
An Approach to Software Testing of Machine Learning Applications

Christian Murphy Gail Kaiser Marta Arias

Dept. of Computer Science

Columbia University

New York, NY

cmurphy@cs.columbia.edu

Dept. of Computer Science

Columbia University

New York, NY

kaiser@cs.columbia.edu

Center for Computational

Learning Systems

Columbia University

New York, NY

marta@ccls.columbia.edu

Abstract

Some machine learning applications are intended to

learn properties of data sets where the correct answers

are not already known to human users. It is

challenging to test such ML software, because there is

no reliable test oracle. We describe a software testing

approach aimed at addressing this problem. We

present our findings from testing implementations of

two different ML ranking algorithms: Support Vector

Machines and MartiRank.

1. Introduction

We investigate the problem of making machine

learning (ML) applications dependable, focusing on

software testing. Conventional software engineering

processes and tools do not neatly apply: in particular, it

is challenging to detect subtle errors, faults, defects or

anomalies (henceforth “bugs”) in the ML applications

of interest because there is no reliable “test oracle” to

indicate what the correct output should be for arbitrary

input. The general class of software systems with no

reliable test oracle available is sometimes known as

“non-testable programs” [1]. These ML applications

fall into a category of software that Davis and Weyuker

describe as “Programs which were written in order to

determine the answer in the first place. There would be

no need to write such programs, if the correct answer

were known” [2]. Formal proofs of an ML algorithm’s

optimal quality do not guarantee that an application

implements or uses the algorithm correctly, and thus

software testing is needed. Our testing, then, does not

seek to determine whether an ML algorithm learns

well, but rather to ensure that an application using the

algorithm correctly implements the specification and

fulfills the users’ expectations.

In this paper, we describe our approach to testing

ML applications, in particular those that implement

ranking algorithms (a requirement of the real-world

problem domain). Of course, in any software testing, it

is possible only to show the presence of bugs but not

their absence. Usually when input or output

equivalence classes are applied to developing test

cases, however, the expected output for a given input is

known in advance. Our research seeks to address the

issue of how to devise test cases that are likely to reveal

bugs, and how one can indeed know whether a test

actually is revealing a bug, given that we do not know

what the output should be in the general case.

Our approach for creating test cases consists of

three facets: analyzing the problem domain and the

corresponding real-world data sets; analyzing the

algorithm as it is defined; and analyzing the

implementation’s runtime options. While this approach

is conventional, not novel, a number of issues arise

when applying it to determining equivalence classes

and generating data sets for testing ML ranking code.

We present our findings to date from two case

studies: our first concerns the Martingale Boosting

algorithm, which was developed by Long and Servedio

[3] initially as a classification algorithm and then

adapted by Long and others into a ranking algorithm

called MartiRank [4]; we then generalized the approach

and applied it to an implementation of Support Vector

Machines (SVM) [5] called SVM-Light [6].

2. Background

We are concerned with the development of an ML

application commissioned by a company for potential

future experimental use in predicting impending device

failures, using historic data of past device failures as

well as static and dynamic information about the

current devices. Classification in the binary sense (“will

fail” vs. “will not fail”) is not sufficient because, after

enough time, every device will eventually fail. Instead,

a ranking of the propensity of failure with respect to all

other devices is more appropriate. The prototype

application uses both the MartiRank and SVM

algorithms to produce rankings; the dependability of

the implementations has real-world implications, rather

than just academic interest. We do not discuss the full

application further in this paper; see [4] for details.

2.1. Machine learning fundamentals

In general, there are two phases to supervised

machine learning. The first phase (called the learning

phase) analyzes a set of training data, which consists of

a number of examples, each of which has a number of

attribute values and one label. The result of this

analysis is a model that attempts to make

generalizations about how the attributes relate to the

label. In the second phase, the model is applied to

another, previously-unseen data set (the testing data)

where the labels are unknown. In a classification

algorithm, the system attempts to predict the label of

each individual example; in a ranking algorithm, the

output of this phase is a ranking such that, when the

labels become known, it is intended that the highest

valued labels are at or near the top of the ranking, with

the lowest valued labels at or near the bottom.

