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Abstract. The ability to debug woven programs is critical to the adoption of Aspect 

Oriented Programming (AOP).  Nevertheless, many AOP systems lack adequate sup-

port for debugging, making it difficult to diagnose faults and understand the program’s 

structure and control flow.  We discuss why debugging aspect behavior is hard and how 

harvesting results from related research on debugging optimized code can make the 

problem more tractable.  We also specify general debugging criteria that we feel all 

AOP systems should support. 

We present a novel solution to the problem of debugging aspect-enabled programs.  

Our Wicca system is the first dynamic AOP system to support full source-level debug-

ging of woven code.  It introduces a new weaving strategy that combines source weav-

ing with online byte-code patching.  Changes to the aspect rules, or base or aspect 

source code are rewoven and recompiled on-the-fly.  We present the results of an ex-

periment that show how these features provide the programmer with a powerful interac-

tive debugging experience with relatively little overhead. 

1   Introduction 

We use the term debuggability1 to mean the ability to diagnose faults in a software 

system, and to improve comprehension of a system, by monitoring the execution of the 

                                                           
1 The term debugging expressiveness is used in [28]. 
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system.  Various debugging techniques are possible including source-level debugging, 

printf-style debugging, assertions, tracing, logging, and runtime visualization. 

Debugging aspect-enabled programs is important for many reasons.  The interac-

tion of aspects with a system introduces new fault types and complicates fault resolu-

tion [2].  Programmers rely on debugging to diagnose these faults and perform post-

mortem analyses.  Debugging is also an important tool for program comprehension.  

Aspect functionality can drastically change the behavior and control flow of the base 

program, leading to unexpected behavior [2] and resulting in the same complexity that 

multi-threaded programs are notorious for.  Debugging provides a way to demystify 

these intricacies and better understand the composed program.  

AOP is still an emerging field with many different techniques for aspect specifica-

tion, weaving, composition, and integration.  Along with tool support, debugging sup-

port serves as an indicator of AOP maturity [20, 38].  Commercial software develop-

ers are hesitant to adopt aspect-oriented software development practices or ship AOP-

enabled products that are difficult to debug and service [2, 20, 27, 28]. 

Debugging is no substitute for aspect visualization [20] and testing.  Indeed they 

are complementary:  aspect visualization provides the ability to predict aspect behav-

ior; testing provides a process for automatically detecting anomalies; and debugging 

provides a way to manually detect, diagnose, and fix anomalies and to better under-

stand program behavior. 

The contributions of this paper are as follows: 

• We identify the AOP debugging problem and explain why it is important and 

difficult to solve. (§3) 

• We define AOP debuggability as a classification of AOP activities and the AOP 

fault types they induce, and the properties of an ideal AOP debugging solution, 

including support for debug obliviousness.  We evaluate several current AOP 

systems as to how well they support AOP debugging. (§3) 

• Since many AOP systems employ source or binary code transformations, we fo-

cus on how this affects source-level debugging, and present solutions suggested 

by related research on debugging optimized code. (§4) 

• We present Wicca, our dynamic AOP system that employs a novel weaving 

strategy to provide full source-level debugging, and is the first dynamic AOP 

system to do so (§5).  We present the results of a debugging experiment using 

Wicca that demonstrates its unique AOP debugging capabilities. (§6) 

• Wicca includes a static byte-code weaver which is the first to preserve debug in-

formation when weaving .NET executables.  We explain why this is significantly 

harder to accomplish on the .NET platform than on the Java™ platform. (§5) 

• We suggest general strategies for debugging synthesized code and for supporting 

debug obliviousness. (§8) 

In the next section, we define aspect-oriented programming and lay the groundwork 

for evaluating the debug capability of an AOP system. 
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2   Aspect-Oriented Programming 

Aspect-Oriented Programming (AOP) [31] can improve the separation of concerns in 

software systems when traditional techniques fail.  Software requirements that require 

code to be scattered across the entire system and intermingled (tangled) with otherwise 

unrelated code are considered crosscutting concerns.  Nonfunctional (operational) 

requirements, such as tracing, profiling, transactions, auditing, persistence, error han-

dling, and quality-of-service, are often crosscutting in nature. 

AOP introduces the concept of an aspect that modularizes all the code necessary to 

implement a crosscutting concern, thus untangling the system and making it easier to 

develop, understand, and maintain.  The aspect functionality is enabled by weaving the 

aspect code into the system in an automated way based on programmer-specified as-

pect rules. 

2.1   Semantic Model 

We use the language model from AspectJ™ [30], the most prominent AOP language, 

to define the semantic model we use when explaining the debuggability of woven pro-

grams.  AOP allows aspect functionality to be executed at specific points in the dy-

namic call graph of a running program, called join points [24].  Example join points 

are method call/execution, constructor call/execution, field read/write, object initiali-

zation, and thrown/handled exception.  An aspect consists of a pointcut that identifies 

specific join points, the code to be executed at those join points (advice), and whether 

the advice will be executed before (before advice), after (after advice), or instead of 

(around advice) the join point.  The aspect deployment model specifies which advice 

instances map to which join points.  For example, aspect instances can be per-call, 

per-method, per-object, per-thread, per-class, or singleton.  

2.2   Weaving Strategies 

The weaving strategy used by an AOP system has a strong impact on its debuggability.  

Weaving is classified as either invasive or noninvasive, depending upon whether or 

not it performs a transformation of the base program code to enable aspect functional-

ity.  Invasive systems are further classified into source weavers and binary (byte-code 

or machine-code) weavers.  Noninvasive systems are classified by whether they use a 

custom runtime environment or interception.  Figure 1 depicts how the different di-

mensions of the weaving strategies are related. 
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Fig. 1. The relationships between different AOP weaving strategies 
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During source weaving (the solid line in Figure 1), aspects are woven into the pro-

gram by performing a source-to-source transformation, usually by transforming the 

abstract syntax tree representation of the program.  The woven source is then compiled 

to create the final program.  Because the aspect code is woven directly into the source 

code, it is possible to perform full source-level debugging on the aspect code using 

standard debuggers. 

