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Abstract

Most computer defense systems crash the process that
they protect as part of their response to an attack. In
contrast, self-healing software recovers from an attack
by automatically repairing the underlying vulnerability.
Although recent research explores the feasibility of the
basic concept, self-healing faces four major obstacles
before it can protect legacy applications and COTS soft-
ware. Besides the practical issues involved in applying
the system to such software (e.g., not modifying source
code), self-healing has encountered a number of prob-
lems: knowing when to engage, knowing how to repair,
and handling communication with external entities.

Our previous work on a self-healing system, STEM,
left these challenges as future work. STEM provides
self-healing by speculatively executing ““slices’ of a pro-
cess. This paper improves STEM’s capabilities along
three lines: (1) applicability of the system to COTS soft-
ware (STEM does not require source code, and it im-
poses a roughly 73% performance penalty on Apache’s
normal operation), (2) semantic correctness of the re-
pair (we introduce virtual proxies and repair policy to
assist the healing process), and (3) creating a behavior
profile based on aspects of data and control flow.

1 Introduction

Most software applications lack the ability to repair
themselves during an attack, especially when attacks are
delivered via previously unseen inputs or exploit previ-
ously unknown vulnerabilities. Self-healing software is
an emerging area of research [34, 32, 35, 31, 27] that in-
volves the design and implementation of systems capa-
ble of automatic remediation of faults and attacks. In ad-
dition to detecting and defeating an attack, self-healing
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systems seek to correct the integrity of the computation
itself. Self-healing countermeasures serve as a first line
of defense while a slower but potentially more complete
human-driven response takes place.

Most self-healing mechanisms follow what we term
the ROAR (Recognize, Orient, Adapt, Respond) work-
flow. These systems (a) Recognize a threat or attack has
occurred, (b) Orient the system to this threat by analyz-
ing it, (c) Adapt to the threat by constructing appropriate
fixes or changes in state, and finally (d) Respond to the
threat by verifying and deploying those adaptations.

While embryonic attempts in this space have demon-
strated the feasibility of the basic concept, these systems
face some major obstacles before the proposed tech-
niques can be deployed to protect and repair legacy sys-
tems, production applications, and COTS software. The
key challenge is to apply a fix inline (i.e., as the applica-
tion executes and experiences an attack) without restart-
ing, recompiling, or replacing the process.

Executing through a fault in this fashion involves
managing risk and overcoming technical challenges rep-
resented by four main obstacles. First, the system should
not make changes to the application’s source code. In-
stead, we use binary supervision based on dynamic
rewriting. Second, the semantics of program execution
must be maintained as closely as possible to the original
intent of the application’s author. We introduce the no-
tion of repair policy to guide the semantics of the heal-
ing process. Third, the supervised system may commu-
nicate with external entities that are beyond the control
or logical boundary of the self-healing system. We ex-
plore the design space of virtual proxies and detail one
particular vector of implementation to address this prob-
lem. Finally, the system must employ detection mecha-
nisms that can indicate when to supervise and heal the
application’s execution. Although STEM can operate
with a number of detectors, we show how it gathers as-
pects of both data and control flow to produce an appli-
cation’s behavior profile.



1.1 Motivation

Our solutions are primarily motivated by the need to
address the limitations of our previous self-healing soft-
ware system, STEM [34]. We based this first approach
on a feedback loop that inserted calls to an X86 emula-
tor at vulnerable points in an application’s source code
(requiring recompilation and redeployment). STEM su-
pervises the application using microspeculation and er-
ror virtualization.

1.1.1 Microspeculation and Error Virtualization

The basic premise of our previous work is that portions
of an application can be treated as a transaction. Func-
tions serve as a convenient abstraction and fit the trans-
action role well in most situations [34]. Each transaction
(vulnerable code slice) can be speculatively executed in
a sandbox environment. In much the same way that a
processor speculatively executes past a branch instruc-
tion and discards the mispredicted code path, STEM
executes the transaction’s instruction stream, optimisti-
cally “speculating” that the results of these computations
are benign. If this microspeculation succeeds, then the
computation simply carries on. If the transaction expe-
riences a fault or exploited vulnerability, then the results
are ignored or replaced according to the particular re-
sponse strategy being employed. One such repair strat-
egy is error virtualization.

The key assumption underlying error virtualization
is that a mapping can be created between the set of er-
rors that could occur during a program’s execution and
the limited set of errors that the program code explic-
itly handles. By virtualizing errors, an application can
continue execution through a fault or exploited vulner-
ability by nullifying its effects, undoing the changes to
memory made during the transaction, and using a man-
ufactured return value for the function where the fault
occurred. In the previous version of STEM, these re-
turn values were determined by source code analysis on
the return type of the offending function. Error virtu-
alization works best with server applications — applica-
tions that typically have a request processing loop and
can presumably tolerate minor errors in one particular
trace of the loop.

1.1.2 Limitations of Previous Approach

Recently proposed approaches to self-healing such as
error virtualization [34] and failure-oblivious comput-
ing [32] prevent exploits from succeeding by masking
failures. However, error virtualization fails about 12%

of the time, and both approaches have the potential
for semantically incorrect execution. These shortcom-
ings are devastating for applications that perform precise
(e.g., scientific, financial, etc.) calculations or provide
authentication & authorization.

Furthermore, error virtualization required access to
the source code of the application to determine appro-
priate error virtualization values and proper placement
of the calls to the supervision environment. A better so-
lution would operate on unmodified binaries and profile
the application’s behavior to learn appropriate error vir-
tualization values during runtime.

Finally, as with all systems that rely on rewinding ex-
ecution [6, 31] after a fault has been detected, I/O with
external entities remains uncontrolled. For example, if
a server program supervised by STEM writes a message
to a network client during microspeculation, there is no
way to “take back” the message: the state of the remote
client has been irrevocably altered.

1.2 Contributions

The changes we propose and evaluate in this paper
provide the basis for the redesign of STEM’s core mech-
anisms as well as the addition of novel methods to guide
the semantic correctness of the self-healing response.
The following contributions collectively provide a sig-
nificant improvement over previous work:

1. Eliminate Source-Level Modifications — We em-
ploy error virtualization and microspeculation (and
the new techniques proposed in this section) during
binary rewriting. STEM serves as a self-contained
environment for supervising applications without
recompiling or changing source code.

