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Abstract— In latency-insensitive design shell modules are used to
encapsulate system components (pearls) in order to interface them with
the given latency-insensitive protocol and dynamically control their
operations. In particular, a shell stalls a pearl whenever new valid data are
not available on its input channels. We study how functional independence
conditions (FIC) can be applied to the performance optimization of
a latency-insensitive system by avoiding unnecessary stalling of their
pearls. We present a novel circuit design of a generic shell template that
can exploit FICs. We also provide an automatic procedure for the logic
synthesis of a shell instance that is only based on the particular local
characteristics of its corresponding pearl and does not require any input
from the designers. We conclude reporting on a set of experimental results
that illustrate the benefits and overhead of the proposed technique.

I. INTRODUCTION

Latency-insensitive design (LID) is a correct-by-construction ap-
proach that handles latency’s increasing impact on nanometer tech-
nologies and facilitates the reuse of intellectual-property cores for
building complex systems-on-chip, thereby reducing the number
of costly iterations in the design process [6], [8]. In particular,
it provides a sound way to address the problem of interconnect
delay in nanometer design by simplifying the application of wire
pipelining in the context of traditional design practice that are based
on the synchronous paradigm. A functionally-equivalent latency-
insensitive system can be derived from an original synchronous one
by encapsulating any sequential logic block (pearl or core) within an
automatically generated interface process (shell). While the pearl can
be an arbitrarily-complex sequential module (an FSM, a pipelined
circuit,...), the only requirement is that it is stallable, i.e. it can be
clock gated. Fig. 1 (from [8]) shows a latency-insensitive system
with five shell-pearl pairs connected by point-to-point, unidirectional
channels. At the implementation stage, a channel with delay longer
than the desired clock period can be pipelined by inserting one or
more relay stations. A relay station is a clocked buffer with capacity
of at least two and simple flow control logic. The shell logic and relay
stations together implement a latency-insensitive protocol [6] that is
designed to accommodate arbitrary variations of wire delays while
guaranteeing that the functional behavior of the original synchronous
system is preserved (semantics preservation). Data communicated
over a channel is labeled by a bit signal indicating whether the data
is valid or void at a given clock cycle. At each cycle the shell fires
the pearl if and only if each input channel presents a new valid data
token (AND-firing semantics). Otherwise, it stalls the pearl through
clock gating while putting void data on each output channel.

LID helps to meet the required target clock frequencies through au-
tomatic wire pipelining, but performance in terms of data processing
throughput (number of valid data tokens processed over time) may be
affected negatively by the insertion of relay stations [7], [12]. This is
because each relay station must be initialized with a void data token (a
“bubble” or τ ). If the relay station is inserted on a cyclic path, such as
a feedback loop, the bubble will circulate in the loop indefinitely, thus
causing the overall system throughput to drop below the ideal value
(equal to one). For example, the two relay stations placed between

Fig. 1. Shell encapsulation, relay station insertion, and channel back-pressure.

Pearl 1 and 4 in Fig. 1 induce two bubbles circulating in the loop
that stall Pearl 1 and 4 periodically, thus reducing the throughput of
the entire system to 0.5. This throughput degradation can be easily
computed in advance [7], [12].

In this paper, we study how functional independence conditions
(FIC) of sequential pearls from the input variables can be applied
to the performance optimization of a latency-insensitive system by
avoiding unnecessary stalling of their pearls. Basically, whenever an
input data value is not needed for the current computation of the
pearl and even if no valid data token is present on the corresponding
channel the pearl could still be fired. Thus the number of stalls
incurred in the whole system could be reduced. Such FICs 1 may
occur for instance in a finite state machine (FSM) when it is in a
certain state thereby its state transition and output functions do not
depend on a given input variable.

A Motivating Example. Consider the synchronous system of
Fig. 3 having two interconnected Moore FSMs M1 and M2. Each
FSM has one single input variable that is set equal to the output
variable of the other FSM: X is the output of M1 and the input of
M2, while Y is the output of M2 and the input of M1. In the FSM
state transition diagrams each edge is labeled with the value of the
input variable that activates the corresponding transition. Both FSMs
present three states: the set of states of M1 is {A, B, C} and the
the set of states of M1 is {D, E, F}. Since we have single-output
Moore FSMs, we simply assume that in each state S the value of the
output variable is equal to the corresponding lowercase letter s: in
other words, FSM M1 outputs X = a while being in state A, X = b
while in state B, and X = c while in state C. Similarly, FSM M2

outputs X = d while being in state D, X = e while in state E,
and X = f while in state F . As denoted by the arrow, the initial
states are respectively A for M1 and D for M2. There are three sets
of traces in Fig. 2: the first set describes the behavior of the strictly
synchronous system of Fig. 3. It is easy to see that the system cycles
according to a periodic sequence of five compound state transitions:
for M1 we have (A → C → A → A → B) → (A → C . . . , while
for M2 we have (D → F → E → F → E) → (D → F . . . .

