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Abstract—With the arrival of nanometer technologies wire
delays are no longer negligible with respect to gate delays, and
timing-closure becomes a major challenge to System-on-Chip
designers. Latency-insensitive design (LID) has been proposed as
a “correct-by-construction” design methodology to cope with this
problem. In this paper we present the design and implementation
of a new and more efficient class of interface circuits to support
LID. Our design offers substantial improvements in terms of logic
delay over the design originally proposed by Carloni et al. [1] as
well as in terms of both logic delay and processing throughput
over the synchronous elastic architecture (SELF) recently pro-
posed by Cortadella et al. [2]. These claims are supported by the
experimental results that we obtained completing semi-custom
implementations of the three designs with a 90nm industrial
standard-cell library. We also report on the formal verification
of our design: using the NuSMV model checker we verified that
the RTL synthesizable implementations of our LID interface
circuits (relay stations and shells) are correct refinements of the
corresponding abstract specifications according to the theory of
LID [3].

I. INTRODUCTION

One of the most critical issues in designing Systems-
on-Chip (SOC) with nanometer technology processes is the
increasing impact of global wire delays: as more and smaller
processing cores are accommodated on a chip, global (inter-
core) wires do not scale in delay as local (intra-core) wires do
because they need to span physical distances that represent
significant proportions of the die [4], [5]. As the delays
of global wires are no longer negligible compared to gate
delays, the chip becomes a distributed system, thereby posing
a serious challenge to the traditional CAD flows that are based
on the synchronous design paradigm [6]. Furthermore, since
wire delays are hard to predict at early stages of the design
process, an increasing number of design exceptions in terms of
post-layout timing violations forces costly design re-iterations
(timing-closure problem).

Latency-insensitive design (LID) [1], [3], has been proposed
as a “correct-by-construction” design methodology to handle
the increasing impact of global communication latency in
nanometer integrated circuit design without forcing major
departures from traditional and well-established design flows.
Given a synchronous system specification, e.g. a register-
transfer level (RTL) netlist of logic blocks specified and val-
idated using a hardware-description language, a functionally-
equivalent latency-insensitive system can be automatically
derived by encapsulating each sequential logic block (referred
as a pearl or core) within an automatically generated interface
process (a shell). The advantage of this transformation is
that any communication channel connecting two core/shell
pairs can now present a varying latency in terms of number
of clock cycles without affecting the functional correctness

Fig. 1. Shell encapsulation, relay station insertion, and channel back-pressure.

of the original design. In practice the latency of a channel
is changed through the insertion of relay stations, that are
clocked buffers with capacity of at least two and simple
flow-control logic. Hence, LID provides a sound way to
address the problem of interconnect delay in nanometer design
by simplifying the application of wire pipelining for global
communication channels at any stage of the design process
and without requiring any re-design of the cores. Furthermore,
it simplifies the assembly and reuse of pre-designed cores
for building complex SOCs because these can be arbitrarily
complex sequential logic blocks as long as they are stallable:
this is the only prerequisite for LID and it can be easily
implemented with clock gating mechanisms [1], [3].

In practice, the LID methodology calls for three steps: (1)
a strictly synchronous (or strict) system is originally designed
and validated as a netlist of stallable cores; (2) a patient
system is automatically derived from the strict system by
encapsulating each core within a shell; (3) any number of
relay stations can be inserted on any channel between any pair
of shells. Fig. 1 (taken from [6]) shows a latency-insensitive
system with five core-pearl pairs connected by point-to-point,
unidirectional channels. The shell logic and relay stations
together implement a latency-insensitive protocol that is de-
signed to accommodate arbitrary variations of wire delays
while guaranteeing that the functional behavior of the original
strict system is preserved (semantics preservation).

A formal definition of the properties of relay stations and
shells is given in a denotational framework as part of the
theory of LID [3]. At the core of LID lies the notion of
latency-equivalence: two signals are latency equivalent if they
present the same ordered streams of data items but possibly
with different timing. In a synchronous model of computation
the existence of a clock guarantees a common time reference
among signals and, therefore, a signal must presents an event
at each clock cycle [7], [8]. LID distinguishes between the
occurrence of an informative event (a valid data item or valid
token) and a stalling event (void token). Any class of latency-
equivalent signals contains a single reference signal that does
not present stalling events (a strict signal) while all the other
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1 2 3 4 5
data A B C C . . .

LID-2ss void 0 0 0 0 . . .
stop 0 1 1 1 . . .

receiver stalled 0 1 1 1 . . .
sender stalled 0 0 0 1 . . .

data A B B . . . . . .
LID-1ss void 0 0 0 . . . . . .

stop 0 1 0 . . . . . .
receiver stalled 0 1 1 . . . . . .
sender stalled 0 0 1 . . . . . .

Fig. 2. Simulations of the two latency-insensitive protocols with different
back-pressure mechanisms.

members of the equivalence class (stalling signals) contain the
same sequence of informative events interleaved by one or
more stalling events. Following the tagged-signal model [8],
the notions of latency-equivalence signals, strict signals, and
stalling signals are extended to sets of signals (behaviors) and
sets of behaviors (processes) [3].

In a nutshell, LID allows to derive from the original refer-
ence strict system specification, which contains only strict pro-
cesses, any possible latency-equivalent implementation, which
contains only patient processes. Each strict process abstracts
the core in the original specification while the corresponding
latency-equivalent patient process is obtained by composing
the core with a shell. While the original cores are not designed
to process void tokens, a shell-core pair is a patient process,
i.e. it can tolerate the arrival of a void token at any of its
I/O channel ports at any given clock cycle and be able to
eventually continue with its correct operations.

