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Abstract

In a previous paper, we developed a general framework for establishing tractability and strong
tractability for quasilinear multivariate problems in the worst case setting. One important example of
such a problem is the solution of the heat equationut = 1u − qu in I d

× (0, T ), whereI is the unit
interval andT is a maximum time value. This problem is to be solved subject to homogeneous Dirichlet
boundary conditions, along with the initial conditionsu(·, 0) = f overI d . The solutionu depends lin-
early onf , but nonlinearly onq. Here, bothf andq ared-variate functions from a reproducing kernel
Hilbert space with finite-order weights of orderω. This means that, althoughd can be arbitrary large,f
andq can be decomposed as sums of functions of at mostω variables, withω independent ofd.

In this paper, we apply our previous general results to the heat equation. We study both the absolute
and normalized error criteria. For either error criterion, we show that the problem istractable. That is,
the number of evaluations off andq needed to obtain anε-approximation is polynomial inε−1 andd,
with the degree of the polynomial depending linearly onω. In addition, we want to know when the
problem isstrongly tractable, meaning that the dependence is polynomial only inε−1, independently
of d. We show that if the sum of the weights defining the weighted reproducing kernel Hilbert space
is uniformly bounded ind and the integral of the univariate kernel is positive, then the heat equation is
strongly tractable.

1 Introduction

Many important multidimensional problems are intractable, i.e., their complexity grows exponentially with
their dimension. This often happens when our problem elements come from classical spaces (such as
Sobolev or Ḧolder spaces) and we are using the worst case setting. A great amount of attention has been
paid to the problem of rendering these problems tractable (i.e., for finding polynomial-time algorithms) in
the worst case setting. For further discussion, see e.g. [5] and [10, Chapter 3].

If we are to vanquish this curse of dimension, we must use different spaces of problem elements. One
fruitful idea has been to use a weighted reproducing kernel Hilbert spaces (RKHS) as the source of problem
elements. Here, the weights reflect the idea that some variables may be more important than others. Once
again, see [5] for a survey on weightedRKHSs.

In particular, a great deal of attention has been paid to weightedRKHSs with finite-order weights. The
main idea here is that although we want to solve problems of very high dimensiond, the problem elements
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are often sums of functions that depend on at mostω variables, whereω is independent ofd. As an example,
in quantum mechanics, one commonly encounters sums

q(x1, . . . , xd/3) =

∑
1≤i<j≤d/3

1

(‖xi − xj‖
2
`2(R3)

+ α2)1/2

of modified1 Coulomb pair potentials, see, e.g., [3, pg. 71]. Here, eachxi belongs toR3, so thatq depends
ond scalar variables; however, each term ofq only depends on 6 variables. Hence,ω = 6 for this example.

Finite-order weightedRKHSs were first studied in [1], which dealt with multivariate integration. They
were studied for general multivariate linear problems in [11, 12]. The approach of these latter papers would
seem to cover the solution of a linear differential or integral equationL u = f . However, such problems
tend to have hidden nonlinearities lurking underneath, since the linear operatorL is often of the formLq

for some functionq. For example,q could be a coefficient appearing in a differential operator, or the kernel
function of an integral operator. Ifu is the solution of the problemLqu = f , then the mappingf 7→ u is
linear for eachq, but the mapping(f, q) 7→ u is nonlinear.

These considerations have lead us to consider the approximate solution of problems given by an opera-
tor Sd , in which the mappingSd(·, q) is linear for eachq. Under mild smoothness conditions, we say that
such problems arequasilinear. A general framework for investigating the tractability of quasilinear prob-
lems using finite-order weightedRKHSs was developed in [15]. This framework was used in [16] to study
the tractability of the Helmholtz equation−1u + qu = f on thed-dimensional unit cubeI d . In this paper,
we shall use the general framework of [15] to study the tractability of the heat equation.

Let I denote the unit interval and letd be an arbitrary positive integer. For a given non-negative func-
tion q on I d , let

Lq = −1 + q,

with 1 denoting thed-dimensional Laplacian. We are interested in approximating the solutionu = Sd(f, q)

of the parabolic partial differential equation

∂u

∂t
(x, t) = −(Lqu)(x, t) ∀ x ∈ I d, t ∈ (0, T ).

This is a heat equation, withq being the heat transfer rate for conductive loss to the ambient environment.
The error of an approximation is given by the maximum value of theL2(I

d)-error at timet , over all t ∈

[0, T ].
Let Fd ⊂ L2(I

d) × Qd be the set ofproblem elements(f, q) for which we wish to solve the heat
equation, whereQd denotes the non-negative functions inL∞(I d). We study two error criteria:

1. Theabsolute error criterion: Here, we want to guarantee that the worst case error of an algorithm is
at mostε.

2. Thenormalized error criterion: Here, we want to guarantee that the worst case error is at mostε times
the initial error. (By theinitial error , we mean the minimal error we can attain without sampling
(f, q) ∈ Fd , rather than the error at timet = 0.)

In addition, we assume that we can compute either arbitrary linear functionals off andq (continuous linear
information3all) or function values off andq (standard information3std) for any(f, q) ∈ Fd .

1The modification is the inclusion of the positive termα. Physicists often include a smallα as a regularization parameter, to
makeq smooth.
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Let card(ε, Sd, Fd, 3) denote the minimal number of3-evaluations needed to compute anε-approxima-
tion in the worst case setting under the absolute or normalized error criterion. We say that the problem
S = {Sd}

∞

d=1 is tractableif there existC > 0, perr ≥ 0, andpdim ≥ 0 such that

card(ε, Sd, Fd, 3) ≤ C

(
1

ε

)perr

dpdim ∀ ε ∈ (0, 1), d ∈ Z++.

If no suchperr andpdim exist, then the problemS is said to beintractable. Furthermore, the problemS is
said to bestrongly tractableif there existC > 0 andpstrong> 0 such that

card(ε, Sd, Fd, 3) ≤ C

(
1

ε

)pstrong

.

Our first task is to briefly look at the case where the first component ofFd is the unit ball of a standard
Sobolev spaceH r(I d), with fixedr. We easily find that the heat equation is intractable.