1Notice that we prefer to use the term FIC instead of don’t care because
the latter should be reserved for those input minterms of a Boolean functions
for which the output value is not specified.
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Fig. 2. Set of traces for the behaviors of the three systems in the motivating example.
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Fig. 4. A latency-insensitive system derived from the system of Fig. 3

The second set of traces describes the behavior of the system of
Fig. 4: this latency-insensitive system is obtained from the system of
Fig. 3 by encapsulating each FSM with a distinct shell and inserting
a relay station on the channel from M2 to M1. Since the relay station
is initialized with a void token (denoted as τ ), this is what variable
Y ′

b presents at the first cycle t0. This value will continue to iterate
forever in the feedback loop forcing each shell to periodically stall
the corresponding core FSM: M1 stalls at t3n while M2 stalls at
t3n+1 with n ≥ 0. Pairwise comparisons of the X, Y traces with the
Xb, Yb traces shows that they are latency-equivalent as expected [6]:
i.e., they are the same if one ignores the τ symbols. But, the system
throughput is reduced from 1 to 2

3
= 66%.

Part of the lost throughput, however, can be recovered if one knows
the internal structure of the FSM (an assumption not made in [6]
where pearls are treated as black boxes). For instance, the transition
of M2 from state F is functionally independent from the value of
input X . This FIC can be used to design a shell that: (1) avoids to
stall M2 whenever it is in state F and there is a τ on channel Xb

(stall avoidance); (2) remembers that for each stall avoidance it must
eventually stall M2 when the “previously-unneeded” data on channel
Xb arrives, only to be discarded (delayed stall). This is what happens
first at cycles (t1, t2) and then again at cycles (t8, t9) in the third set
of traces of Fig. 2 where the stalled FSM is reported in the last row
(and delayed stalls are marked with parenthesis). The key point is
that, for this system, delaying one stall by only a single clock cycle
allows us to raise the throughput by 9% to 5

7
= 0.72.

Contributions. In the next pages we present a new circuit design of
a generic shell template that can dynamically exploit FICs when the
pearl is given as a white box. We also provide a fully automatic proce-

dure for the logic synthesis of a shell instance based on the particular
characteristics of its corresponding pearl. Our method requires no
input from designers and relies on efficient logic synthesis algorithms.
Finally we present the first empirical study of the applicability and
effectiveness of optimizations based on FICs for LID systems. Our
results confirm that the system performance of a latency-insensitive
system can benefit considerably from this idea with reasonable area
(and no delay) overhead.

II. RELATED WORK

In the asynchronous design community the concept of early eval-
uation has been proposed to allow a logic component to compute its
output before all of its input values are available: Reese et al. applies
“early evaluation” to phased logic in different granularities [13], [14]
while Ampalam et al. [3] and Brej et al. [4] use “anti-tokens” to
support early evaluations in pipelined asynchronous logic. In this
paper we essentially apply early evaluation to the optimization of
synchronous systems in the context of the latency-insensitive design
methodology [5], [6]. Specifically we start from a synchronous
specification such as a network of FSMs and automatically derive
a synchronous latency-insensitive implementation. The various prac-
tical advantages of starting from a synchronous specification are
explained in [5], [6]. The authors of [2], [15] have proposed a related
method to optimize the performance of latency-insensitive systems in
the presence of multi-clock domains.

To exploit functional independence, a detection logic triggering an
early evaluation must be supplied. The authors of [14] present an
algorithm based on traversing root-to-terminal paths in BDDs that is
suitable for synthesizing one trigger function on a fixed subset set of
inputs. We propose a scalable algorithm that uses observability don’t-
cares to target arbitrary multi-input and multi-output logic functions.
This algorithm finds all the triggering conditions on all of the possible
subsets of inputs.