One complication in this effort arose due to

conflicting technical nomenclature: “testing”,

“regression”, “validation”, “model” and other relevant

terms have very different meanings to machine learning

experts than they do to software engineers. Here we

employ the terms “testing” and “regression testing” as

appropriate for a software engineering audience, but we

adopt the machine learning sense of “model” (i.e., the

rules generated during training on a set of examples)

and “validation” (measuring the accuracy achieved

when using the model to rank the training data set with

labels removed, rather than a new data set).

2.2. MartiRank and SVM

MartiRank [4] was specifically designed as a

ranking algorithm with the device failure application in

mind. In the learning phase, MartiRank executes a

number of “rounds”. In each round the set of training

data is broken into sub-lists; there are N sub-lists in the

N
th

 round, each containing 1/N
th

 of the total number of

device failures. For each sub-list, MartiRank sorts that

segment by each attribute, ascending and descending,

and chooses the attribute that gives the best “quality”.

The quality of an attribute is assessed using a variant of

the Area Under the Curve (AUC) [7] that is adapted to

ranking rather than binary classification. The model,

then, describes for each round how to split the data set

and on which attribute and direction to sort each

segment for that round. In the second phase, MartiRank

applies the segmentation and the sorting rules from the

model to the testing data set to produce the ranking (the

final sorted order).

SVM [5] belongs to the “linear classifier” family of

ML algorithms that attempt to find a (linear)

hyperplane that separates examples from different

classes. In the learning phase, SVM treats each

example from the training data as a vector of K

dimensions (since it has K attributes), and attempts to

segregate the examples with a hyperplane of K-1

dimensions. The type of hyperplane is determined by

the SVM’s “kernel”: here, we investigate the linear,

polynomial, and radial basis kernels. The goal is to find

the maximum margin (distance) between the “support

vectors”, which are the examples that lie closest to the

surface of the hyperplane; the resulting hyperplane is

the model. As SVM is typically used for binary

classification, ranking is done by classifying each

individual example (irrespective of the others) from the

testing data according to the model, and then recording

its distance from the hyperplane. The examples are then

ranked according to this distance.

2.3. Related work

Although there has been much work that applies

machine learning techniques to software engineering in

general and software testing in particular (e.g., [8]),

there seems to be very little published work in the

reverse sense: applying software testing techniques to

ML software. There has been much research into the

creation of test suites for regression testing [9] and

generation of test data sets [10, 11], but not applied to

ML code. Repositories of “reusable” data sets have

been collected (e.g., the UCI Machine Learning

Repository [12]) for the purpose of comparing result

quality, but not for the software engineering sense of

testing. Orange [13] and Weka [14] are two of several

frameworks that aid ML developers, but the testing

functionality they provide is focused on comparing the

quality of the results, not evaluating the “correctness”

of the implementations.

3. Software Testing Approach

3.1. Analyzing the problem domain

The first part of our approach is to consider the

problem domain and try to determine equivalence

classes based on the properties of real-world data sets.

We particularly look for traits that may not have been

considered by the algorithm designers, such as data set

size, the potential ranges of attribute and label values,

and what sort of precision is expected when dealing

with floating point numbers.

The data sets of interest are very large, both in terms

of the number of attributes (hundreds) and the number

of examples (tens of thousands). The label could be any

non-negative integer, although it was typically a 0

(indicating that there was no device failure) or 1

(indicating that there was), and rarely was higher than 5

(indicating five failures over a given period of time).

The attribute values were either numerical or

categorical. Many non-categorical attributes had

repeated values and many values were missing, raising

the issues of breaking “ties” during sorting and

handling unknowns. We do not discuss categorical

attributes further (because we found no relevant bugs).