Some benefits of binary weaving (the dashed line in Figure 1) are that programs can 

be woven even if source is unavailable (or when compilation is not desired); weaving 

can be delayed until load-time, JIT-time, or runtime; and multiple languages may be 

supported.  A downside is that debug information may be invalidated by the weaving 

process or unavailable for injected code [2, 28].  Furthermore, companies like Micro-

soft have based their support infrastructure around the assumption that an executable 

file and its associated attributes (date, size, checksum, and version) are not changed.  

Invasive weaving breaks that assumption. 

Extensions to the runtime environment (the dotted line in Figure 1), e.g., AOP-

enabled virtual machines and call interception plug-ins, enable aspect functionality 
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noninvasively, i.e., without modifying the base program.  They can provide ubiquitous 

and efficient support for AOP.  Aspect-related behavior that is implemented in the 

extension, however, may be difficult to debug. 

2.3   A Classification of AOP Activities 

An AOP activity is any code, either inside the base program or part of some AOP in-

frastructure, in support of some concept from the AOP semantic model.  Table 1 cate-

gorizes the AOP activities that we have gathered from studying a wide-variety of AOP 

systems.  Some activities, such as advice execution, map naturally to AOP semantics, 

while others are common implementation approaches to supporting the semantics.  

Since this is AspectJ’s semantic model, we expect that AspectJ performs all these ac-

tivities.  Other AOP systems may combine or omit some activities.  For the purposes 

Table 1. AOP activities that programmers would like to be able to debug 

AOP activity Purpose Examples 

Dynamic aspect 

selection 

Determines at runtime which 

aspects apply and when. 

Dynamic residue (if, instanceof, 

and cflow residue left over by dy-

namic crosscuts [7]) [4, 24].  Can 

involve runtime reflection or calls 

into the AOP system.  Includes join 

point context reification [21]. 

Aspect instantia-

tion 

Instantiates or selects aspect 

instances to fulfill aspect de-

ployment/scoping semantics.  

Also known as “advice-

instance lookup” [24]. 

Per-call, per-method, per-object, 

per-class, and singleton deploy-

ment semantics [24], instance-level 

advising, and aspect factories. 

Aspect activation Alters control flow to execute 

advice and provides access to 

join point context. 

Method call instruction, transition 

to inlined advice code, runtime 

interception machinery [37], dy-

namic proxies [35], and trampo-

lines [34]. 

Advice execution Execution of the advice body. Inlined code, method call 

Bookkeeping Maintains additional AOP 

dynamic state. 

Thread-local stack for cflow point-

cuts [24]. 

Static scaffolding Static modifications to the 

program’s code, type system, 

or metadata. 

Introductions needed to support 

intertype declarations, per-clause 

aspects, mixins, and closures. Code 

hoisting. [8, 24] 
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of this paper, to qualify as an AOP system the only required activity is advice execu-

tion, corresponding with the definition in [14]. 

We do not attempt to classify all AOP-related code.  The level of granularity cho-

sen is designed to be widely applicable while at the same time able to differentiate 

AOP systems based on their varied debug capabilities.2  The terminology is general 

enough to apply to other advanced techniques for the separation of concerns, including 

Multi-Dimensional Separation of Concerns (Hyper/J), Composition Filters, Adaptive 

Programming, and Subject-Oriented Programming. 

3   A Debug Model for AOP 

We present a debug model for AOP that has three components: a fault model, a defini-

tion for debug obliviousness, and a set of debugging criteria.  We show how AOP ac-

tivities can introduce new fault types in the base program.  We also evaluate how well 

some current AOP systems measure up to our debugging criteria. 

3.1   Fault Model 

Each of the AOP activities in Table 1 introduces the possibility for new types of faults 

that were absent from the base program.  Alexander et al. [2] specified a fault model 

for AOP that classified the new types of faults that AOP introduces that are distinct 

from the faults models of object-oriented and procedural programming languages.  

These AOP fault types were later extended by Ceccato et al. [9].  We build upon their 

work by generalizing and consolidating some of these fault types, by adding one of our 

own, and by associating the fault types with the AOP activities that may exhibit them: 

Incorrect pointcut descriptor or advice declaration – A pointcut does not match a 

join point when expected, or the advice type (before, after, around), pointcut type 

(e.g., call, execution), or deployment type (e.g., per-this, per-thread) are incorrect.  

Exhibited by activities: dynamic aspect selection, aspect instantiation, and aspect acti-

vation. 

Incorrect aspect precedence – Multiple aspects that match the same join point are 

executed in the wrong order.  Exhibited by activities: dynamic aspect selection, aspect 

instantiation, and aspect activation. 

Failure to establish expected postconditions or preserve state invariants – Advice 

behavior or AOP activity causes a postcondition or state invariant of the base program 

to be violated.  Exhibited by activities: advice execution.  However, this fault can be 

caused by a faulty implementation of any AOP activity. 

                                                           
2 Researchers sometimes call all AOP activity code other than advice execution aspect glue 

code or aspect decorations [16]. 
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Incorrect focus of control flow – A pointcut that depends on dynamic context in-

formation, e.g., the call stack, does not match a join point when expected.  The cflow 

and if pointcut types are examples.  Exhibited by activities: dynamic aspect selection, 

aspect activation, and bookkeeping. 

Incorrect changes in control dependencies – Advice changes the control flow in a 

way that causes the base program to malfunction.  For example, adding a method over-

ride changes the dynamic target of a virtual method call.  Exhibited by activities: as-

pect activation, advice execution, and static scaffolding. 

