
Data Sanitization: Improving the Forensic Utility of Anomaly Detection
Systems

Gabriela F. Cretu, Angelos Stavrou, Salvatore J. Stolfo and Angelos D. Keromytis
Department of Computer Science, Columbia University

{gcretu, angel, sal, angelos}@cs.columbia.edu

Abstract

Anomaly Detection (AD) sensors have become an in-
valuable tool for forensic analysis and intrusion detec-
tion. Unfortunately, the detection performance of all
learning-based ADs depends heavily on the quality of the
training data. In this paper, we extend the training phase
of an AD to include a sanitization phase. This phase sig-
nificantly improves the quality of unlabeled training data
by making them as ”attack-free” as possible in the ab-
sence of absolute ground truth. Our approach is agnos-
tic to the underlying AD, boosting its performance based
solely on training-data sanitization. Our approach is to
generate multiple AD models for content-based AD sen-
sors trained on small slices of the training data. These
AD “micro-models” are used to test the training data,
producing alerts for each training input. We employ vot-
ing techniques to determine which of these training items
are likely attacks. Our preliminary results show that san-
itization increases 0-day attack detection while in most
cases reducing the false positive rate. We analyze the per-
formance gains when we deploy sanitized versus unsan-
itized AD systems in combination with expensive host-
based attack-detection systems. Finally, we show that
our system incurs only an initial modest cost, which can
be amortized over time during online operation.

1 Introduction

A network-based intrusion detector can be used as an on-
line traffic/input-filtering subsystem, or as a forensic tool
to identify likely data that created a fault in a system after
the fact. As ”signature-based” network intrusion detec-
tion systems (NIDS) appear to become obsolete in de-
tecting 0-day malicious traffic [6], effective anomaly de-
tection that models normal traffic well remains an open
problem. Ideally, an anomaly detector should achieve
100% detection accuracy,i.e., true attacks are all iden-
tified, with 0% false positives. However, the particu-

lar modeling algorithm one uses to compute a model of
”normal” data can be in error due to several problems:
• The model may have over-fit the training data and thus
have poorly generalized the representation of ”normal
data”. Thus, any data that is not observed during train-
ing can be regarded as anomalous, even if it may not be
an attack. This leads to an alert being generated that is a
”false positive”.
• The training data may contain attacks that would ”poi-
son” the learned model of ”normal” data allowing such
attack data to be considered normal data,i.e. generat-
ing false negatives. Such problems have been noted by
others in the past [8].

Hence, the alerts generated by an anomaly detector
may or may not be true attacks. Many of these alerts
may be false positives, an oftentimes cited problem with
anomaly detectors [2]. We posit that the goals typically
set forth for AD systems (reducing or entirely eliminat-
ing all false positives) are not the correct performance
metric. Rather, the goal should be to create a detector
that accurately identifies true normal, attack-free data,
that may be processed directly by the intended service
or application. All other data that generates alerts by the
anomaly detector should be regarded as ”suspect data”
that would need to be further tested by another compo-
nent to validate the true attacks from the false positives.

Our proposed approach is to better sanitize the train-
ing data, thereby computing a more accurate anomaly
detector model that identifies suspect data properly and
produces fewer false alerts.We assume that one can de-
termine whether a packet is a true attack by using a heav-
ily instrumented host-based ”shadow” server system akin
to a honeypot. By diverting all suspect data to this ora-
cle, we will be able to identify true attacks by way of de-
tecting malicious or abnormal actions performed by the
server when processing the suspicious data. However,
such a heavily instrumented shadow server is assumed to
be (and in practiceis) substantially slower (usually or-
ders of magnitude slower) than the native application to
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be protected [1] (another approach would be to correlate
the alert with input from another anomaly detector [3]).

To address this problem, we generalize the notion of
training for an AD system. Instead of using a single AD
system trained on a single large set of training data, we
use multiple AD instances. These instances are trained
on smaller, non-overlapping slices of the original traffic
dataset. This process produces models that represent a
very localized view of the training data. We call such
modelsmicro-models.