In a practical implementation, void tokens are used to
capture latency variations on communication channels and are
processed by the shells in a way that makes them transparent to
the cores. In particular, relay stations, which are not present in
the original strict design, are initialized with void tokens when
introduced in the patient design to pipeline a given channel.
Void tokens are then processed by the shell while remaining
transparent to the cores. Informally, any shell acts according
to an AND-firing policy, thereby it stalls its core whenever at
least a valid token is missing on one of its input channels. As a
shell stalls its core, potential valid tokens that may be present
on other input channels are stored locally in input queues
within the shell for future processing by the core. In this way
each shell dynamically absorbs the latency variations across
the channels by realigning the valid tokens before presenting
them to the core. Whenever it is not stalled, the core processes
valid tokens on its inputs according to the functional behavior
of the original strict system.

Since in practice a queue can only have a finite size, a
downlink shell must be able to inform an uplink shell that is
necessary to postpone the production of valid token for some
cycles (backpressure). In the denotational framework of theory
of LID, a backpressure event at a given clock cycle is also
abstracted as the occurrence of a void token on the channel
between the two shells [3]. While the theory of LID defines
the general properties that any latency-insensitive protocol
must obey, many possible implementations are conceivable in
practice. A protocol implementation that relies on just two
control bits, a void bit to identify invalid data and stop bit

to implement backpressure, was first presented in [1] and
discussed in more detail together with the supporting interface
circuits in [6], [9].

Contribution. The latency-insensitive protocol that is dis-
cussed in [1], [6], [9] stipulates that a shell or relay station is
stalled whenever the stop bit is kept high for two consecutive
clock cycles. In this paper we refer to this protocol as LID-2ss,
which stands for two-stop-to-stall. The top of Figure 2 reports
a simulation trace of a channel according to LID-2ss where
the receiver is being stalled at cycle 2. Because the receiver
is stalled, valid token A is not processed and thus is buffered
by the receiver’s shell. To avoid buffer overflow and possible
loss of the data, the receiver stalls the sender by asserts the
stop bit both at cycle 2 and 3. Notice that the sender only
stalls at cycle 4 holding on its output port the valid token C
after receiving two stop signals. This means token B needs
to be buffered by a queue in the receiving shell together with
token A. In fact, both the shell queues and the relay stations
have storage capacity equal to two according to the library of
interface circuits that were proposed to support LID-2ss.

In this paper we describe a simpler latency-insensitive
protocol labeled as LID-1ss, which stands for one-stop-to-
stall, that is based on a different back-pressure convention.
In the new protocol, a shell or a relay station stalls whenever
it receives a single stop signal, as reported by the simulation
trace in the bottom part of Figure 2: here, the receiver asserts
the stop bit only at cycle 2, and the sender begins to stall
immediately at cycle 3. In our design a queue of capacity
equal to one in the receiver’s shell is sufficient since only data
token A must be buffered there during stalling while B is
preserved uplink in the channel for future processing. Notice
that our new protocol LID-1ss does not allow us to reduce the
storage capacity of a relay station to one because this would
reduce by half the performance of a latency-insensitive system
as explained in the theory of LID [3]. On the other hand, it
does allow us to reduce the storage capacity of a shell input
queue to one with respect to the original protocol LID-2ss
because we can take advantage of the storage capacity within
the core 1.

We contribute a new set of interface circuits (i.e. shells and
relay stations) that support the LID-1ss protocol and offer
substantial improvements with respect to previous works in
the literature. In particular,

• they are better in terms of area overhead and logic
delay than the circuits supporting the original latency-
insensitive protocol LID-2ss as discussed in [1], [6], [9];

• they are better in terms of both logic delay and process-
ing throughput than the synchronous elastic architecture
(SELF) that were recently proposed in [2].

We also report on our work to validate both our design
and the original design: using the NuSMV model checker we
formally verified that the RTL synthesizable implementations
of the key LID building blocks (relay stations and shells) is a
correct refinement of the corresponding abstract specifications

1To discuss how the performance of a latency-insensitive system can be
optimized through relay-station insertion and the sizing of shell input queues
goes beyond the scope of this paper and we refer to [10].
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according to the theory of LID [3].
The paper is organized as follows. In Sec. II we briefly

overview the related work on latency-insensitive design. The
RTL logic of the interface circuits supporting our LID-1ss
protocol is described in detail in Sec. III. We then discuss
the formal verification of these circuits in Sec. IV. Finally, in
Sec. V. we present a comprehensive set of experimental results
that provide a comparative analysis of LID-1ss, LID-2ss, and
SELF in terms of logic delay, effect on system’s processing
throughput, and area overhead.

II. RELATED WORK

The LID methodology has gained certain interests in recent
years, and several extensions and related approaches have
been proposed [2], [11]–[15]. Indeed, while it specifies the
fundamental properties of any latency-insensitive protocol, the
denotational framework used to develop the theory of LID [3]
leaves open the possibility of developing various protocol
specifications with different implementation characteristics.

The simpler protocol specification that we discuss in this
paper was already assumed in [13], [14]. The authors of [13]
presented a mixed-timing relay station that stalls for one clock
cycle if a stop signal is received. As they focus on describing
several low-latency mixed-timing FIFO interfaces, they do not
discuss the design of shell blocks to support LID. The authors
of [14] use max-plus algebra to analyze the performance of a
latency-insensitive system with back-pressure. The model of
the protocol that they adopt assumes that a sender is stalled
when one or more of its receivers asserts the stop bit. However,
neither the design of the shell nor the design of a relay
station is provided. Conversely, in this paper we contribute
the complete interface logic for a single-clock synchronous
system at the RTL level.