2. Virtual Proxies — Self-healing techniques like mi-
crospeculation have difficulty “rewinding” the re-
sults of communication with remote entities that
are not under the control of the self-healing system.
This challenge can affect the semantic correctness
of the healing process. We introduce the notion of
virtual proxies to support cooperative microspecu-
lation without changing the communications proto-
cols or the code of the remote entity.

3. Repair Policy — Error virtualization alone is not
appropriate for all functions and applications, espe-
cially if the function is not idempotent or if the ap-
plication makes scientific or financial calculations
or includes authentication & authorization checks.



A more complete approach to managing the seman-
tic correctness of a repair is needed. While we de-
scribe the theoretical framework for repair policy
in other work [23], this paper describes STEM’s
support for interpreting repair policy, especially as
it relates to resetting the state variables involved in
an aborted function and the selection of an appro-
priate return value.

4. Behavior Profiling — an advantage of implement-
ing STEM as a binary supervision environment is
that we can non-invasively collect a profile of ap-
plication behavior by observing aspects of both
data and control flow, including library functions,
system calls, and application functions. This pro-
file assists in detection (detecting deviations from
the profile), repair (selecting appropriate error vir-
tualization values), and repair validation (making
sure that future performance matches past behav-
ior). While we consider how to calculate profiles
and predict return values in other work [24], this
paper discusses the implementation of the data col-
lection for the current version of STEM.

Using STEM to supervise dynamically linked appli-
cations directly from startup incurs a significant per-
formance penalty (as shown in Table 1), especially for
short-lived applications. Most of the work done during
application startup simply loads and resolves libraries.
This type of code is usually executed only once, and it
probably does not require protection. Even though it
may be acceptable to amortize the cost of startup over
the lifetime of the application, we can work around the
startup performance penalty by employing some combi-
nation of three reasonable measures: (1) statically link-
ing applications, (2) only attaching STEM after the ap-
plication has already started, (3) delay attaching until
the system observes an IDS alert. We evaluate the sec-
ond option by attaching STEM to Apache after Apache
finishes loading. Our results (shown in Table 3) indicate
that Apache experiences roughly a 73% performance
degradation under STEM.

2 STEM

One of this paper’s primary contributions is the reim-
plementation of STEM to make it applicable in situa-
tions where source code is not available. This section
reviews the technical details of STEM’s design and im-
plementation. We built STEM as a tool for the TA-32
binary rewriting PIN [26] framework.

2.1 Core Design

PIN provides an API that exposes a number of ways
to instrument a program during runtime, both statically
(as a binary image is loaded) and dynamically (as each
instruction, basic block, or procedure is executed). PIN
tools contain two basic types of functions: (1) instru-
mentation functions and (2) analysis functions. When
a PIN tool starts up, it registers instrumentation func-
tions that serve as callbacks for when PIN recognizes
an event or portion of program execution that the tool
is interested in (e.g., instruction execution, basic block
entrance or exit, etc.). The instrumentation functions
then employ the PIN API to insert calls to their analy-
sis functions. Analysis functions are invoked every time
the corresponding code slice is executed; instrumenta-
tion functions are executed only the first time that PIN
encounters the code slice.

STEM treats each function as a transaction. Each
“transaction” that should be supervised (according to
policy) is speculatively executed. In order to do so,
STEM uses PIN to instrument program execution at four
points: function entry (i.e., immediately before a CALL
instruction), function exit (i.e., between a LEAVE and
RET instruction), immediately before the instruction af-
ter a RET executes, and for each instruction of a super-
vised function that writes to memory. The main idea is
that STEM inserts instrumentation at both the start and
end of each transaction to save state and check for er-
rors, respectively. If microspeculation of the transaction
encounters any errors (such as an attack or other fault),
then the instrumentation at the end of the transaction in-
vokes cleanup, repair, and repair validation mechanisms.

STEM primarily uses the “Routine” hooks provided
by PIN. When PIN encounters a function that it has not
yet instrumented, it invokes the callback instrumenta-
tion function that STEM registered. The instrumentation
function injects calls to four analysis routines:

1. STEMPr eanbl e() - executed at the beginning
of each function.

2. STEMEpi | ogue() - executed before a RET in-
struction

3. Supervi sel nstruction() —executed before
each instruction of a supervised function

4. RecordPreMemifite() - executed before
each instruction of a supervised function that writes
to memory

STEM’s instrumentation function also intercepts
some system calls to support the “CoSAK” supervision



policy (discussed below) and the virtual proxies (dis-
cussed in Section 4).

2.2 Supervision Policy

One important implementation tradeoff is whether
the decision to supervise a function is made at injec-
tion time (i.e. during the instrumentation function) or
at analysis time (i.e., during an analysis routine). Con-
sulting policy and making a decision in the latter (as the
current implementation does) allows STEM to change
the coverage supervision policy (that is, the set of func-
tions it monitors) during runtime rather than needing to
restart the application. Making the decision during in-
jection time is possible, but not for all routines, and
since the policy decision is made only once, the set of
functions that STEM can instrument is not dynamically
adjustable unless the application is restarted, or PIN re-
moves all instrumentation and invokes instrumentation
for each function again.

Therefore, each injected analysis routine determines
dynamically if it should actually be supervising the cur-
rent function. STEM instructs PIN to instrument all
functions — a STEM analysis routine needs to gain con-
trol, even if just long enough to determine it should not
supervise a particular function. The analysis routines in-
voke STEM’s Shoul dSuper vi seRout i ne() func-
tion to check the current supervision coverage policy in
effect. Supervision coverage policies dictate which sub-
set of an application’s functions STEM should protect.
These policies include:

e NONE - no function should be microspeculated
e ALL - all functions should be microspeculated

e RANDOM - a random subset should be microspec-
ulated (the percentage is controlled by a configura-
tion parameter)

e COSAK - all functions within a call stack depth
of six from an input system call (e.g., sys_read())
should be microspeculated

o LIST — functions specified in a profile (either gen-
erated automatically by STEM or manually speci-
fied) should be microspeculated

In order to support the COSAK coverage pol-
icy, STEM maintains a cosak_dept h variable via
four operations: check, reset, increment, and decre-
ment. Every time an input system call is encoun-
tered, the variable is reset to zero. The variable is

checked during Shoul dSuper vi seRout i ne() if
the coverage policy is set to COSAK. The variable
is incremented every time a new routine is entered
during STEMPr eanbl e() and decremented during
STEMEpi | ogue() .

