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Abstract

In a previous paper, we developed a general framework for establishing tractability and strong
tractability for quasilinear multivariate problems in the worst case setting. One important example of
such a problem is the solution of the heat equatipa= Au — qu in I¢ x (0, T), wherel is the unit
interval andr" is a maximum time value. This problem is to be solved subject to homogeneous Dirichlet
boundary conditions, along with the initial conditiomé, 0) = f over/¢. The solutioru depends lin-
early onf, but nonlinearly ony. Here, bothf andq ared-variate functions from a reproducing kernel
Hilbert space with finite-order weights of order This means that, althoughcan be arbitrary largef
andg can be decomposed as sums of functions of at magtriables, withw independent of.

In this paper, we apply our previous general results to the heat equation. We study both the absolute
and normalized error criteria. For either error criterion, we show that the probleactable That is,
the number of evaluations ¢f andg needed to obtain asrapproximation is polynomial ia~1 andd,
with the degree of the polynomial depending linearly«n In addition, we want to know when the
problem isstrongly tractable meaning that the dependence is polynomial only ik, independently
of d. We show that if the sum of the weights defining the weighted reproducing kernel Hilbert space
is uniformly bounded in and the integral of the univariate kernel is positive, then the heat equation is
strongly tractable.

1 Introduction

Many important multidimensional problems are intractable, i.e., their complexity grows exponentially with
their dimension. This often happens when our problem elements come from classical spaces (such as
Sobolev or Hlder spaces) and we are using the worst case setting. A great amount of attention has been
paid to the problem of rendering these problems tractable (i.e., for finding polynomial-time algorithms) in
the worst case setting. For further discussion, see e.g. [5] and [10, Chapter 3].

If we are to vanquish this curse of dimension, we must use different spaces of problem elements. One
fruitful idea has been to use a weighted reproducing kernel Hilbert spRgets] as the source of problem
elements. Here, the weights reflect the idea that some variables may be more important than others. Once
again, see [5] for a survey on weightR&HSs.

In particular, a great deal of attention has been paid to weigRketss with finite-order weights. The
main idea here is that although we want to solve problems of very high dimedisiba problem elements



are often sums of functions that depend on at mogriables, where is independent of. As an example,
in quantum mechanics, one commonly encounters sums

1
q(X1, ..., Xq/3) = Z

C_x.||2 2\1/2
1<i<j<d/3 (”Xl Xj”gz(RS) —J’_a ) /

of modified Coulomb pair potentials, see, e.g., [3, pg. 71]. Here, eattelongs tdR?, so thaty depends
ond scalar variables; however, each ternyainly depends on 6 variables. Henaes= 6 for this example.

Finite-order weightedRKHSs were first studied in [1], which dealt with multivariate integration. They
were studied for general multivariate linear problems in [11, 12]. The approach of these latter papers would
seem to cover the solution of a linear differential or integral equa#n= f. However, such problems
tend to have hidden nonlinearities lurking underneath, since the linear opg&faoften of the form<Z
for some functiony. For exampleg could be a coefficient appearing in a differential operator, or the kernel
function of an integral operator. If is the solution of the problen¥,u = f, then the mapping — u is
linear for eachy, but the mappingf, ¢) +— u is nonlinear.

These considerations have lead us to consider the approximate solution of problems given by an opera-
tor S,, in which the mapping, (-, ¢) is linear for eachy. Under mild smoothness conditions, we say that
such problems arquasilinear A general framework for investigating the tractability of quasilinear prob-
lems using finite-order weighteRKHSs was developed in [15]. This framework was used in [16] to study
the tractability of the Helmholtz equationAu + qu = f on thed-dimensional unit cub&?. In this paper,
we shall use the general framework of [15] to study the tractability of the heat equation.

Let 7 denote the unit interval and Iétbe an arbitrary positive integer. For a given non-negative func-
tiong on 79, let

2, =—-A+q,

with A denoting thei-dimensional Laplacian. We are interested in approximating the solutiers, ( f, ¢)
of the parabolic partial differential equation

9
8—?(x, N =—(Zux1n VYxellie(T).

This is a heat equation, with being the heat transfer rate for conductive loss to the ambient environment.
The error of an approximation is given by the maximum value oflth@?)-error at timer, over allt
[0, T].

Let F;, C Lo(I¢) x Q4 be the set oproblem elementsf, ¢) for which we wish to solve the heat
equation, whered, denotes the non-negative functiondin, (I¢). We study two error criteria:

1. Theabsolute error criterion Here, we want to guarantee that the worst case error of an algorithm is
at moste.

2. Thenormalized error criterion Here, we want to guarantee that the worst case error is atatioses
the initial error. (By theinitial error, we mean the minimal error we can attain without sampling
(f, q) € Fy, rather than the error at time= 0.)

In addition, we assume that we can compute either arbitrary linear functionalammdg (continuous linear
information A2") or function values off andq (standard informatiom 3% for any (£, ¢) € F,.

1The modification is the inclusion of the positive tesm Physicists often include a smallas a regularization parameter, to
makeg smooth.



