
Embedded uClinux, the Altera DE2, and the SHIM Compiler

Wei-Chung Hsu, David Lariviere, and Stephen A. Edwards
Columbia University, Department of Computer Science

wh2138@cs.columbia.edu, dal2103@columbia.edu, sedwards@cs.columbia.edu

Abstract
SHIM is a concurrent deterministic language focused on em-
bedded system. Although SHIM has undergone substantial
evolution, it currently does not have a code generator for a
true embedded environment.

In this project, we built an embedded environment that
we intend to use as a target for the SHIM compiler. We
add the uClinux operating system between hardware devices
and software programs. Our long-term goal is to have the
SHIM compiler generate both user-space and kernel/module
programs for this environment. This project is a first step:
we manually explored what sort of code we ultimately want
the SHIM compiler to produce.

In this report, we provide instructions on how to build and
install uClinux into an Altera DE2 board and example pro-
grams, including a user-space program, a kernel module, and
a simple device driver for the buttons on the DE2 board that
includes an interrupt handler.

1 Introduction
The idea of this project is to provide an embedded sys-
tem target for the SHIM compiler and ultimately for use
within the CSEE 4840 Design of Embedded Systems course
at Columbia University. This is part of longer-term project
whose goal is to produce a compiler for the SHIM language
able to target this platform.

SHIM, Software/Hardware Integration Medium, is a con-
current deterministic language. Its user-specified parallelism
is designed to map naturally to mixed hardware/software
systems and allow programmers to take advantage of their
inherent parallelism.

One dimensional along which to characterize embedded
systems is the quantity of resources at their disposal. Em-
bedded systems range from incredibly resource-constrained
four-bit microcontroller-based systems all the way to sys-
tems with more compute power than a typical desktop com-
puter. Above a certain point in this spectrum, virtually every
system has sufficient resources to include a formal operating
system. It is these systems that we are concerned with here.

For this project, we are using the Altera DE2 board as a
target. This board has a Cyclone II EP2C35F672C6 FPGA,
8M SDRAM, 512K SRAM and 4M flash, and is sufficiently
powerful to support a general-purpose operating system.

After looking at what is available, we decided to use the
port of uClinux, a Linux variant designed to work in environ-

Figure 1: System Architecture

ments without memory-management units, as our operating
system. uClinux has already been ported to the DE2 board,
is open source, and Linux is of growing importance in the
embedded systems arena.

Embedded operating systems are mature and are found in
most embedded systems. Many operating systems suitable
for embedded systems are available, including WinCE, var-
ious Linux variants, Wind River’s VxWorks, eCos, RTEMS,
FreeRTOS, µC/OS-II, and many others. WinCE is re-
source hungry, usually requiring at least 32M of RAM and a
100 MHz processor.

Linux variants are open source and more malleable. They
can also have much smaller footprints, as little as a 1 MB
image that requires less than 4 MB of RAM. Because of our
resource constraints and desire to use an open-source OS, we
chose uClinux.

2 Objectives and System Architecture
The current SHIM compiler produces single-threaded C
code suitable for running on a desktop workstation. Our
long-term goal is a SHIM compiler able to produce code
suitable for execution on embedded platforms. The goal of
this project is to develop and understand such a platform.

2.1 System Architecture

There are three layers in this embedded system and a de-
velopment environment. (Figure 1). The bottom layer is
the hardware: the Altera DE2 FPGA board and its pro-
grammable hardware. To simplify our lives, we used the
configuration provided by Altera with the DE2 board. The
middle layer is uClinux and the top layer is the application—
the user-space program. Our project focuses on middle and

1

Figure 2: Development Machine Architecture

top layers. In addition to the target machine, a development
machine connects to the DE2 board through USB to upload
the code image to the board and control it.

2.2 Development Machine

We ran the Altera software on Windows, but the uClinux dis-
tribution, kernel and toolchains all run under Linux, even the
code image and object file format is the Linux FLAT format.
A straightforward approach would be to use a separate Linux
box as the uClinux development platform, but to reduce the
number of computers we had to use, we chose instead to use
a VMware virtual machine to run the uClinux development
platform.

