Arrays in SHIM: A Proposal

Smridh Thapar, Olivier Tardieu, and Stephen A. Edwards
Columbia University
st2385@columbia.edu, {tardieu,sedwards } @cs.columbia.edu

Abstract

The use of multiprocessor configurations over uniprocessor
is rapidly increasing to exploit parallelism instead of fre-
quency scaling for better compute capacity. The multipro-
cessor architectures being developed will have a major im-
pact on existing software. Current languages provide facil-
ities for concurrent and distributed programming, but are
prone to races and non-determinism. SHIM, a determinis-
tic concurrent language, guarantees the behavior of its pro-
grams are independent of the scheduling of concurrent oper-
ations. The language currently supports atomic arrays only,
i.e., parts of arrays cannot be sent to concurrent processes
for evaluation (and edition). In this report, we propose a
way to add non-atomic arrays to SHIM and describe the se-
mantics that should be considered while allowing concurrent
processes to edit parts of the same array.

1 Introduction

In a concurrent framework, it is very important to define the
rules and restrictions that concurrent processes must follow
to perform a task deterministically. In this report, we discuss
these rules for arrays in a concurrent setting along with an
array extension to the concurrent SHIM framework.

Arrays in SHIM might be spread over a distributed
environment with their parts being handled by different
processes. Concurrent updates to the same array might
lead to inconsistency and thereby make the language non-
deterministic. To avoid this, rules need to be defined for
parallel processing with arrays without compromising the
power or flexibility of the language.

The SHIM language currently supports atomic arrays
only, that is, arrays in SHIM cannot be spread over differ-
ent processes. This requires sending the entire array across
processes even if only a single element of the array needs
to be sent. Also, atomic arrays prohibit concurrent updates
to different parts of the same array. We carefully examine
these situations and propose a design construct for adding
non-atomic arrays to the language.

2 Related Work

SHIM already defines rules for sharing and synchronizing
base type variables between parallel processes. SHIM sys-
tems consist of sequential processes that communicate using
rendezvous through point-to-point communication channels.
SHIM systems are therefore delay-insensitive and determin-
istic for the same reasons as Kahn’s networks, which they

resemble by design, but are simpler to schedule and require
only bounded resources by adopting rendezvous-style com-
munication inspired by Hoare’s CSP. We propose our exten-
sion to SHIM with these key ideas in mind.

The enhanced compute capacity achieved with multipro-
cessor systems has lead to the development of various lan-
guages. X10 is an object-oriented programming language
designed for programming of Non-Uniform Cluster Com-
puting Systems. This report is inspired by the developments
in the X10 language which has led to the proposal of non-
atomic arrays for SHIM. X10 also defines an array sub-
language that supports dense and sparse, distributed, multi-
dimensional arrays. An X10 array object is a collection of
multiple elements that can be indexed by multi-dimensional
points that form the underlying index region for the array.
An array’s distribution specifies how its elements are dis-
tributed across multiple places in the PGAS. In SHIM, con-
current processes execute independently but they meet at
specified synchronization points and communication takes
place in a rendezvous fashion. The extension proposed in
this report is more concerned with splitting arrays into parts,
passing them to concurrent processes and synchronization of
these processes with respect to arrays.

Another related work to this report is Guava, a dialect
of Java that defines rules to statically guarantee that par-
allel threads access shared data only through synchronized
methods. They identify classes into three categories: Mon-
itors, which may be referenced from multiple threads, but
whose methods are accessed serially; Values, which cannot
be referenced and therefore are never shared; And Objects,
which can have multiple references but only from within one
thread, and therefore do not need to be synchronized. Arrays
in guava can either be of type Value or Object. Thus arrays
in Guava can be shared but only in one thread. Our focus
in this report is to propose non-atomic arrays which can be
shared over different processes over different locations.

3 Overview

This report deals with defining non-atomic arrays in SHIM
and the set of operations that guarantee scheduling indepen-
dent behavior. Parts of these non-atomic arrays will be han-
dled by many concurrent processes and concurrent updates
to the array should not allow inconsistencies.

To add such non-atomic arrays and ensure that no incon-
sistencies occur requires the addition of new constructs to

the language. We will define these constructs and list the
reason for various choices.

