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Abstract 

 
Some machine learning applications are intended 

to learn properties of data sets where the correct 
answers are not already known to human users. It is 
challenging to test and debug such ML software, 
because there is no reliable test oracle. We describe a 
framework and collection of tools aimed to assist with 
this problem. We present our findings from using the 
testing framework with three implementations of an 
ML ranking algorithm (all of which had bugs). 
 
 
1. Introduction 
 

We investigate the problem of making machine 
learning (ML) applications dependable, focusing on 
software quality assurance. Conventional software 
engineering processes and tools do not always neatly 
apply: in particular, it is challenging to detect subtle 
errors, faults, defects or anomalies (henceforth “bugs”) 
in those ML applications where there is no reliable test 
“oracle”. The general class of software systems with 
no reliable test oracle available is sometimes known as 
“non-testable programs” [1]. 

We are specifically concerned with ML applications 
addressing ranking problems, as opposed to the 
perhaps better-known classification problems.  When 
such applications are applied to real-world data (or, for 
that matter, to “fake” data), there is typically no easy 
way to determine whether or not the program’s output 
is “correct” for the input. In general, there are two 
phases to “supervised” machine learning – the first 
where a training data set with known positive or 
negative labels is analyzed, and the second where the 
results of that analysis (the “model”) are applied to 
another data set where the labels are unknown; the 
output of the latter is a ranking, where when the labels 

become known, it is intended that those with a positive 
label should appear as close to the top of the ranking as 
possible given the information known when ranked. 
(More accurately, labels are non-negative numeric 
values, and ideally the highest valued labels are at or 
near the top of the ranking, with the lowest valued 
labels at or near the bottom.) Formal proofs of an ML 
ranking algorithm’s optimal accuracy do not guarantee 
that an application implements or uses the algorithm 
appropriately, and thus software testing is needed. 

In this paper, we describe a framework supporting 
testing and debugging of supervised ML applications 
that implement ranking algorithms. The current version 
of the framework consists of a collection of modules 
targeted to several ML implementations of interest, 
including a test data set generator; tools to compare the 
output models and rankings; several trace options 
inserted into the ML implementations; and utilities to 
help analyze the traces to aid in debugging.    

We present our findings to date from a case study 
concerning the Martingale Boosting algorithm, which 
was developed by Long and Servedio [2] initially as a 
classification algorithm and then adapted by Long and 
others [3] into a ranking algorithm. “MartiRank” was a 
nice initial target for our framework since the 
algorithm is relatively simple and there were already 
three distinct, actively maintained implementations 
developed by different groups of programmers. 

 
2. Background 
 
2.1. Machine learning applications 

 
Previous and ongoing work at the Center for 

Computational Learning Systems (CCLS) has focused 
on the development of ML applications like the system 
illustrated in Figure 1 [3]. The goal of that system, 
commissioned by Consolidated Edison Company of 



 

New York, is to rank the electrical distribution feeders 
most susceptible to impending failure with sufficient 
accuracy so that timely preventive maintenance can be 
taken on the right feeders at the right time. The 
prospective users would like to reduce feeder failure 
rates in the most cost effective manner possible. 
Scheduled maintenance avoids risk, as work is done 
when loads are low, so the feeders to which load is 
shifted continue to operate well within their limits. 
Targeting preventive maintenance to the most at-risk 
feeders (those at or near the top of the ranking) offers 
huge potential benefits. In addition, being able to 
predict incipient failures in close to real-time can 
enable crews and operators to take short-term 
preventative actions (e.g., shifting load to other, less 
loaded feeders). However, the ML application must be 
quite dependable for an organization to trust its results 
sufficiently to thusly deploy expensive resources.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Other ML algorithms have also been investigated, 

such as Support Vector Machines (SVMs) [4] and 
linear regression, as the basis for the ML Engine of the 
example system and other analogous applications.  
However, much of the CCLS research has focused on 
MartiRank because, in addition to producing good 
results, the models it generates are relatively easy to 
understand and sometimes “actionable”. That is, it is 
clear which attributes from the input data most 

contributed to the model and thus the output ranking. 
In some cases the values of those attributes might then 
be closely monitored and/or externally adjusted. 

This example ML application is presented 
elsewhere [3]. The purpose of this paper is to present 
the framework we developed for testing and debugging 
such applications, with the goal of making them more 
dependable. The framework is written in Python on 
Linux. Our initial results reported here focus on the 
MartiRank implementations. 