3.2. Analyzing the algorithm as defined

The second element to our approach to creating test

cases was to look at the algorithm as it is defined (in

pseudocode, for instance) and inspect it carefully for

imprecisions, particularly given what we knew about

the real-world data sets as well as plausible “synthetic”

data sets. This would allow us to speculate on areas in

which flaws might be found, so that we could create

test sets to try to reveal those flaws. Here, we are

looking for bugs in the specification, not so much bugs

in the implementation. For instance, the algorithm may

not explicitly explain how to handle missing attribute

values or labels, negative attribute values or labels, etc.

Also, by inspecting the algorithm carefully, one can

determine how to construct “predictable” training and

testing data sets that should (if the implementation

follows the algorithm correctly) yield a “perfect”

ranking. This is the only area of our work in which we

can say that there is a “correct” output that should be

produced by the ML algorithm.

For instance, we know that SVM seeks to separate

the examples into categories. In the simplest case, we

could have labels of only 1s and 0s, and then construct

a data set such that, for example, every example with a

given attribute equal to a specific value has a label of 1,

and every example with that attribute equal to any other

value has a label of 0. Another approach would be to

have a set or a region of attribute values mapped to a

label of 1, for instance “anything with the attribute set

to X, Y or Z” or “anything with the attribute between A

and B” or “anything with the attribute above M”. We

could also create data sets that are predictable but have

noise in them to try to confuse the algorithm.

Generating predictable data sets for MartiRank is a

bit more complicated because of the sorting and

segmentation. We created each predictable data set by

setting values in such a way that the algorithm should

choose a specific attribute on which to sort for each

segment for each round, and then divided the

distribution of labels such that the data set will be

segmented as we would expect; this should generate a

model that, when applied to another data set showing

the same characteristics, would yield a perfect ranking.

3.3. Analyzing the runtime options

The last part of our approach to generating test

cases for ML algorithms is to look at their runtime

options and see if those give any indication of how the

implementation may actually manipulate the input data,

and try to design data sets and tests that might reveal

flaws or inconsistencies in that manipulation.

For example, the MartiRank implementation that we

analyzed by default randomly permutes the order of the

examples in the input data so that it would not be

subject to the order in which the data happened to be

constructed; it was, however, possible to turn this

permutation off with a command-line option. We

realized, though, that in the case where none of the

attribute values are repeating, the input order should

not matter at all because all sorting would necessarily

be deterministic. So we created test cases that random-

ly permuted such a data set; regardless of the input

order, we should see the same final ranking each time.

SVM-Light has numerous runtime options that deal

with optimization parameters and variables used by the

different kernels for generating the hyperplane(s). To

date we have only performed software testing with the

default options, although we did test with three of the

different kernels: linear, polynomial, and radial basis.

4. Findings

To facilitate our testing, we created a set of utilities

targeted at the ML algorithms we investigated. The

utilities currently include: a data set generator; tools to

compare a pair of output models and rankings; several

trace options inserted into the ML implementations;

and tools to help analyze the intermediate results

indicated by the traces.

Using our testing approach, we devised the

following basic equivalence classes: small vs. large

data sets; repeating vs. non-repeating attribute values;

missing vs. non-missing attribute values; repeating vs.

non-repeating labels; negative labels vs. non-negative-

only labels; predictable vs. non-predictable data sets;

and combinations thereof. These equivalence classes

were then used to parameterize the test case selection

criteria applied by our data generator tool to automate

creation of appropriate input data sets.

We first applied our approach to creating the

selective test cases for execution by MartiRank. We

then generalized the approach and applied it to SVM-

Light. Here we describe our most important findings.

4.1. Testing MartiRank

The MartiRank implementation did not have any

difficulty handling large numbers of examples, but for

larger than expected numbers of attributes it

reproducibly failed (crashed). Analyzing the tracing

output and then inspecting the code, we found that

some code that was only required for one of the

runtime options was still being called even when that

flag was turned off – but the internal state was

inappropriate for that execution path. We refactored the

code and the failures disappeared.

Our approach to creating test cases based on

analysis of the pseudocode led us to notice that the

MartiRank algorithm does not explicitly address how to

handle negative labels. Because the particular

implementation we were testing was designed

specifically to predict device failures, which would

never have a negative number as a label, this was not

considered during development. However, the

implementation did not complain about negative labels

but produced obviously incorrect results when a

negative label existed. In principle a general-purpose

ranking algorithm should allow for negative labels (-1

vs. +1 is sometimes used in other applications).