Let carde, S,, F,;, A) denote the minimal number af-evaluations needed to computesaapproxima-
tion in the worst case setting under the absolute or normalized error criterion. We say that the problem
S = {S4}52, istractableif there existC > 0, perr > 0, andpgim > 0 such that

Perr

carde, Sq, Fq, A) < C <—> dPdm Vee(0,1),deZ".
&

If no such perr and pgim €Xist, then the problers is said to bentractable Furthermore, the problei is

said to bestrongly tractablaf there existC > 0 andpsyong > 0 such that

1 Pstrong
carde, Sy, Fy, A) < C (E) .
Our first task is to briefly look at the case where the first componen}, @f the unit ball of a standard
Sobolev spacé” (1¢), with fixed r. We easily find that the heat equation is intractable.
Having shown that our problem is intractable for standard Sobolev spaces, we move on to the case of a
weightedRKHS H (K ;). Here the reproducing kerng&l,; has the form

Kiy) = Y vau][[ K vp),

ue{l,...,d} jeu

whereK is the reproducing kernel of a Hilbert spai¢ K ) of univariate functions, ang, , are non-negative
numbers (weights). The first componentff will be a ball in H(K,); the second component will be the
non-negative elements of a ball Fi(K,;). No assumption is made about the radii of these balls, other than
that they must be independentdaf

Let

1 p1
K2=/ / K(x,y)dxdy < oo.
o Jo

SinceK is a reproducing kernel we know that > 0. Our results depend on whetheris positive or
zero, and whether we are dealing with the general case for finite-order weights obadethether we are
dealing with finite-order weights of orderwith a uniformly bounded sum, i.e., for which

SUP Y Yau < 0.

I=d<00 i1 a)

We may summarize our results as follows:

1. For absolute error criterion, we have

General case Bounded sum
K2 > 0 Ko = 0 K2 > 0

AT Perr < 2, pdim < 20 | Perr < 2, pdim < 3w Pstrong = 2
ASH Perr < 4, pdim < 4w | perr < 2, pdim < 6w Pstrong = 4

2. For the normalized error criterion, we have



General case Bounded sum
k2 >0 kp =0 k2 >0
AT Perr < 2, pdim < @ | Perr < 2, Pdim < 20 Pstrong = 2
ASY Perr < 4, pdim < 20 | Perr < 2, pdim =< 4w Dstrong = 4

Hence, the heat equation is always tractable for finite-order weidgtKetss, and it is strongly tractable if
the sum of the weights is bounded.

It is worthwhile to compare the results for the heat equation with those we obtained in [16] for the
Helmholtz equation:

1. The results for the heat equation under the absolute error criterion are the same as for the Helmholtz
equation under both Dirichlet and Neumann boundary conditions.

2. Theresults for the heat equation under the normalized error criterion are the same as for the Helmholtz
equation under Neumann boundary conditions.

Note that we studied both Dirichlet and Neumann boundary conditions in [16]. The main reason for intro-
ducing Neumann conditions in [16] was that we were unable to establish strong tractability for the Dirichlet
problem under the normalized error criterion, and we wanted to exhibit a version of the problem for which
the Neumann problem was strongly tractable. Since the Dirichlet problem for the heat equation is strongly
tractable under the normalized error criterion if the weights have a bounded sum, we did not feel the need
to analyze the Neumann problem for the heat equation. One advantage of this decision is that it greatly
simplified the presentation.

2 The heat equation

We first establish a few notational conventions. For an orderedRinge let R* and R** respectively
denote the non-negative and positive element®.ofhe open unit intervall, 1) is denoted by. Since we
are dealing with a time-dependent problem, we willTetlenote a maximum time value. ¥ andY are
normed linear spaces, then LKi[Y] denotes the space of bounded linear transformatioioto Y. We
write Lin[X] for Lin[ X, X], andX* for Lin[ X, R]. For p > 0, we let%,X denote the ball of radius in X,
centered at the origin, writinggX for the unit ball.

We use the standard notation for Sobolev inner products, seminorms, norms, and spaces, found in
(e.g.) [6, 14]. Furthermore, for any normed linear spacehe space€ ([0, T]; X), L»([0, T]; X), and
H([0, T]; X) are as defined in [7, pp. 381-382]. In particular, the norm of the spg€e T1; X) is given
by

lvllcqor:x) = Org@; lv@®)|lx < oo V continuousv: [0, T] — X.

Ford e Z*, we letQ, denote the non-negative functionslig,(1¢). For f € L,(I?) andg € Q4, we
wish to solve the parabolic partial differential equation

u(t) = —(ZLu)) O<t<T), 1)

subject to the initial conditions
u(0) = f 2)

and homogeneous boundary conditions
u=0  ondl‘. (3)



Here, the operato, : Hi(I?) — H~1(17) is defined as
Zyv=—Av+qu Yv eHol(Id).

We shall refer to this problem as theat equatiorin the rest of this paper.
Letting (-, -) denote the duality pairing iy (1¢) with H~1(1?), we have

(Zyv, w) = By, wiq) Vv, we Hy(I9).