One complication in this effort arose due to 
conflicting technical nomenclature: “testing”, 
“regression”, “validation”, “model” and other relevant 
terms have very different meanings to machine 
learning experts than they do to software engineers. 
Here we employ the terms “testing” and “regression 
testing” as appropriate for a software engineering 
audience, but we adopt the machine learning sense of 
“model” (i.e., the rules generated during training on a 
set of examples) and “validation” (measuring the 
accuracy achieved when using those rules to rank the 
training data set, rather than a different data set).  

 
2.2. MartiRank algorithm 

 
The algorithm is shown in Figure 2 [3]. The pseudo-

code presents it as applied to feeder failures, where the 
label indicates the number of failures (zero meaning 
the feeder never failed); however, the algorithm could 
be applied to any attribute-value data set labeled with 
non-negative values. In each round of MartiRank, the 
set of training data is broken into sub-lists (there are N 
sub-lists in the Nth round, each containing 1/Nth of the 
total number of failures). For each sub-list, MartiRank 
sorts that segment by each attribute, ascending and 
descending, and chooses the attribute that gives the 
best “quality”. For quality comparisons, the 
implementations all use a slight variant, adapted to 
ranking rather than classification, of the Area Under 
the receiver operating characteristic Curve (AUC) [5]. 
The AUC is a conventional quality metric employed in 
the ML community: 1.0 is the best possible, 0.0 is the 
worst possible, and 0.5 is random.  

In each round, the definition of each segment thus 
has three facets: the percentage of the examples from 
the original data set that are in the segment, the 
attribute on which to sort them, and the direction 
(ascending or descending) of the sort. In the model that 
is generated, the Nth round appears on the Nth line of a 
plain-text file, with the segments separated by 
semicolons and the segment attributes separated by 
commas. For instance: 

0.4000,32,a;0.6500,12,d;1.0000,nop 

Figure 1. Incoming dynamic data is stored in 
the main database. The ML Engine combines 
this with static data to generate and update 
models, and then uses these models to create 
rankings, which can be displayed via the 
decision support app. Any actions taken as a 
result are tracked and stored in the database. 
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might appear on the third line of the model file, 
representing the third round. This means that the first 
segment contains 40% of the examples in the data set 
and sorts them on attribute 32, ascending. The second 
segment contains the next 25% (65 minus 40) and sorts 
them on attribute 12, descending. The last segment 
contains the rest of the attributes and does a “NOP” 
(no-op), i.e., does not sort them again because the 
order resulting from the previous round had the best 
quality compared to re-sorting on any attribute. 

This model could then be re-applied to the training 
data (called “validation” in ML terminology) or 
applied to another, previously-unseen set of data 
(called the “testing data”). In either case, the output is 
a ranking of the data set examples and the overall 
quality of the entire ranked list can be calculated. 

2.3. MartiRank implementations 
 
The first of the three implementations was written 

in Perl, hereafter referred to as PerlMarti, as a 
straightforward implementation of the algorithm that 
included no optimizations. However, when applied to 

large data sets, e.g., thousands of examples with 
hundreds of attributes, PerlMarti is rather slow.   

A C version, hereafter CMarti, was written to 
improve performance (speed). CMarti also introduced 
some experimental options to try to improve quality.  

Another implementation also written in C, called 
FastCMarti, was designed to minimize the costly 
overhead of repeatedly sorting the attribute values.  It 
sorted the full data set on each attribute at the 
beginning of an execution, before the first round, and 
remembered the results; it also used a faster sorting 
algorithm than CMarti (hence the name FastCMarti). 
This implementation also introduced some different 
experimental options from those in CMarti. 

 
2.4. Data sets 
 

The MartiRank algorithm is based on sorting, with 
the implicit assumption that the sorted values are 
numerical. While in principle lexicographic sorts could 
be employed, non-numerical sorts do not seem 
intuitively appealing as ML predictors; for instance, it 
may not be meaningful to think of an electrical device 
manufactured by “Westinghouse” as more or less than 
something made by “General Electric” just because of 
their alphabetical ordering. Thus the implementations 
expect that all input data will be numerical.  

Though much of the real-world data of interest 
(from the system of Figure 1) indeed consists of 
numerical values – including floating point decimals, 
dates and integers – some of the data is instead 
categorical. Categorical data refers to attributes in 
which there are K different distinct values (typically 
alphanumeric as in the manufacturer example), but 
there is no sorting order that would be appropriate for 
the ranking algorithm. In these cases, a given attribute 
with K distinct values is expanded to K different 
attributes, each with two possible values: a 1 if the 
example has the corresponding attribute value, and a 0 
if it does not. That is, amongst the K attributes, each 
example should have exactly one 1 and K-1 0’s.  