One challenge of exploiting functional independence to allow early
evaluations/outputs is to ensure a system’s functional correctness.
Since the computation of a logic component and the arrival of
data tokens may mismatch, subsequent computations and new data
tokens must be properly re-aligned. In [13], [14], this is achieved
by acknowledging early and late arrival data tokens simultaneously.
In [3], [4], an early evaluation generates an anti-token flowing in
the opposite direction of normal data flows to cancel unused (and
unneeded) normal tokens. In this paper, the realignment is done by
recording the number of subsequent tokens to be discarded for each
input channel. This idea is similar to the notion of “negative tokens”
in the “guarded” Petri net model [11]. To implement it we use simple
and efficient hardware (a 1-bit shift register). In acknowledge-based
realignment, a component which early-evaluates must still wait for
the arrival of all the inputs before proceeding to its next computation.
This restriction is lifted in our approach where back-to-back, more
frequent early firings are possible. Also, while in [3], [4] modified



pipeline protocols must be adopted, our realignment method is local
to the pearl modules and does not change the global communication
protocol.

III. SHELL DESIGN

We present the design of a shell exploiting FICs (FIC-shell). This
is a variation of the shell proposed in [5], [6], [8] which we review
first.
Classic shell with backpressure. A classic shell aligns the incoming
data tokens, which may arrive with arbitrary latencies, so that the
input and output traces of an encapsulated pearl module is latency-
equivalent to the original pearl module. Conceptually a shell has
two different kinds of logic controllers (though in implementation
they can be combined): a firing control block deciding when a pearl
module should be stalled by gating its clock, and a channel control
block that handles incoming data tokens, interface signals, and input
queue operations for each channel. A shell receives data from input
channels and broadcasts outputs of the pearl to output channels at
every clock cycle. A channel carries data and two special 1-bit
signals: void and stop. A void signal is generated by the sender shell
to inform the receiver whether the accompanying data is valid. The
stop signal is a flow control signal and is used by a receiver to inform
its sender to stop sending more data (“back-pressure”) [5].

At each cycle the shell decides whether the computation of a pearl
module can proceed: the computation is allowed for the next clock
cycle (“firing”) when all of the input channels are ready (in a classic
shell an input channel is ready if it presents a valid data token).
Otherwise the shell stalls the pearl by gating the clock with signal
fire next. The output tokens generated by a stalled module are marked
as void. When a void data token is received, it will be discarded. Valid
tokens not consumed (due to stalling) are stored in FIFO queues
for later use. Thus a valid data token can come either directly from
the input channel or from the FIFO. In either case, the channel is
declared ready. The shell will also stall the pearl if a downstream
receiver notifies that it cannot consume more tokens by asserting the
stop signal [5].
FIC-shell design. Fig. 5(a) reports a block diagram of the newly
proposed FIC-shell design. While the firing control block of the
classic shell is reused, the channel control logic is modified to support
the new stall avoidance and delayed stall operations discussed in the
example in Section I. First, the FIC-shell differs from the classic
shell by the conditions deciding a channel’s readiness. Normally a
FIC-shell operates like a classic shell, but it becomes more aggressive
when FICs can be exploited, i.e. whenever one or more input channels
present invalid data tokens which are not necessary to the pearl’s
computation. In this case, these channels are declared as ready and
the FIC-shell fires the pearl module. However, this operation makes
the pearl run one more clock cycle ahead of the next valid data token
for such channels. So, this token when arrives must be discarded.
Therefore, for each input channel a FIC-shell maintains a counter
that records how many cycles the pearl module currently runs ahead
with respect to the next valid data token on this channel. The detailed
logic of the FIC-shell is reported in Fig. 5(b). In summary, a channel
is declared ready if either it has a valid and fresh token (the channel
count is zero), or it is a value that is not necessary. The count is
maintained by simple rules. When a pearl is fired but the current
channel presents a void token, the count is increased by 1. A non-zero
count indicates the next valid data token is outdated, and it should be
discarded on arrival (causing a delayed stall). When a valid token is
dropped in this case, the count is decreased by 1. In practice, instead
of using an up-down counter, a shift register is sufficient because
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Fig. 5. (a) Block diagram of a FIC-shell. (b) FIC-detect logic for channel i.

the actual count is not needed. The count is increased by shifting
a “1” into the register (sh right), and decreased by shifting a “1”
out (sh left). The leftmost bit indicates whether the count is zero
(sr empty), and the rightmost bit flags whether the register reaches
its maximum capacity (sr full). When the shift register is full, the
channel control can no longer declare a channel ready even it is
not needed (a FIC). So regardless of the size of the shift register,
the FIC-shell will always be able to synchronize the incoming data
tokens properly. Whether a FIC occurs on a given channel at a given
clock cycle is dynamically established by the FIC-detect block: this
is a combinational logic block that monitors the current state of the
pearl and all the input channels. Each channel has its own single-
output FIC-detect block.2 When the FIC-detect evaluates to 1, the
current data token of the channel is a FIC. In Section IV we present
a procedure for the logic synthesis of this block.