Incorrect changes in exceptional control flow – Exceptions that are thrown or 

handled differently than they were in the base program may cause new unhandled ex-

ceptions to be thrown or prevent the original exception handlers from being called.  

Exhibited by activities: dynamic aspect selection, aspect activation, and bookkeeping. 

Object identity errors – Type modifications (intertype declarations) or proxies 

break functionality related to object identity such as reflection, serialization, persis-

tence, comparison, runtime type identification, self-calls, etc.  Exhibited by activities: 

static scaffolding. 

Incorrect join point context – The join point context available to a piece of advice 

is incorrect due to faulty context binding or reification.  Exhibited by activities: dy-

namic aspect selection, aspect activation, and advice execution. 

This list can be extended to include more fault types.  The main point is that AOP 

activity can introduce new types of faults that will need to be debugged.  We measure 

the debuggability of an AOP system by determining how easy it is to diagnose these 

faults.  However, we will see in the next section that debuggability is at odds with the 

programmer’s desire to remain oblivious of AOP activities. 

3.2   Debug Obliviousness and Intimacy 

We specialize obliviousness as defined by Filman and Friedman [16] by introducing 

the concept of debug obliviousness, which pertains to the level of awareness and 

monitoring ability that the programmer has of AOP activity during debugging. 

When debugging aspect-enabled code, the goal of debug obliviousness is to main-

tain a view of the program as if no weaving has taken place.  Obliviousness is the pri-

mary goal for debugging optimized programs [23] as well as programs that use soft-

ware dynamic translation [34] because these transformations preserve the semantics of 

the original program.  Despite the relative importance attached to this goal, we are 

aware of no AOP system that fully supports obliviousness during debugging. 

Debug obliviousness is difficult to attain for invasive AOP systems because the de-

bugger cannot distinguish between (untangle) the aspect and base program code [22].  

Noninvasive systems, on the other hand, hide most aspect-related behavior by default.  

They still need to inform the debugging process, however, so that control flow 



Columbia University Computer Science Department Technical Report CUCS-035-06 

 8 

changes related to aspect execution are also hidden.  Otherwise, stepping through 

source code in the debugger results in unexpected jumps into aspect code.3 

While AOP researchers usually espouse the virtues of obliviousness in general, it 

becomes a liability when trying to diagnose a fault introduced by the AOP system.  In 

this situation, we may need debug intimacy, the converse of debug obliviousness. 

3.3   Properties of an Ideal Debugging Solution 

An ideal AOP debugging solution will support debugging of all AOP activity when 

required or desired, and complete obliviousness otherwise.  The properties of an ideal 

debugging solution for AOP are 

(P1) Idempotence – Preservation of the base program’s debug information. 

(P2) Debug obliviousness – The ability to hide AOP activity during debugging so 

the programmer only sees their code only. 

(P3) Debug intimacy – The ability to debug all AOP activity including injected and 

synthesized code. 

(P4) Dynamism – The ability to enable/disable aspects at runtime.  When a fault 

occurs, the process of elimination can be used to rule out specific aspects. 

(P5) Aspect introduction – The ability to introduce new aspects, for example, de-

bugging and testing aspects, in an unanticipated fashion.  An example of this is 

dynamic aspect introduction, sometimes called aspectual polymorphism [7] that 

allows aspects to be introduced without restarting. 

(P6) Runtime modification (also called edit-and-continue) – The ability to modify 

base or aspect code at runtime, e.g., to quickly add a printf statement, enable 

tracing, or try out a bug fix, without restarting.  This is useful for interactive de-

bugging and for diagnosing hard-to-reproduce bugs. 

(P7) Fault isolation – The ability for the debugger to automatically determine if a 

fault lies within the base code, advice code, or some other AOP activity code. 

Idempotence ensures that whatever debug information was available before the 

base program was aspect-enabled is also available after.  Noninvasive systems do not 

modify the original program at all.  AspectJ and our Wicca system are examples of 

invasive systems that use source and binary weaving and ensure the debug information 

is maintained. 

We discussed debug obliviousness and intimacy in §3.2.  Properties P4-P6 are not 

as critical but are nonetheless useful for debugging.  We explain why in §5. 

Fault isolation is supported by the Windows platform for applications that use dy-

namic link libraries (DLLs).  If an exception occurs in a library, the exception infor-

mation is displayed as well as the name of the offending DLL.  The user is allowed to 

                                                           
3 The same phenomenon exists when debugging multi-threaded code; control flow may jump 

from one thread to another unexpectedly.  To prevent this, the debugger may disable thread 

switching during debugging. 
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upload the program’s crash data to Microsoft for analysis and may even be able to 

download a patch, thus enabling immediate fault remediation. 

Similar to debug obliviousness, fault isolation is complicated by invasive weaving.  

Invasive aspect weavers can invalidate the traditional assumption that library bounda-

ries establish ownership since AOP-related code or metadata, possibly written by a 

third-party, is intermingled with the base program [22].  Annotating aspect code is one 

possible solution that we discuss in §4.3 and §8.1. 

3.4   An Evaluation of the Debuggability of Existing AOP Systems 

In Table 2, we show the results of our evaluation of a representative sample of AOP 

systems based on the ideal debugging properties.  Some common themes are apparent 

and we discuss these next. 

 

Static Weavers.  All the Java byte-code weavers satisfy the idempotence property, 

because they maintain the debug information of the original program when weaving.  

Java stores debug information inside the class file, alongside the class definition and 

byte code.  The debug information is co-located with the class file, and its format is 

well documented, improving the likelihood that byte-code rewriters will propagate it 

correctly. 

For Windows executables, debug information is stored in a separate program data-

base (PDB) file that becomes invalid when the executable is transformed.  Ideally, the 

transformation process would update the debug information but this is a very complex 

process.  Our WICCA system is the only .NET byte-code weaver (that we are aware 

of) that updates the debug information, which is made possible by the Microsoft 

Phoenix API4. 