In the following section, we will propose the basic array
constructs for SHIM. We list the different kinds of arrays and
propose their declaration and initialization syntax. Later we
explain a new construct for splitting arrays into smaller parts
and discuss restrictions on the use of these parts in parallel
processes.

Concurrent processes may need to synchronize on the dif-
ferent parts of the array during their execution. We discuss
the synchronization syntax and explain the behavior of syn-
chronization with arrays. Finally, we show two examples
that illustrate the use of these extensions. The first example
uses these non-atomic arrays to illustrate dynamic splitting
and passing parts of an array to concurrent processes. The
second example is related to synchronization of the parts of
array between concurrent processes during their execution.
It also explains how deadlock is avoided with serial send and
receive operations between concurrent processes.

4 Array Declaration and Initialization

Determinism, the property of inevitable consequence of an-
tecedent states, is a fundamental principle in the SHIM lan-
guage. This leads to careful design issues in SHIM. One
consequence is that SHIM doesn’t allow pointers. Because
of this reason we propose Java-like arrays. Arrays in this
proposal are data structures that have operators that can be
used with them. These arrays can be initialized at the time
of declaration; we discuss this in detail below.

Array declaration requires the array type, its size and a
unique name. The example below creates an array named a
and type int. The array index ranges from O to n — 1. array-
size is an expression that does not need to be a compile-time
constant.

type [array-size] array-name;
int[n] a;

Access to array elements can be done by using their index
number preceded by the array name. Please note that index
number will always range from O to n-1 where ’'n’ is the size
of the array. If an invalid index is accessed an out-of-bound
error will be generated.

array-name [index]
al[2]

The size of an array can be returned by placing the .size
keyword after an array name. The .size operator is a read
only operation and the size of the array cannot be changed
after array initialization.

array-name .size

a.size

Arrays can be initialized during declaration. There are
three ways to do so: Initialization with constants, by values
from another array and by reference.

Initialization with a constant list has a similar syntax as C.
The constant values are listed after the declaration in paren-
thesis separated by commas. The elements of the array are
initialized with the values given and the size of the array is
determined by the number of values listed. The size of the
array specified should be equal to the number of elements in
the constant list otherwise an error is generated.

type [size] array-name = { const-list };
int [3] a = {25, 24, 45};

Initialization can also be done with values from another
array. This enables to create a new array as a copy of another
array. The example below creates a new array m whose size
and values are taken from array a.

type [] array-name = array-name ;
int[] m = a;

The size of the array is not defined wherever they are de-
clared with initializations with other objects. The reason for
this is to remove ambiguity and hence the size of the array
is strictly not required when the array is being declared with
initializations.

Initialization by reference creates a reference/alias for the
existing array. Hence, no new memory allocation takes
place; although there is an exception to this rule when it
comes to initializing the array by reference from arrays
which belong to processes on different locations. The ex-
ample below creates a new array (name) m from array a.

type [1 & array-name = array-name ;
int[]& m = a;

5 Splitting Arrays
In a concurrent setup an array might be updated by many
processes. To avoid the consistency and determinism issues
related to this problem we require an explicit array split be-
fore the array can be passed in parts to different processes.
We choose to split the array by size, that is, by defining
the size of each part. Although a split of an array can be
performed by specifying the ranges (low and high values)
for each part but the reason for choosing size over ranges
is to reduce the complexity involved while checking the ac-
cess conflicts as ranges can have conflicts when the limits
are calculated at run time. Hence we consider the following
syntax:

type [1 &opy { id-list } =
split(array-name , break-points) ;

Thus, split is a function returning a tuple and the elements
of this tuple are the names are the new arrays. It takes an
array and a set of break points as input and returns the sub-
arrays (or parts of arrays) as the outputs which are further
bonded with the array names provided in the list. Another
decision made regarding the split operation was to have a
functional notation for the split. The reason for selecting this
syntax is that the split operation is unique and is a function
returning a tuple. The functional notation makes it intuitive
to the user that the split operation takes different types of
arguments (an array, and integer break points) and returns a
tuple consisting of a set of arrays.

