Practical Preference Relations for Large Data Sets

Kenneth Ross
Columbia University
kar@cs.columbia.edu

Peter J. Stuckey
NICTA Victoria Laboratory
University of Melbourne

Amélie Marian
Rutgers University
amelie@cs.rutgers.edu

pjs@cs.mu.oz.au

Columbia University Technical Report CUCS-028-06

Abstract

User-defined preferences allow personalized
ranking of query results. A user provides
a declarative specification of his/her prefer-
ences, and the system is expected to use
that specification to give more prominence
to preferred answers. We study constraint
formalisms for expressing user preferences as
base facts in a partial order. We consider a
language that allows comparison and a limited
form of arithmetic, and show that the transi-
tive closure computation required to complete
the partial order terminates. We consider
various ways of composing partial orders from
smaller pieces, and provide results on the size
of the resulting transitive closures. We in-
troduce the notion of “covering composition,”
which solves some semantic problems appar-
ent in previous notions of composition. Fi-
nally, we show how preference queries within
our language can be supported by suitable
index structures for efficient evaluation over
large data sets. Our results provide guidance
about when complex preferences can be effi-
ciently evaluated, and when they cannot.

1 Introduction

A variety of applications demand functionality that
allows users to specify which among a large set of
potential answers to a query is most relevant to them.
Based on this specification, the most relevant answers

are given more prominence; for example, they may be
displayed first.

Current search engines such as Google provide
a scalable implementation of ranking functionality.
However, the ranking is done according to a single
ranking function (e.g., “pagerank” [14]) that is not
adjustable by users. Ideally, different users should
be able to specify different relevance measures for the
same data.

Past work on preferences has followed one of two
approaches, termed the quantitative and qualitative
approaches [4]. According to the quantitative ap-
proach [1], one starts by defining a measure on the
underlying data set. For example, a simple measure for
an automobile sales application might be price, with
lower prices having a higher rank. It is then possible
to write queries that order the results according to this
measure. A common approach is to define a scoring
measure that assigns weights based on the importance
to the user of each attribute in the data set [8]. In some
cases, one can limit the number of answers using a
“top-k” query primitive on the underlying data values
or ranks, and achieve savings in query processing
cost [7, 6]. Most work on top-k query use a quan-
titative approach by aggregating individual measures
using a monotonic pre-defined scoring function. Quan-
titative approaches based on scoring functions provide
an easy mechanism to produce a complete ordering
of the underlying data set. However, quantitative
preferences lack expressive power [4].

More general approaches allow a vector of measures,
such as the pair (price, safety-rating) for automobiles.
Queries then solicit the “skyline” of the resulting com-
bined measure, returning the Pareto-optimal records
(i.e., those not dominated by another record) among
those satisfying the query [2]. A complete ordering of
the underlying data set may not be possible as some
records may not be comparable. For instance, it is not
possible to order a very safe but expensive car and a
cheap but less safe car. While more expressive than
quantitative preference approaches, approaches based
on (vectors of) measures are not sufficiently expressive



for some applications [4]:

Example 1.1: Suppose that for sports cars, a red car
is preferred to a blue car, while for economy cars, a
blue car is preferred to a red car. This function cannot
be expressed as a monotonic composition of rankings
on car-type and color, because red is sometimes pre-
ferred to blue, and sometimes blue is preferred to
red. A single measure on (car-type,color) pairs cannot
capture the requirement that sports cars and economy
cars are incomparable with each other. [l

Example 1.2: Suppose that the user cares about
price, but does not care about small differences in
price. For example, the user might wish to state “For
any given class of car, car A is preferred to car B if the
price of A is less than 80% of the price of B.” Cars that
differ by 20% or less in price are incomparable.! Again,
this is not specifiable using a single measure on price.
Among other things, this kind of rule prevents a car
with a price of $1999 “obscuring from view” another
car with a price of $2000, when only Pareto-optimal
records are displayed.

According to the qualitative approach, one defines
a binary preference relation between entities [12]. We
take the qualitative approach in this paper, following
Kiefling and Chomicki in using strict partial orders
to represent the preference relation. One writes = >
y to describe a preference for xz over y. In order to
return the Pareto-optimal set of answers, one can use
the definition of the partial order to test whether a
dominating record appears in the database [12, 13, 4].

Since partial orders are transitive, a user-specified
set of preference facts needs an application of transitive
closure to generate the complete partial order. In gen-
eral, the transitive closure cannot be avoided, because
a preference for r; over ro may be a consequence of a
chain 71 > s1 > S2 > ... > S, > 79, with none of the
s; actually being present in the database. (In special
cases, such as when the preference is specified by a
numeric total order, an explicit transitive closure step
is not required.)

