
An Approach to Software Testing of Machine Learning Applications 
 

 

Christian Murphy Gail Kaiser Marta Arias 

Dept. of Computer Science 

Columbia University 

New York, NY 

cmurphy@cs.columbia.edu 

Dept. of Computer Science 

Columbia University 

New York, NY 

kaiser@cs.columbia.edu 

Center for Computational 

Learning Systems 

Columbia University 

New York, NY 

marta@ccls.columbia.edu 

 

 

Abstract 
 

Some machine learning applications are intended to 

learn properties of data sets where the correct answers 

are not already known to human users. It is 

challenging to test such ML software, because there is 

no reliable test oracle. We describe a software testing 

approach aimed at addressing this problem. We 

present our findings from testing implementations of 

two different ML ranking algorithms: Support Vector 

Machines and MartiRank. 

 

 

1. Introduction 
 

We investigate the problem of making machine 

learning (ML) applications dependable, focusing on 

software testing. Conventional software engineering 

processes and tools do not neatly apply: in particular, it 

is challenging to detect subtle errors, faults, defects or 

anomalies (henceforth “bugs”) in the ML applications 

of interest because there is no reliable “test oracle” to 

indicate what the correct output should be for arbitrary 

input. The general class of software systems with no 

reliable test oracle available is sometimes known as 

“non-testable programs” [1]. These ML applications 

fall into a category of software that Davis and Weyuker 

describe as “Programs which were written in order to 

determine the answer in the first place. There would be 

no need to write such programs, if the correct answer 

were known” [2]. Formal proofs of an ML algorithm’s 

optimal quality do not guarantee that an application 

implements or uses the algorithm correctly, and thus 

software testing is needed. Our testing, then, does not 

seek to determine whether an ML algorithm learns 

well, but rather to ensure that an application using the 

algorithm correctly implements the specification and 

fulfills the users’ expectations. 

In this paper, we describe our approach to testing 

ML applications, in particular those that implement 

ranking algorithms (a requirement of the real-world 

problem domain). Of course, in any software testing, it 

is possible only to show the presence of bugs but not 

their absence. Usually when input or output 

equivalence classes are applied to developing test 

cases, however, the expected output for a given input is 

known in advance. Our research seeks to address the 

issue of how to devise test cases that are likely to reveal 

bugs, and how one can indeed know whether a test 

actually is revealing a bug, given that we do not know 

what the output should be in the general case. 

Our approach for creating test cases consists of 

three facets: analyzing the problem domain and the 

corresponding real-world data sets; analyzing the 

algorithm as it is defined; and analyzing the 

implementation’s runtime options. While this approach 

is conventional, not novel, a number of issues arise 

when applying it to determining equivalence classes 

and generating data sets for testing ML ranking code.   

We present our findings to date from two case 

studies: our first concerns the Martingale Boosting 

algorithm, which was developed by Long and Servedio 

[3] initially as a classification algorithm and then 

adapted by Long and others into a ranking algorithm 

called MartiRank [4]; we then generalized the approach 

and applied it to an implementation of Support Vector 

Machines (SVM) [5] called SVM-Light [6].  

 

2. Background 
 

We are concerned with the development of an ML 

application commissioned by a company for potential 

future experimental use in predicting impending device 

failures, using historic data of past device failures as 

well as static and dynamic information about the 

current devices. Classification in the binary sense (“will 

fail” vs. “will not fail”) is not sufficient because, after 

enough time, every device will eventually fail. Instead, 



a ranking of the propensity of failure with respect to all 

other devices is more appropriate. The prototype 

application uses both the MartiRank and SVM 

algorithms to produce rankings; the dependability of 

the implementations has real-world implications, rather 

than just academic interest. We do not discuss the full 

application further in this paper; see [4] for details.  

 

2.1. Machine learning fundamentals 
 

In general, there are two phases to supervised 

machine learning. The first phase (called the learning 

phase) analyzes a set of training data, which consists of 

a number of examples, each of which has a number of 

attribute values and one label. The result of this 

analysis is a model that attempts to make 

generalizations about how the attributes relate to the 

label. In the second phase, the model is applied to 

another, previously-unseen data set (the testing data) 

where the labels are unknown. In a classification 

algorithm, the system attempts to predict the label of 

each individual example; in a ranking algorithm, the 

output of this phase is a ranking such that, when the 

labels become known, it is intended that the highest 

valued labels are at or near the top of the ranking, with 

the lowest valued labels at or near the bottom. 