Armed with the micro-models, we are now in a po-
sition to assess the quality of our training data and to
automatically detect and remove any attacks or abnor-
malities that should not be considered part of the “nor-
mal” model. The intuition behind this approach is the
following: given a training set that spans a sufficiently
large time interval, an attack or an abnormality appears
only in a relatively confined window of time. To identify
the attack, we use the micro-models in a voting scheme.
By applying this method on a second set of training data
we obtain thesanitized model,which is very likely to
be attack-free and therefore providing a boost in perfor-
mance when used as input during the testing phase of the
chosen anomaly detector.

Note that we are not claiming a complete solution to
the false positive problem; instead, we pose a different
performance objective for anomaly detectors,i.e.,within
realistic operational environments, the key objective is to
optimize the security and performance throughput of the
system under protection. Our goal then is to limit the
amount of network traffic data that would be safely pro-
cessed by the shadow server, and to identify the normal,
attack-free data that can processed by the native service
or application without instrumentation. The performance
objective is thus to:
• accurately identify a set of ”suspect data” in the in-
put stream that is shunted to an expensive shadow server,
which will verify whether the data in question is a true at-
tack or a false positive artifact of the anomaly detector;
• maintain service throughput by limiting the amount
of data that will be subjected to such host-based tests,
which would slow down response rates for only that por-
tion of the input stream deemed abnormal.

2 Sanitization Architecture

Cleaning temporally ordered training data is a crucial
first step for training any learning-based anomaly detec-
tor. Supervised training (using labeled datasets) may be
ideal, but it is generally infeasible in view of the amount
of data that needs to be cleaned or validated. We con-
jecture that attacks would be a minority class of data1,

1While the total attack volume in any given trace may be high, the
frequency of specific attacks is generally low relative to the legitimate

and thus having a large training set increases the proba-
bility that an individual datum is normal. With increas-
ing amounts of training data, the probability of malcode
presence also increases. This malcode data may poison
the model and complicates the task of classifying normal
data.

The corollary to our conjecture is that while the time
an attack appears in a training set is unknown, the attack
itself will manifest as a few packets that will not per-
sist throughout the dataset. Common attack packets tend
to cluster together over small periods, forming a sparse
representation over time. For example, once a worm out-
break starts it will be concentrated in a relatively short
period of time, and eventually the infected hosts will be
either patched, rebooted or filtered, causing less appear-
ance of that worm in the dataset [4]. Again, we stress the
fact that these assumptions hold true over relatively long
periods of time, necessitating the use of large training
datasets to properly sanitize an AD model.

2.1 Micro-models
Based on our observations, if we partition a large training
dataset into a number of smaller, time-delimited training
sets, we may compute a minority set of partitions (micro-
datasets) that contain attack vectors. Each of these time-
based ”epochs” is used to compute a ’micro-model’ us-
ing any chosen anomaly detection algorithm. Hence, for
time period (epoch)ti we compute modelMi. Given our
assumptions, a distinct attack vector that may appear dur-
ing time periodtj will affect the model computed for that
time period, henceMj may be poisoned, having mod-
eled the attack vector as normal data during epochtj ,
but modelMk computed for time periodtk, k 6= i would
not be poisoned.

To maximize our likelihood of finding a set of micro-
models that are not poisoned by attack data, we need to
identify the right level of time granularity. The training
epochs can naturally vary over the entire set of traffic
data captured. In our experimental work reported later,
we analyzed packets traces captured over hundreds of
hours and found that 3 to 5 hours of packet capture was
sufficient to generate well-behaved micro-models (they
do not generate large numbers of false positives).