 

Dynamic AOP.  Invasive dynamic AOP systems transform the base program by using 

dynamic proxies [8, 35] or by injecting join point stubs (also called hooks or trampo-

lines) at all potential join points [6, 11, 12, 19].  These systems typically support de-

bugging of advice execution.  Aspect selection, instantiation, or activation logic, how-

ever, may be implemented inside the dynamic AOP infrastructure [22] and may be 

difficult to debug.  This difficulty makes it hard to understand the woven program’s 

control flow and diagnose problems related to aspect ordering and selection (“Why 

didn’t my aspect run?”)  [2]. In addition, hook injection may invalidate the base pro-

gram’s debug information (violating the idempotence property), which will result in a 

confusing or misleading debugging experience. 

                                                           
4 http://research.microsoft.com/phoenix 
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Noninvasive dynamic AOP systems use a custom runtime environment (e.g., 

JRockit5, Steamloom [22], PROSE [37]) or take advantage of interception services 

(e.g., .NET Profiler API [19, 25], Java debugger APIs [3, 37]), to provide AOP func-

tionality without transforming the base program.  These systems have the benefit that 

the base program’s debug information is left intact (idempotence).  They suffer from 

the drawback that any AOP activities that are implemented as part of the runtime or 

native library are not debuggable.  Aspect-enabled programs can be confusing to de-

bug at the source level because control flow appears to change mysteriously; e.g., step-

ping into a function in the debugger results in a different function being entered.  In 

                                                           
5 http://dev2dev.bea.com/jrockit 
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addition, use of the Java debugger APIs to implement dynamic AOP currently pre-

vents the application from being debugged inside a standard debugger. 

 

In the next section, we position source-level debugging as one technique for debug-

ging AOP activity, and outline its challenges and some possible solutions. 

4   Source-Level Debugging 

Source-level debuggers strive to maintain the illusion of a source-level view of pro-

gram execution.  They commonly allow the programmer to set location and data 

breakpoints, step through code, inspect the stack, inspect and modify variables and 

memory, and even change the running code.  To enable this, the debugger requires a 

correspondence between the program’s compiled code and source code.  This debug 

information is generated during compilation and consists of file names, instruction-to-

line number mappings, and the names and memory locations of symbols.  The infor-

mation is usually stored inside the program executable, library, or class file, or in a 

separate debug information file.  It may be absent if the build process excluded it, to 

lower the memory footprint for example, or if it was stripped out for the purposes of 

compression or obfuscation. 

When compilation involves a straightforward syntax-directed translation [1], the 

compiler can provide a one-to-one correspondence from byte code (or machine code) 

and memory locations to source.  The correspondence relationship becomes more 

complicated as transformations are applied at various stages in the pre-processing, 

compilation, linking, loading, just-in-time compilation, and runtime pipeline.  This 

lack of correspondence between the source and compiled code makes it difficult for 

the debugger to match the actual behavior of the executing code with the expected 

behavior from the source-code perspective [41], and leads to the code location and 

data-value problems that have been studied extensively in the context of debugging 

optimized code [15, 23, 34, 40, 41].  In the context of debugging woven code these 

problems have been mentioned but briefly [2, 7, 17, 18, 27, 28, 32]. 

The same issues with debugging transformed code have surfaced in several other 

fields including term rewriting systems where it is called the origin tracking problem 

[10], algorithm animation where it is called the execution animation problem, and 

from generative programming where it is called the source-object correlation problem 

and transformation tracking problem [33].  

We would like to leverage this work and, where possible, reuse approaches, results, 

and terminology.  In the next section, we generalize the code location and data-value 

problems to include all types of program transformation, including those performed by 

invasive AOP weavers. 
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4.1   The Code Location and Data-Value Problems 

The code location problem arises when program transformations are applied that pre-

vent a one-to-one correspondence between compiled code and source code.  In the 

domain of optimizing compilers [1], the problem is caused by the removal, merging, 

duplication (in-lining), reordering, or interleaving of instructions.  In the domain of 

AOP weaving, the code location problem is usually caused by the removal (e.g., hoist-

ing [4]), insertion (e.g., code synthesis, dynamic residue, aspect method calls, aspect 

in-lining, closures), duplication (e.g., initialization in-lining), or reordering (e.g., 

around-advice) of instructions [24].  The problem causes the debugger to show the 

wrong source line or call stack, or show byte code (or machine code) instead of source 

code. 

The data-value problem occurs when program transformations obscure the corre-

spondence between variables in the source code and locations in memory [23].  Opti-

mizing compilers commonly fold constants, eliminate common subexpressions, and 

represent variables in registers instead of memory (sometimes the same storage loca-

tion will represent different variables at different times).  In the context of AOP, 

weavers may add fields to classes (introduction) and formal arguments and local vari-

ables to methods (e.g., for context exposure) [24].  This problem causes the debugger 

to show new variables or fields incorrectly, e.g., a field may be missing or have the 

wrong name. 

4.2   Possible Solutions 

Below we have consolidated and generalized some common approaches to the 

problem of performing source-level debugging of woven code 

(T1) Disable weaving [23] 

(T2) Source weaving [39] – AspectJ, Wicca and SourceWeave.NET [28] are exam-

ple AOP systems that use source weaving and support full source-level debug-

ging. 

(T3) Debugger-friendly weaving – Wicca, AspectJ, and AspectWerkz [8] are 

example AOP systems that use binary-level weaving but are able to preserve the 

original debug information, thus supporting the idempotence property (P1). 

(T4) Annotation [5, 10, 22] – Refers to the ability to annotate aspect code to provide 

rich debug information or to allow the debugger to hide the code in support of 

debug obliviousness, or for fault isolation.  Although AspectJ and Steamloom 

[22] use byte code annotation, no AOP system that we are aware of currently 

uses annotation for debugging purposes. 