One complication in this effort arose due to 

conflicting technical nomenclature: “testing”, 

“regression”, “validation”, “model” and other relevant 

terms have very different meanings to machine learning 

experts than they do to software engineers. Here we 

employ the terms “testing” and “regression testing” as 

appropriate for a software engineering audience, but we 

adopt the machine learning sense of “model” (i.e., the 

rules generated during training on a set of examples) 

and “validation” (measuring the accuracy achieved 

when using the model to rank the training data set with 

labels removed, rather than a new data set).  

 

2.2. MartiRank and SVM 
 

MartiRank [4] was specifically designed as a 

ranking algorithm with the device failure application in 

mind. In the learning phase, MartiRank executes a 

number of “rounds”. In each round the set of training 

data is broken into sub-lists; there are N sub-lists in the 

N
th

 round, each containing 1/N
th

 of the total number of 

device failures. For each sub-list, MartiRank sorts that 

segment by each attribute, ascending and descending, 

and chooses the attribute that gives the best “quality”. 

The quality of an attribute is assessed using a variant of 

the Area Under the Curve (AUC) [7] that is adapted to 

ranking rather than binary classification. The model, 

then, describes for each round how to split the data set 

and on which attribute and direction to sort each 

segment for that round. In the second phase, MartiRank 

applies the segmentation and the sorting rules from the 

model to the testing data set to produce the ranking (the 

final sorted order). 

SVM [5] belongs to the “linear classifier” family of 

ML algorithms that attempt to find a (linear) 

hyperplane that separates examples from different 

classes. In the learning phase, SVM treats each 

example from the training data as a vector of K 

dimensions (since it has K attributes), and attempts to 

segregate the examples with a hyperplane of K-1 

dimensions. The type of hyperplane is determined by 

the SVM’s “kernel”: here, we investigate the linear, 

polynomial, and radial basis kernels. The goal is to find 

the maximum margin (distance) between the “support 

vectors”, which are the examples that lie closest to the 

surface of the hyperplane; the resulting hyperplane is 

the model. As SVM is typically used for binary 

classification, ranking is done by classifying each 

individual example (irrespective of the others) from the 

testing data according to the model, and then recording 

its distance from the hyperplane. The examples are then 

ranked according to this distance.  

 
2.3. Related work 

 

Although there has been much work that applies 

machine learning techniques to software engineering in 

general and software testing in particular (e.g., [8]), 

there seems to be very little published work in the 

reverse sense: applying software testing techniques to 

ML software. There has been much research into the 

creation of test suites for regression testing [9] and 

generation of test data sets [10, 11], but not applied to 

ML code. Repositories of “reusable” data sets have 

been collected (e.g., the UCI Machine Learning 

Repository [12]) for the purpose of comparing result 

quality, but not for the software engineering sense of 

testing. Orange [13] and Weka [14] are two of several 

frameworks that aid ML developers, but the testing 

functionality they provide is focused on comparing the 

quality of the results, not evaluating the “correctness” 

of the implementations.  

 

3. Software Testing Approach 
 

3.1. Analyzing the problem domain 
 

The first part of our approach is to consider the 

problem domain and try to determine equivalence 

classes based on the properties of real-world data sets. 



We particularly look for traits that may not have been 

considered by the algorithm designers, such as data set 

size, the potential ranges of attribute and label values, 

and what sort of precision is expected when dealing 

with floating point numbers.  

The data sets of interest are very large, both in terms 

of the number of attributes (hundreds) and the number 

of examples (tens of thousands). The label could be any 

non-negative integer, although it was typically a 0 

(indicating that there was no device failure) or 1 

(indicating that there was), and rarely was higher than 5 

(indicating five failures over a given period of time).  

The attribute values were either numerical or 

categorical. Many non-categorical attributes had 

repeated values and many values were missing, raising 

the issues of breaking “ties” during sorting and 

handling unknowns. We do not discuss categorical 

attributes further (because we found no relevant bugs).  