Some attributes in the real-world data sets need to 
be removed or ignored, for instance, because the 
values consist of free-text comments. Generally, these 
cannot be converted to values that can be meaningfully 
sorted.  

 
2.5. Related work 

 
Although there has been much work that applies 

machine learning techniques to software engineering 
and software testing [6, 7], there seems to be very little 
work in the reverse sense: applying software testing 
techniques to machine learning software, particularly 

Figure 2: MartiRank Algorithm. 

inputs: list L of attribute-value descriptions of feeders 
with associated nr. of failures; nr of boosting rounds T 
output: marti-model M 
 
1. let M be the empty model 
2. for each round  t=1,..,T  do: 

 
- partition L into t sub-lists L1, .., Lt s.t. each Lj has 

same nr. of failures; let th2, .., tht be the location 
of the splits in terms of the normalized fraction 
 of feeders that fall above the split. 

 
- for each sub-list i=1,..,t  do: 

 
i. compute quality of Li  sort 

ii. for each attribute A  do: 
1. sort Li according to A in ascending 

order, compute quality of resulting sort 
2. sort Li according to A in descending 

order, compute quality of resulting sort 
 

- if there exists attribute A and polarity P that 
improves Li’s sort, then: 

i. if i > 1, add thi to M at level t, position i 
ii. add A to M at level t, position i. 

iii. sort Li  according to (A,P) 
- else: 

i. if i > 1, add thi to M at level t, position i 
ii. add “NOP” to M at level t, position i. 

3. output M 



 

those ML applications that have no reliable test oracle. 
Our framework builds upon Davis and Weyuker’s [8] 
approach to testing with a “pseudo-oracle” (comparing 
against another implementation of the specification), 
but most aspects of our framework are still useful even 
when there is just one implementation.  

 There has been much research into the creation of 
test suites for regression testing [9] and generation of 
test data sets [10, 11], but not applied to ML code.  
Repositories of “reusable” ML data sets have been 
collected (e.g., the UCI Machine Learning Repository 
[12]) for the purpose of comparing result quality, but 
not for testing in the software engineering sense.  

Orange [13] and Weka [14] are two of the several 
frameworks that aid in developing ML applications, 
but the testing functionality they provide is again 
focused on comparing the quality of the results, not the 
“correctness” or dependability of the implementations. 
 
3. Testing Approach 

 
3.1. Optimization options  
 

CMarti and FastCMarti provide runtime options 
that turn on/off “optimizations” intended to improve 
result quality. These generally involve randomization 
(probabilistic decisions), yet it is challenging to 
evaluate test results when the outputs are not 
deterministic. Therefore, these options were disabled 
for all testing thus far: Our goal in comparing these 
implementations was not to get better results but to get 
consistent results. 

We initially believed that PerlMarti was a potential 
“gold standard” because it was truest to the algorithm 
as well as originally coded by the algorithm’s inventor, 
but as we shall see we found bugs in it, too. However, 
the fact that we had three implementations of 
MartiRank coded by different programmers helped 
immensely: we could generally assume that – with all 
options turned off – if two implementations agreed and 
the third did not, the third one was probably “wrong” 
(or, at least, we would know that something was amiss 
in at least one of them).  

 
3.2. Types of testing 

 
We focused on two types of testing: comparison 

testing to see if all three implementations produced the 
same results, and regression testing to compare new 
revisions of a given implementation to previous ones 
(after bug fixes, refactorings, and enhancements to the 
optimization options). 

The data sets for some test cases were manually 
constructed, e.g., so that a hand-simulation of the 

MartiRank algorithm produced a “perfect” ranking, 
with all the positive examples (feeder failures) at the 
top and all the negative examples (non-failures) at the 
bottom. These data sets were very small, e.g., 10 
examples each with 3 attributes. 

We also needed large data sets, to exercise a 
reasonable number of MartiRank rounds (the 
implementation default is 10) with still sufficiently 
many examples in each segment in the later rounds.  
We tested with some (large) real-world data sets, 
which generally have many categorical attributes, 
many repeating numerical values, and many missing 
values. However, in order to have more control over 
the test cases, e.g., to focus on boundary conditions 
from the identified equivalence classes, most of our 
large data sets were automatically generated with F 
failures (positive-labeled examples), N numerical 
attributes and K categorical attributes. F is any 
percentage between 0 and 100. The N numerical 
attributes were specified as including or not including 
any repeating values, with 0 to 100 percent missing 
values; the sets of values for each attribute were 
independent. For each of the K categorical attributes, 
the number of distinct values and the percent per 
category and missing were specified.  