We focus on what Chomicki calls “intrinsic” pref-
erences, i.e., preference relations that can be specified
based solely on values in the database records being
compared [4]. Some seemingly non-intrinsic preference
relations can be represented intrinsically by creating a
view in the database that adds new columns to the
records being compared [4]. For efficiency, these views
could be materialized and indexed. Sometimes the
views can be computed efficiently on the fly, so that
additional columns are available to the user to specify
preferences.

1Because we are building a strict partial order, one cannot
say something like “cars that differ by 20% or less in price are
equivalent.” However, we will achieve a similar effect when
combining partial orders in Section 3.1.

Example 1.3: Consider a travel agency website that
allows users to list which of the airlines’ frequent flier
programs they belong to. On any flight query, the
system could add an extra column to the output of
each flight leg, indicating whether or not the airline
belongs to the user’s frequent-flier list. This is easily
performed using a join (or outer join) on the fly, since
the list of airlines is likely to be small.

The choice of intrinsic preferences decouples the
complexity of preprocessing the partial order from the
size of the database, and makes the order insensitive
to database updates.

We formalize the specification of the partial order
using a Datalog-like syntax. A user supplies a set of
base rules defining a (strict) partial order >, and an
additional recursive rule is used to transitively close
the > relation. In some cases, user specified rules may
involve constraints, such as

T(Ol,Pl) b T’(CQ,PQ) - C1 = OQ,Pl <0.8% P

which states that a record r; is preferred to a record
ro if the first column of the two records is the same,
and 71’s second column is less than 0.8 times the corre-
sponding value in 5. This rule expresses Example 1.2.

We preprocess the set of rules by generating a least
fixpoint in the sense of [11], working within an appro-
priate domain of constraints. A minimal requirement
is that the constraint domain together with the class of
allowed rules guarantee that a least fixpoint is reached
after a finite number of iterations. Chomicki showed
that such a fixpoint exists for preferences defined in
terms of equality and < (but without arithmetic) on
rational numbers [4], using a result of [11].

Our first contribution is to show that a fixpoint
exists for a more general class of constraints that is
useful for applications employing preferences, includ-
ing arithmetic constraints like those in Example 1.2.

It would also be desirable to guarantee that prepro-
cessing the rules has low complexity. The complexity
of deriving all consequences of a set of rules on a
relation with ¢ columns can be exponential in ¢, even
without arithmetic.

Example 1.4: Consider the following set of ¢ rules on
relations with ¢ columns:

’I”(Xl,...,chl,l) - T(Xl,...,chl,O)
T‘(Xl,...,Xc_g,l,Xc) - T(Xl,...,XC_Q,O,XC)
r(1,Xo,..., X)) = (0, Xa,...,X.)

The transitive closure of these rules contains terms of
the form

r(Yi,...,Yo) = r(Z1,...,Z¢)

where for each ¢ = 1,..., ¢, either Y; = 1 and Z; = 0,
or Y; = Z; represent a common variable. Each com-
bination of these possibilities is generated, except for



the case where Y; = Z; for all i. There are 2¢ — 1
such terms in the transitive closure, none of which is
subsumed by another. [l

In typical applications, ¢ may be large because each
record may have many descriptive attributes that are
pertinent to the definition of relevance.

Our second contribution is to describe how to define
and compose preferences in a way that limits the
size of the transitive closure. We also introduce a
new notion of “covering composition” that eliminates
some semantic anomalies present in previous notions
of composition.

Finally, we consider the relationship between pref-
erences and indexing. Once a preference set has been
preprocessed, one can predict the kinds of database
lookups necessary to find records preferable to a given
record. By using appropriate index structures, one can
achieve good data complexity bounds.

Proofs are omitted from the main text, and can be
found in Appendix A.

2 Preference Classes

Motivated by preferences like those of Example 1.2, we
define a class of preferences that allows a particular
form of arithmetic comparisons in the constraints. We
define two languages within which constraints may be
expressed. All constraint languages allow the Boolean
values true, denoted T (corresponding to the empty
constraint) and false, denoted L (corresponding to an
inconsistent constraint).

Definition 2.1: The constraint language Ls is de-
fined over a finite set of distinct constants S, and
contains

e constants from S and variables as basic expres-
sions,

e the standard equality predicate = on expressions,

e conjunctions of predicates. U]
Definition 2.2: Let C(X1,....Xn,Y1,...,Y,)
be a constraint in Ls over the variables

X1, 0, X, Y1, Y. We say C is =-allowed,
if (a) Every equation ¢ in C has the form X; =Y} for
some ¢ and j, or X; = a for some i and some constant
ain S, or Y; = a for some j and some constant a in
S; and (b) No two equations of the form X; = Y in
C share the same Y; variable. Note that the empty
constraint, i.e., the Boolean value T, is =-allowed
(vacuously). The false constraint L is also =-allowed.