(T5) Reverse engineering [2, 26] – When the debugger encounters byte code or 

machine code that has no matching source information, it can hide the code if 

debug obliviousness is desired or synthesize the source code on-the-fly if debug 

intimacy is desired. 
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(T6) Static analysis [23] – Static analysis techniques can be used to detect injected 

aspect code, for example, and, similar to annotation, used to provide debug 

information or to support obliviousness. 

In the AOP context, we define full source-level debugging as the ability to perform 

source-level debugging on all the AOP activities listed in Table 1.  In the next section 

we describe our system, Wicca, that leverages solutions T1, T2, and T3, to support 

full source-level debugging. 

5   Wicca 

Most dynamic AOP solutions involve binary weaving, a custom runtime, dynamic 

proxies, or call interception.  To support full source-level debugging, Wicca takes a 

new approach – it performs dynamic source weaving. 

Wicca6 v1 is a prototype dynamic AOP system for C# applications that performs 

source weaving (the solid line in Figure 1) at runtime.  The woven source code is 

compiled in the background and the running executable is patched on-the-fly.  The 

entire weave-compile-update process takes less than 2.5 seconds on the programs we 

have tested and our system imposes a modest 5-7% runtime overhead on application 

performance.  We provide a breakdown of the performance overheads in §6.4. 

Because all AOP activities are represented in source code, the programmer can per-

form full source-level debugging on the woven program using wdbg, our custom de-

bugger.  In addition, several ancillary debugging activities are supported: 

1. Full source-level debugging (idempotence and debug intimacy) 

2. Aspects can be enabled/disabled at runtime (dynamism) 

3. Aspect rules, located in an XML file, can be changed at runtime (dynamism) 

4. New aspects can be introduced at runtime (aspect introduction) 

5. Advice code can be modified at runtime (runtime modification) 

6. Base code can be modified at runtime (runtime modification) 

To our knowledge, full source-level debugging and modification of advice and base 

code at runtime are not supported by any other dynamic AOP system. 

                                                           
6 Derived from the Old Norse word vikja meaning to turn, bend and shape. 
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5.1   Walkthrough 

Figure 2 shows a Wicca walkthrough involving load-time weaving, with numbers indi-

cating the interaction sequence.  For more details, see [13]. 

 

Load-Time Weaving.  Wicca consists of three subsystems: Patcher, Watcher, and 

Phx.Morph.7  When the application starts, the .NET runtime loads Patcher which uses 

the Profiler API to hook application events (1).  Patcher spawns Watcher (2), and then 

reads the build description file associated with each module to obtain the source files, 

referenced assemblies, and compiler options (3).  Patcher sends the build description 

information to Watcher (4) so that it can perform the initial load-time weaving. 

Watcher loads the aspect rules XML file (5) that specifies the aspect source files 

and pointcuts.  Watcher uses CSharpParser8 to parse the source files of the target pro-

gram and the aspects into their abstract syntax tree representations (AST) (6).  The 

ASTs are then merged according to the aspect rules by inlining the advice code (7).  

The woven source files are generated by CSharpParser from the woven AST and are 

                                                           
7 Patcher consists of about 25,000 lines of C++ code.  Watcher and Phx.Morph are written in 

C# and consist of about 3,700 and 7,700 lines of code, respectively.  These figures include 

comments and blank lines but not generated code. 
8 http://www.debreuil.com/CSharp 

Fig. 2. Wicca v1 – Dynamic weaving walkthrough 
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given a “.weaved.cs” extension (8).  Creation of the woven source file artifacts is re-

quired for full source-level debugging and to support the next step. 

The file names for the woven source files are passed along with the compiler op-

tions to the .NET CodeDOM API for compilation (source code to byte code) (9).  This 

creates the woven executable, App-1.exe, along with its debug information file, App-

1.pdb (10).  (A number is appended to the executable name to ensure uniqueness.)  

Watcher sends a message to Patcher telling it the path to the woven executable (11).  

Watcher then proceeds to wait for changes to the target program’s source files, aspect 

source files, or aspect rule file. 

Using the Metadata API, Patcher reads the metadata and method addresses associ-

ated with the running application (12) and the woven executable (13).  It uses an ex-

ecutable differencing algorithm to compare the two modules (14).  If one or more 

methods have changed, e.g., because an aspect was woven in, Patcher detects this and 

uses the Profiler API to update the byte code (15). 

 

Runtime Weaving.  At some point while the woven application is running, the user 

can make a change to the aspect rule file to enable/disable a specific aspect, en-

able/disable all aspects, introduce a new aspect, or modify the weaving rules (point-

cuts).  This is the main functional benefit of dynamic AOP, but it also provides debug-

ging benefits since it shortens the edit-compile-debug cycle [6].  It allows the pro-

grammer to interactively eliminate aspects from the running program to isolate the 

cause of a fault, or to introduce a new debugging aspect, for example, to help diagnose 

a problem.  Wicca supports aspect introduction (P5) so even aspects that were unan-

ticipated prior to running the program can be woven in.  This is useful for testing and 

debugging scenarios. 

In addition to changing the aspect rule file, the user can modify any C# source file 

of the target program or aspects, a feature called runtime modification (P6) or edit-

and-continue.  This enhances the interactive debugging experience because the pro-

grammer can try out fixes to the base or aspect code without restarting.   

Regardless of whether a base source file, aspect source file, or aspect rule file was 

changed, Wicca will detect the change and reweave, recompile, and update the run-

ning program by performing the same steps that we described for load-time weaving. 