2.3 STEM Workflow

Although STEM can supervise an application from
startup, STEM benefits from using PIN because PIN
can attach to a running application. For example, if a
network sensor detects anomalous data aimed at a web
server, STEM can attach to the web server process to
protect it while that data is being processed. In this way,
applications can avoid the startup costs involved in in-
strumenting shared library loading, and can also avoid
the overhead of the policy check for most normal input.

STEM starts by reading its configuration file, attach-
ing some command and control functionality (described
in Section 2.4), and then registering a callback to instru-
ment each new function that it encounters. STEM’s ba-
sic algorithm is distributed over the four main analysis
routines. If STEM operates in profiling mode (see Sec-
tion 5), then these analysis routines remain unused.

2.3.1 Memory Log

Since STEM needs to treat each function as a transac-
tion, undoing the effects of a speculated transaction re-
quires that STEM keep a log of changes made to mem-
ory during the transaction. The memory log is main-
tained by three functions: one that records the “old”
memory value, one that inserts a marker into the mem-
ory log, and one that unrolls the memory log and op-
tionally restores the “old” values. STEM inserts a call to
Recor dPreMemV it e() before an instruction that
writes to memory. PIN determines the size of the write,
so this analysis function can save the appropriate amount
of data. Memory writes are only recorded for functions
that should be supervised according to coverage pol-
icy. During STEMPr eanbl e( ), PIN inserts a call to
I nsert MenmLogMar ker () to delimit a new function
instance. This marker indicates that the last memory log
maintenance function, Unr ol | Menor yLog() , should
stop unrolling after it encounters the marker. The un-
rolling function deletes the entries in the memory log to
make efficient use of the process’s memory space. This
function can also restore the “old” values stored in the
memory log in preparation for error virtualization.



2.3.2 STEM_Preamble()

This analysis routine performs basic record keeping. It
increments the COSAK depth variable and maintains
other statistics (number of routines supervised, etc.). Its
most important tasks are to (1) check if supervision cov-
erage policy should be reloaded and (2) insert a function
name marker into the memory log if the current function
should be supervised.

2.3.3 STEM_Epilogue()

STEM invokes this analysis routine immediately before
a return instruction. Besides doing its part to maintain
the COSAK depth variable, this analysis routine ensures
that the application has a chance to self-heal before a
transaction is completed. If the current function is be-
ing supervised, this routine interprets the application’s
repair policy (a form of integrity policy based on ex-
tensions to the Clark-Wilson integrity model, see Sec-
tion 3 for details), invokes the repair procedure, and in-
vokes the repair validation procedure. If both of these
latter steps are successful or no repair is needed, then
the transaction is considered to be successfully commit-
ted. If not, and an error has occurred, then STEM falls
back to crashing the process (the current state of the art)
by calling abort ().

This analysis routine delegates the setup of error vir-
tualization to the repair procedure. The repair proce-
dure takes the function name, current architectural con-
text (i.e., CPU register values), and a flag as input.
The flag serves as an indication to the repair procedure
to choose between normal cleanup or a “self-healing”
cleanup. While normal cleanup always proceeds from
STEMEpi | ogue(), a self-healing cleanup can be
invoked synchronously from STEMEpi | ogue() or
asynchronously from a signal handler. The latter case
usually occurs when STEM employs a detector that
causes a signal such as SIGSEGV to occur when it
senses an attack.

Normal cleanup simply entails deleting the entries
for the current function from the memory log. If self-
healing is needed, then the values from the memory log
are restored. In addition, a flag is set indicating that the
process should undergo error virtualization, and the cur-
rent function name is recorded.

2.3.4 Superviselnstruction()

The job of this analysis routine is to intercept the instruc-
tion that immediately follows a RET instruction. By do-
ing so, STEM allows the RET instruction to operate as it

needs to on the architectural state (and by extension, the
process stack). After RET has been invoked, if the flag
for error virtualization is set, then STEM looks up the
appropriate error virtualization value according to policy
(either a vanilla EV value, or an EV value derived from
the application’s profile or repair policy). STEM then
performs error virtualization by adjusting the value of
the ¥@ax register and resets the error virtualization flag.
STEM ensures that the function returns appropriately by
comparing the return address with the saved value of the
instruction pointer immediately after the corresponding
CALL instruction.

2.4 Additional Controls

STEM includes a variety of control functionality that
assists the core analysis routines. The most important of
these additional components intercepts signals to deal
with dynamically loading configuration and selecting a
suitable error virtualization value.

STEM defines three signal handlers and registers
them with PIN. The first intercepts SIGUSR1 and sets
a flag indicating that policy and configuration should be
reloaded, although the actual reload takes place during
the execution of the next STEMPr eanbl e(). The
second signal handler intercepts SIGUSR2 and prints
some runtime debugging information. The third in-
tercepts SIGSEGV (for cases where detectors alert on
memory errors, such as address space randomization).
The handler then causes the repair procedure to be in-
voked, after it has optionally asked the user to select a
response as detailed by the repair policy. Part of the re-
sponse can include forwarding a snapshot of memory
state to support automatically generating an exploit sig-
nature as done with the previous version of STEM for
the FLIPS system [25].

STEM supports a variety of detection mechanisms,
and it uses them to measure the integrity of the com-
putation at various points in program execution and set
a flag that indicates STEMEpi | ogue() should initi-
ate a self-healing response. Our current set of detectors
includes one that detects an anomalous set of function
calls (i.e., a set of functions that deviate from a profiled
learned when STEM is in profiling mode) as well as a
detector that determines if the return address has been
overwritten. We can also take advantage of a SIGSEGV
produced by an underlying OS that employs address
space randomization. Other detectors include instruc-
tion set randomization (although PIN itself would need
to be modified to support this technique) and taint track-
ing. Since this latter detector requires more extensive



instrumentation, the supervision coverage policy would
be restricted to “ALL.”