Figure 2 illustrates this configuration: Windows XP with
Linux running on a VMware inside. A virtual network con-
nects the Windows and Linux environment. Figure 3 is a
screenshot of us working in Windows with with Linux and
the Altera DE2. We use ssh to build uClinux and download
the image to the Windows side. Then we use the Altera soft-
ware to synthesize hardware and load the image into FPGA.
Below, we provide details about how to build uClinux and
use the Altera software.

2.3 Low-level Hardware

To simplify our work, we used the sample code and config-
uration provided by Altera with the DE2 board. This can
be downloaded from ftp://ftp.altera.com/up/pub/
de2/DE2_System_v1.5.zip. This file contains all the Ver-

Figure 3: Working environment example

ilog and VHDL sample code in the DE2_demonstrations
folder. For this project, we used the DE2_NET configura-
tion.

2.4 The Middle level: uClinux

This is the focus of our project. We choose uClinux as our
embedded OS. It is a derivative of the Linux 2.0 kernel in-
tended for microcontrollers without memory management
units. We used the uClinux-dist-20060803 version with the
linux-2.6.17-uc1 kernel.

Since there is no MMU in a uClinux system, a user-space
program has direct access to the hardware and can therefore
bypass most kernel code. However, there is still a need for
kernel modules since they appear to be the only way to reg-
ister an interrupt handler. Of course, we could opt to use
polling exclusively, but this is would be inefficient.

2.5 The Top Level: Application programs

As we mentioned above, since there is no MMU, a user-
level program can directly access the hardware if it has
its addresses. These are defined in the uClinux-dist/linux-
2.6.x/include/nios2_system.h header file.

We also tried some standard applications, such as telnetd,
insmod, ftpd, etc.

We wrote several programs to test the entire system at
each level and tried to see what functionality uClinux pro-
vides. We found that each new version of uClinux supports
more functionality and has more comprehensive hardware
support.

3 Building uClinux and Its Toolchain
Here, we describe how to install the uClinux toolchain and
use it to build the kernel image. Running the system ulti-
mately requires the Altera software, Quartus II v6.1 and the
Nios II Embedded Design Suite v6.1, because the sample
code DE2_System_v1.5 works with v6.1. Since the Altera
has detail documentation on how to use their design soft-
ware, we will not discuss it.

Download the uClinux distribution version 20060803
from http://www.uclinux.org/pub/uClinux/
dist/uClinux-dist-20060803.tar.bz2 and

2

ftp://ftp.altera.com/up/pub/de2/DE2_System_v1.5.zip
ftp://ftp.altera.com/up/pub/de2/DE2_System_v1.5.zip
http://www.uclinux.org/pub/uClinux/dist/uClinux-dist-20060803.tar.bz2
http://www.uclinux.org/pub/uClinux/dist/uClinux-dist-20060803.tar.bz2

toolchains from http://nioswiki.jot.com/
WikiHome/OperatingSystems/%C2%B5Clinux/
BinaryToolchain/nios2gcc.tar.bz2. The Nios II
Wiki (http://en.wikipedia.org/wiki/Nios_II)
taught us to build uClinux and how to write modules,
interrupt handlers, and user-space programs.

3.1 Install Toolchain First

Building the uClinux kernel requires the toolchain be in-
stalled. This includes the gcc cross-compiler. As root, ex-
tract the toolchain by typing

tar jxf nios2gcc.tar.bz2 -C /

This places the cross gcc tools in /opt/nios2.
Set up the PATH for the cross gcc. This can
be done by adding it to ~/.bash_profile, i.e.,
PATH=$PATH:/opt/nios2/bin:$HOME/bin, or just from
the command-line with PATH=$PATH:/opt/nios2/bin.
To verify the cross gcc, try

nios2-linux-uclibc-gcc -v

This should display

Reading specs from
/opt/nios2/lib/gcc/nios2-linux-uclibc/3.4.6/specs

Configured with:
/root/buildroot/toolchain_build_nios2/gcc-3.4.6/configure

--prefix=/opt/nios2 --build=i386-pc-linux-gnu
--host=i386-pc-linux-gnu --target=nios2-linux-uclibc
--enable-languages=c --enable-shared --disable-__cxa_atexit
--enable-target-optspace --with-gnu-ld --disable-nls
--enable-threads --disable-multilib --enable-cxx-flags=-static
Thread model: posix
gcc version 3.4.6

3.2 Building the uClinux Kernel

Once the toolchain is installed, the uClinux kernel can be
built.

tar jxf uClinux-dist-20060803.tar.bz2
mv uClinux-dist-20060803-nios2-02.diff.gz uClinux-dist
cd uClinux-dist
gunzip -c uClinux-dist-20060803-nios2-02.diff.gz | patch -p0
make menuconfig

Verify you have the correct target.
Altera, nios2nommu, and Libc must be None.

