

A Framework for Quality Assurance of Machine Learning Applications

Christian Murphy Gail Kaiser Marta Arias
Dept. of Computer Science

Columbia University
New York, NY

cmurphy@cs.columbia.edu

Dept. of Computer Science
Columbia University

New York, NY
kaiser@cs.columbia.edu

Center for Computational
Learning Systems

Columbia University
New York, NY

marta@ccls.columbia.edu

Abstract

Some machine learning applications are intended

to learn properties of data sets where the correct
answers are not already known to human users. It is
challenging to test and debug such ML software,
because there is no reliable test oracle. We describe a
framework and collection of tools aimed to assist with
this problem. We present our findings from using the
testing framework with three implementations of an
ML ranking algorithm (all of which had bugs).

1. Introduction

We investigate the problem of making machine
learning (ML) applications dependable, focusing on
software quality assurance. Conventional software
engineering processes and tools do not always neatly
apply: in particular, it is challenging to detect subtle
errors, faults, defects or anomalies (henceforth “bugs”)
in those ML applications where there is no reliable test
“oracle”. The general class of software systems with
no reliable test oracle available is sometimes known as
“non-testable programs” [1].

We are specifically concerned with ML applications
addressing ranking problems, as opposed to the
perhaps better-known classification problems. When
such applications are applied to real-world data (or, for
that matter, to “fake” data), there is typically no easy
way to determine whether or not the program’s output
is “correct” for the input. In general, there are two
phases to “supervised” machine learning – the first
where a training data set with known positive or
negative labels is analyzed, and the second where the
results of that analysis (the “model”) are applied to
another data set where the labels are unknown; the
output of the latter is a ranking, where when the labels

become known, it is intended that those with a positive
label should appear as close to the top of the ranking as
possible given the information known when ranked.
(More accurately, labels are non-negative numeric
values, and ideally the highest valued labels are at or
near the top of the ranking, with the lowest valued
labels at or near the bottom.) Formal proofs of an ML
ranking algorithm’s optimal accuracy do not guarantee
that an application implements or uses the algorithm
appropriately, and thus software testing is needed.

In this paper, we describe a framework supporting
testing and debugging of supervised ML applications
that implement ranking algorithms. The current version
of the framework consists of a collection of modules
targeted to several ML implementations of interest,
including a test data set generator; tools to compare the
output models and rankings; several trace options
inserted into the ML implementations; and utilities to
help analyze the traces to aid in debugging.

We present our findings to date from a case study
concerning the Martingale Boosting algorithm, which
was developed by Long and Servedio [2] initially as a
classification algorithm and then adapted by Long and
others [3] into a ranking algorithm. “MartiRank” was a
nice initial target for our framework since the
algorithm is relatively simple and there were already
three distinct, actively maintained implementations
developed by different groups of programmers.

2. Background

2.1. Machine learning applications

Previous and ongoing work at the Center for

Computational Learning Systems (CCLS) has focused
on the development of ML applications like the system
illustrated in Figure 1 [3]. The goal of that system,
commissioned by Consolidated Edison Company of

New York, is to rank the electrical distribution feeders
most susceptible to impending failure with sufficient
accuracy so that timely preventive maintenance can be
taken on the right feeders at the right time. The
prospective users would like to reduce feeder failure
rates in the most cost effective manner possible.
Scheduled maintenance avoids risk, as work is done
when loads are low, so the feeders to which load is
shifted continue to operate well within their limits.
Targeting preventive maintenance to the most at-risk
feeders (those at or near the top of the ranking) offers
huge potential benefits. In addition, being able to
predict incipient failures in close to real-time can
enable crews and operators to take short-term
preventative actions (e.g., shifting load to other, less
loaded feeders). However, the ML application must be
quite dependable for an organization to trust its results
sufficiently to thusly deploy expensive resources.

Other ML algorithms have also been investigated,

such as Support Vector Machines (SVMs) [4] and
linear regression, as the basis for the ML Engine of the
example system and other analogous applications.
However, much of the CCLS research has focused on
MartiRank because, in addition to producing good
results, the models it generates are relatively easy to
understand and sometimes “actionable”. That is, it is
clear which attributes from the input data most

contributed to the model and thus the output ranking.
In some cases the values of those attributes might then
be closely monitored and/or externally adjusted.

This example ML application is presented
elsewhere [3]. The purpose of this paper is to present
the framework we developed for testing and debugging
such applications, with the goal of making them more
dependable. The framework is written in Python on
Linux. Our initial results reported here focus on the
MartiRank implementations.

One complication in this effort arose due to
conflicting technical nomenclature: “testing”,
“regression”, “validation”, “model” and other relevant
terms have very different meanings to machine
learning experts than they do to software engineers.
Here we employ the terms “testing” and “regression
testing” as appropriate for a software engineering
audience, but we adopt the machine learning sense of
“model” (i.e., the rules generated during training on a
set of examples) and “validation” (measuring the
accuracy achieved when using those rules to rank the
training data set, rather than a different data set).