Remark. A FIC-shell still follows the latency-insensitive protocol
when it communicates with relay stations or other shells. It only
relaxes the conditions of firing a pearl module. So, FIC-shells and
classic shells can co-exist in a system. Therefore a designer can use
FIC-shells only when it is beneficial to the system’s performance. Be-
cause the system throughput is dominated by the critical cycle(s) [7],
[12], FIC-shells can be used only for those pearl modules that are
part of feedback loops, while classic shell are sufficient elsewhere.

IV. LOGIC SYNTHESIS OF FIC-DETECT BLOCK

We present a procedure to automatically synthesize the logic of the
channel FIC-detect blocks. For each input channel Pi, which may
consist of many binary variables, we first derive the conditions under
which the state-transfer and output functions of the pearl module do
not depend on Pi. These functional independence conditions (FIC)
are generally expressed as predicate on the set of the pearl state
variables together with the remaining input variables and their validity
(decided by the void and empty signals). Note that our procedure uses
observability don’t cares as a starting point for FIC computation.3

2In practice, all the FIC-detects can be combined into a single component
to increase logic optimization opportunities.

3ODC computation is the basis of our procedure, but not the focus of this
paper. For ODC computation the interested reader can refer to [9].
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We then use the FICs to synthesize the FIC-detect block for the
channel. Before presenting our procedure we recall some background
concepts.

A. Background Definitions

Without loss of generality a pearl module can be modeled as a
Mealy FSM that is specified by a state transfer function f , and an
output function g (Fig. 6.). Note that a pipelined synchronous circuit
also fits into this model by separating the combinational network and
sequential elements. Further, a Moore FSM, where outputs depend
only on states, can be viewed as a special case of a Mealy FSM. A
generic state transfer function can be written in vector form as:

S′ = f(P1,P2, . . . ,Pn;S) (1)

where S′ ≡ {s′1, s′2, . . . , s′n} is the vector of next state variables,
Pi ≡ {pi1 , pi2 , . . . , pi|Pi|

} is an input channel consisting of vari-
ables pi1 . . . , pi|Pi|

, and S is the vector of the present-state variables.
The FSM output function is specified as

Q = g(P1,P2, . . . ,Pn;S) (2)

Observability don’t care. For a Boolean function f , a variable xi is
an observability don’t care (ODC) if f is not sensitive to the changes
of xi [9]. This unobservability may only hold under certain conditions
that are expressed by the complement of the Boolean difference,
which computes under which conditions f is sensitive to xi. The
Boolean difference is simply the result of XOR (⊕) of f ’s co-factor
with respect to xi and xi. Let ODCxi(f) be the conditions under
which function f is insensitive to variable xi. We have

ODCxi(f) =
∂f

∂xi
= f |xi=1 ⊕ f |xi=0

where ⊕ is the complement of XOR.
Computing ODC using Boolean difference directly on a large

multi-level Boolean network may not be practical, unless the net-
work’s global logic function f (which maps primary inputs directly
to outputs) is given, or can be efficiently computed. An effective
solution, which has been shown successful on large designs, is to
iteratively applying Boolean difference functions locally [9]. For
simplicity, in the sequel the Boolean difference will still be used
as a notation to represent the computation of ODC sets.
Consensus function. The consensus of Boolean function f with
respect to variable xi is the part of f that is independent of xi:

Cxi(f) = f |xi=1 · f |xi=0 (3)

Consensus can be extended to a set of variables by iteratively
applying Eq. 3 to each variable [9].