2.2 Sanitized and Malicious Models
In the second phase, we compute a new AD model by
using previously built micro-models to sanitize training
data. We start with a new dataset, which is tested by

inputs. This may not be the case in certain circumstances,e.g.,during
a DDoS attack or during the propagation phase of a fast worm such
as Slammer. It may be possible to identify such non-ideal conditions
for AD training by analyzing the entropy of a particular dataset (too
high or too low may indicate exceptional circumstances). We leave this
analysis for future work.
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instances of the proposed AD against the micro-models
Mi. Each of these tests results in a labeled data setLi,
with each packet labeled asnormal or abnormal. We
note that these labels are not yet generalized, being rep-
resentative of the micro-model that performed each test.
The labeled data sets are then processed through a vot-
ing scheme, which assigns the final label to each packet.
Consider the case where a micro-modelMa includes the
information of an attack; when used for testing, it will
probably label a packet containing that particular attack
vector asnormal. However, given our conjectures, only
a minority of the micro-models will include the same at-
tack vector asMa. Thus, we use voting strategies, where
packets are labeled as normal ifa weighted majority of
all AD instances will agree on this. As a result, we cre-
ate two disjoint datasets: one that contains only majority-
voted normal packets from which the “sanitized model”
is built, and the rest, from which a “model of malicious
attack data” is computed.

For the voting algorithms we chose two simple strate-
gies presented below. Investigating and evaluating other
voting strategies is an interesting item for future work.

• naive voting, which assigns to eachADi the same
weight in the voting process. A packet is deemed to be
normal if:

1
N

N∑
i=1

ai ≤ V

whereai = 0 if ADi finds the packet normal; other-
wiseai = 1.

• weighted voting, which assigns to each micro-model
Mi a weightwi equal to the number of packets used to
train it. A packet is considered normal if:

1∑N
j=1 wj

N∑
i=1

wi · ai ≤ V

The thresholdV is the number of votes required for
a packet to be considered abnormal. We have to have
that1 − V > Np, whereNp is the maximum number of
models poisoned by any specific attack vector.

After the training phase, we can use the sanitized
model with the anomaly detector for online testing. Re-
call, our approach is agnostic to the anomaly detection
algorithm, generating only a sanitized model that is then
used for testing. As a result, our scheme can be applied
to a wide range of ADs, as illustrated in the following
section.

3 Evaluation

In this section, we experimentally quantify the increase
in the detection accuracy of out-of-the-box content-based
anomaly detection systems when we apply training data
sanitization. The goal of our system is to detect all true
attacks and at the same time maintain or even reduce the

total number of generated alerts. We evaluate our ap-
proach using two different scenarios. In the first scenario,
we measure the performance of the AD sensor with and
without sanitization. Additionally, we consider the case
where we use the AD as a packet classifier for incoming
network traffic: we test each packet and divert all pack-
ets that generate an alert to a back-end shadow server.
Both the feasibility and scalability of this scenario de-
pend mainly on the amount of alerts generated by the AD
sensor, since all “suspect-data” are delayed significantly
by the shadow server and such data come from both real
attacks and false alerts.

For our experiments, we use two content-based
anomaly detectors Anagram [10] and Payl [9]. Both
detectors, like most anomaly detection sensors, have a
training and testing phase. For training phase, we sup-
ply the AD sensor with “normal” data used to build a
normality model. This phase is crucial to the sensor’s fu-
ture detection performance: the detector could compute
a faulty model if provided with training data that hap-
pens to include malicious or attack packet content. This
becomes more apparent if we notice that anomaly detec-
tion sensors operate on the principle that attacks, and par-
ticularly zero day attacks, manifest as packet datagrams
never before seen during training. Although dependent
on a clean initial model, AD sensors have quite different
learning algorithms to determine whether they have seen
a particular datum before or not. We do not describe the
details of the algorithms used during the testing phase,
as they are not germane to the topic of this paper; the
interested reader is referred to the citations above.