2.2. MartiRank algorithm

The algorithm is shown in Figure 2 [3]. The pseudo-

code presents it as applied to feeder failures, where the
label indicates the number of failures (zero meaning
the feeder never failed); however, the algorithm could
be applied to any attribute-value data set labeled with
non-negative values. In each round of MartiRank, the
set of training data is broken into sub-lists (there are N
sub-lists in the Nth round, each containing 1/Nth of the
total number of failures). For each sub-list, MartiRank
sorts that segment by each attribute, ascending and
descending, and chooses the attribute that gives the
best “quality”. For quality comparisons, the
implementations all use a slight variant, adapted to
ranking rather than classification, of the Area Under
the receiver operating characteristic Curve (AUC) [5].
The AUC is a conventional quality metric employed in
the ML community: 1.0 is the best possible, 0.0 is the
worst possible, and 0.5 is random.

In each round, the definition of each segment thus
has three facets: the percentage of the examples from
the original data set that are in the segment, the
attribute on which to sort them, and the direction
(ascending or descending) of the sort. In the model that
is generated, the Nth round appears on the Nth line of a
plain-text file, with the segments separated by
semicolons and the segment attributes separated by
commas. For instance:

0.4000,32,a;0.6500,12,d;1.0000,nop

Figure 1. Incoming dynamic data is stored in
the main database. The ML Engine combines
this with static data to generate and update
models, and then uses these models to create
rankings, which can be displayed via the
decision support app. Any actions taken as a
result are tracked and stored in the database.

Static data

SQL
Server

DB

ML
Engine

ML
ModelsRanking

Decision
Support

Action
Driver

Action
Tracker

Decision Support App

Outage data

Xfmr Stress data

Feeder Load data

might appear on the third line of the model file,
representing the third round. This means that the first
segment contains 40% of the examples in the data set
and sorts them on attribute 32, ascending. The second
segment contains the next 25% (65 minus 40) and sorts
them on attribute 12, descending. The last segment
contains the rest of the attributes and does a “NOP”
(no-op), i.e., does not sort them again because the
order resulting from the previous round had the best
quality compared to re-sorting on any attribute.

This model could then be re-applied to the training
data (called “validation” in ML terminology) or
applied to another, previously-unseen set of data
(called the “testing data”). In either case, the output is
a ranking of the data set examples and the overall
quality of the entire ranked list can be calculated.

2.3. MartiRank implementations

The first of the three implementations was written

in Perl, hereafter referred to as PerlMarti, as a
straightforward implementation of the algorithm that
included no optimizations. However, when applied to

large data sets, e.g., thousands of examples with
hundreds of attributes, PerlMarti is rather slow.

A C version, hereafter CMarti, was written to
improve performance (speed). CMarti also introduced
some experimental options to try to improve quality.

Another implementation also written in C, called
FastCMarti, was designed to minimize the costly
overhead of repeatedly sorting the attribute values. It
sorted the full data set on each attribute at the
beginning of an execution, before the first round, and
remembered the results; it also used a faster sorting
algorithm than CMarti (hence the name FastCMarti).
This implementation also introduced some different
experimental options from those in CMarti.

2.4. Data sets

The MartiRank algorithm is based on sorting, with
the implicit assumption that the sorted values are
numerical. While in principle lexicographic sorts could
be employed, non-numerical sorts do not seem
intuitively appealing as ML predictors; for instance, it
may not be meaningful to think of an electrical device
manufactured by “Westinghouse” as more or less than
something made by “General Electric” just because of
their alphabetical ordering. Thus the implementations
expect that all input data will be numerical.

Though much of the real-world data of interest
(from the system of Figure 1) indeed consists of
numerical values – including floating point decimals,
dates and integers – some of the data is instead
categorical. Categorical data refers to attributes in
which there are K different distinct values (typically
alphanumeric as in the manufacturer example), but
there is no sorting order that would be appropriate for
the ranking algorithm. In these cases, a given attribute
with K distinct values is expanded to K different
attributes, each with two possible values: a 1 if the
example has the corresponding attribute value, and a 0
if it does not. That is, amongst the K attributes, each
example should have exactly one 1 and K-1 0’s.

Some attributes in the real-world data sets need to
be removed or ignored, for instance, because the
values consist of free-text comments. Generally, these
cannot be converted to values that can be meaningfully
sorted.

2.5. Related work

Although there has been much work that applies

machine learning techniques to software engineering
and software testing [6, 7], there seems to be very little
work in the reverse sense: applying software testing
techniques to machine learning software, particularly

Figure 2: MartiRank Algorithm.

inputs: list L of attribute-value descriptions of feeders
with associated nr. of failures; nr of boosting rounds T
output: marti-model M

1. let M be the empty model
2. for each round t=1,..,T do:

- partition L into t sub-lists L1, .., Lt s.t. each Lj has

same nr. of failures; let th2, .., tht be the location
of the splits in terms of the normalized fraction
 of feeders that fall above the split.