 

Static Weaving.  Although it is missing in Figure 2, partly because it is not integrated 

with the dynamic weaver, Wicca v1 also supports static weaving via our Phx.Morph 

tool.  Phx.Morph is a static byte-code weaver for the .NET platform.  The Phx.Morph 

weaving model is depicted by the dashed line in Figure 1.  Its language model is simi-

lar to AspectDNG9.  Aspects can be defined in any .NET language and are compiled 

by a regular compiler.  As opposed to our dynamic weaver which uses an XML file for 

                                                           
9 http://www.dotnetguru.biz/aspectdng 
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specifying the aspect rules, Phx.Morph uses regular .NET attributes attached to the 

aspect class. 

Phx.Morph is built on top of Phoenix, Microsoft's production-grade compilation 

and tools infrastructure.10  A unique capability afforded by Phoenix is the ability to 

update the debug information of a Windows program.  We know of no other byte-code 

weaver for .NET that supports this.  This allows Phx.Morph to produce woven pro-

grams that are more debuggable than programs woven by other .NET byte-code weav-

ers (AspectDNG for example), thus upholding the idempotence property (P1), and 

paving the way for eventual support for full source-level debugging. 

5.2   The Wicca Debugger 

We made a simple extension to the Microsoft cordbg command-line debugger to sup-

port source-level debugging of applications that have been dynamically updated by 

Wicca.  An extension was required because standard debuggers do not support chang-

ing the debug information file (PDB) associated with the application being debugged. 

The Profiler API supports updating debug information when a method body is re-

placed.  However, it only handles injection-type modifications to the original method.  

While this is adequate for the advice inlining weaving technique used by Wicca, it 

does not handle arbitrary code changes.  Since we believe edit-and-continue is an im-

portant debugging feature, and we plan to support debug obliviousness in the future, 

we extended cordbg to create the Wicca debugger, wdbg.  We discuss wdbg further in 

§6.3. 

5.3   Limitations 

A limitation of Wicca is that dynamic weaving currently requires source for both the 

base program and the aspects.  It is more restrictive than other dynamic AOP weavers 

in that regard.  We plan to fully integrate our binary weaver, Phx.Morph, with our 

dynamic weaver to support full source, partial source, and no source scenarios, allow-

ing us to enjoy full source-level debugging whenever source is available. 

Due to a limitation of the Profiler API, we are not able to update a function that is 

active on the stack.  The function is updated the next time it is called.  Unfortunately, 

wdbg will incorrectly show the woven source code instead of the original source code, 

if the function has been updated yet.  We expect the fix for this to be straightforward. 

Finally, our dynamic weaver is only a prototype and has limited AOP functionality.  

Only before and after advice, and method execution and field access join points are 

supported.  Introductions (inter-type declarations) are not supported.  Furthermore, our 

                                                           
10 http://research.microsoft.com/phoenix 
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dynamic weaver currently only allows method bodies to be updated.  In contrast, our 

binary weaver provides more AOP functionality but less debugging capability. 

6   Evaluation 

In this section we present the results of an experiment to demonstrate the interactive 

debugging capabilities of Wicca and to measure the performance overhead. 

6.1   Experimental Setup 

We will use an aspect that embodies the Design by Contract (DBC) [36] principle.  

DBC allows the programmer to make assertions [25] about the system, in the form of 

preconditions, postconditions, and class invariants.  For example, in Listing 1 we 

have a stack class for holding non-null elements.  Its class invariant is that if the stack 

is nonempty, the top element must not be null.  Its push method has have a precondi-

tion that the object being pushed is non-null, and a postcondition that the stack’s size 

has been incremented. 

Normally, the assertion checking and handling code is scattered throughout the sys-

tem.  By localizing the assertion code into a DBC aspect (Listing 2), we obtain many 

benefits including improved code clarity, the ability to easily change the assertion vio-

lation policy, to strengthen or weaken class invariants, to add assertions to a class af-

ter-the-fact, and to automate contract enforcement. [29]  Moreover, unlike normal 

assertions which are only checked for debug builds, or which require continuous 

checking at runtime, Wicca can inject these test probes [25] on demand, thus com-

pletely eliminating checking overhead when assertions are disabled. 

public class Stack { 
   ArrayList elements = new ArrayList(); 
   public void push(object arg1) { 
      elements.Add(arg1); 
      elements.Add(arg1); // <-- Bug! 
   } 
   public object pop() { 
      object popped = top(); 
      elements.RemoveAt(elements.Count-1); 
      return popped; 
   } 
   public object top() { 
      return elements[elements.Count-1]; 
   } 

   ... 

Listing 1. A stack class written in C# that contains a bug in the push() method 
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6.2   Detecting Faults using Test Probes 

To test the stack class we created a test driver, StackDriver.exe, that pushes several 

items onto the stack and then pops each one while writing its value to the console. 

When we launch StackDriver.exe, Wicca automatically attaches to it.  Shortly after, 

we notice something odd: there appear to be duplicate items in the stack.  While 

StackDriver is running, we enable the stack DBC aspect (dynamism), which may al-

ready exist or which we may have introduced for this debugging task (aspect introduc-

tion).  Wicca detects this change and reparses, reweaves, and recompiles Stack-

Driver.exe (dynamism).  The time from the programmer saving the aspect rules file to 

Wicca updating StackDriver.exe is about 610ms. 

Here is a snippet of the AspectRules.xml file after we added the stack DBC aspect 

and enabled weaving: 

Immediately, the aspect code detects a postcondition violation and throws the ex-

ception: “Postcondition violated: Stack is empty after push.” The exception message 

public class StackDBCAspect { 
  static int __savedCount; 
 
  static void PreCond_push(Stack __this, object arg1) { 
    if (arg1 == null) 
      throw new ArgumentException("Precondition violated: Argument 
        cannot be null", arg1"); 
    int savedCount = __this.count; 
  } 
 
  static void PostCond_push(Stack __this, object arg1) { 
    if (__this.isEmpty()) 
      throw new InvalidOperationException( 
        "Postcondition violated: Stack is empty after push"); 
    if (__this.top() != arg1) 
      throw new InvalidOperationException( 
        "Postcondition violated: Pushed item is not on top of stack"); 
    if (__this.count() != __savedCount + 1) 
      throw new InvalidOperationException( 
        "Postcondition violated: Stack size did not increase " + 
        "by one after push"); 
   } 

        ...pre and postconditions for pop, etc... 