Our experimental corpus consists of500 hours of real
network traffic, which translates into approximately four
million content packets. We split these data into three
separate sets: two used for training and one used for
testing. We use the first300 hours of traffic to build
the micro-models and the next100 hours to generate the
sanitized model. The remaining100 hours of data, con-
sisting of approximately775, 000 packets, were used for
testing. In addition, to validate our results, we used the
last100 hours to generate the sanitized model while test-
ing on the other100-hour dataset.

3.1 Experimental Results

In our initial experiment, we measured the detection
performance for both Anagram and Payl when used as
stand-alone online anomaly detectors. Then, we repeated
the same experiments using the same setup and net-
work traces but including the sanitization phase. Table 1
presents our findings, which clearly show that by using
a sanitized training dataset, we boost the detection capa-
bilities of both AD sensors. Observe that we maximize
the detection of the real alerts while generating very low
false positives rates. It is important to notice that without
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sanitization, the normal models used by Anagram were
poisoned with attacks and thus unable to detect new at-
tack instances appearing in the testing data. Therefore,
making the AD sensor more sensitive,e.g. changing
its internal detection threshold, would only increase the
false alerts without increasing the detection rate. In this
experiment, the traffic contains instances of phpBB fo-
rum attacks (mirela, cbac, nikon, criman).

Table 1: AD sensors comparison

Sensor FP rate TP rate

Anagram 0.00074% 0%
Anagram with Snort 0.00214% 29.29%
Anagram with Sanitization 0.00089% 100%
Payl 0.00849% 0.0%
Payl with Sanitization 0.00373% 29.29%

We reiterate the fact that our training dataset was in-
deed poisoned with attack vectors and thus the worm
packets were also included in the normal model, which
resulted in detection rate of0%. When using previously
known malcode information (using Snort signatures rep-
resented in a “malicious model”), Anagram was able to
detect a portion of the worm packets. Of course, this de-
tection model is limited because it requires that a new
0-day worm will not be sufficiently different from pre-
vious worms that appear in the traces. To make mat-
ters worse, such a detector would fail to detect even old
threats that do not have a Snort signature. On the other
hand, if we enhance Anagram’s training phase to include
sanitization, we do not have to rely on any other signa-
ture or content-based sensor to detect malware.

Furthermore, the detection ability of a sensor is inher-
ently dependent on the actual algorithm used to compute
the distance of a new worm from the normal model. For
example, although Payl is effective at capturing attacks
that display abnormal byte distributions, it is prone to
miss well-crafted attacks that resemble the byte distri-
bution of the target site [10]. Our traces contain such
attacks, which is the reason why, when we use the sani-
tized version of Payl, we can only get a30% worm de-
tection rate as opposed to100%. The sanitization phase
is a necessary requirement in detecting malcode but not a
sufficient one: the actual algorithm used by the sensor is
also very important in determining the overall detection
capabilities of the sensor.

Overall, our experiments show that the AD signal-to-
noise ratio (i.e., true positives over false positives) can be
significantly improved even in extreme conditions, when
intrinsic limitations of the anomaly detector prevent us
from obtaining a100% attack detection.

To stress our system and to validate its operation, we
also performed experiments using traffic in which we ar-
tificially injected worms such as CodeRed, CodeRed II,

WebDAV, and a worm that exploits the nsiislog.dll buffer
overflow vulnerability (MS03-022). All instances of the
injected malcode were recognized by the anomaly detec-
tors when trained with sanitized data. That re-enforced
our initial observations about the sanitization phase: we
can both increase the probability of detecting a zero-day
attack and of previously seen malcode.

3.2 Performance Evaluation
Another aspect of an anomaly detection system that we
would like to analyze is its impact on the average time
that it takes to process a request. In addition, we mea-
sure the overall computational requirements of a detec-
tion system consisting of an AD sensor and a host-based
sensor (shadow server). The AD sensor acts as a packet
classifier diverting all packets that generate alerts to the
host-based sensor while allowing the rest of the packets
to reach the native service. Our goal is to create a system
that does not incur prohibitive increase in the average re-
quest latency and at the same time can scale to millions
of service requests. Therefore, we would like the AD
to shunt only a small fraction of the total traffic to the
expensive shadow servers.