Vendor/Product Selection --->
--- Select the Vendor you wish to target
(Altera) Vendor
--- Select the Product you wish to target
(nios2nommu) Altera ProductsĄă

Kernel/Library/Defaults Selection --->
(linux-2.6.x) Kernel Version
(None) Libc Version
[*] Default all settings (lose changes)
[] Customize Kernel Settings
[] Customize Vendor/User Settings
[] Update Default Vendor Settings

Then <exit> <exit> <yes>
Do not change any other setting until the first successful

boot.
Next, set up memory and I/O addresses for the DE2 board.

make vendor_hwselect SYSPTF=~/toolchain/DE2_demonstrations/DE2_NET/nios_0.ptf

The hwselect script prepares the header files con-
taining memory and I/O addresses for our board, the
“nios2_system.h” header file. hwselect must be run before
compiling the kernel. If these addresses are changed later, it
is necessary to “make clean” in the kernel directory and run
“make hwselect” again. Here is our project example that we
use hwselect of DE2_NET/nios_0.ptf.

--- Please select which CPU you wish to build the kernel against:
(1) cpu_0 - Class: altera_nios2 Type: f Version: 6.0
Selection: 1

--- Please select a device to upload the kernel to:
(1) cfi_flash_0
Class: altera_avalon_cfi_flash
Size: 4194304 bytes
Selection: 1

3

http://nioswiki.jot.com/WikiHome/OperatingSystems/%C2%B5Clinux/BinaryToolchain/nios2gcc.tar.bz2
http://nioswiki.jot.com/WikiHome/OperatingSystems/%C2%B5Clinux/BinaryToolchain/nios2gcc.tar.bz2
http://nioswiki.jot.com/WikiHome/OperatingSystems/%C2%B5Clinux/BinaryToolchain/nios2gcc.tar.bz2
http://en.wikipedia.org/wiki/Nios_II

--- Please select a device to execute kernel from:
(1) sram_0

Class: sram_16bit_512k
Size: 524288 bytes

(2) sdram_0
Class: altera_avalon_new_sdram_controller
Size: 8388608 bytes

(3) epcs_controller
Class: altera_avalon_epcs_flash_controller
Size: 2048 bytes

Selection: 2

This generates uClinux-dist/linux-
2.6.x/include/nios2_system.h.

make romfs # creates romfs dir
make Ąă # may fail; ignore
make # should succeed
make linux image # rebuild kernel for initramfs

This builds the compressed kernel in images/zImage in
ELF format.

3.3 Customizing the Kernel and Adding System Applica-
tions

The kernel build procedure allows us to customize the kernel
and select system applications such as telnetd. The follow-
ing illustrates building the kernel with NIC functionality and
telnetd and ftpd applications.

make menuconfig

Kernel/Library/Defaults Selection --->
(linux-2.6.x) Kernel Version
(None) Libc Version
[] Default all settings (lose changes)
[*] Customize Kernel Settings
[*] Customize Vendor/User Settings
[] Update Default Vendor Settings

Then <exit> <exit> <yes>.
This will enter kernel configuration first, then enter user

application configuration. You can select more applications
in a second menu.

The first menu is kernel configuration.

To enable network support,

Networking -->
[*] Networking support
Networking options --->
<*> Packet socket
<*> Unix domain sockets
[*] TCP/IP networking

Device Drivers -->Network device support Šĺą>
[*] Network device support
[*] Ethernet (10 or 100Mbit)

[*] Ethernet (10 or 100Mbit)
--- Generic Media Independent Interface device support
[] Western Digital/SMC cards
[*] SMC 91C9x/91C1xxx support # For Altera NIOS dev board
[] Opencores (Igor) Emac support
[] MoreThanIP 10_100_1000 Emac support
[*] DM9000 support # For the DE2 board

4

Since we are using the DE2 board, we enable “DM9000
support,” linux-2.6.x/drivers/net/dm9000.c. Rebuild the ker-
nel and boot nios2 uclinux. It should detect the NIC device
as eth0.