 

3.2. Analyzing the algorithm as defined 
 

The second element to our approach to creating test 

cases was to look at the algorithm as it is defined (in 

pseudocode, for instance) and inspect it carefully for 

imprecisions, particularly given what we knew about 

the real-world data sets as well as plausible “synthetic” 

data sets. This would allow us to speculate on areas in 

which flaws might be found, so that we could create 

test sets to try to reveal those flaws. Here, we are 

looking for bugs in the specification, not so much bugs 

in the implementation. For instance, the algorithm may 

not explicitly explain how to handle missing attribute 

values or labels, negative attribute values or labels, etc.  

Also, by inspecting the algorithm carefully, one can 

determine how to construct “predictable” training and 

testing data sets that should (if the implementation 

follows the algorithm correctly) yield a “perfect” 

ranking. This is the only area of our work in which we 

can say that there is a “correct” output that should be 

produced by the ML algorithm.  

For instance, we know that SVM seeks to separate 

the examples into categories. In the simplest case, we 

could have labels of only 1s and 0s, and then construct 

a data set such that, for example, every example with a 

given attribute equal to a specific value has a label of 1, 

and every example with that attribute equal to any other 

value has a label of 0. Another approach would be to 

have a set or a region of attribute values mapped to a 

label of 1, for instance “anything with the attribute set 

to X, Y or Z” or “anything with the attribute between A 

and B” or “anything with the attribute above M”. We 

could also create data sets that are predictable but have 

noise in them to try to confuse the algorithm. 

Generating predictable data sets for MartiRank is a 

bit more complicated because of the sorting and 

segmentation. We created each predictable data set by 

setting values in such a way that the algorithm should 

choose a specific attribute on which to sort for each 

segment for each round, and then divided the 

distribution of labels such that the data set will be 

segmented as we would expect; this should generate a 

model that, when applied to another data set showing 

the same characteristics, would yield a perfect ranking.   

 

3.3. Analyzing the runtime options 
 

The last part of our approach to generating test 

cases for ML algorithms is to look at their runtime 

options and see if those give any indication of how the 

implementation may actually manipulate the input data, 

and try to design data sets and tests that might reveal 

flaws or inconsistencies in that manipulation. 

For example, the MartiRank implementation that we 

analyzed by default randomly permutes the order of the 

examples in the input data so that it would not be 

subject to the order in which the data happened to be 

constructed; it was, however, possible to turn this 

permutation off with a command-line option. We 

realized, though, that in the case where none of the 

attribute values are repeating, the input order should 

not matter at all because all sorting would necessarily 

be deterministic. So we created test cases that random-

ly permuted such a data set; regardless of the input 

order, we should see the same final ranking each time.  

SVM-Light has numerous runtime options that deal 

with optimization parameters and variables used by the 

different kernels for generating the hyperplane(s). To 

date we have only performed software testing with the 

default options, although we did test with three of the 

different kernels: linear, polynomial, and radial basis. 

 

4. Findings 
 

To facilitate our testing, we created a set of utilities 

targeted at the ML algorithms we investigated. The 

utilities currently include: a data set generator; tools to 

compare a pair of output models and rankings; several 

trace options inserted into the ML implementations; 

and tools to help analyze the intermediate results 

indicated by the traces.    

Using our testing approach, we devised the 

following basic equivalence classes: small vs. large 

data sets; repeating vs. non-repeating attribute values; 

missing vs. non-missing attribute values; repeating vs. 

non-repeating labels; negative labels vs. non-negative-

only labels; predictable vs. non-predictable data sets; 



and combinations thereof. These equivalence classes 

were then used to parameterize the test case selection 

criteria applied by our data generator tool to automate 

creation of appropriate input data sets. 

We first applied our approach to creating the 

selective test cases for execution by MartiRank. We 

then generalized the approach and applied it to SVM-

Light. Here we describe our most important findings.  

 

4.1. Testing MartiRank 
 

The MartiRank implementation did not have any 

difficulty handling large numbers of examples, but for 

larger than expected numbers of attributes it 

reproducibly failed (crashed). Analyzing the tracing 

output and then inspecting the code, we found that 

some code that was only required for one of the 

runtime options was still being called even when that 

flag was turned off – but the internal state was 

inappropriate for that execution path. We refactored the 

code and the failures disappeared. 