- for each sub-list i=1,..,t do:

i. compute quality of Li sort

ii. for each attribute A do:
1. sort Li according to A in ascending

order, compute quality of resulting sort
2. sort Li according to A in descending

order, compute quality of resulting sort

- if there exists attribute A and polarity P that
improves Li’s sort, then:

i. if i > 1, add thi to M at level t, position i
ii. add A to M at level t, position i.

iii. sort Li according to (A,P)
- else:

i. if i > 1, add thi to M at level t, position i
ii. add “NOP” to M at level t, position i.

3. output M

those ML applications that have no reliable test oracle.
Our framework builds upon Davis and Weyuker’s [8]
approach to testing with a “pseudo-oracle” (comparing
against another implementation of the specification),
but most aspects of our framework are still useful even
when there is just one implementation.

 There has been much research into the creation of
test suites for regression testing [9] and generation of
test data sets [10, 11], but not applied to ML code.
Repositories of “reusable” ML data sets have been
collected (e.g., the UCI Machine Learning Repository
[12]) for the purpose of comparing result quality, but
not for testing in the software engineering sense.

Orange [13] and Weka [14] are two of the several
frameworks that aid in developing ML applications,
but the testing functionality they provide is again
focused on comparing the quality of the results, not the
“correctness” or dependability of the implementations.

3. Testing Approach

3.1. Optimization options

CMarti and FastCMarti provide runtime options
that turn on/off “optimizations” intended to improve
result quality. These generally involve randomization
(probabilistic decisions), yet it is challenging to
evaluate test results when the outputs are not
deterministic. Therefore, these options were disabled
for all testing thus far: Our goal in comparing these
implementations was not to get better results but to get
consistent results.

We initially believed that PerlMarti was a potential
“gold standard” because it was truest to the algorithm
as well as originally coded by the algorithm’s inventor,
but as we shall see we found bugs in it, too. However,
the fact that we had three implementations of
MartiRank coded by different programmers helped
immensely: we could generally assume that – with all
options turned off – if two implementations agreed and
the third did not, the third one was probably “wrong”
(or, at least, we would know that something was amiss
in at least one of them).

3.2. Types of testing

We focused on two types of testing: comparison

testing to see if all three implementations produced the
same results, and regression testing to compare new
revisions of a given implementation to previous ones
(after bug fixes, refactorings, and enhancements to the
optimization options).

The data sets for some test cases were manually
constructed, e.g., so that a hand-simulation of the

MartiRank algorithm produced a “perfect” ranking,
with all the positive examples (feeder failures) at the
top and all the negative examples (non-failures) at the
bottom. These data sets were very small, e.g., 10
examples each with 3 attributes.

We also needed large data sets, to exercise a
reasonable number of MartiRank rounds (the
implementation default is 10) with still sufficiently
many examples in each segment in the later rounds.
We tested with some (large) real-world data sets,
which generally have many categorical attributes,
many repeating numerical values, and many missing
values. However, in order to have more control over
the test cases, e.g., to focus on boundary conditions
from the identified equivalence classes, most of our
large data sets were automatically generated with F
failures (positive-labeled examples), N numerical
attributes and K categorical attributes. F is any
percentage between 0 and 100. The N numerical
attributes were specified as including or not including
any repeating values, with 0 to 100 percent missing
values; the sets of values for each attribute were
independent. For each of the K categorical attributes,
the number of distinct values and the percent per
category and missing were specified.

3.3. Models versus rankings

Our evaluation of test outputs focused primarily on

the models, as it is virtually always the case that if two
versions produce two different models, then the
rankings will also be different: if different models do
produce the same rankings, that is likely by chance
(i.e., an effect of the data set itself and not the model)
and does not mean that the versions were producing
“consistent” results. However, even when two
implementations or revisions generate the same model,
we cannot assume that the rankings will be the same:
CMarti and PerlMarti generate rankings via programs
that are separate from the code used to generate the
models, so it is possible that differences could exist.

FastCMarti does not follow the typical supervised
ML convention in which a training data set is used to
generate a model and then that model is given a
separate “testing” data set with unknown labels to
rank. Instead, the two data sets are joined together and
each example marked accordingly. FastCMarti runs on
the combined data set, but only the training data are
used to create the model. The testing data are sorted
and segmented along with the training data, and the
final ranking of the testing data is the output – the
model itself is merely a side effect that we needed to
extract in order to compare across versions.

4. Testing Framework

4.1. Generating data sets

We created a tool that randomly generates values

and puts them in the data set according to certain
parameters. This allowed us to separately test different
equivalence classes and ultimately create a suite of
regression tests that covered those classes, focusing on
boundaries. The parameters include the number of
examples, the number of attributes, and the names of
the output test data set files (which were produced in
different formats for the different implementations).