Having shown that our problem is intractable for standard Sobolev spaces, we move on to the case of a
weightedRKHS H(Kd). Here the reproducing kernelKd has the form

Kd(x, y) =

∑
u∈{1,...,d}

|u|≤ω

γd,u

∏
j∈u

K(xj , yj ),

whereK is the reproducing kernel of a Hilbert spaceH(K) of univariate functions, andγd,u are non-negative
numbers (weights). The first component ofFd will be a ball inH(Kd); the second component will be the
non-negative elements of a ball inH(Kd). No assumption is made about the radii of these balls, other than
that they must be independent ofd.

Let

κ2 =

∫ 1

0

∫ 1

0
K(x, y) dx dy < ∞.

SinceK is a reproducing kernel we know thatκ2 ≥ 0. Our results depend on whetherκ2 is positive or
zero, and whether we are dealing with the general case for finite-order weights of orderω or whether we are
dealing with finite-order weights of orderω with a uniformly bounded sum, i.e., for which

sup
1≤d<∞

∑
u∈{1,...,d}

|u|≤ω

γd,u < ∞.

We may summarize our results as follows:

1. For absolute error criterion, we have

General case Bounded sum
κ2 > 0 κ2 = 0 κ2 > 0

3all perr ≤ 2, pdim ≤ 2ω perr ≤ 2, pdim ≤ 3ω pstrong≤ 2
3std perr ≤ 4, pdim ≤ 4ω perr ≤ 2, pdim ≤ 6ω pstrong≤ 4

2. For the normalized error criterion, we have
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General case Bounded sum
κ2 > 0 κ2 = 0 κ2 > 0

3all perr ≤ 2, pdim ≤ ω perr ≤ 2, pdim ≤ 2ω pstrong≤ 2
3std perr ≤ 4, pdim ≤ 2ω perr ≤ 2, pdim ≤ 4ω pstrong≤ 4

Hence, the heat equation is always tractable for finite-order weightedRKHSs, and it is strongly tractable if
the sum of the weights is bounded.

It is worthwhile to compare the results for the heat equation with those we obtained in [16] for the
Helmholtz equation:

1. The results for the heat equation under the absolute error criterion are the same as for the Helmholtz
equation under both Dirichlet and Neumann boundary conditions.

2. The results for the heat equation under the normalized error criterion are the same as for the Helmholtz
equation under Neumann boundary conditions.

Note that we studied both Dirichlet and Neumann boundary conditions in [16]. The main reason for intro-
ducing Neumann conditions in [16] was that we were unable to establish strong tractability for the Dirichlet
problem under the normalized error criterion, and we wanted to exhibit a version of the problem for which
the Neumann problem was strongly tractable. Since the Dirichlet problem for the heat equation is strongly
tractable under the normalized error criterion if the weights have a bounded sum, we did not feel the need
to analyze the Neumann problem for the heat equation. One advantage of this decision is that it greatly
simplified the presentation.

2 The heat equation

We first establish a few notational conventions. For an ordered ringR, we letR+ andR++ respectively
denote the non-negative and positive elements ofR. The open unit interval(0, 1) is denoted byI . Since we
are dealing with a time-dependent problem, we will letT denote a maximum time value. IfX andY are
normed linear spaces, then Lin[X, Y ] denotes the space of bounded linear transformations ofX into Y . We
write Lin[X] for Lin[ X, X], andX∗ for Lin[X, R]. For ρ > 0, we letBρX denote the ball of radiusρ in X,
centered at the origin, writingBX for the unit ball.

We use the standard notation for Sobolev inner products, seminorms, norms, and spaces, found in
(e.g.) [6, 14]. Furthermore, for any normed linear spaceX, the spacesC([0, T ]; X), L2([0, T ]; X), and
H 1([0, T ]; X) are as defined in [7, pp. 381–382]. In particular, the norm of the spaceC([0, T ]; X) is given
by

‖v‖C([0,T ];X) := max
0≤t≤T

‖v(t)‖X < ∞ ∀ continuousv : [0, T ] → X.

For d ∈ Z+, we letQd denote the non-negative functions inL∞(I d). Forf ∈ L2(I
d) andq ∈ Qd , we

wish to solve the parabolic partial differential equation

u̇(t) = −(Lqu)(t) (0 < t < T ), (1)

subject to the initial conditions
u(0) = f (2)

and homogeneous boundary conditions
u = 0 on∂I d . (3)
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Here, the operatorLq : H 1
0 (I d) → H−1(I d) is defined as

Lqv = −1v + qv ∀v ∈ H 1
0 (I d).

We shall refer to this problem as theheat equationin the rest of this paper.
Letting 〈·, ·〉 denote the duality pairing ofH 1

0 (I d) with H−1(I d), we have

〈Lqv, w〉 = Bd(v, w; q) ∀ v, w ∈ H 1
0 (I d).

Here,Bd(·, ·; q) is the bilinear formH 1
0 (I d) given by

Bd(v, w; q) =

∫ d

I

[∇v · ∇w + qvw] ∀ v, w ∈ H 1
0 (I d). (4)

From [7, pp. 382–383], we have

Lemma 2.1. For any(f, q) ∈ L2(I
d) × Qd , there exists a unique solution

u = Sd(f, q) ∈ L2
(
[0, T ]; H 1

0 (I d)
)
∩ H 1

(
[0, T ]; H−1(I d)

)
to the heat equation(1)–(3). Moreover,u ∈ C

(
[0, T ]; L2(I

d)
)
.

We next show thatSd(f, q) depends continuously onf andq, this bound being sharp in its dependence
onf .

Lemma 2.2. Let (f, q), (f̃ , q̃) ∈ L2(I
d) × Qd . Then

‖f − f̃ ‖L2(I
d ) ≤ ‖Sd(f, q) − Sd(f̃ , q̃)‖

C

(
[0,T ];L2(I

d )

)
≤ ‖f − f̃ ‖L2(I

d ) + T ‖q − q̃‖L2(I
d )‖f ‖L∞(I d ).

Proof. Let u = Sd(f, q) andũ = Sd(f̃ , q̃). Sinceu(0) = f andũ(0) = f̃ , we immediately obtain the first
inequality. Hence, it only remains to prove the second inequality.