Here,B,(-, -; g) is the bilinear formHol(Id) given by
d
Bi(v, w; q) =f [Vv-Vw + gvw] Vv, w e Hol(Id). (4)
1

From [7, pp. 382—-383], we have
Lemma 2.1. For any(f, q) € Lo(I?) x Qg, there exists a unique solution
u=S4(f.q) € Lo([0, T]; Hy(I")) N H([0, T]; H~*(1%))
to the heat equatiofL)«3). Moreoveru € C([0, T]; Lo(1%)).

We next show tha$,( f, ¢) depends continuously ofiandg, this bound being sharp in its dependence
on f.

Lemma 2.2. Let(f, q), (f,§) € Lo(I?) x Q4. Then
1S = Fllaasy S NSaF. @) = SalF Dl (013,000
< f = Flliyas + Tlg = Glyaa L fllgao)-

Proof. Letu = S,(f, ¢) andi = S,(f, §). Sinceu(0) = f andii(0) = f, we immediately obtain the first
inequality. Hence, it only remains to prove the second inequality.

Without loss of generality, we shall assume thafi € Hi(I?). Chooser € (0, T), and lete(r) =
u(t) — (). Since.%, is self-adjoint inL,(1%), we can check that

(e(t), e(t))Lyay = —Bale(t),et); q) + ((g — Qu(t), e(t)) [, )

Since

| &

) 1 d
(@(0), e 1aaty = 5 1€ 10y = el 1€ ooy

U

t
we may rewrite (5) as
d
”e(t)”Lz(ld)E”e(t)”Lz(ld) = —By(e(t), e(t); 9) + ((g — Qu(?), e(t)) 14

= (g — Qu(?), e(t)) 1,4)
= g = Pu® |, lle@ | Lyia),

where we have used the fact tiat(w, w; ¢) > 0 for anyw € H3(I1%). Dividing the previous inequality by
lle() |l 1,14y, We find that

d ~
2 1€@lzzan) = 1 = Qu)lLyae).- (6)

5



Recall (see, e.g., [2, Thm. 2.12]) that the strong maximum principle implies that

N Lyaay < NS Neprays

so that
(g — DuO ey < Mg — Gl lu@llL, ey < g — qllL,aa L f Ly ady-
Substituting this inequality into (6), we obtain

d -
Z”e(t)”Lg(ld) < lg — qll,qaall Lo z9)-
Since we have the initial condition

||€(0)||L2(1d) =|f - f”Lz(ld),

we find that
leO Nl yaay < W = flle,aey + g — Gl L f o4y
Sincer € (0, T) is arbitrary, this establishes the lemma. O

3 Information and algorithms

Let F; C Lo(19) x Q4 be a set oproblem elementdVe want to approximats, ( £, ¢) for any(f, q) € F;,
using finitely many valueg — A(f) andg — A(gq), wherex belongs to a clasa of continuous linear
functionals.

We shall restrict our attention to the following two choices far

1. Continuous linear informationThis is the clas&2' of all continuous linear functionals.

2. Standard information This is the clasg\st consisting of function evaluations. That is,e ASU if
there existx;, e R? such that.(g) = g(x;) for any admissible functiog.

Recall thaZ € Z** is the number of variables on which our input functighandg and our solution
depend. Givem € Z*t, let A,, be an algorithm for approximating,;, using at most: information
evaluations from a class. The worst caserror of A, , is defined to be

e(Aan, Sa, Fa, A) = sup |IS:(f,q) — Aun(f, DI

[f.qleFy c(o.7%:L2a4)"

Thenth minimal erroris defined to be

e(n, Sq, Fyg, A) = j‘nf e(Agn, Sa, Fa, N),
d,n

the infimum being over all algorithms using at mashformation evaluations from.

In particular, note that(0, S,, Fy, A) is theinitial error, which is obtained without usingnyinforma-
tion evaluations whatsoever. Since this initial error involves no information evaluations, it is independent
of A, and hence we shall simply denote ite®, S,, F,).



Lete € (0, 1). We wish to measure the minimal number of information evaluations needed to compute
ane-approximation. Here, we say that an algoritim, provides are-approximatiorto S, if

e(Aan, Sa, Fa, N) < & - ErCrit(Sz, Fy),

with ErrCrit being arerror criterion. In this paper, we will use the error criteria

. 1 for absolute error
ErrCrit(Sy, Fy) = .
e(0, S;, F;) fornormalized errar

Hence:

1. An algorithm provides am-approximation in theabsolutesense simply means that the error of the
algorithm is at most.

2. An algorithm provides ag-approximation in th@ormalizedsense simply means that the error of the
algorithm isreducedby at least a factor of.