B. Synthesis Procedure of FIC-Detect Block

The procedure consists of four steps:
Step 1. To derive the FICs for an input channel Pi, we first restrict
the computation to a single input variable pij ∈ Pi with respect to
a scalar state transfer function fs′

k
(s′k ∈ S′ is a single next state

variable). We have:

gODCpij
(fs′

k
) =

∂fs′
k

∂pij

= fs′
k
|pij

=1 ⊕ fs′
k
|pij

=0 (4)

Similarly for the FICs of pij w.r.t. output function gql we have:

gODCpij
(gql ) =

∂gql

∂pij

= gql |pij
=1 ⊕ gql |pij

=0 (5)

Step 2. Since FICs involve all state and output variables we perform
the conjunction of all the FICs computed by Eq. (4) and Eq. (5):

gODCpij
(f ,g) =

` ^
s′

k
∈S′

ODCpij
(fs′

k
)
´
·

` ^
ql∈Q

ODCpij
(gql )

´
(6)

Step 3. A channel Pi has generally many input variables. Hence, we
take the conjunction across all of them to determine its exact FICs:

gODCPi
(f ,g) = CPi

(
^

pij
∈Pi

ODCpij
(f ,g))

= Cpi1
(Cpi2

(· · ·Cpij
(

^
pij

∈Pi

ODCpij
(f ,g)) · · · ) (7)

Note that the consensus function is used to eliminate any cube that
contains input variables from channel Pi. These cubes can arise after
taking the conjunction of the single-variables FICs.
Step 4. In LID not every input channel presents a good token at each
clock cycle. So we require all the input variables which appear in
Eq. (7) to come from input channels presenting valid tokens. Recall
that a good token can be either from the channel (i.e. its void is
0) or from the channel’s FIFO queue (i.e. the FIFO is not empty).
Further, if the token is from the channel, it cannot be outdated (shift
register must be empty). So the final FIC conditions can be obtained
as follows:

ODCIS
Pi

(f ,g) ≡ Replace each literal p in gODCPi
(f ,g) with

p · (voidk · sr emptyk + emptyk), and p
with p · (voidk · sr emptyk + emptyk)

(8)

where voidk and emptyk are the void and FIFO’s empty signals
of channel Pk containing variable p, while sr emptyk is the shift
register emtpy signal.

The domain of the single-output Boolean function ODCIS
Pi

(f ,g)
that is obtained at the end of Step 4 is the set of state variables,
input variables, void and empty variables minus the set of input,
void and empty variables of the channel Pi. A combinational logic
network can be synthesized to implement this function within the
channel FIC-detect block: at each clock cycle, if ODCIS

Pi
(f ,g) = 1

then the current data value of channel Pi is not needed to compute
the state and output function of the pearl.

FIC conditions that depend on input channels may induce extra
timing constraints. In fact, the firing of a pearl module is controlled by
signal fire next signal, which must be stable by the end of each clock
cycle. The dependency of FIC conditions on input and void variables
may lead to long combinational paths from the sender of data tokens
to fire next across the communication channel. Therefore, we may
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want to restrict ourselves to FIC depending only on state variables.
This requires a different (alternative) final step in our procedure.
Step 4’. To restrict FIC conditions to state variables only, we apply
the consensus function to Eq. (7) over all input variables iteratively:

ODCS
Pi

(f ,g) = CP( gODCpi (f ,g))

= Cp11
(Cp12

(· · ·Cpij
( gODCpi (f ,g) · · · ))) (9)

If the pearl module has no combinational path from its inputs to
outputs (thus it can be viewed as a Moore FSM), Eq. (5) will return
1 because an output variable does not depend on any input. The
same steps can be applied to compute on a channel basis thereby
ODCS

Pi
(f ,g) is simply ODCS

Pi
(f).

Example. The procedures discussed above is applied to a simple pearl
module whose behavior is modeled by a Moore FSM. The pearl, its
FSM model, and the state transfer functions are reported in Fig. 7(a).
The pearl has two input channels consisting of three variables in total
({a, b} and c), and the FSM has four states (s0s1 = {00, 01, 10, 11}).

We applied our four-step procedures to derive the FICs for each
input channel. Since the pearl is a Moore FSM, only Eq. (4) must
be applied in Step 1. The FICs of all three input variables with
respect to each state transition function are shown in Fig. 7(b).
Finally, Eq. (6) and Eq. (7) provide the FIC for each of the two
channels: ODCIS

P1(f) = s1c (void2 · sr emptyk + empty2) and
ODCIS

P2(f) = s1.
If we prefer to restrict ourselves to FICs depending only on the

state variables, then we apply Step 4’ instead of Step 4. In this case,
the FIC for channel 2 becomes ODCS

P2(f) = s1, while the input data
coming at channel 1 are always needed: ODCS

P1(f) = ∅. Overall less
opportunities for avoiding stalling can be exploited, but this might
be necessary to meet timing constraints on the shell logic.