Definition 2.3: The constraint language L is de-
fined over the nonnegative real numbers (denoted here
by R), and contains

e variables and constants from R as basic expres-
sions,

e composition of subexpressions using multiplica-
tion and addition,

e the standard ordering predicate < on expressions,

e the standard equality predicate = on expressions,

e conjunctions of predicates. [l
Definition 2.4: Let C(X1,....Xn,Y1,...,Y,)
be a constraint in Lxr over the variables

X, ., X0, Y,....Y,. We say C is <-allowed,
if it has the following syntactic form: (a) Every
inequality ¢ in C' has the form

X +b<aY;

for some i and j, where b is a nonnegative constant,
and a is a constant in (0,1]. (b) Every equality e in
C has the form X; = Y} for some i and j, and no
two equalities in C' share the same Y;. (c) Each X;
may appear in at most one equality or inequality in
C. Note that the empty constraint, i.e., the Boolean
value T, is <-allowed, as is the false constraint 1. []

For notational convenience, we may sometimes
write an <-allowed inequality as

Xl-<an—b

even though subtraction is not strictly part of L.
One can define an analogous class of >-allowed
constraints of the form

X;>a Y1 +taYo+...+a,Y,+0b

by requiring b > 0 and each a; to be either zero or
at least 1. This class is slightly more general than
<-allowed constraints in that addition of multiple Y;
terms is permitted in constraints. Nevertheless, the
main ideas are analogous to those described below
for <-allowed rules, and are omitted due to space
limitations.

The syntax for =-allowed and <-allowed constraints
is not symmetric, in that it treats the variables
Xi,..., X, differently from the variables Y7,...,Y,.
The reasons for this choice will become apparent when
we discuss indexing in Section 4.2.

Definition 2.5: An =-allowed rule is said to be rigid
if for every occurrence of an equation X; =Y}, ¢ =
j. An <-allowed rule is said to be rigid if for every
occurrence of an equation X; = Yj;, i = j, and for
every occurrence of an inequality X; < aY; —b, i = j.

O



Rigid rules require that column variables in one
record are compared (via = or <) only with the
same column variables in another record. Rigid rules
have certain nice composition properties, described in
Section 3.

When we have two preference facts of the form
r1 > 1o and ro > r3, we will apply transitivity to infer
r1 = r3. The following two lemmas show that this
transitivity step can be done within the corresponding
constraint language while eliminating variables from
T9.

Lemma 2.1: Let Cy(Xy,...,X,,Y1,...,Y,) and
Co(Y1,...,Yn, Z1,...,Zy,) be =-allowed constraints in
Ls. Then 3Y3,...,Y, : C1 A C3 can be expressed as
an =-allowed constraint Cs(X1,...,Xn, Z1,...,25)
in [,3. |:|
Lemma 2.2: Let Cy(Xy,...,X,,Y1,...,Y,) and

Co(Y1,...,Yn, Z1,...,Z,) be <-allowed constraints in
Lgr. Then 3Y7,...,Y, : C1 A Cy can be expressed as
an <-allowed constraint Cs(X1,...,Xn, Z1,...,25)
in ER |:|

We will consider collections of rules in which pref-
erences are specified using <-allowed constraints from
L7, and =-allowed constraints from Lg for an appro-
priate set S. We will partition the variables into two
groups: those that are of “Ls type” and those that
are of “Lr type.” By convention, we shall write the
Ls variables first, and assume that 0 < ¢ < n of the
n variable pairs are of Ls type. Because the variables
of each type are disjoint, we can apply Lemmas 2.2
and 2.1 together when applying a transitivity rule to
two preferences.

Example 2.1: Consider a car database in which cars
have a color and a price. The color column has type
Ls where S is a set of colors. The price column has
type Lr. The rule “I prefer a red car to a blue car if
the price of the red car is more than $100 below the
price of the blue car” is expressed as

r1: r(Cy,P) > r(Co Py) :-
Cy = red, Cy = blue, P, < P, — 100.

The rule “Among two cars of the same color, I prefer
one if its price is less than 0.8 times the price of the
other” from Example 1.2 is expressed as

To : T(Cl,Pl) >—T(CQ,P2) =
Ci = OQ,Pl < 0.8 % Ps.

As a shorthand, we may sometimes repeat variables or
put constants in the head of a rule, as in Example 1.4.