To make things efficient we confine an array split opera-
tion to allow a split into exactly two pieces. Thus the syntax
becomes:

type [1 &ope { id , id } =
split(array-name , break-point);

In the syntax above, ampersand (&) symbol is optional.
This means that and array split can be categorized into to
groups: split by value and split by reference. Split by value
creates new arrays with new memory allocations and copies
the value from the original array whereas split by reference
creates new array names as reference to different parts of the
original array.

Consider the split by value example below, it creates two
arrays m and n and copies the elements O to b — 1 of array a
to m and b to a.size — 1 to n.

int[] {m, n} = split(a, b);

In contrast, the following example illustrates split by
reference. It creates two new array names (only refer-
ences/alias) in which m references elements 0 to b — 1 of
array a and n refers to elements b to a.size — 1 of array a.

int[]& {m, n} = split(a, b);

6 Arrays and Function Declaration

SHIM allows function arguments to be passed in two ways:
by value or by reference. Similarly, we propose passing ar-
rays in two ways: array arguments passed by value or by
reference.

Functions that accept an array argument by value will get
a copy of the array from the calling function and any change
made to such an array will not be reflected in the original
array. Below is an example of a function that takes an array
argument by value.

void myFunc(int[] new_array)

The above syntax is very different from usual C/Java syn-
tax. In C/Java this kind of syntax is used to pass arrays by
reference since they do not allow a straight way to pass ar-
rays by value. But we propose a different kind of syntax

and allow arrays to be passed either by value or by refer-
ence. Following contrast with the syntax of passing arrays
by reference will make things clearer.

Functions that accept reference to an array as an argument
will get a reference to the original array and any changes
made to the array will be reflected in the original array as
well. Below is an example declaration of a function that has
an array argument by reference.

void myFunc(int[]& new_array)

The syntax of passing arrays by reference is much like
passing normal variables by reference, that is, the array ar-
guments that include ampersand (&) in there declaration are
passed by reference. To sum up, the argument variables
(even arrays) those are declared with ampersand (&) are
passed by reference and other are passed by value.

Again, you can notice in the examples above that the size
of the array is forbidden when the array is being declared as
an argument. This is to prevent the array size mismatch be-
tween the arrays passed from the calling function. The size
operator can be used in the function definition to determine
the actual number of elements in it.

Below illustrates the passing of arrays to functions.

void f(int[]& a) { // a={1,1,1}
for(int i=0; i<a.size; i++)
al[i] = 2;
} // a={2,2,2}
void g(int[] a) { // a={1,1,1}
for(int i=0; i<a.size; i++)
al[i] = 3;
} // a = {3,3,3}
void h(int[]& a) { // a={1,1}
for(int i=0; i<a.size; i++)
al[i] = 4;
} // a = {4,4}
void main() {
int[5] arr = {1,1,1,1,1};
int bp = 3;
int[]& {m, n} =
split(arr, bp); // int [3]m, [2]n

f(m); par g(m); par h(n);
// arr = {2,2,2,4,4}

In the above example, the main function has an array of
integers named arr of size 5. The split operation breaks the
array in two parts at index 2. Thus, array m gets index O
to 2 of array arr and array n gets index 3 to 4 of array arr.
Note that the size of arrays m and n will be 3 and 2 respec-
tively and their incides will range from 0 to 2 and O to 1 re-
spectively. After the split, the par statement allows the three
children f(m), g(m) and h(n) to run in parallel. Arrays m and
n are passed by reference to function f and h respectively.
Hence, any change made to the arrays in these functions will
be reflected in main as well. And array m is passed to func-
tion g by value. Any change made this array by function g
would be reflected in g only and not in main.

After all the parallel processes end and main resumes, the
value of the array a is {2,2,2,4,4}. This is because changes
made to the array a by function g are totally discarded when
g terminates. But the changes made to the their respective
arrays a by function f and # are reflected the original arrays
m and n even after their lifetime.

In SHIM, a variable can not be passed by reference to
more than one parallel process. In other words, a variable
can be passed to as many processes in parallel by value but
to only one process by reference. The reason for this will be
clear from the following example.

void f(int[]& a);
void g(int[] a);

void main() {
int[5] arr = {1,3,4,2,5};
int[]& {m, n} = split(arr, 3);

f(m); par f(n); // OK

f(m); par g(m); // OK

f(m); par f£f(m); // Error: Same array
// cannot be passed by
// reference twice

g(m); par g(m); // OK

f(m); par f(arr); // Error: m is an alias of
// arr and both cannot be
// reference in parallel

f(m); par g(arr); // OK

f(arr); par g(m); // OK

In the above example, the third parallel function call f{m);
par f{m); is invalid because function f takes an array by ref-
erence but this parallel function call violates the rule that the
same variable (or array) cannot be passed by reference to
more the one parallel process.