Cortadella et al. recently proposed synchronous elastic
architectures based on synchronous elastic flow (SELF) as
a new approach to LID that “combines the modularity of
asynchronous design with the efficiency of synchronous im-
plementations” [2]. The SELF protocol is another example
of a latency-insensitive protocol implementation that relies
on valid and stop bit like the LID-2ss protocol that was
originally proposed by Carloni et al. [1] and the LID-1ss
one that we discuss in the present paper. However, despite
the protocol resemblance, SELF does not use input queues
in shells to store valid tokens during stalling. Instead, a valid
but unused token is held by its immediate sender. Similarly
to LID relay stations, SELF uses sequential buffers, called
elastic buffers (EB), to pipeline long channel wires. On the
other hand, the notion of a shell interface is simply not
present in SELF. Instead, in SELF it is possible to have elastic
buffers with multiple input/output channels thanks to special
elastic fork and join control structures [2]. Robustness with
respect to latency variations is achieved in SELF by combining
elastic buffers, fork and join structures while performing an
elasticization transformation on the original circuit. This step
consists essentially of replacing each flip-flop in the core
with two transparent latches of different polarity, similar to a
master-slave structure, but with the independent enable signals
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Fig. 3. Elasticizing a processing core according to the SELF scheme.

for the two latches so that “a mechanism for double-pumping
in one cycle” can be realized. The elasticization of a processing
core is illustrated in Fig. 3, where the shaded boxes represent
the additional logic that must be added to support SELF. This
logic design structure makes the SELF protocol differ subtly
from the one that we propose with respect to the timing of
sending a stop bit to a sender. In our LID-1ss protocol this
is sent whenever a queue is full. In SELF, the interface logic
of a processing core with multiple input channels requests all
valid tokens to be resent (by asserting the corresponding stop
bits) whenever at least one invalid tokens arrives at the same
clock cycle. This has negative impacts on the performance
of a system based on SELF because: (a) it degrades the
overall system throughput and (b) it limits the maximum
clock frequency at which the final circuit can run due to long
combinational paths spanning two interconnect channels. In
Section V we present a detailed discussion of these issues in
the context of a comparative analysis of the three protocols
and we show that our proposed solution does not present any
of these drawbacks.

Suhaib et al. [16] propose a framework for validating
families of latency-insensitive protocols where a new protocol
is verified by taking a system, transforming it into a latency-
insensitive system that obeys the new protocol, and then
comparing the output behavior of the original and transformed
systems on a subset of possible inputs. This technique is good
for the development and debugging phase of new protocols
because it can uncover many bugs quickly without requiring an
exhaustive verification. As described in Sec. IV, our approach
is more applicable to a later phase of the design of a latency-
insensitive protocol implementation. In particular, we formally
verify the RTL implementation of relay station and shell
modularly in a modular fashion so that a previously verified
synchronous system does not need to be reverified after it
has been transformed into a latency-insensitive system. This
approach has several advantages. New systems can be verified
independently of the architecture they will operate on. In
addition, formally verifying the shell is quite demanding in
terms of computational memory. Verifying an entire system
implementation with numerous cores, each encapsulated in its
own shell would be prohibitively expensive at the same level
of rigor.

III. A SIMPLIFIED LATENCY-INSENSITIVE PROTOCOL AND
ITS IMPLEMENTATIONS

In this section we discuss in detail the implementation of
the simplified latency-insensitive protocol LID-1ss that we
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1 2 3 4 5 6 7 8 9 10 11

dataIn1 A1 A1 A2 A3 A4 A5 A6 A6 A6 A8 A9
In 1 voidIn1 0 1 0 0 0 0 0 1 1 0 0

stopOut1 0 0 0 0 0 0 0 0 0 0 0

dataIn2 B1 B2 B3 B4 B5 B6 B6 B6 B6 B8 B9
In 2 voidIn2 0 0 0 0 0 0 0 1 1 0 0

stopOut2 0 0 0 0 0 1 0 0 0 0 0

dataOut1 C1 C2 C2 C3 C4 C4 C5 C6 C7 C7 C8
Out 1 voidOut1 0 0 1 0 0 1 0 0 0 1 0

stopIn1 0 0 0 0 0 0 0 0 0 1 0
dataOut2 D1 D2 D2 D3 D4 D4 D5 D6 D7 D7 D8

Out 2 voidOut2 0 0 1 0 0 0 0 0 0 1 0
stopIn2 0 0 0 0 1 0 0 0 0 0 0

Fig. 4. Sample I/O behavior of the new shell. Shaded data tokens are bubbles.

introduced in Section I. Briefly, the new protocol differs from
the original LID-1ss protocol discussed in [1] in the back-
pressure mechanism: the LID-1ss protocol uses a single stop
bit to stall a sender. For both the shell and the relay station,
we first present sample simulations of their I/O behaviors and
then explain the details of the RTL designs.
Shell. Fig. 4 shows a sample simulation trace of a two-input-
two-output shell with the assumption that both input queues
have a capacity of two. Several scenarios are illustrated in
this trace. In cycle 1 both input channels (channel 1 and 2)
present valid data tokens, and, therefore, the core can be fired
to produce valid output tokens (C1 and D1) at cycle 2. At
cycle 2 the void input token of channel 1 (void bit is high)
causes the shell to stall the core at cycle 3. Therefore, both
the output tokens at cycle 3 are marked as void with their
voidOut bits being asserted by the shell.