3 Repair Policy

Achieving a semantically correct response remains
a key problem for self-healing systems. Executing
through a fault or attack involves a certain amount of
risk. Even if software could somehow ignore the attack
itself, the best sequence of actions leading back to a safe
state is an open question. The exploit may have caused
a number of changes in state that corrupt execution in-
tegrity before an alert is issued. Attempts to self-heal
must not only stop an exploit from succeeding or a fault
from manifesting, but also repair execution integrity as
much as possible. However, self-healing strategies that
execute through a fault by effectively pretending it can
be handled by the program code or other instrumenta-
tion may give rise to semantically incorrect responses.
In effect, naive self-healing may provide a cure worse
than the disease.

int 1ogin(UCRED creds)
{

int authenticated = check_credential s(creds);
i f(authenticated) return | ogin_continue();
el se return login_reject();

int check_credential s(UCRED credenti al s)

strcpy(uname, credentials. usernane);
return checkpassword(| ookup(unane), credentials);

}

Figure 1. Example of Semantically Incor-
rect Response. If an error arising from a vul-
nerability in check_credenti al s occurs, a self-
healing mechanism may attempt to undo the effects
of check_credenti al s and return a simulated er-
ror code. Any value other than O that gets stored
in aut hent i cat ed will cause the login to succeed.
What may have been a simple DoS vulnerability has
been transformed into a valid login session by virtue of
our “security” measures. STEM interprets repair policy
to intelligently constrain return values and other appli-
cation data.

Figure 1 illustrates a specific example: an error may
exist in a routine that determines the access control
rights for a client. If this fault is exploited, a self-healing
technique like error virtualization may return a value
that allows the authentication check to succeed. This sit-
uation occurs precisely because the recovery mechanism
is oblivious to the semantics of the code it protects.

One solution to this problem relies on annotating the
source code to (a) indicate which routines should not
be “healed” or (b) to provide appropriate return values
for such sensitive functions, but we find these techniques
unappealing because of the need to modify source code.
Since source-level annotations serve as a vestigial pol-
icy, we articulate a way to augment self-healing ap-
proaches with the notion of repair policy. A repair pol-
icy (or a recovery policy — we use the terms interchange-
ably) is specified separately from the source code and
describes how execution integrity should be maintained
after an attack is detected. Repair policy can provide a
way for a user to customize an application’s response to
an intrusion attempt and can help achieve a completely
automated recovery.

3.1 Integrity Repair Model

We provide a theoretical framework for repair policy
by extending the Clark-Wilson Integrity Model (CW)
[9] to include the concepts of (a) repair and (b) re-
pair validation. CW is ideally suited to the problem
of detecting when constraints on a system’s behavior
and information structures have been violated. The CW
model defines rules that govern three major constructs:
constrained data items (CDI), transformation procedures
(TP), and integrity verification procedures (IVP). An in-
formation system is composed of a set of TPs that tran-
sition CDIs from one valid state to another. The system
also includes I'VPs that measure the integrity of the CDIs
at various points of execution.

Although a TP should move the system from one
valid state to the next, it may fail for a number of reasons
(incorrect specification, a vulnerability, hardware faults,
etc.). The purpose of an IVP is to detect and record
this failure. CW does not address the task of returning
the system to a valid state or formalize procedures that
restore integrity. In contrast, repair policy focuses on
ways to recover after an unauthorized modification. Our
extension (described more fully elsewhere [23]) supple-
ments the CW model with primitives and rules for re-
covering from a policy violation and validating that the
recovery was successful.

3.2 Interpreting Repair Policy

STEM interprets repair policy to provide a mecha-
nism that can be selectively enforced and retrofitted to
the protected application without modifying its source
code (although mapping constraints to source-level ob-
jects assists in maintaining application semantics). As



with most self-healing systems, we expect the repairs
offered by this “behavior firewall” to be temporary con-
straints on program behavior — emergency fixes that
await a more comprehensive patch from the vendor.

Repair policy is specified in a file external to the
source code of the protected application and is used only
by STEM (i.e., the compiler, the linker, and the OS are
not involved). This file describes the legal settings for
variables in an aborted transaction. The basis of the pol-
icy is a list of relations between a transaction and the
CDiIs that need to be adjusted after error-virtualization,
including the return address and return value. A com-
plete repair policy is a wide-ranging topic; in this paper
we consider a simple form that:

1. specifies appropriate error virtualization settings to
avoid an incorrect return value that causes prob-
lems like the one illustrated in Figure 1

2. provides memory unrolling for an aborted transac-
tion

3. sets memory locations to particular values

cdi authenticated => nen{ Oxbf 87a3d4];
tp login : =

{ev,unroll}

[ (" rval ue==0), (aut henti cated==0)];
tp check_credentials :=:

{ev,unroll}

[(’rval ue==0)1;

Figure 2. Sample Repair Policy. If the
TP check_credenti al s fails, then the memory
changes made during this routine are reset and STEM
stores the value O in the return value (and thus into
aut hent i cat ed), causing the login attempt to fail.

Figure 2 shows a sample policy for our running ex-
ample. This minimal version of a repair policy enforces
what the error virtualization value should be when the
corresponding TP is “healed.” It also provides for mem-
ory unrolling and setting values for particular memory
locations. The example policy consists of three lines.
The first statement defines a CDI named authenticated
and maps it to an absolute memory address. Constraints
on the value of this CDI are enforced by changing the
value stored at this memory address. The latter two
statements define TPs by specifying two lists. The first
list (contained in braces) includes general modifiers for
the repair procedure. The two built-in modifiers refer-
enced for both TPs in the example indicate that both er-
ror virtualization and memory log unrolling should be

used to heal. The second list (contained in brackets) con-
sists of a list of asserted conditions that should be true
after self-healing completes. The example illustrates the
use of the special variable ' r val ue (the apostrophe
distinguishes it from any CDI named r val ue). This
variable helps customize vanilla error virtualization to
avoid problems similar to the one in Figure 1.