Without loss of generality, we shall assume thatu, ũ ∈ H 1
0 (I d). Chooset ∈ (0, T ), and lete(t) =

u(t) − ũ(t). SinceLq is self-adjoint inL2(I
d), we can check that

〈ė(t), e(t)〉L2(I
d ) = −Bd(e(t), e(t); q̃) + 〈(q − q̃)u(t), e(t)〉L2(I

d ). (5)

Since

〈ė(t), e(t)〉L2(I
d ) =

1

2

d

dt
‖e(t)‖2

L2(I
d )

= ‖e(t)‖L2(I
d )

d

dt
‖e(t)‖L2(I

d ),

we may rewrite (5) as

‖e(t)‖L2(I
d )

d

dt
‖e(t)‖L2(I

d ) = −Bd(e(t), e(t); q̃) + 〈(q − q̃)u(t), e(t)〉L2(I
d )

≤ 〈(q − q̃)u(t), e(t)〉L2(I
d )

≤ ‖(q − q̃)u(t)‖L2(I
d )‖e(t)‖L2(I

d ),

where we have used the fact thatBd(w, w; q) ≥ 0 for anyw ∈ H 1
0 (I d). Dividing the previous inequality by

‖e(t)‖L2(I
d ), we find that

d

dt
‖e(t)‖L2(I

d ) ≤ ‖(q − q̃)u(t)‖L2(I
d ). (6)
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Recall (see, e.g., [2, Thm. 2.12]) that the strong maximum principle implies that

‖u(t)‖L2(I
d ) ≤ ‖f ‖L2(I

d ),

so that
‖(q − q̃)u(t)‖L2(I

d ) ≤ ‖q − q̃‖L2(I
d )‖u(t)‖L∞(I d ) ≤ ‖q − q̃‖L2(I

d )‖f ‖L∞(I d ).

Substituting this inequality into (6), we obtain

d

dt
‖e(t)‖L2(I

d ) ≤ ‖q − q̃‖L2(I
d )‖f ‖L∞(I d ).

Since we have the initial condition

‖e(0)‖L2(I
d ) = ‖f − f̃ ‖L2(I

d ),

we find that
‖e(t)‖L2(I

d ) ≤ ‖f − f̃ ‖L2(I
d ) + t‖q − q̃‖L2(I

d )‖f ‖L∞(I d ).

Sincet ∈ (0, T ) is arbitrary, this establishes the lemma.

3 Information and algorithms

Let Fd ⊂ L2(I
d) × Qd be a set ofproblem elements. We want to approximateSd(f, q) for any(f, q) ∈ Fd ,

using finitely many valuesf 7→ λ(f ) andq 7→ λ(q), whereλ belongs to a class3 of continuous linear
functionals.

We shall restrict our attention to the following two choices for3:

1. Continuous linear information. This is the class3all of all continuous linear functionals.

2. Standard information. This is the class3std consisting of function evaluations. That is,λ ∈ 3std if
there existsxλ ∈ Rd such thatλ(g) = g(xλ) for any admissible functiong.

Recall thatd ∈ Z++ is the number of variables on which our input functionsf andq and our solutionu
depend. Givenn ∈ Z++, let Ad,n be an algorithm for approximatingSd , using at mostn information
evaluations from a class3. The worst caseerror of Ad,n is defined to be

e(Ad,n, Sd, Fd, 3) = sup
[f,q]∈Fd

‖Sd(f, q) − Ad,n(f, q)‖
C

(
[0,T ];L2(I

d )

).
Thenth minimal error is defined to be

e(n, Sd, Fd, 3) = inf
Ad,n

e(Ad,n, Sd, Fd, 3),

the infimum being over all algorithms using at mostn information evaluations from3.
In particular, note thate(0, Sd, Fd, 3) is theinitial error , which is obtained without usingany informa-

tion evaluations whatsoever. Since this initial error involves no information evaluations, it is independent
of 3, and hence we shall simply denote it ase(0, Sd, Fd).
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Let ε ∈ (0, 1). We wish to measure the minimal number of information evaluations needed to compute
anε-approximation. Here, we say that an algorithmAd,n provides anε-approximationto Sd if

e(Ad,n, Sd, Fd, 3) ≤ ε · ErrCrit(Sd, Fd),

with ErrCrit being anerror criterion. In this paper, we will use the error criteria

ErrCrit(Sd, Fd) =

{
1 for absolute error,

e(0, Sd, Fd) for normalized error.

Hence:

1. An algorithm provides anε-approximation in theabsolutesense simply means that the error of the
algorithm is at mostε.

2. An algorithm provides anε-approximation in thenormalizedsense simply means that the error of the
algorithm isreducedby at least a factor ofε.

In either case, let

card(ε, Sd, Fd, 3) = min
{
n ∈ Z+ : e(ε, Sd, Fd, 3) ≤ ε · ErrCrit(Sd, Fd)

}
denote the minimal number of information evaluations needed to compute anε-approximation toSd . Of
course, theε-cardinalities for the absolute and normalized criteria are related by the equation

cardnor(ε, Sd, Fd, 3) = cardabs(ε · e(0, Sd, Fd), Sd, Fd, 3). (7)

As mentioned in the Introduction, we often want to solve heat equations of high dimension. The heat
equation is said to betractablewith respect to the class3 of information functionals if there exist non-
negative numbersC, perr, andpdim such that

card(ε, Sd, Fd, 3) ≤ C

(
1

ε

)perr

dpdim ∀ ε ∈ (0, 1), d ∈ Z++. (8)

(If (8) does not hold, then the problem is said to beintractable.) Any numbersperr = perr(3) andpdim =

pdim(3) such that (8) holds are calledε- andd-exponents of tractability. These exponents need not be
uniquely defined. Ifpdim = 0 in (8), then the heat equation is said to bestrongly tractablewith respect to
3, and we define

pstrong(3) =

inf

{
perr ≥ 0 : ∃ C ≥ 0 such that card(ε, Sd, Fd, 3) ≤ C

(
1

ε

)perr

∀ ε ∈ (0, 1), d ∈ Z++

}
to be theexponent of strong tractability.
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4 Intractability for classical Sobolev spaces

Recall that our setFd of problem elements is a subset ofL2(I
d) × Qd , whereQd denotes the non-negative

elements ofL∞(I d). We briefly discuss tractability when the first component ofFd is a ball of fixed radius
in a standard Sobolev space. There is no essential loss of generality in assuming that this ball has unit radius.