The scenario in which the shell receives back-pressure from
its downlinks happens at cycle 5, when the downlink receiver
of channel 4 asserts the stopInD bit. Thus the output token
D4 is regarded as void at cycle 5(see Sec. I), the core is
stalled at cycle 6, and both C4 and D4 are repeated at cycle 6.
However, since the downlink receiver in channel 3 has already
sampled C4, the void bit is set for the repeated C4 so the
downlink of channel 3 will not sample the same token twice.
The accompanying void bit of D4, on the other hand, is not
set because the downlink of channel 4 has yet to sample D4.
In this case D4 is sampled at the end of cycle 6 (when the
clock edges arrives to start cycle 7).

What follows from cycle 6 shows the case when an input
queue is full. The stop request from the downlink of channel
4 causes the input queue of channel 2 to be filled up at cycle
6 (two valid tokens are stored in channel 2’s queue at the end
of cycle 5, due to the stalls at cycle 3 and 6), thus a stop
request is raised to the upstream sender in channel 2. Note
that at cycle 6 the shell is not able to store token B6. The
same token is thus repeated by the uplink of channel 2 and is
sampled by the shell at cycle 7.

Next we present the details of the shell RTL logic design.
Fig. 5(a) reports a block diagram of a two-input-two-output
shell, and the logic functions of the controller is listed in
Fig. 5(b). The control logic is general and can be easily scaled
to handle an arbitrary number of inputs and/or outputs. All the
logic functions are quite simple and can be implemented with
few logic gates.

The clock gating signal fire decides whether the core
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Fig. 5. (a) A block diagram of a two-input-two-output shell and a stallable
core module. (b) Logic functions of the shell controller.

module is fired or stalled. It is asserted when each channel
presents a valid token either directly from the channel input
or from its input queue, and no stop request has arrived on
any output channel. The second condition can be detected by
checking the current stopIn and voidOut bits for each output
channel. If the voidOutj bit is high for some channel j, the
downlink receiver of channel j has received the latest valid
token. In this case the core module can proceed even the
receiver requests to stop.

The voidOut bit informs to the downlink module on channel
j whether the current token is a valid token or not. It is a
sequential signal buffered by an edge-triggered flip-flop. The
condition stopIni · voidOuti = true means that the downlink
module on channel j is not able to process the current (also
the latest) data token. In this case the core module will be
stalled, the current token will be repeated, and voidOutj will
be set low. In all other cases the value of the voidOut bit
depends on whether the core module will be fired.

The major data-path components in a shell are the by-
passable queues storing unused valid tokens from input chan-
nels. Its minimum forward latency is zero. The by-passable
queue is implemented as a standard FIFO whose output is
multiplexed with the incoming data of the channel. If the queue
is empty, the controller selects the data token from the input
channel and passes it to the core module. The internal queue
is a sequential element: all of the operations (i.e. enqueue and
dequeue) and the update of its status (i.e. full or empty) take
place at each clock edge. Hence all of the stopOut signals,
which are the full signals from the queue, are sequential
signals.
Relay station. Fig. 6 reports sample I/O behaviors of a relay
station. From cycle 1 to 4, the relay station simply relays the
received data, void or not, from its input channel to its output
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1 2 3 4 5 6 7 8 9 10 11

dataIn A1 A1 A2 A2 A3 A4 A4 A5 A6 A7 A7
voidIn 0 1 0 1 0 0 1 0 0 0 0
stopOut 0 0 0 0 0 0 0 0 0 1 0

dataOut ∗ A1 A1 A2 A2 A3 A4 A4 A5 A5 A6
voidOut 0 0 1 0 1 0 0 0 0 0 0
stopIn 0 0 0 0 1 0 1 0 1 0 0

Fig. 6. Sample I/O behavior of the new relay station.
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Fig. 7. (a) Block diagram of the new relay station; (b) The state transition
diagram of its controller.

channel.
At cycle 9, the relay station receives a stop request from

its downlink receiver. It then stalls (and repeats its output
token) for one cycle to avoid overflow its downlink receiver.
Meanwhile, the incoming data token at cycle 9 is buffered in
the relay station’s internal storage, and the stop request is sent
to its uplink sender at next clock cycle.

Sometimes, an optimization can be applied to avoid stalling
the relay station when the downlink receiver asserts the stopIn
bit. This is shown at cycle 5 to 6. At cycle 5 the relay station
receives the stop request and sends out a void token at the
same time. Because the void token will not be sampled by
its downlink receiver, the relay station can safely continue to
relay data tokens at cycle 6 without being stalled.

Another optimization occurs when the relay station absorbs
a stop request instead of relaying it to its uplink sender. For
instance, at cycle 7 the relay station receives a void token from
its uplink and a stop request from its downlink. It can actually
discard the void token received at cycle 7, instead of buffering
it, and simply repeat its current output at cycle 8. In this way,
it avoids propagating the stop request.

Fig. 7(a) shows an implementation of the relay station for
the proposed latency-insensitive protocol; Fig. 7(b) reports
the state transition diagram of its controller. The new relay
station uses two edge-triggered flip-flops to store incoming
data tokens, and one flip-flop to buffer the voidOut bit. The
two flip-flop storing data tokens provide the necessary twofold
storage capacity. The output of the main flip-flop is the data
output of the relay station. The controller decides when to
update the three flip-flops and sets stopOut and voidOut bits
according to the protocol. The control logic is discussed next.