3.3 Limitations and Future Work

Our future work on STEM centers on improving the
power and ease of use for repair policy. For example,
we intend to provide a mapping between memory layout
and source-level variables. Cutting across layers of ab-
straction like this requires augmenting the current map-
ping mechanism to provide our repair model with a type
system. We must also improve the current mapping to
handle variables that do not reside at fixed addresses.
Second, while virtual proxies are a key aid to provide
a semantically correct response, there is no explicit in-
tegration of virtual proxy behavior with repair policy
specification. Third, we intend to explore the addition
of formal logic to STEM so that it can reason about the
constraints on the data involved in a transaction to poten-
tially learn the best response over time. Doing so may
help avoid relying solely on a statically specified policy.

Finally, the information that a particular set of vari-
ables have been corrupted raises the possibility of noti-
fying other hosts and application instances to proactively
invoke repair procedures in order to protect against a
widespread attack. This sort of detection is helpful in
creating a system that automatically tunes the security
posture of an organization.

4 Virtual Proxies

Attempts to sandbox an application’s execution must
sooner or later allow the application to deal with global
input and output sources and sinks that are beyond the
control of the sandbox. Microspeculation becomes un-
safe when the speculated process slice communicates
with entities beyond the control of STEM. If a trans-
action is not idempotent (i.e., it alters global state such
as shared memory, network messages, etc.), then mi-
crospeculation must stop before that global state is
changed. The self-healing system can no longer safely
speculate a code slice: the results of execution up to that
point must be committed, thus limiting microspecula-
tion’s effective scope.

Repair attempts may fall short in situations where an
exploit on a machine (e.g., an electronic funds transfer



front-end) that is being “healed” has visible effects on
another machine (e.g., a database that clears the actual
transfer). For example, if a browser exploit initiates a
PayPal transaction, even though STEM can recover con-
trol on the local machine, the user will not have an auto-
mated recourse with the PayPal system.

Such situations require additional coordination be-
tween the two systems — microspeculation must span
both machines. If both machines reside in the same
administrative domain, achieving this cooperative mi-
crospeculation is somewhat easier, but we prefer a so-
lution that works for situations like the PayPal exam-
ple. While a self-healing system can record I/O, it can-
not ask a communications partner to replay input or re-
accept output. Doing so requires that the protocol (and
potentially the network infrastructure) support specula-
tive messaging and entails changing the partner’s imple-
mentation so that it can rewind its own execution. Since
STEM may not be widely deployed, we cannot rely on
this type of explicit cooperation.

4.1 Solutions

We can achieve cooperative microspeculation in at
least four ways, each of which expresses a tradeoff be-
tween semantic correctness and invasiveness.

1. Protocol Modification — Modify network or
filesystem protocols and the network infrastructure
to incorporate an explicit notion of speculation.

2. Modify Communications Partner — Modify the
code of the remote entity so that it can cooperate
when the protected application is microspeculating,
and thus anticipate when it may be sending or re-
ceiving a “speculated” answer or request.

3. Gradual Commits — Transactions can be continu-
ously limited in scope. All memory changes occur-
ring before an 1/O call are marked as not undoable.
Should the microspeculated slice fail, STEM only
unrolls changes to memory made after the I/O call.

4. Virtual Proxies — Use buffers to record and replay
I/O locally. Virtual proxies effectively serve as a
man-in-the-middle during microspeculation to de-
lay the effects of I/O on the external world.

While some network and application-level protocols
may already include a notion of “replay” or speculative
execution, implementing widespread changes to proto-
col specifications and the network infrastructure is fairly

invasive. Nevertheless, it presents an interesting tech-
nical research challenge. Another interesting possibil-
ity is to modify the execution environment or code of
the remote communications partner to accept notifica-
tions from a STEM-protected application. After receiv-
ing the notification, the remote entity speculates its own
I/O. While this approach promises a sound solution, it
violates our transparency requirements.

We choose to use a combination of virtual proxies
and gradual commits because these solutions have the
least impact on current application semantics and re-
quire a straightforward implementation. Since we are
already “modifying” the local entity, we can avoid mod-
ifying the remote entity or any protocols. Using grad-
ual commits and virtual proxies constrains the power of
our solution, but we believe it is an acceptable tradeoff,
especially as self-healing systems gain traction — they
should perturb legacy setups as little as possible.

4.2 Design

I/O system calls that occur during the speculated por-
tion of a process constitute a challenge for safely dis-
carding speculated operations should an exploit occur.
While speculation can immediately resume after an I/O
call, the I/O call itself cannot be replayed or undone. If
a fault or exploit occurs after the I/O call (but still in
the microspeculated routine), then STEM cannot rewind
to the beginning of the code slice. Rather, it can only
unwind back to the I/O call. Memory and other state
changes before the I/O call must remain in effect (we
ignore for the moment explicit changes made as part of
repair policy). This gradual process of commits is one
way in which we can attempt to control uncertainty in
the correctness of the response.

A virtual proxy serves as a delegate for a communica-
tions partner (e.g., server, client, or peer) for the program
that STEM is supervising. A virtual proxy is composed
of a set of functions that modify a buffer that is bound
during the scope of a supervised routine. The primary
function of the virtual proxy is to allow STEM, as it
speculates a slice of an application, to “take back” some
output or “push back” some input. As a proof of con-
cept, our current implementation only intercepts r ead
and wr i t e calls. Virtual proxies are designed to handle
this two-part problem.

Virtual Proxy Input In this case, an external com-
ponent (such as a filesystem) is providing input. The
code slice that contains this input call can either (a)
successfully complete without an error or exploit, or
(b) experience such a fault and have STEM attempt re-
pair. In case (a), nothing need happen because STEM’s



state is consistent with the global state. In case (b),
STEM must attempt a semantically correct repair — re-
gardless of whether or not the input was legal or mal-
formed/malicious. At this point, the external entity be-
lieves its state has changed (and therefore will not replay
the input). In the optimal case, STEM should continue
executing with what input that was supposed to be con-
sumed by the transaction removed from the input buffer.
Naturally, STEM cannot determine this on its own (and
the speculated code slice is no help either — it evidently
experienced a fault when processing this input). Instead,
STEM can continue processing and draw from the vir-
tual proxy’s buffers during the next input request.