Also, by inspecting the algorithm and considering

any potential vagueness, we developed test cases that

showed that different interpretations could lead to

different results. Specifically, because MartiRank is

based on sorting, we questioned what would happen in

the case of repeating values; in particular, we were

interested to see whether “stable” sorting was used, so

that the original order would be maintained in the case

of ties. We constructed data sets such that, if a stable

sort were used, a perfect ranking would be achieved

because examples with the same value for a particular

attribute would be left in their original order; however,

if the sort were not stable, then the ranking would not

necessarily be perfect because the examples could be

out of order. Our testing showed that the sorting routine

was not, in fact, stable. Though this was not specified

in the algorithm, the developers agreed that it would be

preferable to have a stable sort for deterministic results

– so we substituted another, “stable” sorting routine.

4.2. Regression testing

A desirable side effect of our testing has been to

create a suite of data sets that can then be used for

regression testing purposes. Development of the

MartiRank implementation is ongoing, and our data

sets have been used successfully to find newly-

introduced bugs. For example, after a developer

refactored some repeated code and put it into a new

subroutine, regression testing showed that the resulting

models were different than for the previous version.

Inspection of the code revealed that a global variable

was incorrectly being overwritten, and after the bug

was fixed, regression testing showed that the same

results were once again being generated.

4.3. Testing multiple implementations

Davis and Weyuker suggest a “pseudo-oracle” as

the solution to testing non-testable programs, i.e.

constructing a second implementation and comparing

the results of the two implementations on the same

inputs [2]. Should multiple implementations of an

algorithm happen to exist, our approach could be used

to create test cases for such comparison testing. If they

are not producing the same results, then presumably

one or both implementations has a bug.

 There are conveniently multiple implementations of

the MartiRank algorithm: the original written in Perl

and then a faster version written in C (most of the

above discussion is with respect to the C

implementation, except the bug mentioned for

regression testing was in the Perl version). Using one

as a “pseudo-oracle” for the other, we noticed a

difference in the rankings they produced during testing

with the equivalence class of missing attribute values.

Using traces to see how the examples were being

ordered during each sorting round, we noticed that the

presence of missing values was causing the known

values to be sorted incorrectly by the Perl version. This

was due to using a Perl starship comparison operator

that assumed transitivity among comparisons even

when one of the values in the comparisons was missing,

which is incorrect.

4.4. Generalization to SVM-Light

After completing the testing of MartiRank, we then

generalized the approach and applied it to SVM-Light.

We did not uncover any issues with respect to most

of the test cases involving unexpected values (such as

negative labels or missing attributes) or repeating

attribute values. However, with the linear and

polynomial kernels, permuting the training data caused

SVM-Light to create different models for different

input orders. This occurred even when all attributes and

labels were distinct – thus removing the possibility that

ties between equal or missing values would be broken

depending on the input order. We confirmed that these

models were not “equivalent” by using the same testing

data with each pair of such different models, and

indeed obtained two different rankings. The practical

implication is that the order in which the training data

happens to be assembled can have an effect on the final

ranking. This did not happen for the radial basis kernel

in any of our tests to date.

Our analysis of the SVM algorithm indicates that it

theoretically should produce the same model regardless

of the input data order; however, an ML researcher

familiar with SVM-Light told us that because it is

inefficient to run the quadratic optimization algorithm

on the full data set all at once, the implementation

performs “chunking” whereby the optimization

algorithm runs on subsets of the data and then merges

the results [15]. Numerical methods and heuristics are

used to quickly converge to the optimum. However, the

optimum is not necessarily achieved, but instead this

process stops after some threshold of improvement.

This is one important area in which the implementation

deviates from the specification.