Also in the above example, consider the fifth parallel func-
tion call f{m); par flarr);. Array m references a part of array
arr hence both of them hold common elements (also, m is an
alias of arr in a way). Hence, we cannot pass such arrays by
reference together in parallel. All other statements are valid.

The reason for the restriction—the same variable cannot
be passed by reference to more than one parallel process—
is that when more than one parallel process is allowed to
change the same variable, inconsistencies may occur. To un-
derstand this, you can assume that a process accepting an
object by reference has write access to it and a read access to
an object accepted by value. And no two parallel processes
can have write access to the same object.

7 Arrays and Synchronization

In SHIM, all variables that are declared as function argu-
ments can be synchronized with other processes with the
keyword ‘next’ preceding their name.

next variable-name;
A send or a receive operation depends on the declaration.

A send action is taken if the argument variable has been de-
clared as reference and a receive action otherwise.

The next operation works in the very similar fashion for
arrays. A function accepting an array by reference will be
allowed to change its content and will be sending out the ar-
ray on next operations. And, a function accepting an array
by value will be receiving the array on the next operations
from other parallel processes that hold that array by refer-
ence. The example below illustrates this behavior.

void f(int[]& arr) {
for(int i=0; i<arr.size; i++)

// arr = {1,1,1}

arr[i] = 2;
// arr = {2,2,2}
next arr; // Send ’arr’
} // arr = {2,2,2}
void g(int[] arr) { // arr = {1,1,1}

for(int i=0; i<arr.size; i++)
arr[i] = 3;
// arr = {3,3,3}
next arr; // Recieve ’arr’
} // arr = {2,2,2}

void main() {
int[3] arr = {1,1,1};
f(arr); par g(arr);
} // arr = {2,2,2}

In the above example, main function passes the array arr
to two processes f and g by reference and value respectively.
Thus, a next operation on arr in function f sends its arr
content and a next operation on arr in function f receives
the contents of arr. Notice in the above example, that af-
ter synchronization the content of arr changes to {2,2,2} in
function g.

During synchronization, a process waits for all the parallel
processes that hold the same variable that it is synchronizing
upon. If there is no process to synchronize, the next opera-
tion is bypassed. The behavior is same with next on arrays as
well, that is, a process in which an array was declared as an
argument will wait for all the parallel processes which have
that array, while synchronizing upon that array.

We mentioned before that a variable can not be passed by
reference to more than one parallel process. Another reason
for this restriction, in the context of synchronization, is that
it becomes unclear that which process sends the variable to
the receiving processes. If there are two processes sending
the same data to a third process, problems may arise.

Consider an example where we want two parallel pro-
cesses to operate on the same array but make changes only to
the different parts of it. Also the two processes may require
the other halves, to which they do not have write access to,
with them for reading those values. To solve this problem
we will need to split the array in two halves, pass each half
by reference to each process, and pass the other halves to
each process by value. Please consider the example below:

void f(int[]& a, int[] b) {
next a; // Send array ’a’
next b; // Recieve array ’b’

}
void g(int[] a, int[]& b){

next a; // Recieve array ’a’
next b; // Send array ’b’
}

void main() {
int[6] arr = {1,3,4,2,5,8};
int[]& {m, n} = split(arr, arr.size/2);

f(m, n); par g(m, n);
}

In the above example, the array arr is split in two parts:
m and n. Now, function f gets m by reference and n by val-
ues and the function g gets n by reference and m by value.
Further, when function f performs the next operation on a
(alias of m) it sends its values to function g to read them.
And when function f performs the next operation on b (alias
of n) it waits to read its latest values from function g.