The controller is a two-state Mealy finite state machine with
three input and four output signals. The initial state is the
processing state, which enables the main flip-flop and sets
the stopOut bit low. In the stalling state, instead, the relay

station uses both the main and the auxiliary flip-flops to store
data tokens, and request the uplink sender to stop sending
more data tokens by asserting its stopOut bit. Note that the
value of the stopOut bit depends only on the current state of
the controller, and thus no combinational path exists between
stopIn and stopOut .

The switching from the processing state to the stalling state
is triggered by the condition that the stopIn bit is high, and
both the voidIn and voidOut bits are low. The asserted stopIn
bit indicates that the receiver is not able to process the output
data taken of the relay station. Hence the relay station has
to maintain its output token by keeping the same data in the
main flip-flop. On the other hand, the relay station must save
the incoming valid token (indicated by low values of voidIn
and stopOut) to the auxiliary flip-flop, and enter the stalling
state. Note that the incoming voidIn bit is not saved in the
void flip-flop, because in this case it is always low (this is part
of the condition to switch from the processing to the stalling
state) and thus can be easily recovered.

The relay station goes back from the stalling to the process-
ing state when its downlink receiver deasserts the stopIn bit,
indicating that it is ready to receive more valid data tokens.
Then, the relay station moves the token saved in the auxiliary
flip-flop to the main flip-flop. It also updates the void flip-flop
with a constant low value because the accompanying void bit
of the data token in the auxiliary flip-flop must be deasserted.

IV. FORMAL VERIFICATION OF THE PROTOCOL
IMPLEMENTATION

An important compositional result is proven as part of
the theory of latency-insensitive design [3]: if all modules
in a strict system are replaced by corresponding latency-
equivalent patient modules, then the resulting system is patient
and latency equivalent to the original one. Naturally, this
theoretical result is not enough to guarantee that a particular
implementation of a latency-insensitive system is correct. The
theory tells us that we can build a patient system out of
patient parts, but we must also verify that the parts (the actual
implementations of the shells and relay stations) are patient.
On the other hand, we can verify the implementations of
shells and relay stations in isolation because according to
the compositionality rule for latency equivalence of patient
processes, a system composed of shell-core pairs and relay
stations is also latency equivalent to the original strict system.

We first translated by hand the synthesizable VERILOG code
implementing the logic of the shell and relay station described
in Section III into the NuSMV language [17]. Then we used
the NuSMV model checker to verify that they are correct
refinements of the specifications given in the LID theory.

In particular we verified the design for properties related to
latency equivalence, liveness, and storage capacity. For a relay
station this is sufficient to prove that it is a patient process. The
shell is a little trickier. For the shell, patience also depends on
the functionality of the core that the shell encapsulates and the
shell implementation varies slightly depending on the number
of input and output channels of its core.
Verification approach. Figure 8 and Figure 9 illustrate our
verification approach for the relay station and the shell respec-
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tively. The verification framework consists of the component-
under-verification (CUV) together with the environment,
queue, and monitor modules.

The environment generates data items, the valid bits, and
the stop bits in an unconstrained manner: at each clock cycle,
the environment may non-deterministically choose a value
for dataIn, and non-deterministically set voidIn and stopIn
to either true or false values. This enables verification under
all possible input sequences; if any possible input sequence
fails, a counterexample is generated. The monitor checks the
correctness of the property to be verified by comparing the
stream(s) of valid data produced by the CUV versus the
stream(s) of data that passed through the queue. The correct
functioning of a latency-insensitive component is checked
under the assumption that its environment obeys the latency-
insensitive protocol i.e. the environment holds a data token
until it is sampled by the component. We do not impose this
assumption on the environment and instead track the sampling
of data tokens according to the latency-insensitive protocol.

The queue is a FIFO used to store the valid data tokens
sampled by the monitor until they are matched with the output
tokens. It has standard push and pop operations for adding new
valid tokens to the tail of the queue and popping valid tokens
off the head of the queue. A valid data token is pushed in
the queue whenever the CUV latches in the token. Similarly
a valid data token is popped off the queue whenever the CUV
outputs a data token. These decisions are made by the queue
control logic based on the values of the stop and void bits.
The queue’s pop signal is forwarded to the monitor, and when
a pop occurs the monitor compares the queue’s output to the
CUV’s output.

For the verification of the relay station a simple FIFO is
sufficient because the relay station itself has simple store-and-
forward behavior. For the verification of the shell, we also
need a core module to perform computation on the given
inputs and produce output data. We chose a 2-input, 2-output
core that computes in parallel the two-input NAND and NOR
logic operations and stores the results in two internal flip-flops.
Separate queues are maintained for each incoming channel,
and a second core module is instantiated outside the shell.
When both input queues have valid data tokens, these are
passed to the core and the results are stored in an output queue.

Queue_C

Core

Shell

Core

Environment

sOut_A

sOut_B

dIn_A

vIn_A

dIn_B

vIn_B

dOut_C

vOut_C

dOut_D

vOut_D

sIn_C

sIn_D

Monitor

poppush

Control

push pop

Control

poppush

Control

push pop

Control

Queue_A

Queue_B Queue_D

Fig. 9. Verification Framework for a Shell

Property Module name Time Memory
Latency Relay station 0.2 sec 7.2 MB
Equivalence Shell 15.5 min 2.4 GB

Liveness Relay station 5.5 sec 14.3 MB
Shell 1.4 hours 2.4 GB

TABLE I
MEMORY AND TIME STATISTICS FOR THE VERIFICTION TASKS.