Virtual Proxy Output In order to deal with specu-
lated output, STEM must buffer output until it requires
input from the external component. At this point, STEM
must allow the remote partner to make progress. This
process of gradual commits is useful, but has the po-
tential to delay too long and cause an application-level
timeout. STEM does not currently deal with this issue.
As with virtual proxy input, the speculated slice can (a)
successfully complete without an error or exploit, or (b)
experience such a fault and have STEM attempt a repair.
In case (a), gradual commits suffice, as the output calls
simply finish. In case (b), the external component has
been given a message it should not have. If the virtual
proxy were not operating, a STEM-supervised applica-
tion would need to ask for that output to be ignored. The
virtual proxy allows STEM to buffer output until the mi-
crospeculated slice successfully completes. If the slice
fails, then STEM instructs the virtual proxy to discard
the output (or replace it).

4.3 Limitations and Future Work

Although virtual proxies help address the external I/O
problem for microspeculation, they are not a perfect so-
lution. In the case where STEM is supervising the pro-
cessing of input, the virtual proxy can only buffer a lim-
ited amount of input — and it is not clear how to selec-
tively discard portions of that input should a transaction
fail. In the cases where STEM supervises the sending of
output, the virtual proxy buffers the output until STEM
requests input from the remote communications partner.
At this point, STEM has reached the edge of our ability
to safely microspeculate, and without further support in
the virtual proxy that explicitly communicates with the
remote partner, STEM must stop speculating and finally
give the data to the remote partner.

One interesting problem is to use multiple virtual
proxies to classify and identify multiple conversation
streams. This information is not present at the level of

read and write system calls, and STEM would need to
break through layers of abstraction to support this abil-
ity. Finally, since the virtual proxy is under STEM’s
control, STEM can attempt to construct a memory and
behavior model of the remote communications partner
to determine if it is behaving in a malicious fashion.

5 Behavior Models

Although STEM uses a number of detection strate-
gies, we also implemented the ability to perform host-
based anomaly detection. This type of detection helps
identify previously unknown vulnerabilities and ex-
ploits, but depends on the system having a model or pro-
file of normal behavior. STEM collects aspects of data
and control flow to learn an application’s behavior pro-
file. This profile helps specify the phase space of appli-
cation behavior. STEM employs the profile to integrate
all three critical stages of intrusion defense: detection,
repair, and repair validation. We can leverage the in-
formation in this profile to detect program misbehavior
(i.e., deviation from the profile), enact automatic repair
of said misbehavior, and automatically validate those re-
pairs to ensure that self-healing achieves normal appli-
cation behavior.

We believe that the next generation of defense mecha-
nisms (including self-healing software) requires a much
more detailed dynamic analysis of application behavior
than is currently done. STEM enables a new mecha-
nism for profiling the behavior space of an application
by dynamically analyzing all function calls made by the
process, including regular functions and library calls as
well as system calls. Previous work typically examines
only system calls or is driven by static analysis. In ad-
dition, STEM collects a feature set that includes a mix-
ture of parent functions and previous sibling functions
(which are typically ignored because they have already
completed execution and so are no longer part of the call
stack). STEM generates a record of the observed return
values for various invocations of each function. STEM
can collect this information without changing the appli-
cation’s source, the operating system, or the compiler.

Profile Building A behavior profile is a graph of
execution history represented as a list of records. Each
record contains four data items: an identifier, a re-
turn value, a set of argument values, and a context.
Each function name serves as an identifier (although ad-
dress/callsites can also be used). A mixture of parents
and previous siblings compose the context. The argu-
ment and return values correspond to the argument val-
ues at the time that function instance begins and ends,



respectively. STEM uses a pair of analysis functions (in-
serted at the start and end of each routine) to collect the
argument values, the function name, the return value,
and the function context.

Each record in the profile helps to identify an instance
of a function. The profile’s feature set helps “unflat-
ten” the function namespace of an application; for exam-
ple, printf () appears many times with many differ-
ent contexts and return values, making it hard to charac-
terize. Considering every occurrence of pri ntf () to
be the same instance reduces our ability to make pre-
dictions about its behavior. On the other hand, con-
sidering all occurrences of pri ntf () to be separate
instances combinatorially increases the space of possi-
ble behaviors and similarly reduces our ability to make
predictions about its behavior in a reasonable amount
of time. Therefore, we need to construct an “execution
context” for each function based on both control (prede-
cessor function calls) and data (return & argument val-
ues) flow. This context helps collapse occurrences of a
function into an instance of a function.

Limitations STEM relies on PIN to reliably de-
tect returns from a function. Detecting function exit is
difficult in the presence of optimizations like tail recur-
sion. Also, since the generated profile is highly binary-
dependent, STEM should recognize when an older pro-
file is no longer applicable (and a new one needs to be
built), e.g., as a result of a new version of the application
being rolled out, or due to the application of a patch.
Finally, as we show in other work [24], generating a be-
havior model from the collected model is a fairly expen-
sive operation, but it can be done offline and amortized
over the lifetime of the application.

6 Evaluation

The goal of our evaluation is to characterize STEM’s
impact on the normal performance of an application.
STEM incurs a relatively low performance impact for
real-world software applications, including both inter-
active desktop software as well as server programs. Al-
though the time it takes to self-heal is also of interest,
our experiments on synthetic vulnerabilities show that
this amount of time depends on the complexity of the
repair policy (i.e., how many memory locations need to
be adjusted) and the unrolling of the memory log. Even
though unrolling the memory log is an O(n) operation
(we discuss a possible optimization below), STEM’s
self-healing and repair procedure usually takes under a
second to interpret the repair policy and perform error
virtualization.
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Of more general concern is whether or not STEM
slows an application down to the point where it becomes
apparent to the end-user. Even though STEM has a
rather significant impact on an application’s startup time
(as shown in Table 1), STEM does not have a human-
discernable impact when applied to regular application
operations. For example, Firefox remains usable for ca-
sual web surfing when operating with STEM. In addi-
tion, playing a music file with apl ay also shows no
sign of sound degradation — the only noticeable impact
comes during startup. Disregarding this extra time, the
difference between apl ay’s native performance and its
performance under STEM is about 2 seconds. If STEM
is attached to apl ay after the file starts playing, there
is an eight second delay followed by playback that pro-
ceeds with only a 3.9% slowdown. Most of the perfor-
mance penalty shown in Table 1 and Table 2 is exagger-
ated by the simple nature of the selected applications.
Longer-running applications experience a much smaller
impact relative to total execution, as seen by the gzip,
md5sum, and Firefox results.