8 Examples
8.1 Merge Sort

Merge sort is a classical sorting algorithm. Here we will
add parallelism to the merge sorting algorithm and re-write
it in SHIM and the extension proposed so far. This program
uses the parallel constructs of SHIM, the array constructs
mentioned in this proposal and the rules defined to pass them
to functions.

void mergeSort(int[] &a) {

if(a.size>2) {
// Split, if array has more than 2 elements
int[]& {m, n} = split(a, a.size/2);
// Recurs with each part in parallel
mergeSort(m); par mergeSort(n);

// Merge Start
int[a.size] temp;
int i=0, j=a.size/2, tmp_pos=0;

while ((i < a.size/2) && (j < a.size)) {
if (al[i] <= aljD)
temp[tmp_pos++] = a[i++];

else
temp[tmp_pos++] = a[j++];

while (i < a.size/2)
temp[tmp_pos++] = a[i++];

while (j < a.size)
temp[tmp_pos++] = a[j++];

for (i=0; i < a.size; i++)
al[i] = temp[i];
}

void main() {
int[10] a = {1,4,6,4,6,3,7,3,5,2};
mergeSort(a);

The above merge sort program takes an array, splits it in
two and passes each part to two parallel processes. Each part
is sorted and returned back. And thus, in a recursive way the
above example sorts the array with parallel execution.

8.2 Counter

This example exploits the use of synchronization provided
by SHIM and the extension of synchronization for arrays
proposed in this report. The example is meant to explain
the synchronization behavior of the language and is not an
alternative proposal for the implementation of a counter.

In this example we take an array of four elements. Since
we are implementing a binary counter, each element of the
array will represent a bit of the number. Hence, we imple-
ment a four-bit binary counter.

Following is the code for the counter. The output follows
the code further followed by the explanation of the example.
Note, that the print function, as given in this example, is
neither the part of the SHIM specification nor of the proposal
in this report. It is present only to give an idea of what values
the counter code generates.

// Counter function
void counter(int[]& x, int[] vy) {
while(1) {
int flag = 1;
// Loop to check if all elements are 1
for(int i=0; i<y.size; i++)
if(y[i] == 0)
flag = 0;

// Switch ‘x[0]’ if all ‘y’ are 1
if(flag == 1)
x[0] = 1 - x[O0];

next x; // Send array ‘x’
next y; // Receive array ‘y’
}
}

// Invert Process, to switch between 0 and 1
void invert(int[]& z) {
while (1) {
z[0] =1 - z[0]; // Switch value

next z; // Send array ‘z’
}
}
void printArr(int[] x) {
while (1) {
print(x);
next Xx; // Receive array ‘x’
}
}

void main() {
int[4] a = {0,0,0,0};
int[]& {b,c} split(a, 1); // int [1]b, [3]c
int[]& {d,e} split(c, 1); // int [1]d, [2]e
int[]& {f,g} = split(e, 1); // int [1]f, [1]g

printArr(a); par
counter(b,c); par
counter(d,e); par
counter(f,g); par
invert(g);

The output is

0000 0001 0010 0011 0100 0101 0110 0111
1000 1001 1010 1011 1100 1101 1110 1111

[4]a

/\

[11b[2]c

/\

[11d [2]e

/\

[11f[1]19
Figure 1: Splitting arrays

The main function of the code has an array a of length
four. Each element of this array represent a bit of the array.
We split this array into two parts: b holds the first element
of a and ¢ holds the remaining 3 elements. We further split
array c into d and e in the similar way. Figure 1 shows the
split of arrays in our example.

An array will only share an element with its parent or its
children, recursively. It can be noticed from the figure that
which arrays share elements. For example, array g will share
its element with arrays e, ¢ and a but not with f; d and b. And
array, c shares some of its elements with arrays a, d, e, f and
g but none with b.

We split the array such that arrays b, d, f and g each hold a
single element and together cover the entire array a. Each of
these elements is passed by reference to the 4 parallel pro-
cesses, that is, three instances of function counter and one
instance of function invert. Also, these processes are passed
the arrays on their right (in the figure or in the split) by value.
Note that no element of the original array is passed by refer-
ence to more than one parallel process. Otherwise, an error
would have been generated as explained before.