The data generation tool can be run with a flag that
ensures that no values are repeated within the data set.
This option was motivated by the need to run simple
tests in which all values are different, so that sorting
would necessarily be deterministic (no “ties”). It works
as follows: for M attributes and N examples, generate a
list of integers from 1 to M*N and then randomly
shuffle them. The numbers are then placed into the
data set. If the flag is not used, then each value in the
data set is simply a random integer between 1 and
M*N; there is thus a possibility that numbers may
repeat, but this is not guaranteed.

The utility is also given the percentage of failures to
include in the data set. For all test cases discussed in
this paper, each example could only have a label of 1
(indicating a failure) or 0 (non-failure). Similarly, a
parameter specifies the percentage of missing values.
Note that the label value is never missing.

Lastly, parameters could be provided for generating
categorical data (with K distinct values expanded to K
attributes as described above). For creating categorical
data, the input parameter to the data generation utility
is of the format (a1, a2, ..., aK-1, aK, b), where a1 through
aK represent the percentage distribution of those values
for the categorical attribute, and b is the percent of
unknown values. The utility also allows for having
multiple categorical attributes, or for having none at
all.

4.3. Comparing models

We created a utility that compares the models and

reports on the differences in each round: where the
segment boundaries are drawn, the attribute chosen to
sort on, and the direction. Typically, however, any
difference between models in an earlier round would
necessarily affect the rest of the models, so only the
first difference is of much practical importance.

4.4. Comparing rankings

As explained above, we cannot simply assume that
the same models will produce the same rankings for
different implementations or revisions. This utility
reports some basic metrics, such as the quality (AUC)
for each ranking, the number of differences between
the rankings (elements ranked differently), the
Manhattan distance (sum of the absolute values of the
differences in the rankings), and the Euclidean distance
(in N-dimensional space). Another metric given is the
normalized Spearman Footrule Distance, which
attempts to explain how similar the rankings are (1
means that they are exactly the same, 0 means they are
completely in the opposite order) [15]. Some of these
metrics have mostly been useful when testing the
“optimization” options, outside the scope of this paper.

4.5. Tracing options

The final part of the testing framework is a tool for

examining the differences in the trace outputs
produced by different test runs. We added runtime
options to each implementation to report significant
intermittent values that arise during the algorithm’s
execution, specifically the ordering of the examples
before and after attempting to sort each attribute for a
given segment, and the AUC calculated upon doing so.
This is extremely useful in debugging differences in
the models and rankings, as it allows us to see how the
examples are being sorted (there may be bugs in the
sorting code), what AUC values are determined (there
may be bugs in the calculations), and which attribute
the code is choosing as best for each segment/round
(there may be bugs in the comparisons).

5. Findings

5.1. Testing with real-world data

We first ran tests with some real-world data on all
three implementations. Those data sets contained
categorical data and both missing and repeating values.
Our hope was that, with all “optimizations” disabled,
the three implementations would output identical
models and rankings.

Not only did PerlMarti and FastCMarti produce
different models, but CMarti reproducibly gave seg
faults. Using the tracing utilities for the CMarti case,
we found that some code that was only required for
one of the optimization options was still being called
even when that flag was turned off – but the internal
state was inappropriate for that execution path. We
refactored the code and the seg faults disappeared.
However, the model then created by CMarti was still
different from those created by either of the other two.

These tests demonstrated the need for “fake”
(controlled) data sets, to explore the equivalence
classes of non-repeating vs. repeating values, none-
missing vs. missing values, and non-categorical vs.
categorical attributes (which are necessarily repeating).

5.2. Simple comparison testing

We hand-crafted data sets (i.e., we did not yet use

the framework to generate data sets) to see whether the
implementations would give the same models in cases
where a “perfect” ranking was possible. That is, we
constructed data sets so that a manually-simulated
sequence of sorting the segments (i.e., model) led to a
ranking in which all of the failures were at the top and
all the non-failures were at the bottom. It was agreed
by the CCLS machine learning researchers that any
implementation of MartiRank should be able to find
such a “correct” model. And they generally did.

In one of the “perfect” ranking tests, however, the
implementations produced different results because the
data set was already ordered as if sorted on the
attribute that MartiRank would choose in the first
round. In the reported models, CMarti sorted anyway,
but PerlMarti and FastCMarti did NOPs because
leaving the data as-is would yield the same quality
(AUC).

After consulting with the CCLS ML researchers, we
“fixed” PerlMarti and FastCMarti so that they would
always choose an attribute to sort on in the first round,
i.e., never select NOP in the first round. The rationale
was that one could not expect that the initial ordering
of a real-world data set would happen to produce the
best ranking in the first round, and any case in which
the data are already ordered in a way that yields the
“best” quality is likely just a matter of luck – so sorting
is always preferable to not sorting. However, the
MartiRank algorithm as defined in Figure 2 does not
treat the first round specially, so the implementations
now thus deviate from the algorithm.