In either case, let
carde, Sq, Fy, A) =min{n € Z* s e(e, Sq, F4, A) < & - ENCrit(Sy, Fy) }

denote the minimal number of information evaluations needed to computeapproximation taS,. Of
course, the-cardinalities for the absolute and normalized criteria are related by the equation

card” (e, Sy, Fg, A) = card®™e - ¢(0, Sy, Fu), Sa, Fu, A). @)

As mentioned in the Introduction, we often want to solve heat equations of high dimension. The heat
equation is said to bwactablewith respect to the clasa of information functionals if there exist non-
negative number§', per, and pgim such that

Perr
carde, Sy, Fy, A) < C (—) dPdm Vee(0,1),d eZ. (8)
&
(If (8) does not hold, then the problem is said toibeactable) Any numbersper = per(A) and pgim =
pdim(A) such that (8) holds are called and d-exponents of tractability These exponents need not be
uniquely defined. lipgim = 0 in (8), then the heat equation is said todtengly tractablewith respect to

A, and we define

Pstrong(A) =

Perr
inf { perr = 0: 3C > 0 such that car@, S;, F;,, A) < C (—) Vee(0,1),d eZ" }
&

to be theexponent of strong tractability



4 Intractability for classical Sobolev spaces

Recall that our seF, of problem elements is a subsetlof(1?) x Q,, whereQ, denotes the non-negative

elements of.. (7¢). We briefly discuss tractability when the first componenEgis a ball of fixed radius

in a standard Sobolev space. There is no essential loss of generality in assuming that this ball has unit radius.
We first consider arbitrary continuous linear information.

Theorem 4.1. Let A = A?. Regardless of whether the absolute or normalized error criterion is used, the
heat equation is intractable if the first componentfis ZH" (17).

Proof. First, suppose that we are using the absolute error criterion. From the lower bound in Lemma 2.2,
we see that
e(n, Sq, Fa, A™) > e(n, App,, BH' (I7), AM),

where App: H"(I%) — Lp(I%) is the approximation problem given by
App, f=f  VfeH .
It is well-known (see, e.g., [4]) that there exiglg > 0 such that
e(n, App,, ZH" (1%), A®) > Cyn="/14.

Combining these results, we see that

Cd d/r
card®™e, Sy, Fy, AY) > (—) :
£

and hence our problem is intractable in the absolute error criterion.
We now turn to the normalized error criterion. KiK ¢) € F;, and letu = S;(f, ¢). Foranyr € [0, T1,
we have the series representation

o0
M(I)ZE e "t<f’zj>L2(1d)Zjv
Jj=1

wherezy, zp, - -- € Hy(I?) are theL,(1)-orthonormal eigenvectors o, corresponding to the positive
eigenvalues.; < A,..., from which we see that

Nu@ N paay < WS yaay < W N aray-

SinceS,(-, g) € Lin[H"(I%), L,(I1%)] for anyq € Q,, we may use the results of [9, §4.5], along with the
previous inequality, to find that

e(0, Sy, Fy, A = max sup [1S;(f, @) ()l 1y < 1.
0=1=T (f,q)eFy
Hence l
e(}’l, Sd7 de A ) > Cdnir/d,
e(0, Sy, Fy, A)

and so we have

C d/r
card® (e, S, Fy, A% > (—d> :
£

Thus our problem is intractable in the normalized error criterion. O

8



Remark. Note that we are approximating the solution of the heat equation over the time inter#gl [0
The solutionS,(f, ¢) at timer = 0 is simply f, and soL,-approximation problem is a special case of our
problem. Since the latter problem is intractable over the unit bail’aff ), our heat equation is intractable
when f belongs toZH'’ (17).

One might well ask what would happen if we were only trying to approximate the solution at a fixed
positive time value. It turns out that our problem is still intractable. Indeed,dgt = S,(-, -)(z) be the
solution operator at time Define

F, = 2#H" (1% x {0},

whereH" (1) is the span of theZ, -eigenvectorgz,;}52, under the nornj - | () = ILY? - |l,,0)- Then

e(l’l, Sa',l’ de Aa”) >f_ e(l’l, Sd,ts Fd’ Aall)-
In this case, it is possible to use the techniques of [13] to see that
e(n, Sa. Fa, M) = 3, [Fe 74l ~ (n 4 1)~/ eatrt U

for a positive constant,. It is fairly easy to see that
. 1, 1\?
card®™e, Sy, Fy, AY) ~ (— In —) .

Hence we find that

l l dj2
carde, Sa,, Fg, A*) 3= <— In —)
tcg &

for either the absolute or normalized error criterion. Hence approximating the heat equation at a fixed time
t > Qs intractable if the first component &f; is a standard Sobolev space of fixed smoothness. [

What can we say regarding standard information? Recall that the first component of our problem element
classF, is the unit ball ofH” (1?). The Sobolev embedding theorem tells us that evalugtiata point in/¢
is not well-defined for allf € H"(I?) unlessr > d/2. In other words, standard information is ill-defined
unless > d/2. Since we need > d/2 to even talk about nontrivial algorithms using standard information,
we see that it is impossible to computesaapproximation for fixed if d > 2r. This is a most severe form
of intractability.

5 Weighted reproducing kernel Hilbert spaces

Since the heat equation is intractable for standard Sobolev spaces, we need to choose a different space
of problem elements if we want our problem to be tractable. More precisely, we shall assume that our
problem elements come from a weighted reproducing kernel Hilbert spaaeS] H (K,;) of functions
defined overZ?. In this section, we briefly recall the definition of a weightedHS. This summary is
essentially the same as that contained in [16, §2]; we include it for the convenience of the reader.