The monitor compares the output of the shell with the data in
the output queue.
Formal Properties. We checked the properties of latency
equivalence, liveness, and storage capacity. The latency equiv-
alence property expresses that there is no loss, duplication or
reordering of valid tokens in a data stream. To test latency
equivalence of the relay station, we checked that the relay
station’s outgoing data stream is latency equivalent to its in-
coming data stream. To verify latency equivalence of the two-
input two-output shell, we compared the data tokens produced
by the core alone and those produced by the core/shell pair.

The liveness property expresses progress in the system. A
component is live if it produces meaningful data provided the
environment allows it. We imposed a fairness constraint on the
environment for the void and stop bits so that the environment
generates valid data items infinitely often and enables the
downlink stream infinitely often. The liveness property states
that the component generates valid data tokens infinitely often
and enables the uplink stream infinitely often.

The storage capacity property checks that the number of
data items in the monitor queue never exceeds the storage
capacity of the component. The relay station capacity is equal
to two. The storage capacity of the shell depends on the size
of its internal queue, which is at least equal to one.

The above properties were verified individually for the shell
and relay station Verilog implementations. All of the properties
passed verification. The latency equivalence property was
also tested on known erroneous implementations of both the
shell and relay station. The verification failed and generated
counterexamples as expected.

The verification was performed on a machine with 2 AMD
Opteron TM processors and 3.5 GB memory over Redhat
Linux with the Fedora Core 6, and NuSMV version 2.4.1.
Time and memory usage from the verification experiments are
summarized in Table I.
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Fig. 10. Marked graph models for (a) LID-2ss and LID-1ss; (b) SELF.

V. COMPARISONS OF LATENCY-INSENSITIVE PROTOCOLS
AND IMPLEMENTATIONS

In this section we present a comparative analysis of the
proposed latency-insensitive protocol implementation of LID-
1ss versus the implementation of both the original LID-2ss
protocol and the SELF protocol in terms of system throughput,
logic delay, and area overhead. In Section II we provided
a brief overview of SELF [2] and we clarified that SELF
does not use the concept of shell interfaces but relies instead
on elastic fork and join structures. In the sequel, however,
whenever it is convenient we will use the term “shell” to
refer to the SELF interface logic for a processing core and,
in particular, to the control of the substitute elastic buffer and
the structures joining input and forking output channels.
System Throughput. To make a system robust with respect
to communication latency through the application of either
LID or SELF may generally have a negative impact on the
its performance measured as processing throughput. This is
defined as the ratio of the number of valid tokens over the
number of valid tokens plus void tokens that the system
processes over time. Since both a relay station (RS) and an
elastic buffer (EB) are initialized with a void token and since
void tokens may create more void tokens whenever they stall
a computation, the placement of RS’s or EBs on channels
that belong to feedback loops and/or re-convergent paths may
induce permanent degradation of the system throughput. The
system throughput can be computed exactly by using either
marked graph models [2], [18], or equivalently max-plus
algebra [14]. Fig. 10 shows the marked graph models for LID
(LID-2ss and LID-1ss [10]) and SELF [2]. Note that in the
LID shell model in Fig. 10(a), the sizes of the shell queues
are represented by a variable q (in a shell input channels can
be statically sized differently for performance purposes [10]).

Both the LID and the SELF models are compositional
as they inherit their topological structure from the modeled
system. Fig. 11 reports the LID model and the SELF model
for the system shown in Fig. 12(a). Note that in the LID model
each transition takes a single time unit to fire while in the
SELF model a transition takes half a time unit to fire because
SELF is a latch-based design.

The throughput of a LI or SELF system is equal to the
inverse of the maximum cycle mean [19] of its corresponding
marked graph model.2 The mean of a cycle is the ratio between
the sum of each transition’s firing time and the number of
tokens on the cycle (an invariant number in a marked graph).
For both models in Fig. 11 we highlighted the critical cycles,

2The maximum cycle mean of a graph can be computed by a number of
efficient algorithms [20], [21].

relay stationA

B

C

(a) LID-1ss

EB

B

C
A

(b) SELF

Fig. 11. Marked graph models of the example in Fig. 12(a).

i.e. cycles having the highest cycle mean. The LID-1ss-based
implementation has a maximum cycle mean of 4/3, and thus
has a throughput of 3/4 = 0.75, assuming all input queues in
a shell have a capacity of one [10], [14]. The throughput of
the SELF version, on the other hand, is lower: 2/3 = 0.67.

In this particular example, the ideal system throughput,
equal to 1, can still be achieved for both implementations. For
the LID-1ss version it is necessary either to insert an additional
relay station between cores B and C (or A and B) or to raise
to two the size of the input queue in the C shell for the channel
B → C. The second approach is called optimal channel queue
sizing [10], [14]. Since SELF does not use queues, the only
solution to improve the throughput is to insert an additional
elastic buffer between cores B and C (or A and B).

For certain systems, however, a SELF-based implementation
cannot achieve the same system throughput of an imple-
mentation based on either LID-1ss or LID-2ss due to their
particular structures, typically characterized by a combination
of reconvergent paths and/or feedback loops. For example, for
the system shown Fig. 12(b) LID-1ss and LID-2ss can achieve
higher system throughput than SELF. Note that the system has
a similar reconvergent path from A to C as the example in
Fig. 12(a), but it has two additional cycles: (A, B, E, A) and
(B, C, D, B). In a LID-1ss implementation, to achieve the
ideal throughput equal to 1 one must increase the input queue
size of channel B → C in C’s shell to 2. In this case, however,
it is impossible for a SELF implementation to achieve such an
ideal throughput. The best one can do is to insert an additional
elastic buffer between B and C (or A and B), which brings
the throughput up to 3/4 (because the cycle with the inserted
EB becomes the new critical cycle).