In another simple test, we wanted to see what would
happen if sorting on two different attributes gave the
same AUC. For instance, if sorting on attribute #3
ascending would give the same AUC as sorting on
attribute #10 descending, and either provided the best
AUC for this segment, which would the code pick?
Our assumption was that the implementations should
choose an attribute/direction for sorting only when it
produces a better AUC than the best so far, starting
with attribute #0 (leftmost in the data file) and going
up to attribute #N (rightmost), as specified in
MartiRank.

This led to the interesting discovery that FastCMarti
was doing the segmentation (sub-list splits) differently

from PerlMarti and CMarti. By using the framework’s
model analysis tool, we found that even when
FastCMarti was choosing the same attribute to sort on
as the other implementations, in the subsequent round
the percentage of the data set in each segment could
sometimes be different.

It appeared (and we confirmed using the tracing
analysis tool) that the difference was that FastCMarti
was taking enough failure examples (labeled as 1s) to
fill the segment with the appropriate number, and then
taking all non-failure examples (0s) up to the next
failure (1). In contrast, CMarti and PerlMarti took only
enough failures to fill the segment and stopped there.
For example, if the sequence of labels were:

1 1 0 0 1 0 0 1 0 0
and we were in the second round (two segments, each
having ½ of the failures), then CMarti and PerlMarti
would create segments like this:

1 1 | 0 0 1 0 0 1 0 0
but FastCMarti would create segments like this:

1 1 0 0 | 1 0 0 1 0 0
Both are “correct” because the algorithm merely

says that, in the Nth round, each segment should
contain 1/Nth of the failures, and here each segment
indeed contains two of the four. The algorithm does
not specify where to draw the boundaries between the
non-failures. This is the first instance we found in
which the MartiRank algorithm did not address an
implementation-specific issue, which does not matter
with respect to formal proofs, but does matter with
respect to consistent testing.

Once these issues were addressed, we repeated all
the small test cases as well as with larger generated
data sets, both for regression testing purposes (to
ensure that the fixes did not introduce any new bugs)
and for comparison testing (to ensure that all three
implementations produced the same models).

5.3. Comparison testing with repeating values

The next tests we performed with repeating values,
that is, the same value could appear for a given
attribute for different examples (in the real-world data
sets, voltage level and activation date attributes involve
many repeating values). We again started with small
hand-crafted data sets that allowed us to judge the
behavior by inspection. In one test, PerlMarti and
CMarti found a “perfect” ranking after two rounds, but
FastCMarti did not find one at all. In another test,
PerlMarti/CMarti vs. FastCMarti showed different
segmentations in a particular round.

Then by using larger, automatically generated data
sets, we confirmed our intuition that the CMarti and
PerlMarti sorting routines were “stable” (i.e., they

maintain the relative order of the examples from the
previous round when the values are the same), whereas
FastCMarti was using a faster sorting algorithm that
was not a stable sort (in particular producing a
different order than a stable sort in the case of “ties”).
Again, the algorithm did not address a specific
implementation issue – which sorting approach to use
– and different implementation decisions led to
different results.

After replacing FastCMarti’s sorting routine with a
stable sort, we noticed that – again in an effort to be
“fast” – the resulting list from the descending sort was
simply the reverse of the list from the ascending sort,
which does not retain the stability. For instance, if the
stable ascending sort returned examples in this order:

1 2 A B 5 6
where A and B have the same values, then the stable
descending sort should be:

6 5 A B 2 1
But FastCMarti was simply taking the reverse of the
ascending list to produce:

6 5 B A 2 1
This code was “fixed”. This modification necessarily
had an adverse effect on runtime, but provided the
consistency we sought.

5.4. Comparison testing of rankings

Previously we had only compared the models. Now
for the cases where the models were the same, we
wanted to check whether the rankings were also
identical. For CMarti and PerlMarti, ranking
generation involved a separate program that we had
not yet tested.

We used the testing framework to create new large
data sets with repeating values and used the analysis
tool to analyze the rankings (at this point, all three
implementations were producing the same models).
CMarti and PerlMarti agreed on the rankings, but
FastCMarti did not. The framework allowed us to
determine how different, based on the various metrics
such as normalized Spearman Footrule Distance and
AUCs, as well as to determine why they were different,
using the trace analysis tool.

Using the tracing utility to see how the examples
were being ordered during each sorting round, we
found that the “stability” in FastCMarti was based on
the initial ordering from the original data set, and not
from the sorted ordering at the end of the previous
round. That is, when a list that contained repeating
values was to be sorted, CMarti and PerlMarti would
leave those examples in their relative order as they
stood at the end of the previous round, but FastCMarti
would leave them in the relative order as they stood in

the original data set. FastCMarti was designed this way
to make it faster, i.e., by “remembering” the sort order
for each attribute at the very beginning of the
execution, and not having to re-sort in each round.