Let K be a reproducing kernel defined dnx 1. We will require that

Ko ‘= €SS SUK (x, x) < o0, (9)

xel

from which it follows that
0 < k2 < k1 < Ko,



where )
K1 = / K(x,x)dx (10)
0

and Lo
Ko = / / K(x,y)dydx. (11)
0 Jo

We now give some examples of commonly-occurring kernels.

Example.Themin kernelis defined as
Kmin(x, y) := min{x, y} Vx,y e]0,1]. (12)

The spaced (Knmin) consists of absolutely continuous functions vanishing at zero and whose first derivatives
belong toL,(1), with the inner product

(f 8V b (Kmi) = /If/(X)g/(X)dx.

It is easy to check that we have

Ko = 1
K1 = %
Ko = %
for the min kernel. O
Example.The Korobov kernels defined as
Kkor(x, y) i= Ba(|x — y|) Vx,yel0,1], (13)

whereBy(t) = t°—t + %3 is the Bernoulli polynomial of degree 2. The spdfé€K o) consists of absolutely
continuous functions whose average value is zero and whose first derivatives beleg)tavith the inner
product

(fs &) H(Kko) = /f’(X)g/(X)dX-
1

It is easy to check that we have

] X

» O

1
O ol ol

S
N
Il

for the Korobov kernel. O

Remark.Note that the spacd$(Kmin) andH (Kkor) are both spaces @ 1(7)-functions with the same inner
product. The only difference between them is tHatK min)-functions vanish at the endpoints bGfwhereas
H (Kkor)-functions have zero average value. The factthat O for H(Kmin), whereak, = 0 for H(Kkor),
will greatly affect the tractability results for the corresponding spa£ek; min) and H (K, kor). See [8] for
further properties of these (and similar) spaces. O

10



We now move on to thé-variate case. Let
Y= {yd,u:ue f@d,d €Z++}
be a set of non-negative weights, with

Ymax = Max Maxy, , < o0.
deZtt ue Py

We shall assume thatis a set ofinite-orderweights (see, e.g., [1]), which means that there existsZ ™+
such that
Yau=0 Yue Z;andu| > w, d e Z*. (14)

Theorder of a sety of finite-order weights is the smalleste Z** such that (14) holds.
The spaced (K ) is the reproducing kernel Hilbert spadeHS) whose reproducing kernel is

K, = Z YauKa v

ue P,

where %, is the power set ofl, ..., d} and
Kiu(X,y) = HK(XJ, yi) VX =[x1, ..., %, Y = [y1,....ya] € Y, ue 2,
Jjeu
Equivalently,H (K ;) consists of those functiong : 7¢ — R that can be uniquely decomposed as
fO =Y fu,

ue &y, u|<w

where f,,(X) = f(X,) depends only onr; for j € u, and f,, € H(K,.). Furthermore
1k = Y. Yaulfulfk,.:

ueZy, lu|<w

5 glul 2
||fu||[-1(1<d’u) = e a_xuf(xu) dXy.

Here, by convention, we havg¢@= 0. That s, ify,;,, = 0, then the corresponding compongit= 0.
Observe that the constant functigitx) = ¢ for all x € 1¢ belongs toH (K,) iff y,4 > 0, in which case
1/2
we havel| f | #, = Iel/vi-
In what follows, it will be useful to let

1/2
0q4(0) = (Z yd,ueul) Vo e RT. (15)

ue P,

where

Forg € H(K,), we know that
lglli,ey < oalk)lgllacky (16)
and that
lgllo. sy < oalko)llgllaky Vg e H(Ky), (17)
see [11] and [16, Lemma 3.1]. Hendé(K,) is embedded irL,(7?) and L., (I?) for arbitrary weightsy,
and we know values for the embedding constants. For finite-order weights otgndercan estimate, (9)
by

04(8) < /2 max6?, 1} Ymaxd “/? (18)
see [15, Lemma 6].

11



6 Tractability for weighted rkHs

In the remainder of this paper, we shall assume that our problem elements belong to a wegtteMore
precisely, we shall assume that

F;=H;, x (QaNHyp,)

for fixed positivep; andp,, where (for the sake of convenience) we witlg , = %,K (H;) for anyp > 0.
Hence we are trying to approximasg(f, ¢) for f € H; ,, andg € Q N Hy ,,.
6.1 Some preliminary results

We will establish tractability of the heat equation by using the results of [15], which gives a mechanism
for establishing the (strong) tractability of quasilinear problems defined over a weigKktefl Here (as

in [15]) we say that our problerfs,}3° ; is quasilinearif there exists a functiog: H(K,;) — Q, as well

as a hon-negative numbe€y;, such that

14Cf. @) = SaF 6@ lgs = Ca[If = Fllisanr + 19 = ll,0 ]
VIS 4l € Hip % Qu. [f.4] € H(Kq) x H(Kq). (19)

Our first preliminary result establishes that the heat equation is quasilinear. Let usgtefi& ;) —