V. EXPERIMENTAL RESULTS

This section presents various experiments designed to evaluate the
applicability and efficiency of the proposed optimization technique.
We implemented the procedure discussed in Section IV within the
logic synthesis tool ABC [1] and we test it with the ISCAS-89
benchmark suite and other sequential circuits. For each benchmark,

the functional independence conditions (FIC) are derived assuming
that each single input is a LID channel. We distinguish a FIC that
depends only on pearl’s state variables (SD-FIC) from one that
depends also on input variables (ISD-FIC). Fig. 8 reports three
distributions showing the frequencies of FIC in reachable states for
benchmark s1488: Fig. 8(a) lists the ratio of reachable states in which
a particular input is a FIC. Fig. 8(b) lists the number of FIC inputs
in each of the 48 reachable states. Fig. 8(c) shows the ratio of states
where at least some number of inputs are SD-FIC. In s1488, SD-FIC
conditions are very frequent: all but two inputs are SD-FIC in most
states. Further, in most reachable states, there is a significant number
of FIC inputs. Note that SD-FIC dominates, and by considering ISD-
FIC only a little more FIC conditions can be exploited.

Table 9 shows the results of measurements of FIC frequencies
across all benchmarks. For each benchmark, the column “# of SD-
FIC inputs” reports the number of inputs which is a SD-FIC in at
least one reachable state, while column “states with SD-FIC” reports
the number of reachable states in which at least one input is a SD-
FIC. The non-weighted average of SD-FIC inputs per reachable states
is in the following column. The same analysis is applied to ISD-
FIC conditions, and results are listed in the last three columns. The
results indicate that FIC conditions are frequent in reachable states.
While by definition the set of ISD-FIC includes the set of SD-FIC
the number of SD-FIC is high in most designs. In particular, all
FIC inputs are SD-FIC in benchmark s349. This is an add-shift-
multiplier [10], controlled by a 3-bit counter. Its inputs are only
needed in the first cycle of each computation round (thus state-
dependent).

Table 10 shows the area and delay overheads of FIC-detect blocks.
All of the FIC-detect blocks and benchmark circuits are synthesized
and mapped using ABC’s synthesis scripts. For FIC-detect blocks,
both area and delay are reported in absolute values and in ratios
compared to the core components’. A dash (“-”) entry indicates there
is no SD-FIC (or ISD-FIC) condition for any input of the benchmark.
In most cases the logic detecting ISD-FIC are larger and slower
than the logic detecting SD-FIC. In some cases the ISD-FIC detect
logic is even bigger and slower than its core, which makes ISD-
FIC conditions infeasible in practice. On the other hand, SD-FIC
detect logic imposes much lower costs. Note that in either types of
detect logic, as long as its delay is smaller than the delay of the
pearl’s critical path (i.e. ratio smaller than 1), the detect logic will
not increase the clock cycle time. This assumes that the FIC-detect
logic is not on the critical path, a reasonable assumption given the
simple logic driven by FIC-detect in our shell design.

These results confirm that in practice it is sufficient to focus on
exploiting SD-FIC since they already offer many opportunities to
improve the performance of a latency-insensitive system. Further, SD-
FIC have a much more limited area overhead than ISD-FIC and do
not introduce any delay penalty.

VI. CONCLUSION AND FUTURE WORK

We discussed the problem of exploiting functional independence
conditions on the logic of pearl modules to optimize the performance
of a latency-insensitive system. The paper’s contributions include
the circuit design of a FIC-shell, a logic synthesis procedure to
automatically synthesize a FIC-shell, and the first analysis of the
benefits and overhead of the proposed technique that is based on
experimental results. Future work will include the application of this
idea to a real SOC consisting of a network of multiple pearls.
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Fig. 8. Frequency distributions of FIC conditions in s1488. In Fig. 8–10, the acronym “ISD-FIC” refers to functional independence conditions depending
on state variables and at least one input variable; “SD-FIC” refers to conditoins depending only on state variables.