For instance, a data set with entries A and B such
that A appears in the set before B would look like:

A....B....
If in the first round MartiRank sorts on some attribute
such that B gets placed in front of A, the ordering
would then look like:

....B....A....
In the second round, if the examples are in the same
segment and MartiRank sorts on some attribute that
has the same value for those two examples, PerlMarti
and CMarti would then end up like this:

......BA......
because B was before A at the end of round 1.
However, FastCMarti would do this:
 AB......
because A was before B in the original data set.

Since this was not explicitly addressed in the
MartiRank algorithm, we contacted Long and
Servedio, who agreed that remembering the order from
the previous round was more in the spirit of the
algorithm since it would take into account its execution
history, rather than just the somewhat-randomness of
how the examples were ordered in the original data set.
Fixing this problem will require rethinking the entire
approach to “fastness”, which has not yet occurred;
thus all further comparison testing omitted FastCMarti.

5.5. Comparison testing with sparse data sets

Once PerlMarti and CMarti were producing the
same models for the cases with repeating values, we
began to test data sets that had missing values. We
used the framework to create large, randomly-
generated (but non-repeating) data sets with percent of
missing values as a parameter (0.5%, 1%, 5%, 10%,
20%, and 50%).

In these tests, both implementations were initially
generating different models, and there was no way to
know which was “correct” since the MartiRank
algorithm does not dictate how to handle missing
values. Consulting with the CCLS ML researchers, we
decided that the sorting should be “stable” with respect
to missing values in that examples with a missing
attribute value should remain in the same position,
with the other examples (with known values) sorted
“around” them. For instance, when the values:

4 A 5 2 1 B C 3
are sorted in ascending order (with A, B and C
representing the missing values), the result should be:

1 A 2 3 4 B C 5

Other deterministic options for handling this case
(such as putting all missing values at the end of the
list) were considered, but this was deemed to be most
in the MartiRank spirit (as in the ordering reuse case
above).

Using the tracing outputs from the implementations
and analyzing them with the framework tools, we
noticed that CMarti – even with all optimizations
turned off – was still performing randomizations in the
case of missing values. In particular, it kept the
missing values in the same relative order but placed
them randomly throughout the list. So we “fixed” the
code so by default all missing values would stay in
their original locations in the same relative order.

We also used the framework tools to find that
PerlMarti was not only behaving incorrectly with
respect to the placement and order of missing values,
but also that the missing values were causing the
known values to be sorted incorrectly. This was due to
using a Perl starship comparison operator that assumed
transitivity among comparisons even when one of the
values in the comparisons was missing, which is
incorrect. This was “fixed” to also leave missing
values in their positions and sort known values
“around” them.

5.6. Comparison testing with categorical data

Because categorical data provides a combination of
necessarily repeating (all 0s or 1s) and sometimes
missing values, we created test data sets with
categorical attributes to see what would happen when
all of these different criteria came together. Though
CMarti and PerlMarti produced the same models and
rankings in most of these test cases, in one particular
test, the models were different. After seeing them
agree for so many other test cases, our intuition was
that something might be different in the calculation of
the AUC – which had recently been refactored in the
Perl implementation. We used the tracing utility to
discover that PerlMarti indeed had a bug introduced
(during refactoring) by the incorrect use of a global
variable in the calculation of the AUC. After fixing the
bug, we ran regression tests and the CMarti and
PerlMarti models were the same in all cases.

5.7. Testing with real-world data revisited

We reconsidered the real-world data from the
original comparison tests, now running tests only for
CMarti and PerlMarti. These two implementations
produced the same models and the same rankings.
They now have the same behavior in all our current
test cases with missing values, repeating values, and

categorical data – although of course we cannot rule
out further bugs (and indeed we have found other bugs
in all three implementations besides those discussed
here).

6. Evaluation of the framework

6.1. Usefulness in our testing

The testing framework facilitated our work by
aiding us in the creation, execution and analysis of the
test cases. The ability to control the properties of data
sets was critical for limiting the scope of individual
tests and for pinpointing specific issues in how the
code was handling different equivalence classes and
their boundaries. The data generation tool proved to be
simple and reliable, compared to alternative
approaches we considered to culling real-world data.

The model comparison tool provided many
advantages over “diff” because it enumerates the
differences clearly and is aware of the various facets of
a MartiRank round/segment (number of examples, sort
attribute, and direction). The ranking comparison tool
was admittedly not much more useful than “diff” for
the testing presented here, but in our preliminary work
not reported here, the comparison metrics have already
been very important aids in judging whether the
CMarti and FastCMarti “optimization” options are, in
fact, improving result quality.