Now, each of the four processes run their code and will
wait for synchronization when a next statement is reached.
During synchronization the processes which holds the vari-
able (to be synchronized upon) by reference will send the
variable and the other processes will receive. The synchro-
nization takes place in a rendezvous fashion and process will
send a variable (which it holds with reference) to all the other
processes (which hold that variable by value). Figure 2 illus-
trates the synchronization.

As mentioned the process holding a variables by reference
will send out its value to all the processes participating in the
synchronization over the same variable. For example, array
g has common elements with arrays e and ¢ and hence, the
process invert(g) (which hold g by reference) will send out
value of variable g to all the other 3 processes which can be
seen in the figure. Similarly, other arrays (and its elements)
will be synchronized.

The invert(h) process switches the value of its element be-

counter{b,c)

counter{d,e)

counter{f,q)

invert(q)

printArr{a)

El ¥ariables passed by reference

Figure 2: A synchronization example

tween zero and one during each iteration before synchro-
nization and the counter processes check if all the elements
of its array y (which is held by value) are equal to one. If they
are, then the counter process changes the only element of its
array x (which is held by reference) to 1 and this change is
propagated to all other concerned processes during synchro-
nization at the end of the iteration.

It is important to observe the synchronization behavior in
the counter function. The statement next x (a send statement)
precedes the next y (a receive statement). SHIM is prone to
deadlocks in situations where serial send and receive state-
ments executed. Careful observation is needed to be given
to such situations. The counter function used in the example
may seem to deadlock but it doesn’t and we will explain this
by observing the synchronization in steps.

Consider the synchronization figure above. Function in-
vert(g) will send its array to function counter(f,g). But,
counter(f,g) cannot receive g until it sends out f. And in turn,
counter(f,g) cannot send f until the function counter(b,c)
sends b. So, the first synchronization that takes place in
a given iteration will be between the function counter(b,c)
and printArr(a). After counter(b,c) sends b it will receive
elements of ¢ from functions counter(d,e), counter(f,g), and
invert(g). After this, the function counter(d,e) receives e
from counter(f,g), and invert(g). And in the end, function
counter(f,g) receives g from invert(g).

Thus, the processes will execute in parallel without a
deadlock and counter output is printed by printArr(a) in each
iteration.

9 Grammar

Here we list the grammar for SHIM with the syntax pro-
posed for the extension of non-atomic arrays.

Q

#=L|V|V[ell|V .size|op,e|leop,e]|(e)
s =V=e;|VIel=e; |PCV(V))?);

| {b*}|if (e) selses|while (e) s

| spar s |next V; | try s catch(E) s | throw E;
b:=TV;|TlelV(={L(,LL*})?;

| T[1@&?V=V;

| T[1@&?{V,V3}=split(V ,e);|s
d:=TV|T& |T[]1@&?V
p = void P((d(,d)*)?) {b* }
m:= p* void main() { b* }

Here, e denotes expressions, s statements, b blocks, d dec-
larations, p a program, and m a main function. L denotes lit-
erals, T types (e.g., int, void), E exceptions, V variables,
and P procedures. par binds most tightly.

The grammar above adds the functionality of declaration
of new arrays, initializing them, splitting them and accessing
the elements of arrays in SHIM. With this extension we add
non-atomic arrays while preserving the main ideas of SHIM
being a deterministic concurrent language.

10 Conclusion

The proposed extension to SHIM is an attempt to add ar-
rays to its concurrent framework. For concurrent program-
ming languages like SHIM, scheduling independence should
be an important concern because the output of the program
may vary in a concurrent setup depending upon the schedul-
ing choices made by the system. We proposed rules to split
an array into smaller parts, pass them between various pro-
cesses and synchronize upon these array parts during their
execution.

We provide the split construct as a result of which concur-
rent processes are able update to different parts of the array
simultaneously. We also define restrictions on passing the
parts of an array to parallel processes which guarantees con-
sistency while allowing concurrent updation of the array.

Synchronization in serial steps to send and receive vari-
able might lead to deadlock and we explain that such situ-
ations need careful evaluation in SHIM. It can be said, that
we avoid deadlocks with this proposal when synchronizing
upon the array by splitting the array which in turn breaks
cycles in the synchronization graph. Although, this claim
remains to be proven.

Implemention of this proposal remains future work. Also,
further work needs to be done on this extension to allow the
split and synchronization of multi-dimensional arrays.