Our approach to creating test cases based on 

analysis of the pseudocode led us to notice that the 

MartiRank algorithm does not explicitly address how to 

handle negative labels. Because the particular 

implementation we were testing was designed 

specifically to predict device failures, which would 

never have a negative number as a label, this was not 

considered during development. However, the 

implementation did not complain about negative labels 

but produced obviously incorrect results when a 

negative label existed. In principle a general-purpose 

ranking algorithm should allow for negative labels (-1 

vs. +1 is sometimes used in other applications). 

Also, by inspecting the algorithm and considering 

any potential vagueness, we developed test cases that 

showed that different interpretations could lead to 

different results. Specifically, because MartiRank is 

based on sorting, we questioned what would happen in 

the case of repeating values; in particular, we were 

interested to see whether “stable” sorting was used, so 

that the original order would be maintained in the case 

of ties. We constructed data sets such that, if a stable 

sort were used, a perfect ranking would be achieved 

because examples with the same value for a particular 

attribute would be left in their original order; however, 

if the sort were not stable, then the ranking would not 

necessarily be perfect because the examples could be 

out of order. Our testing showed that the sorting routine 

was not, in fact, stable. Though this was not specified 

in the algorithm, the developers agreed that it would be 

preferable to have a stable sort for deterministic results 

– so we substituted another, “stable” sorting routine. 

 

4.2. Regression testing 
 

A desirable side effect of our testing has been to 

create a suite of data sets that can then be used for 

regression testing purposes. Development of the 

MartiRank implementation is ongoing, and our data 

sets have been used successfully to find newly-

introduced bugs. For example, after a developer 

refactored some repeated code and put it into a new 

subroutine, regression testing showed that the resulting 

models were different than for the previous version. 

Inspection of the code revealed that a global variable 

was incorrectly being overwritten, and after the bug 

was fixed, regression testing showed that the same 

results were once again being generated.   

 

4.3. Testing multiple implementations 
 

Davis and Weyuker suggest a “pseudo-oracle” as 

the solution to testing non-testable programs, i.e. 

constructing a second implementation and comparing 

the results of the two implementations on the same 

inputs [2]. Should multiple implementations of an 

algorithm happen to exist, our approach could be used 

to create test cases for such comparison testing. If they 

are not producing the same results, then presumably 

one or both implementations has a bug. 

 There are conveniently multiple implementations of 

the MartiRank algorithm: the original written in Perl 

and then a faster version written in C (most of the 

above discussion is with respect to the C 

implementation, except the bug mentioned for 

regression testing was in the Perl version). Using one 

as a “pseudo-oracle” for the other, we noticed a 

difference in the rankings they produced during testing 

with the equivalence class of missing attribute values. 

Using traces to see how the examples were being 

ordered during each sorting round, we noticed that the 

presence of missing values was causing the known 

values to be sorted incorrectly by the Perl version. This 

was due to using a Perl starship comparison operator 

that assumed transitivity among comparisons even 

when one of the values in the comparisons was missing, 

which is incorrect.  

 

4.4. Generalization to SVM-Light 
 

After completing the testing of MartiRank, we then 

generalized the approach and applied it to SVM-Light.  

We did not uncover any issues with respect to most 

of the test cases involving unexpected values (such as 

negative labels or missing attributes) or repeating 



attribute values. However, with the linear and  

polynomial kernels, permuting the training data caused 

SVM-Light to create different models for different 

input orders. This occurred even when all attributes and 

labels were distinct – thus removing the possibility that 

ties between equal or missing values would be broken 

depending on the input order. We confirmed that these 

models were not “equivalent” by using the same testing 

data with each pair of such different models, and 

indeed obtained two different rankings. The practical 

implication is that the order in which the training data 

happens to be assembled can have an effect on the final 

ranking. This did not happen for the radial basis kernel 

in any of our tests to date.   

Our analysis of the SVM algorithm indicates that it 

theoretically should produce the same model regardless 

of the input data order; however, an ML researcher 

familiar with SVM-Light told us that because it is 

inefficient to run the quadratic optimization algorithm 

on the full data set all at once, the implementation 

performs “chunking” whereby the optimization 

algorithm runs on subsets of the data and then merges 

the results [15]. Numerical methods and heuristics are 

used to quickly converge to the optimum. However, the 

optimum is not necessarily achieved, but instead this 

process stops after some threshold of improvement. 

This is one important area in which the implementation 

deviates from the specification.  