Our other key findings came from those test cases

involving “predictable” rankings. We created a small

data set by hand that should yield a perfect ranking in

SVM: for the first attribute, every example that had a

value less than X (where X is some integer) had a label

of one; everything else had a label of zero. There were

two other columns of random noise. All three kernels

correctly ranked the examples. In another test,

however, we changed the labels so that they were all

different – simply equal to the value of that row’s first

attribute incremented by 1. The linear and radial basis

kernels found the perfect ranking but the polynomial

kernel did not. We assumed that this was because of the

noise, so we removed the noise and it indeed found the

perfect ranking. This was the only case in our testing in

which noise in the data set caused SVM-Light to fail to

find the perfect ranking.

In other test cases with predictable rankings, we

noticed that different kernels exhibited different

behaviors with respect to how they performed on

different types of data sets. For example, the linear and

polynomial kernels could find the perfect rankings

when a particular attribute had a range of values that

correlated to a label of 1, but the radial basis kernel

only found the perfect rankings when an attribute had a

single value that correlated. This difference is, after all,

the motivation for multiple kernels, but from our

perspective it shows that what is predictable for one

kernel is not always predictable for another.

Finally, although there are multiple imple-

mentations of the SVM algorithm, our testing did not

include comparison testing (using one as a “pseudo-

oracle” for another). We leave this as future work.

5. Discussion

Our approach was successful in that it helped us

discover bugs in the implementations and discrepancies

from the stated algorithms. By inspecting the

algorithms, we could create predictable data sets that

should yield perfect rankings and indicate whether the

algorithm was implemented correctly; we could also

see where the imprecisions were, especially in the case

of MartiRank with respect to sorting missing or

repeated values. Lastly, by considering the runtime

options, we conceived test cases that permuted the

input data, revealing an inconsistency in SVM-Light.

Possibly the most important thing we discovered is

that what is “predictable” for one algorithm will not

necessarily lead to a perfect ranking in another. For

instance, in cases when the examples with a 1 label

have a particular attribute whose value is in the middle

of a range, it is hard for MartiRank to get that example

towards the top of the ranking, though this is possible

for most SVM kernels.

Also, as noted, although MartiRank is based on

sorting, it does not specify whether the sorting of

attributes should use a “stable” sort, so we found

problems with how repeated or missing attribute values

were handled. We also noticed that the algorithm states

that each partition should have the same number of

failures, but it does not address how many non-failures

should appear in each partition, i.e. whether the

dividing point is above or below those non-failures, or

how the failures should be split amongst partitions

when it is impossible to do so evenly.

We also discovered that tracing of intermediate state

can be useful, because even though we may not know

what the final output should be, inspection of the

algorithm could indicate what to expect from the

intermediate results. In the case of MartiRank, we

could inspect the rankings at the end of each round and

see how the examples were being sorted; this led us to

discover the unstable sorting problem.

Although our testing to date has focused only on

two ML algorithms, by developing the testing approach

for MartiRank and then applying it to SVM-Light, we

have shown that our approach and even specific test

cases can be generalized to other ML ranking

algorithms, which are likely to require many of the

same equivalence classes discussed here. The general

approach also seems appropriate to software testing of

the implementations of supervised ML classification

algorithms. The primary difference is that classification

algorithms seek to categorize each single example, not

rank-order a group of them, but investigating the

problem domain and considering the algorithm as

defined as well as the code’s runtime options (if any)

should still apply.

6. Limitations and Future Work

We have not yet addressed the issue of test suite

adequacy, e.g. to extend our data generation tool to

automatically generate sets of test cases that

collectively cover all statements, branches or

paths. Further, mutation analysis could be used for

evaluating and improving the effectiveness of a given

test suite. We leave these as future directions.

 Other future work could include the investigation of

automatically generating data sets that exhibit the same

correlations among attributes and between attributes

and labels as do real-world data, such as in [16].

Additionally, since some ML algorithms are

intentionally non-deterministic and necessarily rely on

randomization, more detailed trace analysis techniques

should be investigated towards determining software

implementation correctness.