 
3.3. Models versus rankings 

 
Our evaluation of test outputs focused primarily on 

the models, as it is virtually always the case that if two 
versions produce two different models, then the 
rankings will also be different: if different models do 
produce the same rankings, that is likely by chance 
(i.e., an effect of the data set itself and not the model) 
and does not mean that the versions were producing 
“consistent” results. However, even when two 
implementations or revisions generate the same model, 
we cannot assume that the rankings will be the same: 
CMarti and PerlMarti generate rankings via programs 
that are separate from the code used to generate the 
models, so it is possible that differences could exist.  

FastCMarti does not follow the typical supervised 
ML convention in which a training data set is used to 
generate a model and then that model is given a 
separate “testing” data set with unknown labels to 
rank. Instead, the two data sets are joined together and 
each example marked accordingly. FastCMarti runs on 
the combined data set, but only the training data are 
used to create the model. The testing data are sorted 
and segmented along with the training data, and the 
final ranking of the testing data is the output – the 
model itself is merely a side effect that we needed to 
extract in order to compare across versions. 

 



 

4. Testing Framework 
 

4.1. Generating data sets 
 
We created a tool that randomly generates values 

and puts them in the data set according to certain 
parameters. This allowed us to separately test different 
equivalence classes and ultimately create a suite of 
regression tests that covered those classes, focusing on 
boundaries. The parameters include the number of 
examples, the number of attributes, and the names of 
the output test data set files (which were produced in 
different formats for the different implementations). 

The data generation tool can be run with a flag that 
ensures that no values are repeated within the data set. 
This option was motivated by the need to run simple 
tests in which all values are different, so that sorting 
would necessarily be deterministic (no “ties”). It works 
as follows: for M attributes and N examples, generate a 
list of integers from 1 to M*N and then randomly 
shuffle them. The numbers are then placed into the 
data set. If the flag is not used, then each value in the 
data set is simply a random integer between 1 and 
M*N; there is thus a possibility that numbers may 
repeat, but this is not guaranteed.  

The utility is also given the percentage of failures to 
include in the data set. For all test cases discussed in 
this paper, each example could only have a label of 1 
(indicating a failure) or 0 (non-failure). Similarly, a 
parameter specifies the percentage of missing values. 
Note that the label value is never missing. 

Lastly, parameters could be provided for generating 
categorical data (with K distinct values expanded to K 
attributes as described above). For creating categorical 
data, the input parameter to the data generation utility 
is of the format (a1, a2, ..., aK-1, aK, b), where a1 through 
aK represent the percentage distribution of those values 
for the categorical attribute, and b is the percent of 
unknown values. The utility also allows for having 
multiple categorical attributes, or for having none at 
all. 
 
4.3. Comparing models 

 
We created a utility that compares the models and 

reports on the differences in each round: where the 
segment boundaries are drawn, the attribute chosen to 
sort on, and the direction. Typically, however, any 
difference between models in an earlier round would 
necessarily affect the rest of the models, so only the 
first difference is of much practical importance.  

 
4.4. Comparing rankings 

 

As explained above, we cannot simply assume that 
the same models will produce the same rankings for 
different implementations or revisions. This utility 
reports some basic metrics, such as the quality (AUC) 
for each ranking, the number of differences between 
the rankings (elements ranked differently), the 
Manhattan distance (sum of the absolute values of the 
differences in the rankings), and the Euclidean distance 
(in N-dimensional space). Another metric given is the 
normalized Spearman Footrule Distance, which 
attempts to explain how similar the rankings are (1 
means that they are exactly the same, 0 means they are 
completely in the opposite order) [15]. Some of these 
metrics have mostly been useful when testing the 
“optimization” options, outside the scope of this paper. 

 
4.5. Tracing options 

 
The final part of the testing framework is a tool for 

examining the differences in the trace outputs 
produced by different test runs. We added runtime 
options to each implementation to report significant 
intermittent values that arise during the algorithm’s 
execution, specifically the ordering of the examples 
before and after attempting to sort each attribute for a 
given segment, and the AUC calculated upon doing so. 
This is extremely useful in debugging differences in 
the models and rankings, as it allows us to see how the 
examples are being sorted (there may be bugs in the 
sorting code), what AUC values are determined (there 
may be bugs in the calculations), and which attribute 
the code is choosing as best for each segment/round 
(there may be bugs in the comparisons).  
 
5. Findings 
 
5.1. Testing with real-world data 
 

We first ran tests with some real-world data on all 
three implementations. Those data sets contained 
categorical data and both missing and repeating values. 
Our hope was that, with all “optimizations” disabled, 
the three implementations would output identical 
models and rankings.  