Our other key findings came from those test cases 

involving “predictable” rankings. We created a small 

data set by hand that should yield a perfect ranking in 

SVM: for the first attribute, every example that had a 

value less than X (where X is some integer) had a label 

of one; everything else had a label of zero. There were 

two other columns of random noise. All three kernels 

correctly ranked the examples. In another test, 

however, we changed the labels so that they were all  

different – simply equal to the value of that row’s first 

attribute incremented by 1. The linear and radial basis 

kernels found the perfect ranking but the polynomial 

kernel did not. We assumed that this was because of the 

noise, so we removed the noise and it indeed found the 

perfect ranking. This was the only case in our testing in 

which noise in the data set caused SVM-Light to fail to 

find the perfect ranking.  

In other test cases with predictable rankings, we 

noticed that different kernels exhibited different 

behaviors with respect to how they performed on 

different types of data sets. For example, the linear and 

polynomial kernels could find the perfect rankings 

when a particular attribute had a range of values that 

correlated to a label of 1, but the radial basis kernel 

only found the perfect rankings when an attribute had a 

single value that correlated. This difference is, after all, 

the motivation for multiple kernels, but from our 

perspective it shows that what is predictable for one 

kernel is not always predictable for another. 

Finally, although there are multiple imple-

mentations of the SVM algorithm, our testing did not 

include comparison testing (using one as a “pseudo-

oracle” for another). We leave this as future work. 

 

5. Discussion 
 

Our approach was successful in that it helped us 

discover bugs in the implementations and discrepancies 

from the stated algorithms. By inspecting the 

algorithms, we could create predictable data sets that 

should yield perfect rankings and indicate whether the 

algorithm was implemented correctly; we could also 

see where the imprecisions were, especially in the case 

of MartiRank with respect to sorting missing or 

repeated values. Lastly, by considering the runtime 

options, we conceived test cases that permuted the 

input data, revealing an inconsistency in SVM-Light.  

Possibly the most important thing we discovered is 

that what is “predictable” for one algorithm will not 

necessarily lead to a perfect ranking in another. For 

instance, in cases when the examples with a 1 label 

have a particular attribute whose value is in the middle 

of a range, it is hard for MartiRank to get that example 

towards the top of the ranking, though this is possible 

for most SVM kernels.   

Also, as noted, although MartiRank is based on 

sorting, it does not specify whether the sorting of 

attributes should use a “stable” sort, so we found 

problems with how repeated or missing attribute values 

were handled. We also noticed that the algorithm states 

that each partition should have the same number of 

failures, but it does not address how many non-failures 

should appear in each partition, i.e. whether the 

dividing point is above or below those non-failures, or 

how the failures should be split amongst partitions 

when it is impossible to do so evenly.  

We also discovered that tracing of intermediate state 

can be useful, because even though we may not know 

what the final output should be, inspection of the 

algorithm could indicate what to expect from the 

intermediate results. In the case of MartiRank, we 

could inspect the rankings at the end of each round and 

see how the examples were being sorted; this led us to 

discover the unstable sorting problem. 

Although our testing to date has focused only on  

two ML algorithms, by developing the testing approach 

for MartiRank and then applying it to SVM-Light, we 

have shown that our approach and even specific test 



cases can be generalized to other ML ranking 

algorithms, which are likely to require many of the 

same equivalence classes discussed here. The general 

approach also seems appropriate to software testing of 

the implementations of supervised ML classification 

algorithms. The primary difference is that classification 

algorithms seek to categorize each single example, not 

rank-order a group of them, but investigating the 

problem domain and considering the algorithm as 

defined as well as the code’s runtime options (if any) 

should still apply.  

 

6. Limitations and Future Work 
 

We have not yet addressed the issue of test suite 

adequacy, e.g. to extend our data generation tool to 

automatically generate sets of test cases that 

collectively cover all statements, branches or 

paths. Further, mutation analysis could be used for 

evaluating and improving the effectiveness of a given 

test suite. We leave these as future directions.  

 Other future work could include the investigation of 

automatically generating data sets that exhibit the same 

correlations among attributes and between attributes 

and labels as do real-world data, such as in [16].  

Additionally, since some ML algorithms are 

intentionally non-deterministic and necessarily rely on 

randomization, more detailed trace analysis techniques 

should be investigated towards determining software  

implementation correctness. 
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