7. Acknowledgements

Numerous people contributed to this effort. We

would particularly like to thank David Waltz, Wei Chu,

John Gallagher, Philip Gross, Bert Huang, Phil Long

and Rocco Servedio for their assistance and

encouragement. Murphy and Kaiser are members of the

Programming Systems Lab, funded in part by NSF

CNS-0627473, CNS-0426623 and EIA-0202063, NIH

1 U54 CA121852-01A1, and are also affiliated with the

Center for Computational Learning Systems (CCLS).

Arias is fully supported by CCLS, with funding in part

by Consolidated Edison Company of New York.

8. References

[1] E.J. Weyuker, “On Testing Non-Testable Programs”,

Computer Journal vol.25 no.4, November 1982, pp.465-470.

[2] M.D. Davis and E.J. Weyuker, “Pseudo-Oracles for Non-

Testable Programs”, Proceedings of the ACM ’81

Conference, 1981, pp. 254-257.

[3] P. Long and R. Servedio, “Martingale Boosting”,

Eighteenth Annual Conference on Computational Learning

Theory (COLT), Bertinoro, Italy, 2005, pp. 79-94.

[4] P. Gross et al.,“Predicting Electricity Distribution Feeder

Failures Using Machine Learning Susceptibility Analysis”,

Proceedings of the Eighteenth Conference on Innovative

Applications in Artificial Intelligence, Boston MA, 2006.

[5] V.N. Vapnik, The Nature of Statistical Learning Theory.

Springer, 1995.

[6] T. Joachims, Making large-Scale SVM Learning

Practical. Advances in Kernel Methods - Support Vector

Learning, B. Schölkopf and C. Burges and A. Smola (ed.),

MIT-Press, 1999.

[7] J.A. Hanley and B. J. McNeil, “The meaning and use of

the area under a receiver operating characteristic (ROC)

curve”, Radiology vol.143, 1982, pp. 29-36.

[8] T.J. Cheatham, J.P. Yoo and N.J. Wahl, “Software

testing: a machine learning experiment”, Proceedings of the

1995 ACM 23rd Annual Conference on Computer Science,

Nashville TN, 1995, pp. 135-141.

[9] G. Rothermel et al., “On Test Suite Composition and

Cost-Effective Regression Testing”, ACM Transactions on

Software Engineering and Methodology, vol.13, no.3, July

2004, pp 277-331.

[10] B. Korel, “Automated Software Test Data Generation”,

IEEE Transactions on Software Engineering vol.16 no.8,

August 1990, pp.870-879.

[11] C.C. Michael, G. McGraw and M.A. Schatz,

“Generating Software Test Data by Evolution”, IEEE

Transactions on Software Engineering, vol.27 no.12,

December 2001, pp.1085-1110.

[12] D.J. Newman, S. Hettich, C.L. Blake and C.J. Merz,

UCI Repository of machine learning databases, University

of California, Department of Information and Computer

Science, Irvine CA, 1998.

[13] J. Demsar, B. Zupan and G. Leban, Orange: From

Experimental Machine Learning to Interactive Data Mining,

[www.ailab.si/orange], Faculty of Computer and Information

Science, University of Ljubljana.

[14] I.H. Witten and E. Frank, Data Mining: Practical

Machine Learning Tools and Techniques, 2nd Edition,

Morgan Kaufmann, San Francisco, 2005.

[15] R. Servedio, personal communication, 2006.

[16] E. Walton, Data Generation for Machine Learning

Techniques, University of Bristol, 2001.

http://scholar.google.com/url?sa=U&q=http://www3.oup.co.uk/computer_journal/hdb/Volume_25/Issue_04/250465.sgm.abs.html

	1. Introduction
	2. Background
	2.1. Machine learning fundamentals
	2.2. MartiRank and SVM
	2.3. Related work

	3. Software Testing Approach
	3.1. Analyzing the problem domain
	3.2. Analyzing the algorithm as defined
	3.3. Analyzing the runtime options

	4. Findings
	4.1. Testing MartiRank
	4.2. Regression testing
	4.3. Testing multiple implementations
	4.4. Generalization to SVM-Light

	5. Discussion
	6. Limitations and Future Work
	7. Acknowledgements
	8. References