We first consider arbitrary continuous linear information.

Theorem 4.1. Let 3 = 3all. Regardless of whether the absolute or normalized error criterion is used, the
heat equation is intractable if the first component ofFd is BH r(I d).

Proof. First, suppose that we are using the absolute error criterion. From the lower bound in Lemma 2.2,
we see that

e(n, Sd, Fd, 3
all) ≥ e(n, Appd, BH r(I d), 3all),

where Appd : H r(I d) → L2(I
d) is the approximation problem given by

Appd f = f ∀f ∈ H r(I d).

It is well-known (see, e.g., [4]) that there existsCd > 0 such that

e(n, Appd, BH r(I d), 3all) ≥ Cdn
−r/d .

Combining these results, we see that

cardabs(ε, Sd, Fd, 3
all) ≥

(
Cd

ε

)d/r

,

and hence our problem is intractable in the absolute error criterion.
We now turn to the normalized error criterion. Fix(f, q) ∈ Fd , and letu = Sd(f, q). For anyt ∈ [0, T ],

we have the series representation

u(t) =

∞∑
j=1

e−λj t
〈f, zj 〉L2(I

d )zj ,

wherez1, z2, · · · ∈ H 1
0 (I d) are theL2(I )-orthonormal eigenvectors ofLq corresponding to the positive

eigenvaluesλ1 ≤ λ2 . . . , from which we see that

‖u(t)‖L2(I
d ) ≤ ‖f ‖L2(I

d ) ≤ ‖f ‖H r (I d ).

SinceSd(·, q) ∈ Lin[H r(I d), L2(I
d)] for any q ∈ Qd , we may use the results of [9, §4.5], along with the

previous inequality, to find that

e(0, Sd, Fd, 3
all) = max

0≤t≤T
sup

(f,q)∈Fd

‖Sd(f, q)(t)‖L2(I
d ) ≤ 1.

Hence
e(n, Sd, Fd, 3

all)

e(0, Sd, Fd, 3all)
≥ Cdn

−r/d,

and so we have

cardnor(ε, Sd, Fd, 3
all) ≥

(
Cd

ε

)d/r

.

Thus our problem is intractable in the normalized error criterion.
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Remark.Note that we are approximating the solution of the heat equation over the time interval [0, T ].
The solutionSd(f, q) at timet = 0 is simplyf , and soL2-approximation problem is a special case of our
problem. Since the latter problem is intractable over the unit ball ofH r(I d), our heat equation is intractable
whenf belongs toBH r(I d).

One might well ask what would happen if we were only trying to approximate the solution at a fixed
positive time valuet . It turns out that our problem is still intractable. Indeed, letSd,t = Sd(·, ·)(t) be the
solution operator at timet . Define

F̃d = BḢ r(I d) × {0},

whereḢ r(I d) is the span of theLq-eigenvectors{zj }
∞

j=1 under the norm‖ · ‖Ḣ r (I d ) = ‖L
r/2
0 · ‖L2(I

d ). Then

e(n, Sd,t , Fd, 3
all) < e(n, Sd,t , F̃d, 3

all).

In this case, it is possible to use the techniques of [13] to see that

e(n, Sd,t , F̃d, 3
all) = λ

−r/2
n+1 e−λn+1t ∼ (n + 1)−r/de−cd (n+1)2/d t

for a positive constantcd . It is fairly easy to see that

cardabs(ε, Sd,t , F̃d, 3
all) ∼

(
1

tcd

ln
1

ε

)d/2

.

Hence we find that

card(ε, Sd,t , Fd, 3
all) <

(
1

tcd

ln
1

ε

)d/2

for either the absolute or normalized error criterion. Hence approximating the heat equation at a fixed time
t > 0 is intractable if the first component ofFd is a standard Sobolev space of fixed smoothness.

What can we say regarding standard information? Recall that the first component of our problem element
classFd is the unit ball ofH r(I d). The Sobolev embedding theorem tells us that evaluatingf at a point inI d

is not well-defined for allf ∈ H r(I d) unlessr > d/2. In other words, standard information is ill-defined
unlessr > d/2. Since we needr > d/2 to even talk about nontrivial algorithms using standard information,
we see that it is impossible to compute anε-approximation for fixedr if d ≥ 2r. This is a most severe form
of intractability.

5 Weighted reproducing kernel Hilbert spaces

Since the heat equation is intractable for standard Sobolev spaces, we need to choose a different space
of problem elements if we want our problem to be tractable. More precisely, we shall assume that our
problem elements come from a weighted reproducing kernel Hilbert space (RKHS) H(Kd) of functions
defined overI d . In this section, we briefly recall the definition of a weightedRKHS. This summary is
essentially the same as that contained in [16, §2]; we include it for the convenience of the reader.

Let K be a reproducing kernel defined onI × I . We will require that

κ0 := ess sup
x∈I

K(x, x) < ∞, (9)

from which it follows that
0 ≤ κ2 ≤ κ1 ≤ κ0,

9



where

κ1 =

∫ 1

0
K(x, x) dx (10)

and

κ2 =

∫ 1

0

∫ 1

0
K(x, y) dy dx. (11)

We now give some examples of commonly-occurring kernels.

Example.Themin kernelis defined as

Kmin(x, y) := min{x, y} ∀ x, y ∈ [0, 1]. (12)

The spaceH(Kmin) consists of absolutely continuous functions vanishing at zero and whose first derivatives
belong toL2(I ), with the inner product

〈f, g〉H(Kmin) =

∫
I

f ′(x)g′(x) dx.

It is easy to check that we have
κ0 = 1

κ1 =
1
2

κ2 =
1
3

for the min kernel.