Not only did PerlMarti and FastCMarti produce 
different models, but CMarti reproducibly gave seg 
faults. Using the tracing utilities for the CMarti case, 
we found that some code that was only required for 
one of the optimization options was still being called 
even when that flag was turned off – but the internal 
state was inappropriate for that execution path. We 
refactored the code and the seg faults disappeared. 
However, the model then created by CMarti was still 
different from those created by either of the other two. 



 

These tests demonstrated the need for “fake” 
(controlled) data sets, to explore the equivalence 
classes of non-repeating vs. repeating values, none-
missing vs. missing values, and non-categorical vs. 
categorical attributes (which are necessarily repeating). 
 
5.2. Simple comparison testing 

 
We hand-crafted data sets (i.e., we did not yet use 

the framework to generate data sets) to see whether the 
implementations would give the same models in cases 
where a “perfect” ranking was possible. That is, we 
constructed data sets so that a manually-simulated 
sequence of sorting the segments (i.e., model) led to a 
ranking in which all of the failures were at the top and 
all the non-failures were at the bottom. It was agreed 
by the CCLS machine learning researchers that any 
implementation of MartiRank should be able to find 
such a “correct” model. And they generally did. 

In one of the “perfect” ranking tests, however, the 
implementations produced different results because the 
data set was already ordered as if sorted on the 
attribute that MartiRank would choose in the first 
round. In the reported models, CMarti sorted anyway, 
but PerlMarti and FastCMarti did NOPs because 
leaving the data as-is would yield the same quality 
(AUC). 

After consulting with the CCLS ML researchers, we 
“fixed” PerlMarti and FastCMarti so that they would 
always choose an attribute to sort on in the first round, 
i.e., never select NOP in the first round. The rationale 
was that one could not expect that the initial ordering 
of a real-world data set would happen to produce the 
best ranking in the first round, and any case in which 
the data are already ordered in a way that yields the 
“best” quality is likely just a matter of luck – so sorting 
is always preferable to not sorting. However, the 
MartiRank algorithm as defined in Figure 2 does not 
treat the first round specially, so the implementations 
now thus deviate from the algorithm. 

In another simple test, we wanted to see what would 
happen if sorting on two different attributes gave the 
same AUC. For instance, if sorting on attribute #3 
ascending would give the same AUC as sorting on 
attribute #10 descending, and either provided the best 
AUC for this segment, which would the code pick? 
Our assumption was that the implementations should 
choose an attribute/direction for sorting only when it 
produces a better AUC than the best so far, starting 
with attribute #0 (leftmost in the data file) and going 
up to attribute #N (rightmost), as specified in 
MartiRank. 

This led to the interesting discovery that FastCMarti 
was doing the segmentation (sub-list splits) differently 

from PerlMarti and CMarti. By using the framework’s 
model analysis tool, we found that even when 
FastCMarti was choosing the same attribute to sort on 
as the other implementations, in the subsequent round 
the percentage of the data set in each segment could 
sometimes be different.  

It appeared (and we confirmed using the tracing 
analysis tool) that the difference was that FastCMarti 
was taking enough failure examples (labeled as 1s) to 
fill the segment with the appropriate number, and then 
taking all non-failure examples (0s) up to the next 
failure (1). In contrast, CMarti and PerlMarti took only 
enough failures to fill the segment and stopped there. 
For example, if the sequence of labels  were: 

1 1 0 0 1 0 0 1 0 0 
and we were in the second round (two segments, each 
having ½ of the failures), then CMarti and PerlMarti 
would create segments like this: 

1 1   |   0 0 1 0 0 1 0 0 
but FastCMarti would create segments like this: 

1 1 0 0   |   1 0 0 1 0 0 
Both are “correct” because the algorithm merely 

says that, in the Nth round, each segment should 
contain 1/Nth of the failures, and here each segment 
indeed contains two of the four. The algorithm does 
not specify where to draw the boundaries between the 
non-failures. This is the first instance we found in 
which the MartiRank algorithm did not address an 
implementation-specific issue, which does not matter 
with respect to formal proofs, but does matter with 
respect to consistent testing.  

Once these issues were addressed, we repeated all 
the small test cases as well as with larger generated 
data sets, both for regression testing purposes (to 
ensure that the fixes did not introduce any new bugs) 
and for comparison testing (to ensure that all three 
implementations produced the same models).  
 