In our experimental setup, we used two well-known
instrumentation frameworks: STEM [5] and DYBOC
[1]. STEM exhibits a4400% overhead when an applica-
tion such as Apache is completely instrumented to detect
attacks. On the other hand, DYBOC has a lighter instru-
mentation, providing a faster response, but still imposes
at least a20% overhead on the server performance. We
conducted our tests on a PC with a 2GHz AMD Opteron
processor with 8GB of RAM, running Linux.

To calculate the overall overhead, we used the same
method used in [10]. We define the latency of such an
architecture as following:l′ = (l∗(1−fp))+(l∗Os∗fp),
wherel is the standard (measured) latency of a protected
service,Os is the shadow server overhead, andfp is the
AD false positive rate.

To quantify the performance gain from using the san-
itization phase, we compare the average latency of the
system when using Payl and Anagram with sanitized and
non-sanitized training data. From Table 2, we see that
for both sensors the alert rate will decrease after sanitiz-
ing the training data, and fewer number of packets will
have to be processed by the shadow server.

Table 2: Latency for different anomaly detectors

Sensor STEM DYBOC

No-sensor 44 ∗ l 1.2 ∗ l

Anagram with Snort 1.092 ∗ l 1.00042 ∗ l

Anagram with sanitization 1.042 ∗ l 1.00017 ∗ l

Payl 1.365 ∗ l 1.00169 ∗ l

Payl with sanitization 1.160 ∗ l 1.00074 ∗ l
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Finally, we estimate the gain in the system perfor-
mance when using the sanitization process. We define
the overall processing impact ratio as(Nsan/Nnon san)∗
100, where Nsan is the number of alerts sent to the
shadow server when the sanitized model is used and
Nnon san is the number of alerts for the non-sanitized
version. For Anagram, the gain in performance is
52.27%, and for Payl44.44%. This shows that saniti-
zation reduces by half the computational cost to process
the same amount of data, leading to a two-fold increase
in scalability of the overall architecture independent of
the AD system used.

4 Collaborative Sanitization

Our scheme continuously revises AD models based on
prior history and the voting scheme. Based on this, it
is conceivable that a determined adversary can launch
an extensive and long lasting training and targeted at-
tack, which would poison all the micro-models. Such
a scenario would run counter to our conjecture from Sec-
tion 2. To counter such attacks, we propose as future
work to extend our sanitization mechanism to allow the
sharing of malicious models [7] generated by collaborat-
ing remote sites, and to sanitize the local training data to
a greater extent. These models, which can be privacy-
preserving, capture characteristics of malicious behavior
(rather than normal behavior, which is the default AD
operation). This approach may not apply to polymor-
phic attacks, since each propagation attempt will display
a distinct attack vector that may be captured in differ-
ent malicious models. We conjecture, however, that a
polymorphic attack ”targeting a single site” can still be
captured by the local sanitization scheme presented in
this paper. However, it remains to be seen (through ad-
ditional testing) how well our scheme (with or without
the collaborative sanitization extensions) can cope with
polymorphism or long-term training attacks.

5 Conclusions

We introduce a novel sanitization method that boosts the
performance of out-of-the-box anomaly detection sen-
sors, elevating them to a first-rate forensics and alert
analysis tool. Our approach is simple and general, and
can be applied to a wide range of unmodified AD sen-
sors without incurring significant additional computa-
tional cost other than the initial testing phase. Prelim-
inary experimental results indicate that our system can
serve as an efficient and accurate online packet classifier.
The alerts generated by the ”sanitized” AD model are
a small fraction of the total traffic, and produce 1/2 as
many alerts as the original unsanitized AD model. Fur-
thermore, the AD system is capable of detecting more

threats both online and after an actual attack, since the
AD training data are attack-free. We have also identified
several areas for future work and possible extensions,
as well as further directions for evaluation and improve-
ment.
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