The basic reason why the SELF design cannot match
the throughput of LID-2ss and LID-1ss is because it lacks
shell input queues to temporarily store valid tokens. Instead,
whenever an elastic core has two or more input channels, the
arrival of an invalid token in any input channel causes re-
transmissions of all other valid tokens arrived in the same
clock cycle. As the above examples show, this re-transmission
can be more frequent in a SELF system than in a LID system,
where unprocessed good tokens can be stored in the shell
queues as long as space permits.
Interface Logic Delay. The delay of LID and SELF’s interface
logic affects the overall system performance in two ways. First,
the longest combinational logic path within an interface or
across two communicating interfaces might become the new
critical path of the system, and thus determine the maximum
clock frequency at which the system can run. Second, when
pipelining a wire using RS/EBs, interface with shorter cross-
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Fig. 12. Examples of systems with unbalanced reconvergent paths.

interface logic delays can be stretched farther away, and thus
less RS/EBs are needed to span the same distance. Because
each inserted RS or EB introduces an additional void token
into the system and will potentially reduce system throughput,
it is desirable to design interfaces with minimal cross-interface
logic delay.

In order to analyze the logic delays of LID-2ss, LID-
1ss, and SELF’s interface logic, we synthesized their RTL
implementations3 and mapped with a 90nm industrial standard
cell library using Synopsys Design Compiler [22]. As shown
in Fig. 13(a), the interface logic is assumed to drive optimally
buffered wires [4], [23]. The critical logic delays within each
individual component and across the logic of communicating
interface are then extracted using Design Compiler’s static
timing analyzer.

For LID-2ss and LID-1ss designs based on edge-triggered
flip-flops (FFs), the slack is derived by deducting the maxi-
mum logic delay between two flip-flops and the flip-flop setup
time from the clock period. For SELF design based on level-
sensitive latches, the slack is calculated by subtracting the
maximum logic delay between two active-high (or active-low)
latches and latch setup time from the clock period.4 When
calculating cross-interface slacks, as shown in Fig. 13(a) (LID-
2ss and LID-1ss) and Fig. 13(b) (SELF), the delays of forward
paths (data and void /valid ) tf and of backward paths (stop)
tb are both considered (without counting delays of buffered
wires across the channel).

Fig. 14(a) and Fig. 14(b)-14(e) summarize the results of our
analysis of the impacts of logic delay on system performance
in terms of the minimum slacks and the maximum physical
lengths of interconnects as allowed by the three sets of
interface logic respectively. Fig. 14(a) reports the minimum
slacks left in each interface logic and four combinations of
communicating interface logic at 500 MHz clock rate, while
ignoring the delays of buffered interconnects. The channel
width is assumed to be 64-bit wide, and each core has two
input channels. The more slack an interface logic has, the
faster clock rate can be applied. LID-1ss has more slack in
all but one scenarios, and thus enjoys faster clock rates than
LID-2ss and SELF. Conversely, the slack of the shell-shell pair
in SELF is significantly low. This may either limit the system
clock frequency, or require the insertion of an additional elastic
buffer between the two shells to increase available slack. But

3We implemented the proposed LID-1ss design, and obtained the RTL
implementations from the authors of the LID-2ss and SELF.

4Although a latch-based design like SELF allows time borrowing, the total
delays over a path spanning a chain of active-high and -low latches must stay
within a fixed number of clock periods determined by the number of high-low
latch pairs. To simplify the analysis without sacrificing accuracy, we assumed
that the path between two active-high (or -low) latches must be within one
clock period.
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(a) Long wires are optimally buffered by repeaters.
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(b) SELF slack computation and the combinational paths introduced by the join
structure.

Fig. 13. Wire buffering and slack computations.

inserting an EB introduces a void token and, therefore, it may
possibly lower the system throughput.

Fig. 14(b)-14(e) report maximum allowable wire lengths
between four different pairs of communicating interface com-
ponents at various clock frequencies. LID-1ss presents the
maximum interconnect lengths in all four possible scenarios.
Note that the “X” marks indicate that at the given clock
frequency the timing constraint is not met in the corresponding
pair of communicating interface logic, so additional relay
stations/elastic buffers must be inserted between them or the
pair must be physically close to avoid long interconnect wires.
The former solution might decrease system throughput; the
latter might constrain physical design tools.

The maximum physical lengths of interconnects allowed
between the RS-shell or shell-shell pairs in SELF are shorter
than what the corresponding slacks imply. This is because
the join structure used in the two-input “shell” in SELF
creates multiple combinational paths running across a single
channel twice or spanning across two channels, as indicated in
Fig. 13(b). Therefore the slack available between the two-input
shell and its uplink counterparts are shared among the interface
logic and the corresponding forward path and backward path
between them. As a result, the join structure allows a much
shorter physical length for the interconnects, and physical
design tools must be very careful to “balance” the lengths of
the “joined” wires to avoid timing violations. Note that these
combinational paths are introduced by the interface logic with
multiple input channels (here the two-input shell), regardless
of whether the senders are elastic buffers or other processing
cores.