Qq as
Pp(W)X) = vy(X) '=maxv(x),0}  Vxel’ ve H(Ky,. (20)

Lemma 6.1. Let
Cqs = max{l, p1To,(ko0)},

wherexg is given by(9). Then the heat equation probleis;}5° ; is quasilinear forg given by(20).
Proof. Let (f, ¢), (f,q) € F;. Asin [16, Lemma 3.4], we find that
lg — @D ll,ae) < g — qllLyady-
Using (17) and Lemma 2.2, we see that (19) holds, as required. O
Suppose that there exists> 0 such that

C A i a
N, = sup a1l Appy, ”Lln[{-I(Kd),Lg(Il)] - . 21)
deZ++ d® ErrCrit(S,)

where App: H(K;) — Lp(I?) is now the embedding

App, f=f  VfeH(Ky).

Then [15, Theorem 3] tells us that the problem is tractable i 0 and strongly tractable & = O.
More precisely, [15, Theorem 3] provides algorithms for computing-approximation ofS, and having
an error bound” (1/g)PerdPdim (for tractability) orC(1/¢)Pstons (for strong tractability), along with explicit
expressions fo€, perr, pdim, @Nd psrong

12



One of the most important parts of the analysis will be to determine the minirsat¢h that (21) holds.
To do this, we will need to estimate the norm of ApiNote that (16) implies that the embedding App
well-defined, with

| APP llLin 7 (ko). Lo(14) < Oalk1)- (22)
More precise results folf App, llLinfm(x,).2,4) are given in [11]. For the case, = 0, these results

involve the operatoWw = (App)*(App) € Lin[H(K)], where App is the embedding operator Agp
Lin[ H(K), L»(I)]. Note that

1
143 =/ K(x,)f(x)dx  Yfe H(K) (23)
0

and that
IWlluingzraor = 1 APP Iings k. Loy < K1- (24)

We then have
Lemma 6.2. Letk;, k, ando, be defined by10), (11) and (15).

1. There exists, € [k», k1] such that
| APR, IILin (k). Lo1¢)] = Oa(Ca)-

2. If ko =0, then

1/2
“ Appd ”Lin[H(Kd),Lz(Id)] = 152;); [Vd,u||W||Ein[H(K)]]

Remark.Recall thatc; = é andx, = 0 for the Korobov kernel. With an eye towards future results, we note
that
/; f(x)?dx

W lLin[H(kkor] = SUP
) S (F@) dx

. f e HY(I) such that/ f(x)dx = 0} .
1
Choosingf to be the function
f(x):x—% Vxel,

and using (24), we find that
%2 < IWlLin(# (Kkon] = %- (25)

The following result (also from [11]) gives two useful algorithms for the approximation problem),App
which will be used as building blocks of algorithms for the heat equation:

Lemma 6.3. Letd € Z*+ andn € Z™.

1. Let

n

A ()= (freajyuwpea; VS € HK).
j=1
Then

04(k1)
| App, _Az,n”Lin[H(Kd),Lz(ld)] =< Sl

13



2. There exist points, ..., t, and elements,, ..., a, € H(K,) such that
Aan(f)=)_ftpa;  Vf e HKy),
j=1

we have

o4(K1)N/2
| APP; —Ad.nllLinf i (k). La(i9)] = A

We stress that the results in part 2 of Lemma 6.3 are non-constructive for theA€lgsise., we only
know that there exist points, . ..t, such that the algorithm, , has the given error bound. Weaker con-
structive error bounds may be found in [12].

Using these algorithma}  andA, ,, we define

Uj,(fiq) = S (AZ,M / ¢(A:;,Ln/2JQ)) V[f.ql € Hip x (Qa N Hy,py)

and
Uan(f. @) = Sa (Aa.inj2) . #(Ad.1n/219)) V[f.ql € Hyp x (QaN Hyp,).

Clearly,Uj , andUy,,, are algorithms for the heat equation using continuous linear information and standard
information, respectively.

6.2 Results for the absolute error criterion

Since ErrCritS,;) = 1 for the absolute error criterion, findirgfor which (21) is satisfied means that we
need to determine such thatCy || ApP, llLinfr(k,), L4 1S Of orderd”.

Theorem 6.1. The heat equation fal (K ;) with finite-order weights of ordep is tractable for the absolute
error. More precisely, foiv,, defined by21), we have

Ny = max{ 1, p1Ty/2maxL, k§ 1 max] v/2MaXL, k¢ max. (26)
and the following bounds hold:
1. Suppose that, > 0.

(a) For the classA?', we have

card™e, Ss, Fu, AM) < 2(p1 + p2)° N2 (E) (—) d*.
K2 &

Moreover, the algorithrrUj’n, withn = card’bs(s, Sy, F,dA®), gives ang-approximation.
Hence
pasay <2 and  pAS(A?) < 20.