Listing 2.  A design by contract aspect for the stack class.  Variables that start with “__” 

are renamed during weaving 
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provides the file name and line number where the exception occurred.  To figure out 

why, we launch wdbg, the Wicca debugger, and attach it to StackDriver.exe. 

6.3   The Debugging Session 

After we attach wdbg to StackDriver.exe we tell it to use the updated debug informa-

tion file, StackDriver-1.pdb, that was created by the weave process (see §5.1).  At this 

point, we can step into the push method and see the interwoven source code (see Fig-

ure 3).  What is significant about this figure is that the base program and all AOP ac-

tivities are debuggable at the source level (debug intimacy) — a first for a dynamic 

AOP system. 

Looking at the source code for the push method, it is obvious that there are actually 

two bugs: the precondition and postcondition are switched and the Add method is 

called twice.  The first bug is a manifestation of an AOP-specific fault: incorrect 

pointcut descriptor.  This fault is difficult to diagnose without a source-level represen-

tation of the woven code.  From the woven code it appears that the postcondition and 

precondition are switched.  Looking closely at the aspect rules shown earlier reveals 

that the push precondition (PreCond_push) is erroneous because the advice type is 

“after” when it should actually be “before”, and similarly for the postcondition. 

A quick change to the aspect rules to fix this oversight causes Wicca to reparse, re-

weave, and recompile StackDriver.  As expected, an exception is thrown immediately 

Fig. 3. A wdbg debugging session showing aspect code interwoven with the stack class.  

This is the output immediately after attaching to the StackDriver.exe process and trapping the 

“Postcondition violated: Stack is empty after push” exception.  The asterisk (*) indicates the 

current line 
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Table 3.  Update latency for weaving, compiling and updating the StackDriver and Goblin 

applications.  The average (arithmetic mean) time of each operation is listed in milliseconds 

along with its standard deviation. 

Component StackDriver Goblin StackDriver Goblin

Weaving 259.4 (121.3) 826.5 (72.2) 42.5% 35.0%

Compilation 329.6 (37.2) 611.1 (68.1) 54.0% 25.8%

Patch Creation 18.7 (6.8) 828.1 (182.1) 3.1% 35.0%

Update 3.2 (6.7) 98.5 (94.9) 0.5% 4.2%

Total Latency 610.9 (142.3) 2364.2 (339.6) 100.00% 100.00%

Milliseconds  (StdDev) Contribution

but this time with the correct message: “Postcondition violated: Stack size did not in-

crease by one after push.” 

We remove the extraneous Add method call by editing the source code in Stack.cs 

and saving Stack.cs, again causing Wicca to reparse, reweave, and recompile Stack-

Driver (edit-and-continue).  This time the program behavior looks correct and since 

no further violations are reported we conclude that the problem has been fixed. 

At no time during the entire debugging session did we have to restart StackDriver. 

6.4   Performance 

The performance experiment was run on a Dell Dimension 8400 Workstation with a 

single Pentium IV 3.6 GHz processor with HyperThreading, an 800 MHz front-side 

bus, and 2 GB of 533 MHz SDRAM.  The platform was Windows XP with Service 

Pack 2 and the .NET Framework version 1.1.4322. 

For our benchmarks we used the StackDriver program, consisting of 66 C# source 

lines, and Goblin11, a 3D game written by one of the authors that consists of 15,600 C# 

source lines. 

We measured the end-to-end update latency, which is the time it takes to weave and 

update the application at load-time or runtime, using an aspect that traces the begin-

ning of every method execution.  Table 3 breaks down the update latency into its con-

stituent components, averaged over 10 trials (5 load-time and 5 runtime trials) for each 

program.  Table 3 shows that the end-to-end update latency is less than 2.5 sec-

onds for a medium-sized program and less than 1 second for a small program, 

which we consider fast enough to support dynamic AOP as well as interactive debug-

ging and development.  However, due to some bugs in the CSharpParser, our tracing 

aspect was woven into only 68 of the 1126 methods in Goblin (6%).  We assume that 

obtaining complete method coverage may increase the latency by 1-2 seconds. 

                                                           
11 http://www.cs.columbia.edu/~eaddy/goblin 



Columbia University Computer Science Department Technical Report CUCS-035-06 

 21 

 Table 3 indicates that the majority of the time is spent weaving and compiling.  

They scale well, however, because the weaving time increases by a factor of 4 and the 

compile time increases by a factor of 2 when code size increases 200 fold.  Patch crea-

tion does not scale as well as code size increases (it increases by a factor of 44).  As 

Wicca is relatively unoptimized, we expect to be able to improve the efficiency of the 

weaving, compiling, and patch creation steps. 

We determined the runtime overhead by measuring the time it takes Goblin to ren-

der 10,000 frames and for StackDriver to perform 140,000,000 stack push and pop 

operations averaged over 10 trials, running standalone and with Wicca attached.  As 

this test was designed to measure the steady-state runtime overhead, no weaving or 

updating was performed.  Table 4 shows a runtime overhead of 5-7%.  We consider 

this an acceptable price to pay for enabling dynamic AOP and edit-and-continue func-

tionality with support for full source-level debugging. 

 [13] contains further analysis of performance and possible optimization strategies.  