Finally, the trace analysis tool was tremendously
useful in determining where differences in models and
ranking order were coming from. It provided great
insights into the internals of the implementations,
aiding us in narrowing down other flaws as well. Most
significantly, it was the trace analyses that enabled us
to convince the implementations’ developers that there
were, in fact, bugs in their code – since, as noted in the
Introduction, there is no easy way to inspect the output
to determine if it is indeed “correct” for the input.

6.2. Applicability to other ML algorithms

Our testing process was greatly aided by the fact

that we had three implementations of the same
algorithm, effectively acting as “pseudo-oracles” for
each other [8], but the framework is still useful even
when there is just one implementation of an ML
ranking algorithm. The framework is also applicable to
supervised ML classification algorithms. For instance,
a classification simply deciding, say, failure-prone vs.
not-failure-prone would also fall into Davis and
Weyuker’s class of “Programs which were written in
order to determine the answer in the first place. There

would be no need to write such programs, if the
correct answer were known” [8].

When there is only one implementation, the
framework would support regression testing across
revisions of that implementation to ensure that no bugs
have inadvertently been introduced: equivalence class
and boundary condition data sets can be generated,
tests can be run, outputs can be compared between
previous and latest revisions, and if need be execution
traces can be analyzed.

To re-target our conceptual framework to other ML
algorithms beyond MartiRank, some code changes
would certainly be necessary. The data generation tool
might or might not work “as is”: this depends on the
input data format required by the implementation. The
data generator already supports plug-replaceable
modules for creating data set files in whatever format
is needed. Two such modules are currently
implemented, one for PerlMarti and CMarti (csv files)
and the other for FastCMarti (a “sparse” attribute-
value pair representation that enables more compact
representation of data sets with a high proportion of
missing values). All the ML algorithms of interest
work with example data points, each consisting of a
series of attributes and one non-negative numeric label.

The model comparison/analysis tool is specific to
MartiRank’s model format – which had to be explicitly
extracted by modifying FastCMarti since there the
model was originally employed only internally, not
output. But the concept of “model” is inherent to any
ML ranking or classification algorithm intended to be
trained on one data set and applied to another, even
when semi-merged as in FastCMarti.

Rankings tend to occur in only one of two basic
formats: the ranked list of examples, in order, and the
examples in their original input order annotated with
their rank. The ranking tool already converts from the
latter, the actual output of all three implementations, to
the former, to make it more human-readable. We have
briefly investigated applying the framework to
RankBoost [16], and do not see any significant re-
targeting problems.

Furthermore, for comparing rankings to be used in
an ML application like the system of Figure 1, where it
would likely be feasible to take action on only a small
number of elements presumably selected from the top
(or possibly the bottom) of a given ranking, the
ranking analysis tool already includes some special
facilities that look at the top and the bottom. For a
parameterized value X, the utility calculates the quality
(currently AUC) of only the top and bottom X% of
each ranking, and also calculates the “correspondence”
between the top and bottom X% of both rankings.
Correspondence is simply the number of examples that

appear in the top (or bottom) X% of both rankings,
divided by the number of examples in the top (or
bottom) X%. These metrics, along with the other
distance metrics described previously, can help decide
whether a pair of rankings is “similar” in the ranges
that are most important, or if one implementation –
with or without optimization options – is notably better
than another. This is also useful for comparing across
algorithms. However, here the framework can only tell
us whether the result quality is better, but not that the
code is correct.

The current trace output and analysis is heavily
dependent on MartiRank’s notion of rounds and
segments (sub-lists), and would necessarily have to be
re-targeted to the specific algorithm implementation.

7. Future work and next steps

7.1. Improvements to the testing framework

The framework should be extended to generate

arbitrarily large data sets with repeating, missing
and/or categorical data such that an arbitrary ML
ranking algorithm could definitively construct a model
that produces a “perfect” ranking, i.e., where there is a
clearcut “correct” output. But this may be impossible
in the general case. In addition, in order to create test
cases reminiscent of real-world data, the framework
should be extended to generate data sets that exhibit
the same correlations among attributes and between
attributes and labels as do real-world data. Here we
could build upon the related work of [17, 18].

7.2. Expansion to complete ML applications

Our research to date has not yet addressed the use

of ML algorithm implementations in the context of
overall applications, e.g., as depicted in Figure 1. That
is, we have started looking at the dependability of ML
applications but so far have studied only the “ML
Engine”. Future work in this area is to expand the
framework to encompass the entire system, including
for instance the decision support treatment of ranking
(or classification) results. The emerging generation of
ML applications could take various implementations of
MartiRank, SVMs and/or other ML algorithms,
generate multiple models, and then determine which is
currently “best” for the dynamic data sets at hand, and
use that model for making real-time predictions. We
plan to investigate how to extend the framework to test
this kind of software. Our ultimate goal is to make our
current and later expanded framework useful outside
CCLS, particularly to other ML researchers who rarely
cross paths with the software engineering community.