PI PO FF reachable # of SD-FIC states with avg. SD-FIC # of ISD-FIC states with avg. ISD-FIC
Bench states inputs SD-FIC inputs (%) inputs per state inputs ISD-FIC inputs (%) inputs per state
s1488 8 19 6 48 8 48 (100) 5.83 8 48 (100) 6.46
s208 10 1 8 256 8 256 (100) 7.00 9 256 (100) 9.00
s27 4 1 3 6 2 4 (66) 1.17 4 6 (100) 2.83
s298 3 6 14 218 0 0 (0) 0.00 3 218 (100) 2.06
s349 9 11 15 2625 8 2368 (90) 7.22 8 2368 (90) 7.22
s382 3 6 21 8865 0 0 (0) 0.00 3 8865 (100) 2.00
s386 7 7 6 13 5 13 (100) 4.08 7 13 (100) 6.77
s510 19 7 6 47 19 47 (100) 18.40 19 47 (100) 18.51
s526n 3 6 21 8868 0 0 (0) 0.00 3 8868 (100) 2.00
s832 18 19 5 25 17 25 (100) 14.16 18 25 (100) 16.72
s953 16 23 29 504 13 504 (100) 6.57 15 504 (100) 13.66
ex1 9 19 5 20 8 20 (100) 5.20 9 20 (100) 7.40
keyb 7 2 5 19 7 16 (84) 3.21 7 19 (100) 6.79
kirkman 12 6 4 16 6 9 (56) 2.38 11 16 (100) 9.94
planet1 7 19 6 48 7 48 (100) 5.71 7 48 (100) 6.33
sand 11 9 5 32 10 32 (100) 8.69 11 32 (100) 10.06
shiftreg 1 1 3 8 0 0 (0) 0.00 0 0 (0) 0.00
Add256Cntrl 1 2 12 24 1 23 (95) 0.96 1 23 (95) 0.96
TagGen 4 9 24 20161 0 0 (0) 0.00 2 20161 (100) 2.00
TagGenCntrl 2 2 13 23 2 22 (95) 1.87 2 23 (100) 1.91
boltzmann 7 21 93 903 6 903 (100) 5.77 6 903 (100) 5.86
lan 10 8 20 24 10 24 (100) 6.50 10 24 (100) 9.83
Avg. 7 9 14 1943 6 198 (72) 4.76 7 1931 (94) 6.74

Fig. 9. Statistics of FIC frequencies across all benchmarks.
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Core SD-FIC Detect ISD-FIC Detect
Bench Area Delay Area (%) Delay (%) Area (%) Delay (%)
s1488 1048 10.30 165 (16) 6.9 (67) 322 (31) 8.6 (83)
s208 116 6.20 38 (33) 3.7 (60) 118 (102) 8.8 (142)
s27 21 4.50 7 (33) 1.9 (42) 42 (200) 5.2 (116)
s298 194 7.00 - - - - 48 (25) 6.0 (86)
s349 220 7.80 44 (20) 4.6 (59) 44 (20) 4.6 (59)
s382 241 7.30 - - - - 52 (22) 5.8 (79)
s386 226 8.70 57 (25) 5.5 (63) 154 (68) 9.2 (106)
s510 407 7.40 117 (29) 3.7 (50) 190 (47) 6.2 (84)
s526n 351 7.20 - - - - 87 (25) 7.0 (97)
s832 491 9.00 139 (28) 6.0 (67) 430 (88) 8.3 (92)
s953 710 8.20 107 (15) 5.5 (67) 1081 (152) 13.9 (170)
ex1 436 7.90 67 (15) 5.0 (63) 162 (37) 7.2 (91)
keyb 463 9.30 72 (16) 4.5 (48) 620 (134) 11.5 (124)
kirkman 282 7.80 33 (12) 3.5 (45) 711 (252) 11.6 (149)
planet1 1266 9.30 146 (12) 6.6 (71) 327 (26) 9.9 (106)
sand 1128 9.80 89 ( 8) 5.9 (60) 402 (36) 10.6 (108)
shiftreg 12 1.90 - - - - - - - -
Add256Cntrl 93 5.40 12 (13) 3.6 (67) 12 (13) 3.6 (67)
boltzmann 524 8.20 73 (14) 6.3 (77) 92 (18) 6.3 (77)
lan 293 10.00 38 (13) 3.9 (39) 307 (105) 10.1 (101)
TagGen 144 4.80 - - - - 8 ( 6) 1.6 (33)
TagGenCntrl 97 4.90 21 (22) 3.6 (73) 27 (28) 4.0 (82)
Avg. 398 7.40 72.1 (19) 4.7 (60) 249.3 (68) 7.6 (98)

Fig. 10. Overheads of FIC-detect logic in terms of area and delay.


