fit, with 

no specific operational semantics nor generic 

programming model encouraged or enforced. 

IBM also envisions a more comprehensive 

approach, demonstrated by its Autonomic 

Management Engine (AME) [16], also part of the 

Autonomic Computing Toolkit. AME provides a 

prototype implementation of a full-fledged MAPE-K 

loop. For the Execute part, AME adopts a plugin-based 

model to bind to and activate action launchers. Each 

action launcher represents code that is written ad hoc

to effect changes on managed resources, but all expose 

to AME the same interface. Each action launcher is 

also accompanied by an XML descriptor, and a parser 

class that allows the engine to retrieve and use the 

specification of the action launcher contained in the 

descriptor. That specification describes the actions that 

the action launcher must perform (i.e., the method that 

it must call), in response to certain events of relevance 

(called indications) that can occur during the earlier 

phases of the MAPE-K loop. All action launchers 

implement the ActionLauncher Java interface. 

That interface provides three major operations: 

setSpecification() establishes the set of 

event/action rules for an action launcher; 

satisfiesSpecification() indicates 

whether there exists an action launcher of this type 

that satisfies a given specification; 

handleIndication() passes an event to the 

action launcher to enable execution of the 

corresponding action in accord with the loaded 

specification, and returns the action result. 

There are several similarities between our model 

and AME. First of all, they are both based on the idea 

of pluggable activation mechanisms for a range of 

potentially very diverse effectors. Considering the 

programming abstractions that are supported, the 

descriptors of action launchers and the related classes 

and methods can be used for an effector catalog and as 

a means for Lookup. One difference is that our model 

is not tied to any given type of catalog or querying, 

since it has a specific slot for plugging in different 

catalogs. Our Activate primitive is similar to the 

handleIndication() method. However, that 

method assumes synchronous execution of the effector 

computation, since its result is relayed back as the 

return value of the method. Our model is more flexible 

since it can also accommodate asynchronous effector 

execution, by separating the Activate and Relay stages. 
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Our explicit and separate Configure primitive, which is 

not present in AME, also contributes to flexibility and 

generality, since it can be used not only to pass 

parameters every time the effector computation is 

invoked, but also for any generic configuration needs 

of the more sophisticated effectors. 

7. Conclusions

We propose an abstract programming model for 

effectors, for use in autonomic computing frameworks 

that aim to be relatively general-purpose and operate 

on heterogeneous systems-of-systems, as opposed to 

implementing self-management, self-healing, etc. 

capabilities solely for a specific new system or class of 

systems. This work was motivated by our previous 

experimentation with such a generic framework, where 

interfacing to pre-existing adaptation provisions was 

challenging. Our programming model and sample API 

implementation distinguish between activation of 

effectors and their pre-built adaptation provisions, 

separate the runtime adaptation logic from both 

activation and adaptation provisions, and exploit the 

natural progression of the work of effectors into their 

selection, recruitment, configuration and actual 

activation, as well as providing for flexible ongoing 

interactions while the effector performs its work. 

We expect to continue refining the effector 

programming model and API implementations, and 

plan to apply this approach to a broad range of effector 

technologies. For instance, one of the authors is 

working with others on developing a KX-like 

autonomic infrastructure affording tolerance of 

intrusions, denial of service, and other security-related 

attacks [27], as well as on building an eCommerce-

oriented testbed intended as a community resource for 

experimentation with autonomic computing 

technologies [28]. 
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