(b) For the classAS"Y, we have
card®™(e, Sy, Fy, A% < {8(/)1 + p2)*N2 (—) (—) d“w—‘ +1.
K2 &
Moreover, the algorithnt/, ,,, withn = card®™e, S, F;AS'9), gives arg-approximation. Hence

P A <4 and  pAS(ATY) < 4w,

14



2. Suppose that, = 0, and let
1
r— max{1, «1} ' 27)
min{1, |WlLinfzx))

Then we have the following results:

(a) For the classA?', we have
1 2
card®™(e, Sy, Fq, A*") < 4(py + p2)°N2T (—) d*.
&

Moreover, the algorithmiU;,, with n = card®e, S,, F;, A®"), gives ane-approximation.

Hence

P Ay <2 and  p(A) < 30.

(b) For the classASY, we have
1 4
card™s, S,, Fy, ASY) < |732(,01 + p2)NAT2® (—) de“’—‘ +1.
&

Moreover, the algorithmU, ,, withn = card®™e, S,, Fy, AS9), gives ang-approximation.
Hence
P AT <4 and  pIPAATY) < 6w.

Proof. Using (18), (22), and Lemma 6.1, we find that

Call AP unt ko Loy = MaX| L, o172 MAAL, 6§ Vman} +/2 MaAL, 7 P ymas-

Hence settingr = w in (21), we obtain (26). The remaining results of this theorem now follow from [15,
Theorem 7], withe = w. O

Example.Suppose thakK is the min kerneKin. Sincexg = 1 andx; = % we have

N, < max{l, plT\/Zﬂymax} vV 2Ymax

from (26). Furthermore, since = % # 0, we see that case 1 holds in Theorem 6.1. Hence we find that the
heat equation is now tractable under the absolute error criterion, with

pasadly <2 and  paS(Ad < 20,
for continuous linear information and
PEAT <4 and  pI(AT) < 4o

for standard information. O
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Example.Now suppose thaK is the min kerneKyor. Sincexg = k1 = %3 we again have

N, =< maX{l, 1T/ Z'Ymax} V 2Ymax

from (26). Furthermore, since = 0, we see that case 2 holds in Theorem 6.1, With 12 by (25). Hence
we find that the heat equation is now tractable under the absolute error criterion, with

paia™y <2 and  pin(A™) < 3w,
for continuous linear information and
pSASh <4 and  pPS(ASY) < 6w

for standard information. O

Theorem 6.1 tells us that the heat equation is tractable under the absolute error criterion for any finite-
order weightedRKHS, no matter what set of weights is used. The reason we are unable to establish strong
tractability in this case is that the Lipschitz constaptand || App, IlLinm (k). @re expressed in terms
of o,(k9) ando (k1), whose product is bounded by a polynomial of degtem d. Hence we can only
guarantee thaw,, is finite. It is proved in [15, Theorem 7] that strong tractability holds for a quasilinear
problem ifx, > 0 and if Ny is finite. We can guarantee tha is finite if we follow the approach taken in
[15, Theorem 8].

Theorem 6.2. Suppose that, > 0and

p3 = Sup Z Ydu < 00. (28)

++ .
deZ. ne?,

The heat equation faH (K ;) with finite-order weights of ordep satisfying(28) is strongly tractable for the
absolute error. More precisely, fa¥y defined by21), we have

No < p3’? max(1, k%) max{l, p1p3*T max(1, x;;/z}} : (29)

and the following bounds hold:

1. For the classA?!, we have

w 1 2
card®™e, S4, Fa, A*™) < 2(p1 + p2)°N§ (ﬂ) (—) :
K2 &
Moreover, the algorithrrUj’n, withn = carcfbs(s, Sy, Fy, A, gives are-approximation. Hence
Plond AT < 2

2. For the classAs" we have

2w 4
1
card™e, S, Fa. A < {8@1 + p2)* N (%) (—) W +1
2

&

Moreover, the algorithnv/, ,,, withn = carcfbs(s, Sy, Fy, AS9), gives are-approximation. Hence

Parond A% < 4.
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Proof. Using (28), it follows that
0a(0) < py?maxl, 6% VO eR*". (30)

From (21), (22), and (30), we have
No < C*p3/? max(1, 273},
where

C*= sup Cy = max{l, ;T sup Jd(/co)} < max{l, 1T - ,03 max{l /c‘”/z}}
deZ++ deZtt

by Lemma 6.1 and (30). Combining these results, we obtain (29). The desired result now follows from [15,
Theorem 8]. O

Example.Suppose once again thEt= K. Assume that (28) holds. Then the conditions of Theorem 6.2

are satisfied with ® 3\ @
No < p3’?max{1, p1pa/°T}  and <ﬂ) = (E) .
K2

Hence, the heat is now strongly tractable under the absolute error criterion, with

pgttr)gng(Aa”) <2 and ztt;gng(Aa”) <4

6.3 Results for the normalized error criterion

We have ErrCritS,;) = (0, S,) for the normalized error criterion. Moreover, singg f, ¢)(0) = f for any
(f,q) € Fy, itis clear that

e(0, Sg) = max sup [Sa(fs @) ll,qa) = SUP 1Sa(f, )OIl

tel0.T] (f.q)eFy (f.q)€Fa
= sup I fllizoaey = 1 APPy lILin (k). L2014y -
fEHd,pl

Hence, we can find for which (21) is satisfied if we can determiaesuch thatC, is of orderd”.