7   Related Work 

Similar to Wicca, SourceWeave.NET [28] parses source files using custom parsers, 

performs weaving on the abstract syntax tree, generates woven source file artifacts, 

and uses CodeDOM to compile the woven files.  Both projects share the goal of im-

proving debugging.  SourceWeave.NET even chooses an aspect deployment model 

(per-method) believed to make aspect-related code easier to debug.  Our main advance 

is that Wicca supports dynamic AOP allowing it to provide more debugging function-

ality (properties P4, P5, and P5).  Replacing our front-end with SourceWeave.NET 

would allow us to weave using multiple languages, and would be a synergistic combi-

nation of the two projects. 

Fig. 4. Performance with and without Wicca enabled 
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The SELF compiler [26] shares our goal of providing an interactive development 

and debugging experience to the user without sacrificing performance.  While Wicca 

supports optimized compiling of the woven code, accurate source-level debugging 

requires compiler optimizations to be disabled.12  As we described in §4, this is a stan-

dard debugger requirement for debugging optimized code.  The Profiler API used by 

Wicca imposes an additional restriction that requires method inlining to be disabled in 

the just-in-time compiler.  SELF, on the other hand, is able to deoptimize methods on 

demand.  If performance becomes an issue we will consider supporting deoptimization 

in Wicca as well. 

8   Discussion 

Wicca adds complexity to the weaving pipeline because it requires additional parse, 

compile, and update steps.  Other dynamic AOP systems use the more direct approach 

of modifying the byte code or machine code in memory.  After all, why create source 

when you can operate directly on the binary code?  The main benefit of our approach 

is that it allows us to support source-level debugging and edit-and-continue which 

have not been top priorities for most AOP systems.  Moreover, we have shown that 

this functionality can be provided efficiently, despite contrary statement in the litera-

ture. 

8.1   Supporting Debug Obliviousness and Fault Isolation 

Few AOP systems support debug obliviousness or fault isolation.  To do this, the de-

bugger must be able to identify AOP activity code, possibly using annotations (T4) or 

static analysis (T6).  AspectJ and Steamloom support byte-code annotations for identi-

fying aspects to prevent recursion during weaving [24] and to facilitate aspect removal 

[22].  As far as we know, no AOP system uses byte-code annotations to support 

obliviousness or fault isolation.  We plan to explore this idea in Wicca. 

A feature of debug information on Windows is that if the source line number asso-

ciated with a region of byte code (or machine code) is set to 0xFEEFEE, the debugger 

will logically skip over the code, i.e., the code will still run but be hidden from the 

programmer.  The #line hidden pragma can be used in C# source code to achieve the 

same effect.  Although originally designed so that debuggers automatically “step over“ 

library or generated source code, we plan to repurpose these annotation-like mecha-

nisms to support debug obliviousness in Wicca.  Moreover, by adding a #region 

                                                           
12 This is currently not a real limitation since the .NET Framework version 1.1.4322 does not 

perform any compiler optimizations. 
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pragma to aspect source code, the programmer can remain partially oblivious by 

choosing to show only the region name in the text editor. 

8.2   Source-Level Debugging of Injected Code 

All binary weavers, including Phx.Morph, have the problem that injected code cannot 

be debugged at the source level [2, 28], thus violating the debug intimacy property.  

The reason is the code may have been synthesized (i.e., the instructions were created 

on the fly) or imported from another module. 

For example, AspectJ synthesizes and injects aspect selection, instantiation, and ac-

tivation code, and some advice execution code, into the base program.  In the debug-

ger, the injected code is not visible in the source-level view at all, but can be seen by 

looking at the byte code.  Other advice execution code is fully debuggable at the 

source level, however, due to AspectJ’s implementation of the new Java specification 

for debugging support for different languages13.  To support source-level debugging, 

the debugger can synthesize source on demand by reverse engineering (T5) AOP ac-

tivity code [5].  Here again annotations can inform the process. 

8.3   Arguments against Source-Level Debugging 

Wicca supports the semantic model of AOP using source and binary code weaving.  

From the literature, these two AOP implementation techniques appear to be the most 

popular.  We have shown that intimate source-level debugging is useful for weaver-

based solutions because it allows the programmer to debug several types of AOP-

specific faults as well as the weaving process itself.  The ability to detect faults in the 

weaver is helpful when the weaving technology is immature.   

While Wicca uses a somewhat radical approach, i.e., dynamic source weaving, to 

enable source-level debugging, this is merely an implementation detail.  Other more 

efficient and direct ways of supporting source-level debugging of AOP-related code 

exist, which we touched upon briefly in this section. 

Some AOP implementations may use runtime interception or a custom runtime en-

vironment and may not weave code at all.  For these AOP implementations, the ability 

to debug AOP-related code at the source level does not make sense.  However, these 

systems can still provide support for debug obliviousness and debug intimacy using 

some other means.  For example, debug intimacy can be supported by showing a run-

time visualization of the base program and aspect behavior.  For debug obliviousness, 

only the base program behavior is shown. 

                                                           
13http://jcp.org/aboutJava/communityprocess/final/jsr045 
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9   Conclusion 

We described the problem of debugging aspect-enabled programs and why it has be-

come an important gating criterion for the adoption of AOP.  We provided a debug 

model for AOP that classified all AOP activities, related them to the new type of faults 

they can introduce, outlined the properties of an ideal debugging solution, and sur-

veyed the state of the art of AOP debugging.  For source-level debugging, we ex-

plained how the nature of binary weavers gives rise to the code location problem, that 

originates from the field of optimizing compilers.  We showed how fruitful results 

from that community applies to debugging woven code. 

We demonstrated our Wicca system that advances the state of the art for debugging 

AOP.  Wicca is the first dynamic AOP system to support full source-level debugging.  

It does this by employing a novel dynamic source weaver that combines source weav-

ing with online byte-code patching with relatively low overhead.  We created the first 

binary weaver for .NET to preserve debug information during weaving. 
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