5.3. Comparison testing with repeating values 
 

The next tests we performed with repeating values, 
that is, the same value could appear for a given 
attribute for different examples (in the real-world data 
sets, voltage level and activation date attributes involve 
many repeating values). We again started with small 
hand-crafted data sets that allowed us to judge the 
behavior by inspection. In one test, PerlMarti and 
CMarti found a “perfect” ranking after two rounds, but 
FastCMarti did not find one at all. In another test, 
PerlMarti/CMarti vs. FastCMarti showed different 
segmentations in a particular round.  

Then by using larger, automatically generated data 
sets, we confirmed our intuition that the CMarti and 
PerlMarti sorting routines were “stable” (i.e., they 



 

maintain the relative order of the examples from the 
previous round when the values are the same), whereas 
FastCMarti was using a faster sorting algorithm that 
was not a stable sort (in particular producing a 
different order than a stable sort in the case of “ties”). 
Again, the algorithm did not address a specific 
implementation issue – which sorting approach to use 
– and different implementation decisions led to 
different results.  

After replacing FastCMarti’s sorting routine with a 
stable sort, we noticed that – again in an effort to be 
“fast” – the resulting list from the descending sort was 
simply the reverse of the list from the ascending sort, 
which does not retain the stability. For instance, if the 
stable ascending sort returned examples in this order: 

1 2 A B 5 6 
where A and B have the same values, then the stable 
descending sort should be:  

6 5 A B 2 1 
But FastCMarti was simply taking the reverse of the 
ascending list to produce: 

6 5 B A 2 1 
This code was “fixed”. This modification necessarily 
had an adverse effect on runtime, but provided the 
consistency we sought. 
 
5.4. Comparison testing of rankings 
 

Previously we had only compared the models. Now 
for the cases where the models were the same, we 
wanted to check whether the rankings were also 
identical. For CMarti and PerlMarti, ranking 
generation involved a separate program that we had 
not yet tested.  

We used the testing framework to create new large 
data sets with repeating values and used the analysis 
tool to analyze the rankings (at this point, all three 
implementations were producing the same models). 
CMarti and PerlMarti agreed on the rankings, but 
FastCMarti did not. The framework allowed us to 
determine how different, based on the various metrics 
such as normalized Spearman Footrule Distance and 
AUCs, as well as to determine why they were different, 
using the trace analysis tool. 

Using the tracing utility to see how the examples 
were being ordered during each sorting round, we 
found that the “stability” in FastCMarti was based on 
the initial ordering from the original data set, and not 
from the sorted ordering at the end of the previous 
round. That is, when a list that contained repeating 
values was to be sorted, CMarti and PerlMarti would 
leave those examples in their relative order as they 
stood at the end of the previous round, but FastCMarti 
would leave them in the relative order as they stood in 

the original data set. FastCMarti was designed this way 
to make it faster, i.e., by “remembering” the sort order 
for each attribute at the very beginning of the 
execution, and not having to re-sort in each round.  

For instance, a data set with entries A and B such 
that A appears in the set before B would look like: 

 ....A....B.... 
If in the first round MartiRank sorts on some attribute 
such that B gets placed in front of A, the ordering 
would then look like:  

....B....A.... 
In the second round, if the examples are in the same 
segment and MartiRank sorts on some attribute that 
has the same value for those two examples, PerlMarti 
and CMarti would then end up like this:  

......BA......  
because B was before A at the end of round 1.  
However, FastCMarti would do this:  
     ......AB......  
because A was before B in the original data set. 

Since this was not explicitly addressed in the 
MartiRank algorithm, we contacted Long and 
Servedio, who agreed that remembering the order from 
the previous round was more in the spirit of the 
algorithm since it would take into account its execution 
history, rather than just the somewhat-randomness of 
how the examples were ordered in the original data set. 
Fixing this problem will require rethinking the entire 
approach to “fastness”, which has not yet occurred; 
thus all further comparison testing omitted FastCMarti. 
 
5.5. Comparison testing with sparse data sets 
 

Once PerlMarti and CMarti were producing the 
same models for the cases with repeating values, we 
began to test data sets that had missing values. We 
used the framework to create large, randomly-
generated (but non-repeating) data sets with percent of 
missing values as a parameter (0.5%, 1%, 5%, 10%, 
20%, and 50%).  