It should be noted that the combinational paths created by
the join structure are inherent to SELF, and cannot be avoided
by redesigning the join structure. SELF chooses to buffer
unused valid data at the immediate sender’s end to avoid using
input queues at the receiver’s end. Hence a multi-input core
receiving an invalid token must request the re-transmission of



9

shell RS shell-RS RS-RS RS-shell shell-shell
LID-1ss 1.23 1.28 1.32 1.5 1.33 1.24
LID-2ss 1.14 1.23 1.32 1.32 1.1 1.27
SELF 1.24 1.00 1.21 1.44 1.31 0.92

(a) Slacks (in nanoseconds) of interface logic at 500 MHz clock rate.
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(d) RS → 2-in-2-out shell
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Fig. 14. Minimum slacks and maximum physical lengths of interconnects
allowed by interface logic.

all of the valid tokens received at the same clock cycle as
they arrive. This means that combinational paths between the
communicating interface logic are required.

The above analysis of logic delay shows that the proposed
LID-1ss interface logic can support higher system clock rate
and throughput than LID-2ss and SELF. The reason is that
the interface logic of LID-1ss has more slack, and requires a
smaller number of wire pipelining elements (relay stations) be-
cause it allows longer interconnect between its interface logic.
Latch-based SELF design does provide additional flexibility
to the physical design tools because time borrowing allows an
EB to tolerate varying wire delays and thus to be placed in a
wider range of area. But this flexibility comes at the price of
introducing new combinational paths whenever join structures
are used for processing cores with multiple input channels.
Area Overhead Comparisons. Shell interfaces, relay stations
and elastic buffers do occupy active silicon area and therefore

represent a necessary area overhead of any latency-insensitive
design approach. We analyzed and compared area overhead
figures for the three approaches discussed in this paper after
performing logic synthesis and technology mapping.

Fig. 15(a) reports the area overhead of the shell designs
in LID-2ss and LID-1ss over a range of different channel
widths; Fig. 15(b) shows the corresponding overhead incurred
in elasticization of processing cores with different number
of FFs. The area overhead of shells in both LI designs is
dominated by input queues, whose area depends on the widths
of input channels. This also means that the area of the two LID
shells is roughly the same as shown in Fig 15(a). For SELF,
the area overhead of elasticizing a processing core grows with
the number of flip-flops contained in the core. This is because
the substitute latches require additional input steering logic as
illustrated in Fig. 3.

Fig. 15(c) compares the area overhead of the three shells
applied to 32 × 32 pipelined multipliers from the Synopsys
DesignWare [24] IP core library. For a number of pipeline
stages varying from 2 to 6 the bar diagram reports the absolute
area of the synthesized multipliers as well as the area of
the corresponding shell interfaces for LID-2ss, LID-1ss, and
SELF. The overhead ratios between each shell’s area and
the multiplier’s area is labeled on top of each corresponding
bar. As expected, the absolute area of the shells in LID-2ss
and LID-1ss are constant regardless the number of pipeline
stages, but the area overhead ratio of the LID-1ss shell’s area
drop from 27% to 21% as the multiplier’s logic grows (the
same trend applies to LID-2ss). In contrast, SELF shell’s area
grows with the number of pipeline stages, and is higher than
LID-2ss and LID-1ss in the case of the 6-stage pipelined
multiplier.Note that the area overhead ratios of SELF shells
to the multipliers actually increases as the multiplier’s logic
increases. Overall the shell design of LID-2ss and LID-1ss
scale better with the internal complexity of the logic core
than their SELF counterparts. Although in this example the
area overhead of LID-1ss and LID-2ss are significant when
compared to the cores, we expect this to become fairly
moderate when LID is applied to more complex IP cores than
a pipelined multiplier.

Fig. 15(d) reports the area of relay stations and elastic
buffers over a range of different channel widths. The area over-
head of the latch-based SELF EBs is 2/3 of their counterparts
in LID-2ss and LID-1ss. This is due to SELF clever use of
two latches to provide the necessary twofold capacity. Due to
the more complex steering logic between the two flip-flops
the LID-1ss’s relay stations are slightly larger than LID-2ss’s
ones.

VI. CONCLUDING REMARKS

We proposed a new class of interface circuits to support
latency-insensitive design based on LID-1ss, a simpler latency-
insensitive protocol. We presented a detailed experimental
analysis comparing LID-1ss to the original protocol discussed
in [1], [9], that we called LID-2ss, as well as to the syn-
chronous elastic architecture (SELF) proposed in [2]. We
showed that LID-1ss offers clear improvements in terms of
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Fig. 15. Area of synthesized interface logic components.

area overhead and logic delay with respect to LID-2ss and
in terms of both logic delay and processing throughput with
respect to SELF.

Both LID-2ss and LID-1ss are aimed at a faithful applica-
tion of the latency-insensitive design methodology [1], while
SELF partially departures from it. Basically SELF embraces
the LID idea of automatic wire pipelining via the insertion of
elastic buffers, but replaces the notion of shell encapsulation
of a processing core with an elasticization step that requires
the replacement of all flip-flops in a core with a pair of
transparent latches of different polarity (plus some necessary
control logic). Therefore, SELF is arguably an approach that
is both more intrusive and of more limited applicability. In
fact, while LID-2ss and LID-1ss do not make any assumption
on how a processing core is implemented (this can be either
a soft IP core or a hard IP core since no modification to its
logic is required), SELF is not applicable to hard IP cores
and in order to manipulate a synthesizable soft IP core which
is described using a hardware-description language (HDL) it
requires direct support from the HDL compiler with respect
to memory elements inference and replacement.
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