Theorem 6.3. The heat equation foH (K,) with finite-order weights of ordew/2 is tractable for the
normalized error. More precisely, fav,,» defined by(21), we have

Nyj2 < max{l, 1T /2 max1, Ké‘)}’YmaX} , (31)
and the following bounds hold:
1. Suppose that, > 0.
(a) For the classA?', we have

1

w 2
card (e, Sy, Fa, A*) < 2(p1+ p2)°NZ ), (%) <g> a
2

Moreover, the algorithmU; ,, with n = card'(e, Sy, F;, A?"), gives ang-approximation.
Hence
nor(AaII) <2 and pnI(?Tr](Aall) < w.
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(b) For the classAS'Y, we have

2w 4
1
card (e, Sy, Fy, A5 < [8(/)1 + p2)*N, 5 <K1> (—) dZw—‘ +1

K2 &

Moreover, the algorithml/,,,, with n = card®(e, S;, F;, ASY), gives ane-approximation.
Hence
pRASY) <4 and  plo(ASY) < 20.

2. Suppose that, = 0, and letI" be defined by27). Then we have the following results:

(a) For the classA?', we have
1 2
card” (e, Sy, Fq, A*") < 4(p1+ p2)°NZ ;T <g> d*.

Moreover, the algorithmU;,, with n = card (e, Sy, F4, A?"), gives ane-approximation.

Hence

oAy <2 and  plor(A?) < 20.

(b) For the classAS"Y, we have
1 4
&

Moreover, the algorithmi,,,, with n = card'(e, Sy, F;, AS'Y), gives ane-approximation.
Hence
PA <4 and  ploN(ASY) < 4w.

Proof. Using (18), (22), and Lemma 6.1, we find that

C; < max{l, ,olT\/Z max1, Kéu}")’max} - de?.

Hence settinge = w/2 in (21), we obtain (26). The remaining results of this theorem now follow from [15,
Theorem 7], withe = w. O

Example.Suppose thak is the min kerneK min. Sincexg = 1 andk; = % we have

Nojz = max{1, 017y 2mac] v/ 2ymes

from (26). Furthermore, since = % # 0, we see that case 1 holds in Theorem 6.3. Hence we find that the
heat equation is tractable under the normalized error criterion, with

pera™ <2 and  pgnA*) <o,
for continuous linear information and
poASh <4 and  pi(ASY) < 20

for standard information. O
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Example.Now suppose thaK is the Korobov kerneKer. Sincexg = k1 = % we again have

Nojz = Max| 1. p1Ty 2yman] v 2mas

from (26). Furthermore, since = 0, we see that case 2 holds in Theorem 6.3, Witk 12 by (25). Hence
we find that the heat equation is tractable under the normalized error criterion, with

pgorr(Aall) < 2 and nor(Aall) < 20)
for continuous linear information and
per(A¥) <4 and  pgn(A*) < 4o

for standard information. O

Hence the heat equation is tractable under the normalized error criterion for any finite-order weighted
RKHS, no matter what set of weights is used. As was the case for the absolute error criterion, we are unable
to establish strong tractability at this level of generality, since the Lipschitz conStamtasically given
by o,4(xo), which is a polynomial of degree/2 in d. Hence we can only guarantee th\g), is finite. It is
proved in [15, Theorem 7] that strong tractability holds4f> O and if Ny is finite. We can guarantee that
N is finite if we follow the approach taken in [15, Theorem 8].

Theorem 6.4. Suppose that, > 0and thatps, as given by28), is finite. The heat equation féf (K ;) with
finite-order weights of orde® satisfying(28) is strongly tractable for the normalized error. More precisely,
for Ng defined by21), we have

Ng < max{l p1p3°T max(1, K“’/Z}} i (32)

and the following bounds hold:

1. For the classA?!, we have

w 1 2
card (e, Sa, Fa, A" < 2(p1 + p2)°N§ (%) (g) :
2

Moreover, the algorithnt/; ,, withn = card (¢, S,, F4, A?"), gives are-approximation. Hence

abs g(Aall) <2

stron

2. For the classAS", we have

2w 4
1
card®(e, Sy, Fa, ASY) < {8(p1+ p2) N2 (Kl) (_) W L1
K2

&
Moreover, the algorithnd/, ,,, withn = card'(e, Sy, F;, ASY), gives are-approximation. Hence

Pliond A% = 4.
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Proof. From (21) and Lemma 6.1, we have

No= sup C; = max{1, p1Tou(ko)} .
deZ+t

Using (28), we see that
oa(ko) < p3'*max(l, kg/?).

Combining these results, we obtain (32). The desired result now follows from [15, Theorem 8]. [

Example.Suppose once again thiit= Knin. Assume that (28) holds. Then the conditions of Theorem 6.4

are satisfied with ) o
No < p3/*max(, p1ps/*T}  and (E) — (5) .
k2

Hence, the heat equation is strongly tractable under the normalized error criterion, with

P A <2 and  pES (AT) <4 O
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