In these tests, both implementations were initially 
generating different models, and there was no way to 
know which was “correct” since the MartiRank 
algorithm does not dictate how to handle missing 
values. Consulting with the CCLS ML researchers, we 
decided that the sorting should be “stable” with respect 
to missing values in that examples with a missing 
attribute value should remain in the same position, 
with the other examples (with known values) sorted 
“around” them. For instance, when the values: 

4 A 5 2 1 B C 3 
are sorted in ascending order (with A, B and C 
representing the missing values), the result should be: 

1 A 2 3 4 B C 5 



 

Other deterministic options for handling this case 
(such as putting all missing values at the end of the 
list) were considered, but this was deemed to be most 
in the MartiRank spirit (as in the ordering reuse case 
above). 

Using the tracing outputs from the implementations 
and analyzing them with the framework tools, we 
noticed that CMarti – even with all optimizations 
turned off – was still performing randomizations in the 
case of missing values. In particular, it kept the 
missing values in the same relative order but placed 
them randomly throughout the list. So we “fixed” the 
code so by default all missing values would stay in 
their original locations in the same relative order. 

We also used the framework tools to find that 
PerlMarti was not only behaving incorrectly with 
respect to the placement and order of missing values, 
but also that the missing values were causing the 
known values to be sorted incorrectly. This was due to 
using a Perl starship comparison operator that assumed 
transitivity among comparisons even when one of the 
values in the comparisons was missing, which is 
incorrect. This was “fixed” to also leave missing 
values in their positions and sort known values 
“around” them. 
 
5.6. Comparison testing with categorical data 
 

Because categorical data provides a combination of 
necessarily repeating (all 0s or 1s) and sometimes 
missing values, we created test data sets with 
categorical attributes to see what would happen when 
all of these different criteria came together. Though 
CMarti and PerlMarti produced the same models and 
rankings in most of these test cases, in one particular 
test, the models were different. After seeing them 
agree for so many other test cases, our intuition was 
that something might be different in the calculation of 
the AUC – which had recently been refactored in the 
Perl implementation. We used the tracing utility to 
discover that PerlMarti indeed had a bug introduced 
(during refactoring) by the incorrect use of a global 
variable in the calculation of the AUC. After fixing the 
bug, we ran regression tests and the CMarti and 
PerlMarti models were the same in all cases. 
 
5.7. Testing with real-world data revisited 
 

We reconsidered the real-world data from the 
original comparison tests, now running tests only for 
CMarti and PerlMarti. These two implementations 
produced the same models and the same rankings. 
They now have the same behavior in all our current 
test cases with missing values, repeating values, and 

categorical data – although of course we cannot rule 
out further bugs (and indeed we have found other bugs 
in all three implementations besides those discussed 
here).  
 
6. Evaluation of the framework 
 
6.1. Usefulness in our testing 
 

The testing framework facilitated our work by 
aiding us in the creation, execution and analysis of the 
test cases. The ability to control the properties of data 
sets was critical for limiting the scope of individual 
tests and for pinpointing specific issues in how the 
code was handling different equivalence classes and 
their boundaries. The data generation tool proved to be 
simple and reliable, compared to alternative 
approaches we considered to culling real-world data. 

The model comparison tool provided many 
advantages over “diff” because it enumerates the 
differences clearly and is aware of the various facets of 
a MartiRank round/segment (number of examples, sort 
attribute, and direction).  The ranking comparison tool 
was admittedly not much more useful than “diff” for 
the testing presented here, but in our preliminary work 
not reported here, the comparison metrics have already 
been very important aids in judging whether the 
CMarti and FastCMarti “optimization” options are, in 
fact, improving result quality. 

Finally, the trace analysis tool was tremendously 
useful in determining where differences in models and 
ranking order were coming from. It provided great 
insights into the internals of the implementations, 
aiding us in narrowing down other flaws as well. Most 
significantly, it was the trace analyses that enabled us 
to convince the implementations’ developers that there 
were, in fact, bugs in their code – since, as noted in the 
Introduction, there is no easy way to inspect the output 
to determine if it is indeed “correct” for the input. 

 
6.2. Applicability to other ML algorithms 

 
Our testing process was greatly aided by the fact 

that we had three implementations of the same 
algorithm, effectively acting as “pseudo-oracles” for 
each other [8], but the framework is still useful even 
when there is just one implementation of an ML 
ranking algorithm. The framework is also applicable to 
supervised ML classification algorithms. For instance, 
a classification simply deciding, say, failure-prone vs. 
not-failure-prone would also fall into Davis and 
Weyuker’s class of “Programs which were written in 
order to determine the answer in the first place. There 



 

would be no need to write such programs, if the 
correct answer were known” [8]. 

When there is only one implementation, the 
framework would support regression testing across 
revisions of that implementation to ensure that no bugs 
have inadvertently been introduced: equivalence class 
and boundary condition data sets can be generated, 
tests can be run, outputs can be compared between 
previous and latest revisions, and if need be execution 
traces can be analyzed.  