8. Conclusion

We have presented a conceptual framework for
testing (and debugging) a particular class of algorithm
implementations for which there is no reliable test
oracle. Particularly in machine learning applications,
where there is often no precise input/output
specification, it can be very difficult to determine the
“right” answer. But the framework makes it relatively
straightforward to conduct regression and comparison
testing, especially in the cases where there are multiple
implementations of the same algorithm. As we have
discussed, though, the framework can still be useful
even when there is just one implementation.

9. Acknowledgements

Numerous people at CCLS contributed directly or
indirectly to this effort. We would particularly like to
thank Wei Chu, Philip Gross and David Waltz for their
assistance and encouragement. Murphy and Kaiser are
members of the Programming Systems Lab, funded in
part by NSF CNS-0426623 and EIA-0202063, NIH 1
U54 CA121852-01A1, and are also affiliated with
CCLS. Arias is fully supported by CCLS, with funding
in part by Consolidated Edison Company of New
York.

10. References

[1] E.J. Weyuker, “On Testing Non-Testable Programs”,
Computer Journal vol.25 no.4, November 1982, pp.465-470.

[2] P. Long and R. Servedio, “Martingale Boosting”,
Eighteenth Annual Conference on Computational Learning
Theory (COLT), Bertinoro, Italy, 2005, pp. 79-94.

[3] P. Gross et al.,“Predicting Electricity Distribution Feeder
Failures Using Machine Learning Susceptibility Analysis”,
Proceedings of the Eighteenth Conference on Innovative
Applications in Artificial Intelligence, Boston MA, 2006.

[4] Cristianini, N., and J. Shawe-Taylor, An Introduction to
Support Vector Machines and other kernel-based learning
methods. Cambridge University Press, 2000.

[5] J.A. Hanley and B. J. McNeil, “The meaning and use of
the area under a receiver operating characteristic (ROC)
curve”, Radiology vol.143, 1982, pp. 29-36.

[6] T.J. Cheatham, J.P. Yoo, N.J. Wahl, “Software testing: a
machine learning experiment”, Proceedings of the 1995
ACM 23rd Annual Conference on Computer Science,
Nashville TN, 1995, pp. 135-141.

[7] Z. Li and Y. Zhou, “PR-Miner: Automatically Extracting
Implicit Programming Rules and Detecting Violations in
Large Software Code”. Proceedings of the 13th ACM
SIGSOFT Symposium on the Foundations of Software
Engineering, Lisbon, Portugal, Sept 2005, pp. 306-315.

[8] M.D. Davis and E.J. Weyuker, “Pseudo-Oracles for Non-
Testable Programs”, Proceedings of the ACM ’81
Conference, 1981, pp. 254-257.

[9] G. Rothermel, et al., “On Test Suite Composition and
Cost-Effective Regression Testing”, ACM Transactions on
Software Engineering and Methodology, vol.13, no.3, July
2004, pp 277-331.

[10] B. Korel, “Automated Software Test Data Generation”,
IEEE Transactions on Software Engineering vol.16 no.8,
August 1990, pp.870-879.

[11] C.C. Michael, G. McGraw, M.A. Schatz, “Generating
Software Test Data by Evolution”, IEEE Transactions on
Software Engineering, vol.27 no.12, December 2001,
pp.1085-1110.

[12] D.J. Newman, S. Hettich, C.L. Blake, and C.J. Merz,
UCI Repository of machine learning databases
[http://www.ics.uci.edu/~mlearn/MLRepository.html],
University of California, Department of Information and
Computer Science, Irvine CA, 1998.

[13] J. Demsar, B. Zupan, and G. Leban, “Orange: From
Experimental Machine Learning to Interactive Data Mining”,
[www.ailab.si/orange], Faculty of Computer and Information
Science, University of Ljubljana.

[14] Witten, I.H. and E. Frank, Data Mining: Practical
Machine Learning Tools and Techniques, 2nd Edition,
Morgan Kaufmann, San Francisco, 2005.

[15] C. Spearman, “Footrule for Measuring Correlation”,
British Journal of Psychology vol.2, pp.89-108, June 1906.

[16] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, “An
efficient boosting algorithm for combining preferences”,
Journal of Machine Learning Research vol.4, Nov. 2003,
pp.933–969.

[17] E. Walton, “Data Generation for Machine Learning
Techniques”,
[http://www.cs.bris.ac.uk/Teaching/Resources/COMS30500/
ExampleTheses/thesis6.pdf], University of Bristol, 2001.

[18] H. Christiansen and C.M. Dahmke, “A Machine
Learning Approach to Test Data Generation: A Case Study
in Evaluation of Gene Finders”,
[http://diggy.ruc.dk:8080/bitstream/1800/1899/2/artikel.pdf],
Roskilde University, Roskilde, Denmark.