Example.TheKorobov kernelis defined as

KKor(x, y) := B2(|x − y|) ∀ x, y ∈ [0, 1], (13)

whereB2(t) = t2
− t +

1
6 is the Bernoulli polynomial of degree 2. The spaceH(KKor) consists of absolutely

continuous functions whose average value is zero and whose first derivatives belong toL2(I ), with the inner
product

〈f, g〉H(KKor) =

∫
I

f ′(x)g′(x) dx.

It is easy to check that we have
κ0 =

1
6

κ1 =
1
6

κ2 = 0

for the Korobov kernel.

Remark.Note that the spacesH(Kmin) andH(KKor) are both spaces ofH 1(I )-functions with the same inner
product. The only difference between them is thatH(Kmin)-functions vanish at the endpoints ofI , whereas
H(KKor)-functions have zero average value. The fact thatκ2 > 0 for H(Kmin), whereasκ2 = 0 for H(KKor),
will greatly affect the tractability results for the corresponding spacesH(Kd,min) andH(Kd,Kor). See [8] for
further properties of these (and similar) spaces.
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We now move on to thed-variate case. Let

γ = { γd,u : u ∈ Pd, d ∈ Z++
}

be a set of non-negative weights, with

γmax := max
d∈Z++

max
u∈Pd

γd,u < ∞.

We shall assume thatγ is a set offinite-orderweights (see, e.g., [1]), which means that there existsω ∈ Z++

such that
γd,u = 0 ∀ u ∈ Pd and|u| > ω, d ∈ Z++. (14)

Theorder of a setγ of finite-order weights is the smallestω ∈ Z++ such that (14) holds.
The spaceH(Kd) is the reproducing kernel Hilbert space (RKHS) whose reproducing kernel is

Kd =

∑
u∈Pd

γd,uKd,u,

wherePd is the power set of{1, . . . , d} and

Kd,u(x, y) =

∏
j∈u

K(xj , yj ) ∀ x = [x1, . . . , xd ], y = [y1, . . . , yd ] ∈ Ī d, u ∈ Pd .

Equivalently,H(Kd) consists of those functionsf : I d
→ R that can be uniquely decomposed as

f (x) =

∑
u∈Pd , |u|≤ω

fu(x),

wherefu(x) = f (xu) depends only onxj for j ∈ u, andfu ∈ H(Kd,u). Furthermore

‖f ‖
2
H(Kd ) =

∑
u∈Pd , |u|≤ω

γ −1
d,u ‖fu‖

2
H(Kd,u),

where

‖fu‖
2
H(Kd,u) =

∫
I |u|

(
∂ |u|

∂xu
f (xu)

)2

dxu.

Here, by convention, we have 0/0 = 0. That is, ifγd,u = 0, then the corresponding componentfu = 0.
Observe that the constant functionf (x) = c for all x ∈ I d belongs toH(Kd) iff γd,∅ > 0, in which case

we have‖f ‖H(Kd ) = |c|/γ
1/2
d,∅ .

In what follows, it will be useful to let

σd(θ) =

( ∑
u∈Pd

γd,u θ |u|

)1/2

∀ θ ∈ R+. (15)

Forg ∈ H(Kd), we know that
‖g‖L2(I

d ) ≤ σd(κ1)‖g‖H(Kd ) (16)

and that
‖g‖L∞(I d ) ≤ σd(κ0)‖g‖H(Kd ) ∀ g ∈ H(Kd), (17)

see [11] and [16, Lemma 3.1]. Hence,H(Kd) is embedded inL2(I
d) andL∞(I d) for arbitrary weightsγ,

and we know values for the embedding constants. For finite-order weights of orderω, we can estimateσd(θ)

by
σd(θ) ≤

√
2 max{θω, 1} γmaxd

ω/2 (18)

see [15, Lemma 6].
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6 Tractability for weighted RKHS

In the remainder of this paper, we shall assume that our problem elements belong to a weightedRKHS. More
precisely, we shall assume that

Fd = Hd,ρ1 × (Qd ∩ Hd,ρ2)

for fixed positiveρ1 andρ2, where (for the sake of convenience) we writeHd,ρ = BρK(Hd) for anyρ > 0.
Hence we are trying to approximateSd(f, q) for f ∈ Hd,ρ1 andq ∈ Q ∩ Hd,ρ2.

6.1 Some preliminary results

We will establish tractability of the heat equation by using the results of [15], which gives a mechanism
for establishing the (strong) tractability of quasilinear problems defined over a weightedRKHS. Here (as
in [15]) we say that our problem{Sd}

∞

d=1 is quasilinearif there exists a functionφ : H(Kd) → Qd , as well
as a non-negative numberCd , such that

‖Sd(f, q) − Sd(f̃ , φ(q̃))‖Gd
≤ Cd

[
‖f − f̃ ‖L2(I

d ) + ‖q − q̃‖L2(I
d )

]
∀ [f, q] ∈ Hd,ρ1 × Qd, [f̃ , q̃] ∈ H(Kd) × H(Kd). (19)

Our first preliminary result establishes that the heat equation is quasilinear. Let us defineφ : H(Kd) →

Qd as
φ(v)(x) = v+(x) := max{v(x), 0} ∀ x ∈ I d, v ∈ H(Kd). (20)

Lemma 6.1. Let
Cd = max{1, ρ1T σd(κ0)},

whereκ0 is given by(9). Then the heat equation problem{Sd}
∞

d=1 is quasilinear forφ given by(20).

Proof. Let (f, q), (f̃ , q̃) ∈ Fd . As in [16, Lemma 3.4], we find that

‖q − φ(q̃)‖L2(I
d ) ≤ ‖q − q̃‖L2(I

d ).

Using (17) and Lemma 2.2, we see that (19) holds, as required.

Suppose that there existsα ≥ 0 such that

Nα := sup
d∈Z++

Cd‖ Appd ‖Lin[H(Kd ),L2(I
d )]

dα ErrCrit(Sd)
< ∞. (21)

where Appd : H(Kd) → L2(I
d) is now the embedding

Appd f = f ∀f ∈ H(Kd).