To re-target our conceptual framework to other ML 
algorithms beyond MartiRank, some code changes 
would certainly be necessary.  The data generation tool 
might or might not work “as is”: this depends on the 
input data format required by the implementation.  The 
data generator already supports plug-replaceable 
modules for creating data set files in whatever format 
is needed.  Two such modules are currently 
implemented, one for PerlMarti and CMarti (csv files) 
and the other for FastCMarti (a “sparse” attribute-
value pair representation that enables more compact 
representation of data sets with a high proportion of 
missing values). All the ML algorithms of interest 
work with example data points, each consisting of a 
series of attributes and one non-negative numeric label. 

The model comparison/analysis tool is specific to 
MartiRank’s model format – which had to be explicitly 
extracted by modifying FastCMarti since there the 
model was originally employed only internally, not 
output. But the concept of “model” is inherent to any 
ML ranking or classification algorithm intended to be 
trained on one data set and applied to another, even 
when semi-merged as in FastCMarti.   

Rankings tend to occur in only one of two basic 
formats: the ranked list of examples, in order, and the 
examples in their original input order annotated with 
their rank. The ranking tool already converts from the 
latter, the actual output of all three implementations, to 
the former, to make it more human-readable. We have 
briefly investigated applying the framework to 
RankBoost [16], and do not see any significant re-
targeting problems. 

Furthermore, for comparing rankings to be used in 
an ML application like the system of Figure 1, where it 
would likely be feasible to take action on only a small 
number of elements presumably selected from the top 
(or possibly the bottom) of a given ranking, the 
ranking analysis tool already includes some special 
facilities that look at the top and the bottom. For a 
parameterized value X, the utility calculates the quality 
(currently AUC) of only the top and bottom X% of 
each ranking, and also calculates the “correspondence” 
between the top and bottom X% of both rankings. 
Correspondence is simply the number of examples that 

appear in the top (or bottom) X% of both rankings, 
divided by the number of examples in the top (or 
bottom) X%. These metrics, along with the other 
distance metrics described previously, can help decide 
whether a pair of rankings is “similar” in the ranges 
that are most important, or if one implementation – 
with or without optimization options – is notably better 
than another. This is also useful for comparing across 
algorithms. However, here the framework can only tell 
us whether the result quality is better, but not that the 
code is correct. 

The current trace output and analysis is heavily 
dependent on MartiRank’s notion of rounds and 
segments (sub-lists), and would necessarily have to be 
re-targeted to the specific algorithm implementation. 

 
7. Future work and next steps 

 
7.1. Improvements to the testing framework 

 
The framework should be extended to generate 

arbitrarily large data sets with repeating, missing 
and/or categorical data such that an arbitrary ML 
ranking algorithm could definitively construct a model 
that produces a “perfect” ranking, i.e., where there is a 
clearcut “correct” output. But this may be impossible 
in the general case. In addition, in order to create test 
cases reminiscent of real-world data, the framework 
should be extended to generate data sets that exhibit 
the same correlations among attributes and between 
attributes and labels as do real-world data. Here we 
could build upon the related work of [17, 18]. 

 
7.2. Expansion to complete ML applications 

 
Our research to date has not yet addressed the use 

of ML algorithm implementations in the context of 
overall applications, e.g., as depicted in Figure 1. That 
is, we have started looking at the dependability of ML 
applications but so far have studied only the “ML 
Engine”. Future work in this area is to expand the 
framework to encompass the entire system, including 
for instance the decision support treatment of ranking 
(or classification) results. The emerging generation of 
ML applications could take various implementations of 
MartiRank, SVMs and/or other ML algorithms, 
generate multiple models, and then determine which is 
currently “best” for the dynamic data sets at hand, and 
use that model for making real-time predictions. We 
plan to investigate how to extend the framework to test 
this kind of software. Our ultimate goal is to make our 
current and later expanded framework useful outside 
CCLS, particularly to other ML researchers who rarely 
cross paths with the software engineering community. 



 

 
8. Conclusion 
 

We have presented a conceptual framework for 
testing (and debugging) a particular class of algorithm 
implementations for which there is no reliable test 
oracle. Particularly in machine learning applications, 
where there is often no precise input/output 
specification, it can be very difficult to determine the 
“right” answer. But the framework makes it relatively 
straightforward to conduct regression and comparison 
testing, especially in the cases where there are multiple 
implementations of the same algorithm. As we have 
discussed, though, the framework can still be useful 
even when there is just one implementation. 
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