The second menu is application configuration. Here we
add ftpd and telnetd.

Network Applications -->
[*] ftp
[] ftpd
[*] ftpd-new (0.17)
[*] telnetd
[*] telnetd does not use openpty()

After downloading the image file, we
open the Nios Command Shell located in
C:\altera\61\nios2eds\Nios II Command Shell.bat.
To load the image into DE2 FPGA board, we first run

nios2-download -g zImage

then run execute nios-terminal

nios2-terminal

dhcpcd & # Obtain an IP address

inetd & # start inetd to invoke telnetd and ftpd services

The figure below shows both telnetd and ftpd working.

4 Writing User-space Programs
uClinux supports standard C libraries and system calls. Fur-
thermore, hardware can be controlled directly from user-
space programs by directly accessing memory-mapped I/O
addresses. These are in the nios2_system.h header file.

There are two ways to download and run user space pro-
grams: use ftp to download the executable into the filesystem
and run it from a command-line, or build it into romfs as part
of the kernel. Here, we illustrate the second approach.

4.1 Hello World

To compile a simple program, add the -elf2flt flag. For ex-
ample, create “hello.c”

#include <stdio.h>
int main(void)
{

printf("hello world\\n");
}

and compile it with

nios2-linux-uclibc-gcc hello.c -o hello -elf2flt

The compiled object format is FLAT. You may check ver-
ify this with

nios2-linux-uclibc-flthdr hello
hello

Magic: bFLT
Rev: 4
Build Date: Fri Dec 22 22:38:03 2006
Entry: 0x40
Data Start: 0x4a8c
Data End: 0x5c48
BSS End: 0x7ca8
Stack Size: 0x1000
Reloc Start: 0x5c48
Reloc Count: 0x11e
Flags: 0x1 (Load-to-Ram)

Finally, copy hello to the rootfs’s bin dir and rebuild the
kernel image for initramfs.

cp hello ~/uClinux-dist/romfs/bin
cd ~/uClinux-dist-test
make linux image

Once uClinux is built, hello can now be run.

/bin> ./hello
hello world
/bin>

5

4.2 LED Access and Control

In this example, we access I/O locations for the green and red
LEDs on the DE2, which has 8 green LEDs and 17 red ones.
This user-space program takes two inputs: bits to control the
green LEDs and bits for the red ones. We access the I/O
locations through two constants defined in nios2_system.h:
na_led_green and na_led_red.

#include <stdio.h>
#include "nios2_system.h"

short *green_led_address = na_led_green;
short *red_led_address = na_led_red;

int main(int argc, char *argv[]) {
if (argc != 3) {

printf("Arguement expected\n");
return 0;

}
int ledGNum = atoi(argv[1]);
int ledRNum = atoi(argv[2]);
printf("Setting green led to %d, red led to %d\n",

ledGNum, ledRNum);
*green_led_address = (short) ledGNum;
*red_led_address = (short) ledRNum;

}

4.3 Button interrupt by polling

We use polling to handle push button as well as interrupt
register and show the result by turning on/off the led.
4.4 Multi-thread: Philosopher Dinning Programming

Here we use philosopher dinning programming to show how
to write the multi-thread and how it works under uClinux.
5 Write System Level Program
We are going to discuss two system level programs, module
programming and interrupt handler.
5.1 Module Programming

Before going to interrupt handler programming, we should
discuss module programming first, because the interrupt
handler is a kind of module programming.
5.2 Interrupt Handler

6 Conclusion and Future Work

6

	Introduction
	Objectives and System Architecture
	System Architecture
	Development Machine
	Low-level Hardware
	The Middle level: uClinux
	The Top Level: Application programs

	Building uClinux and Its Toolchain
	Install Toolchain First
	Building the uClinux Kernel
	Customizing the Kernel and Adding System Applications

	Write User-space Program
	Hello World
	LED Access and Control
	Button interrupt by polling
	Multi-thread: Philosopher Dinning Programming

	Write System Level Program
	Module Programming
	Interrupt Handler

	Conclusion and Future Work