Most of the work done during application startup
merely loads and resolves libraries for dynamically
linked applications. This type of code is usually exe-
cuted only once and probably does not require protec-
tion. STEM can avoid instrumenting this work (and
thus noticeably reduce startup time) in at least two ways.
The first is to simply not make the application dynami-
cally linked. We observed for some small test applica-
tions (including a program that incorporates the example
shown in Figure 1 from Section 3) that compiling them
as static binaries reduces execution time from fifteeen
seconds to about five seconds. Second, since PIN can
attach to applications after they have started (in much
the same way that a debugger does), we can wait until
this work completes and then attach STEM to protect
the mainline code execution paths. We used this capa-
bility to attach STEM to Firefox and Apache after they
finish loading (we measured the performance impact on
Apache using this method; see Table 3). Also, as men-
tioned in Section 2, we can allow the application to be-
gin executing normally and only attach STEM when a
network anomaly detector issues an IDS alert. Finally, it
may be acceptable for certain long-running applications
(e.g., web, mail, database, and DNS servers) to amortize
this long startup time (on the order of minutes) over the
total execution time (on the order of weeks or months).

6.1 Experimental Setup

We used multiple runs of applications that are rep-
resentative of the software that exists on current Unix



desktop environments. We tested aplay, Firefox, gzip,
mdSsum, and xterm, along with a number of smaller
utilities: arch, date, echo, false, true, ps, uname, up-
time, and id. The applications were run on a dual Xeon
2.0 GHz machine with 1 GB of memory running Fe-
dora Core 3 Linux. We used a six minute and ten sec-
ond WAV file to test apl ay. To test both nd5sum
and gzi p, we used three files: httpd-2.0.53.tar.gz, a Fe-
dora Core kernel (vmlinuz-2.6.10-1.770_FC3smp), and
the /usr/share/dict/linux.words dictionary. Our Firefox
instance simply opened a blank page. Our xterm test
creates an xterm and executes the exi t command. We
also tested two versions of htt pd (2.0.53 and 2.2.4)
by attaching STEM after Apache starts and using wget

to recursively download the included manual from an-
other machine on the same network switch. Doing so
gives us a way to measure STEM’s impact on normal
performance excluding startup (shown in Table 3). In
the tables, the suffixes for gzip and mdSsum indicate the
kernel image (-k), the httpd tarball (-h), and the dictio-
nary file (-d).

Memory Log Enhancements We can improve per-
formance of supervised routines by modifying the mem-
ory log implementation (currently based on a linked
list). One way to improve performance is to preallo-
cate memory slots based on the typical memory useage
of each supervised function. If we can bound the num-
ber of stores in a piece of code (e.g., because STEM or
another profiling tool has observed its execution), then
STEM can preallocate an appropriately sized buffer.

7 Redated Work

Self-healing mechanisms complement approaches
that attempt to stop an attack from succeeding by pre-
venting the injection of code, transfer of control to in-
jected code, or misuse of existing code. Approaches to
automatically defending software systems have typically
focused on ways to proactively protect an application
from attack. Examples of these proactive approaches in-
clude writing the system in a “safe” language such as
Java, linking the system with “safe” libraries [2], trans-
forming the program with artificial diversity (instruction
set [19, 3] or address space randomization [5]), or com-
piling the program with array bounds or stack integrity
checking [11, 14]. Some defense systems also exter-
nalize their response by generating either vulnerability
[10, 27] or exploit signatures [22, 35, 38] to prevent ma-
licious input from reaching the protected system.
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Table 1. Performance Impact Data. Attaching
STEM at startup to dynamically linked applications in-
curs a significant performance penalty that lengthens the
total application startup time. This table lists a vari-
ety of programs where the time to execute is dominated
by the increased startup time. Although most applica-
tions suffer a hefty performance hit, the majority of the
penalty occurs during application startup and exit. Note
that apl ay shows fairly good performance; a roughly
six-minute song plays in STEM for 88 seconds longer
than it should — with 86 of those seconds coming during
startup, when the file is not actually being played.

Application || Native (s) | STEM (s) Impact
apl ay 371.0125 | 459.759 0.239
arch 0.001463 14.137 9662.021
xterm 0.304 215.643 708.352
echo 0.002423 17.633 7276.342
fal se 0.001563 16.371 10473.088
Fi r ef ox 2.53725 70.140 26.644
gzi p-h 4.51 479.202 105.253
gzip-k 0.429 58.954 136.422
gzip-d 2.281 111.429 47.851
md5- k 0.0117 32451 2772.589
md5-d 0.0345 54.125 1567.841
md5- h 0.0478 70.883 1481.908
ps 0.0237 44.829 1890.519
true 0.001552 16.025 10324.387
unane 0.001916 19.697 10279.271
uptime 0.002830 27.262 9632.215
dat e 0.001749 26.47 15133.362
id 0.002313 24.008 10378.592

7.1 Protecting Control Flow

Starting with the technique of program shepherding
[20], the idea of enforcing the integrity of control flow
has been increasingly researched. Program shepherd-
ing validates branch instructions in to prevent transfer
of control to injected code and to make sure that calls
into native libraries originate from valid sources. Con-
trol flow is often corrupted because input is eventually
incorporated into part of an instruction’s opcode, set as
a jump target, or forms part of an argument to a sensitive
system call. Recent work focuses on tainted dataflow
analysis and ways to prevent these attacks [37, 28, 10].