Then [15, Theorem 3] tells us that the problem is tractable ifα > 0 and strongly tractable ifα = 0.
More precisely, [15, Theorem 3] provides algorithms for computing anε-approximation ofSd and having
an error boundC(1/ε)perrdpdim (for tractability) orC(1/ε)pstrong (for strong tractability), along with explicit
expressions forC, perr, pdim, andpstrong.
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One of the most important parts of the analysis will be to determine the minimalα such that (21) holds.
To do this, we will need to estimate the norm of Appd . Note that (16) implies that the embedding Appd is
well-defined, with

‖ Appd ‖Lin[H(Kd ),L2(I
d )] ≤ σd(κ1). (22)

More precise results for‖ Appd ‖Lin[H(Kd ),L2(I
d )] are given in [11]. For the caseκ2 = 0, these results

involve the operatorW = (App)∗(App) ∈ Lin[H(K)], where App is the embedding operator App∈
Lin[H(K), L2(I )]. Note that

Wf =

∫ 1

0
K(x, ·)f (x) dx ∀f ∈ H(K) (23)

and that
‖W‖Lin[H(K)] = ‖ App‖

2
Lin[H(K),L2(I )] ≤ κ1. (24)

We then have

Lemma 6.2. Letκ1, κ2 andσd be defined by(10), (11)and (15).

1. There existscd ∈ [κ2, κ1] such that

‖ Appd ‖Lin[H(Kd ),L2(I
d )] = σd(cd).

2. If κ2 = 0, then
‖ Appd ‖Lin[H(Kd ),L2(I

d )] = max
u∈Pd

[
γd,u‖W‖

u
Lin[H(K)]

]1/2
.

Remark.Recall thatκ1 =
1
6 andκ2 = 0 for the Korobov kernel. With an eye towards future results, we note

that

‖W‖Lin[H(KKor)] = sup

{ ∫
I
f (x)2 dx∫

I

(
f ′(x)

)2
dx

: f ∈ H 1(I ) such that
∫

I

f (x) dx = 0

}
.

Choosingf to be the function
f (x) = x −

1
2 ∀ x ∈ I,

and using (24), we find that
1
12 ≤ ‖W‖Lin[H(KKor)] ≤

1
6. (25)

The following result (also from [11]) gives two useful algorithms for the approximation problem Appd ,
which will be used as building blocks of algorithms for the heat equation:

Lemma 6.3. Letd ∈ Z++ andn ∈ Z+.

1. Let

A∗

d,n(f ) =

n∑
j=1

〈f, ed,j 〉H(Kd )ed,j ∀f ∈ H(Kd).

Then

‖ Appd −A∗

d,n‖Lin[H(Kd ),L2(I
d )] ≤

σd(κ1)
√

n + 1
.

13



2. There exist pointst1, . . . , tn and elementsa1, . . . , an ∈ H(Kd) such that

Ad,n(f ) =

n∑
j=1

f (tj )aj ∀f ∈ H(Kd),

we have

‖ Appd −Ad,n‖Lin[H(Kd ),L2(I
d )] ≤

σd(κ1)
√

2

n1/4
.

We stress that the results in part 2 of Lemma 6.3 are non-constructive for the class3std, i.e., we only
know that there exist pointst1, . . . tn such that the algorithmAd,n has the given error bound. Weaker con-
structive error bounds may be found in [12].

Using these algorithmsA∗

d,n andAd,n, we define

U ∗

d,n(f, q) = Sd

(
A∗

d,bn/2c
f, φ(A∗

d,bn/2c
q)

)
∀ [f, q] ∈ Hd,ρ1 × (Qd ∩ Hd,ρ2)

and
Ud,n(f, q) = Sd

(
Ad,bn/2cf, φ(Ad,bn/2cq)

)
∀ [f, q] ∈ Hd,ρ1 × (Qd ∩ Hd,ρ2).

Clearly,U ∗

d,n andUd,n are algorithms for the heat equation using continuous linear information and standard
information, respectively.

6.2 Results for the absolute error criterion

Since ErrCrit(Sd) = 1 for the absolute error criterion, findingα for which (21) is satisfied means that we
need to determineα such thatCd‖ Appd ‖Lin[H(Kd ),L2(I

d )] is of orderdα.

Theorem 6.1.The heat equation forH(Kd) with finite-order weights of orderω is tractable for the absolute
error. More precisely, forNω defined by(21), we have

Nω ≤ max
{
1, ρ1T

√
2 max{1, κω

0 }γmax

} √
2 max{1, κω

1 }γmax, (26)

and the following bounds hold:

1. Suppose thatκ2 > 0.

(a) For the class3all, we have

cardabs(ε, Sd, Fd, 3
all) ≤ 2(ρ1 + ρ2)

2N2
ω

(
κ1

κ2

)ω (
1

ε

)2

d2ω.

Moreover, the algorithmU ∗

d,n, with n = cardabs(ε, Sd, F, d3all), gives anε-approximation.
Hence

pabs
err (3

all) ≤ 2 and pabs
dim(3all) ≤ 2ω.

(b) For the class3std, we have

cardabs(ε, Sd, Fd, 3
std) ≤

⌈
8(ρ1 + ρ2)

4N4
ω

(
κ1

κ2

)2ω (
1

ε

)4

d4ω

⌉
+ 1.

Moreover, the algorithmUd,n, withn = cardabs(ε, Sd, Fd3
std), gives anε-approximation. Hence

pabs
err (3

std) ≤ 4 and pabs
dim(3std) ≤ 4ω.
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2. Suppose thatκ2 = 0, and let

0 =
max{1, κ1}

min{1, ‖W‖Lin[H(K)]}
. (27)

Then we have the following results:

(a) For the class3all, we have

cardabs(ε, Sd, Fd, 3
all) ≤ 4(ρ1 + ρ2)

2N2
ω0ω

(
1

ε

)2

d3ω.

Moreover, the algorithmU ∗

d,n, with n = cardabs(ε, Sd, Fd, 3
all), gives anε-approximation.

Hence
pabs

err (3
all) ≤ 2 and pabs

dim(3all) ≤ 3ω.

(b) For the class3std, we have

cardabs(ε, Sd, Fd, 3
std) ≤

⌈
32(ρ1 + ρ2)

4N4
ω02ω

(
1

ε

)4

d6ω

⌉
+ 1.