Abadi et al. [1] propose formalizing the concept of
Control Flow Integrity (CFI), observing that high-level




Table 2. Performance Without (Some) Startup.
We remove a well-defined portion of the application’s
initialization from the performance consideration in Ta-
ble 1.
startup code improves performance over full supervi-

Removing supervision of this portion of the

sion. The remaining run time is due to a varying amount
of startup code, the application itself, and cleanup/exit
code. In order to completely eliminate application
startup from consideration, we attach to Apache after its
initialization has completed. We present those results in
Table 3.

Application || STEM-init (s) | Revised Impact
arch 3.137 2143.22
xterm 194.643 639.273
echo 5.633 2323.803
fal se 4371 2795.545
Fi r ef ox 56.14 21.128
gzi p-h 468.202 102.814
gzi p-k 47.954 110.780
gzi p-d 100.429 43.025
md5- k 20.451 1746.948
md5- d 42.125 1220.014
md5- h 58.883 1230.862
ps 31.829 1341.996
true 5.025 3236.758
unane 8.697 4538.144
uptime 15.262 5391.932
date 14.47 8272.299
id 13.008 5622.865

programming often assumes properties of control flow
that are not enforced at the machine level. CFI provides
a way to statically verify that execution proceeds within
a given control-flow graph (the CFG effectively serves
as a policy). The use of CFI enables the efficient imple-
mentation of a software shadow call stack with strong
protection guarantees. CFI complements our work in
that it can enforce the invocation of STEM (rather than
allowing malcode to skip past its invocation).

7.2 Self-Healing

Most defense mechanisms usually respond to an at-
tack by terminating the attacked process. Even though it
is considered “safe”, this approach is unappealing for a
variety of reasons. Crashing leaves systems susceptible
to the original fault upon restart and risks losing accu-
mulated state.
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Table 3. Impact on Apache Excluding Startup.
We tested STEM’s impact on two versions of Apache
on two different machines by starting Apache in single-
threaded mode (to force all requests to be serviced se-
quentially by the same thread). We then attach STEM
after verifying that Apache has started by viewing the
default homepage. We use wget to recursively retrieve
the pages of the online manual included with Apache.
The total downloaded material is roughly 72 MB in
about 4100 files. STEM causes a 74.85% slowdown,
far less than the tens of thousands factor when including
startup. Native execution of Apache 2.0.53 takes 0.0626
seconds per request; execution of the same under STEM
takes 0.1095 seconds per request. For a newer version
of Apache (2.2.4), we observe a slight improvement to
72.54%.

Apache Native (s) | STEM (s) | Impact %
v2.0.53 3746 6550 74.85%
v2.2.4 16215 27978 72.54%

Some first efforts at providing effective remedia-
tion strategies include failure oblivious computing [32],
error virtualization [34], rollback of memory updates
[35], crash-only software [7], and data structure repair
[12, 13]. The first two approaches may cause a seman-
tically incorrect continuation of execution (although the
Rx system [31] attempts to address this difficulty by ex-
ploring semantically safe alterations of the program’s
environment). Oplinger and Lam [29] employ hard-
ware Thread-Level Speculation to improve software re-
liability. They execute an application’s monitoring code
in parallel with the primary computation and roll back
the computation “transaction” depending on the results
of the monitoring code. Rx also employs proxies that
are somewhat akin to our virtual proxies, although Rx’s
are somewhat more powerful in that they explicitly deal
with protocol syntax and semantics during replay.

The pH system [36] foreshadows the development of
automatic reaction systems. It aims to frustrate an at-
tacker by using system call interposition to slow down
an attacker’s code. While not strictly self-healing, pH
proposes an active reaction mechanism to foil attacks
and is representative of the seminal work in artificial im-
mune systems.

ASSURE [33] is a novel attempt to minimize the like-
lihood of a semantically incorrect response to a fault or
attack. ASSURE proposes the notion of error virtual-
ization rescue points. A rescue point is a program loca-



tion that is known to successfully propagate errors and
recover execution. The insight is that a program will re-
spond to malformed input differently than legal input;
locations in the code that successfully handle these sorts
of anticipated input “faults” are good candidates for re-
covering to a safe execution flow.

7.3 Behavior-based Anomaly Detection

STEM also provides a mechanism to capture aspects
of an application’s behavior. This profile can be em-
ployed for three purposes: (a) to detect application mis-
behavior, (b) to aid self-healing, and (c) to validate
the self-healing response and ensure that the application
does not deviate further from its known behavior. STEM
captures aspects of both control flow (via the execution
context) and portions of the data flow (via function re-
turn values). This mechanism draws from a rich litera-
ture on host-based anomaly detection.

The seminal work of Hofmeyr, Somayaji, and For-
rest [18, 36] examines an application’s behavior at the
system-call level. Most approaches to host-based intru-
sion detection perform anomaly detection [8, 16] on se-
quences of system calls with slight variations in flavor
(for example, considering the settings of environment
or configuration variables [17]). The work of Feng et
al. [15] includes an excellent overview of the literature
circa 2003. The work of Bhatkar et al. [4] also contains
a good overview of the more recent literature and offers
a technique for dataflow anomaly detection to comple-
ment traditional approaches that concentrate mostly on
control flow. Behavior profiling’s logical goal is to cre-
ate policies for detection [30, 21] and self-healing.

8 Conclusion

Self-healing systems face a number of challenges
before they can be applied to legacy applications and
COTS software. Our efforts to improve STEM focus
on four specific problems: (1) applying STEM’s mi-
crospeculation and error virtualization capabilities in sit-
uations where source code is unavailable, (2) helping
create a behavior profile for detection and repair, (3)
improving the correctness of the response by providing
a mechanism to interpret repair policy, and (4) imple-
menting virtual proxies to help deal with speculated I/O.
These solutions collectively provide a more streamlined,
self-contained version of STEM that represents a signif-
icant improvement over previous work in both features
and performance: our current implementation imposes a
74% impact for whole-application supervision (versus a

30% impact for a single supervised routine and a 3000X
slowdown for whole-application supervision).
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