Moreover, the algorithmUd,n, with n = cardabs(ε, Sd, Fd, 3
std), gives anε-approximation.

Hence
pabs

err (3
std) ≤ 4 and pabs

dim(3std) ≤ 6ω.

Proof. Using (18), (22), and Lemma 6.1, we find that

Cd‖ Appd ‖Lin[H(Kd ),L2(I
d )] ≤ max

{
1, ρ1T

√
2 max{1, κω

0 }γmax

} √
2 max{1, κω

1 }γmax · dω.

Hence settingα = ω in (21), we obtain (26). The remaining results of this theorem now follow from [15,
Theorem 7], withα = ω.

Example.Suppose thatK is the min kernelKmin. Sinceκ0 = 1 andκ1 =
1
2, we have

Nω ≤ max
{
1, ρ1T

√
2γmax

} √
2γmax

from (26). Furthermore, sinceκ2 =
1
3 6= 0, we see that case 1 holds in Theorem 6.1. Hence we find that the

heat equation is now tractable under the absolute error criterion, with

pabs
err (3

all) ≤ 2 and pabs
dim(3all) ≤ 2ω,

for continuous linear information and

pabs
err (3

std) ≤ 4 and pabs
dim(3std) ≤ 4ω

for standard information.
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Example.Now suppose thatK is the min kernelKKor. Sinceκ0 = κ1 =
1
6, we again have

Nω ≤ max
{
1, ρ1T

√
2γmax

} √
2γmax

from (26). Furthermore, sinceκ2 = 0, we see that case 2 holds in Theorem 6.1, with0 ≤ 12 by (25). Hence
we find that the heat equation is now tractable under the absolute error criterion, with

pabs
err (3

all) ≤ 2 and pabs
dim(3all) ≤ 3ω,

for continuous linear information and

pabs
err (3

std) ≤ 4 and pabs
dim(3std) ≤ 6ω

for standard information.

Theorem 6.1 tells us that the heat equation is tractable under the absolute error criterion for any finite-
order weightedRKHS, no matter what set of weights is used. The reason we are unable to establish strong
tractability in this case is that the Lipschitz constantCd and‖ Appd ‖Lin[H(Kd ),L2(I

d )] are expressed in terms
of σd(κ0) andσ(κ1), whose product is bounded by a polynomial of degreeω in d. Hence we can only
guarantee thatNω is finite. It is proved in [15, Theorem 7] that strong tractability holds for a quasilinear
problem ifκ2 > 0 and ifN0 is finite. We can guarantee thatN0 is finite if we follow the approach taken in
[15, Theorem 8].

Theorem 6.2. Suppose thatκ2 > 0 and

ρ3 := sup
d∈Z++

∑
u∈Pd

γd,u < ∞. (28)

The heat equation forH(Kd) with finite-order weights of orderω satisfying(28) is strongly tractable for the
absolute error. More precisely, forN0 defined by(21), we have

N0 ≤ ρ
1/2
3 max{1, κ

ω/2
1 } max

{
1, ρ1ρ

1/2
3 T max{1, κ

ω/2
0 }

}
, (29)

and the following bounds hold:

1. For the class3all, we have

cardabs(ε, Sd, Fd, 3
all) ≤ 2(ρ1 + ρ2)

2N2
0

(
κ1

κ2

)ω (
1

ε

)2

,

Moreover, the algorithmU ∗

d,n, with n = cardabs(ε, Sd, Fd, 3
all), gives anε-approximation. Hence

pabs
strong(3

all) ≤ 2.

2. For the class3std, we have

cardabs(ε, Sd, Fd, 3
std) ≤

⌈
8(ρ1 + ρ2)

4N4
0

(
κ1

κ2

)2ω (
1

ε

)4
⌉

+ 1.

Moreover, the algorithmUd,n, with n = cardabs(ε, Sd, Fd, 3
std), gives anε-approximation. Hence

pabs
strong(3

std) ≤ 4.
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Proof. Using (28), it follows that

σd(θ) ≤ ρ
1/2
3 max{1, θω/2

} ∀ θ ∈ R+. (30)

From (21), (22), and (30), we have
N0 ≤ C∗ρ

1/2
3 max{1, κ

ω/2
1 },

where

C∗
= sup

d∈Z++

Cd = max

{
1, ρ1T sup

d∈Z++

σd(κ0)

}
≤ max

{
1, ρ1T · ρ

1/2
3 max{1, κ

ω/2
0 }

}
by Lemma 6.1 and (30). Combining these results, we obtain (29). The desired result now follows from [15,
Theorem 8].

Example.Suppose once again thatK = Kmin. Assume that (28) holds. Then the conditions of Theorem 6.2
are satisfied with

N0 ≤ ρ
1/2
3 max{1, ρ1ρ

1/2
3 T } and

(
κ1

κ2

)ω

=

(
3

2

)ω

.

Hence, the heat is now strongly tractable under the absolute error criterion, with

pabs
strong(3

all) ≤ 2 and pabs
strong(3

all) ≤ 4.

6.3 Results for the normalized error criterion

We have ErrCrit(Sd) = e(0, Sd) for the normalized error criterion. Moreover, sinceSd(f, q)(0) = f for any
(f, q) ∈ Fd , it is clear that

e(0, Sd) = max
t∈[0,T ]

sup
(f,q)∈Fd

‖Sd(f, q)(t)‖|L2(I
d ) ≥ sup

(f,q)∈Fd

‖Sd(f, q)(0)‖|L2(I
d )

= sup
f ∈Hd,ρ1

‖f ‖|L2(I
d ) = ‖ Appd ‖Lin[H(Kd ),L2(I

d )] .

Hence, we can findα for which (21) is satisfied if we can determineα such thatCd is of orderdα.

Theorem 6.3. The heat equation forH(Kd) with finite-order weights of orderω/2 is tractable for the
normalized error. More precisely, forNω/2 defined by(21), we have

Nω/2 ≤ max
{
1, ρ1T

√
2 max{1, κω

0 }γmax

}
, (31)

and the following bounds hold:

1. Suppose thatκ2 > 0.

(a) For the class3all, we have

cardnor(ε, Sd, Fd, 3
all) ≤ 2(ρ1 + ρ2)

2N2
ω/2

(
κ1

κ2

)ω (
1

ε

)2

dω.

Moreover, the algorithmU ∗

d,n, with n = cardnor(ε, Sd, Fd, 3
all), gives anε-approximation.

Hence
pnor

err (3
all) ≤ 2 and pnor

dim(3all) ≤ ω.
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(b) For the class3std, we have

cardnor(ε, Sd, Fd, 3
std) ≤

⌈
8(ρ1 + ρ2)

4N4
ω/2

(
κ1

κ2

)2ω (
1

ε

)4

d2ω

⌉
+ 1.

Moreover, the algorithmUd,n, with n = cardnor(ε, Sd, Fd, 3
std), gives anε-approximation.

Hence
pnor

err (3
std) ≤ 4 and pnor

dim(3std) ≤ 2ω.

2. Suppose thatκ2 = 0, and let0 be defined by(27). Then we have the following results:

(a) For the class3all, we have

cardnor(ε, Sd, Fd, 3
all) ≤ 4(ρ1 + ρ2)

2N2
ω/20

ω

(
1

ε

)2

d2ω.

Moreover, the algorithmU ∗

d,n, with n = cardnor(ε, Sd, Fd, 3
all), gives anε-approximation.

Hence
pnor

err (3
all) ≤ 2 and pnor

dim(3all) ≤ 2ω.

(b) For the class3std, we have

cardnor(ε, Sd, Fd, 3
std) ≤

⌈
32(ρ1 + ρ2)

4N4
ω/20

2ω

(
1

ε

)4

d4ω

⌉
+ 1.

Moreover, the algorithmUd,n, with n = cardnor(ε, Sd, Fd, 3
std), gives anε-approximation.

Hence
pnor

err (3
std) ≤ 4 and pnor

dim(3std) ≤ 4ω.

Proof. Using (18), (22), and Lemma 6.1, we find that

Cd ≤ max
{
1, ρ1T

√
2 max{1, κω

0 }γmax

}
· dω/2.

Hence settingα = ω/2 in (21), we obtain (26). The remaining results of this theorem now follow from [15,
Theorem 7], withα = ω.

Example.Suppose thatK is the min kernelKmin. Sinceκ0 = 1 andκ1 =
1
2, we have

Nω/2 ≤ max
{
1, ρ1T

√
2γmax

} √
2γmax

from (26). Furthermore, sinceκ2 =
1
3 6= 0, we see that case 1 holds in Theorem 6.3. Hence we find that the

heat equation is tractable under the normalized error criterion, with

pnor
err (3

all) ≤ 2 and pnor
dim(3all) ≤ ω,

for continuous linear information and

pnor
err (3

std) ≤ 4 and pnor
dim(3std) ≤ 2ω

for standard information.
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Example.Now suppose thatK is the Korobov kernelKKor. Sinceκ0 = κ1 =
1
2, we again have

Nω/2 ≤ max
{
1, ρ1T

√
2γmax

} √
2γmax

from (26). Furthermore, sinceκ2 = 0, we see that case 2 holds in Theorem 6.3, with0 ≤ 12 by (25). Hence
we find that the heat equation is tractable under the normalized error criterion, with

pnor
err (3

all) ≤ 2 and pnor
dim(3all) ≤ 2ω,

for continuous linear information and

pnor
err (3

std) ≤ 4 and pnor
dim(3std) ≤ 4ω

for standard information.

Hence the heat equation is tractable under the normalized error criterion for any finite-order weighted
RKHS, no matter what set of weights is used. As was the case for the absolute error criterion, we are unable
to establish strong tractability at this level of generality, since the Lipschitz constantCd s basically given
by σd(κ0), which is a polynomial of degreeω/2 in d. Hence we can only guarantee thatNω/2 is finite. It is
proved in [15, Theorem 7] that strong tractability holds ifκ2 > 0 and ifN0 is finite. We can guarantee that
N0 is finite if we follow the approach taken in [15, Theorem 8].

Theorem 6.4.Suppose thatκ2 > 0 and thatρ3, as given by(28), is finite. The heat equation forH(Kd) with
finite-order weights of orderω satisfying(28) is strongly tractable for the normalized error. More precisely,
for N0 defined by(21), we have

N0 ≤ max
{
1, ρ1ρ

1/2
3 T max{1, κ

ω/2
0 }

}
, (32)

and the following bounds hold:

1. For the class3all, we have

cardnor(ε, Sd, Fd, 3
all) ≤ 2(ρ1 + ρ2)

2N2
0

(
κ1

κ2

)ω (
1

ε

)2

,

Moreover, the algorithmU ∗

d,n, with n = cardnor(ε, Sd, Fd, 3
all), gives anε-approximation. Hence

pabs
strong(3

all) ≤ 2.

2. For the class3std, we have

cardnor(ε, Sd, Fd, 3
std) ≤

⌈
8(ρ1 + ρ2)

4N4
0

(
κ1

κ2

)2ω (
1

ε

)4
⌉

+ 1.

Moreover, the algorithmUd,n, with n = cardnor(ε, Sd, Fd, 3
std), gives anε-approximation. Hence

pabs
strong(3

std) ≤ 4.
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Proof. From (21) and Lemma 6.1, we have

N0 = sup
d∈Z++

Cd = max{1, ρ1T σd(κ0)} .

Using (28), we see that
σd(κ0) ≤ ρ

1/2
3 max{1, κ

ω/2
0 }.

Combining these results, we obtain (32). The desired result now follows from [15, Theorem 8].

Example.Suppose once again thatK = Kmin. Assume that (28) holds. Then the conditions of Theorem 6.4
are satisfied with

N0 ≤ ρ
1/2
3 max{1, ρ1ρ

1/2
3 T } and

(
κ1

κ2

)ω

=

(
3

2

)ω

.

Hence, the heat equation is strongly tractable under the normalized error criterion, with

pabs
strong(3

all) ≤ 2 and pabs
strong(3

all) ≤ 4.
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