O

Example 2.2: Consider the rules of Example 2.1, for
which we will apply one round of transitivity. There

are four possible rule compositions: r; with itself, 7o
with itself, r1 with ro and ro with r;. Using the
constructions of Lemmas 2.1 and 2.2, the rule bodies
of the four compositions are:

r11: C1 = red, Cs = blue, red = blue, P; < P, — 200
ro9: C1 = Cg,Pl < 0.64 *x Py

r12: C1 = red, Cs = blue, P; < 0.8 x P2 — 100

ro1: C1 = red, Co = blue, P; < 0.8 x P2 — 80

The body of rule r1; is inconsistent because of the
red = blue predicate, and so r1; can be dropped since
it generates no answers. The body of ro5 is consistent.
However, it is subsumed by the body of rule r3, since
P; < 0.64 % P, is a more restrictive constraint than
P < 0.8 % P, on the nonnegative real numbers. Thus
roo can be dropped. Similarly, the body of ris is
subsumed by the body of r1, and can be dropped. The
body of 721 is not subsumed by either r1 or rs.

A second transitivity step can be applied to ro1, to
get 7917 and T912. 7911 is inconsistent for the same
reasons as ri1. ro12 is subsumed by ro1. Thus, the
complete transitive closure of {ry,ra} is {r1,7r2,721}.

O

2.1 Termination

The process of computing the transitive closure in Ex-
ample 2.2 terminated. Is this a general property of the
class of rules we are considering? That rules over Lgs
terminate under transitive closure is relatively easy to
see, because the rules can be written as Datalog rules
with nonground facts. The least fixpoint computation
on such rules terminates when duplicate elimination
is based on subsumption, since there are only finitely
many possible fact variants that can be generated.

However, in L%, there is no such finiteness property.
In fact, there are infinite collections of constraints for
which no single constraint is subsumed by the others.
(Imagine a collection of half-planes whose boundaries
are tangent to the unit circle in a single quadrant.)

The main result of this section is that the transitive
closure computation of a finite set of <-allowed rules
over L always terminates. A simple subsumption
check that is sound but not complete is sufficient for
guaranteeing termination.

Definition 2.6: Let X; < aY; —b and X; < a'Y; — V'
be constraints, denoted by C and C’ respectively.
We say C' dominates C' if ¥ > b and o’ < a. An
equality constraint is said to dominate itself. A con-
junction C of constraints dominates a conjunction Cy
of constraints if every conjunct of C; dominates some
conjunct of Cj. [l

It is straightforward to show that on the nonnega-
tive reals R, if C dominates C’ then C is implied by
.



Theorem 2.3: Transitive closure of <-allowed rules
in Lz terminates under an evaluation that checks
whether a newly generated constraint is dominated by
any single previously generated constraint. U]

We cannot extend the definition of <-allowed con-
straints to include addition, as in the discussion of >-
allowedness above.

Example 2.3: Consider the (non <-allowed) con-
straint

(X1 <Y)A(X2<05%Y7 +0.5%Y3).

Combining this rule transitively with itself n times
leads to the constraint

(Xl < Yl) A (XQ < (1 — 05"))/1 + (05)71}/2)

Each such constraint is not subsumed by the set of
previously generated constraints. U

The termination in each of Ls and Lz implies ter-
mination in the combined language, since the columns
of each type are disjoint.

There are additional constraint languages that have
previously been considered, and could be used equally
well in the following sections. For example, a language
allowing equalities and inequalities (but no arithmetic)
on constants and variables [4] would be useful for
expressing some kinds of constraint. When the transi-
tive closure can be computed in finite time, the same
general techniques can be used.

2.2 Consistency

It is possible that a user may specify a set of con-
straints that violate the requirements of a partial
order, even if they satisfy the syntactic conditions
defined above. This violation can be detected during
the transitive closure computation. If (at any stage of
the transitive closure computation) the constraint in a
rule is consistent with X1 =Y; A... A X,, =Y, then
we have a cycle that violates the partial order. Users
can be told which rules participated in the cycle, and
therefore need to be modified.

Example 2.4: Consider the rules

T(Ol,Pl) - T’(CQ,PQ) := Cy = blue, P, < 0.8% Py
r(Cy, Pr) »= r(Cy, P) := Ci = blue,Cy = red.

then the rules are individually consistent but the tran-
sitive closure contains the rule
r(Cy, Py) > r(Co, Py) := Ci = blue, Cy = blue.

which violates the partial order requirement. [l

3 Composing Preferences

Suppose we have two preference orders »>; and 9
on relations r; and ry respectively. Composition is
defined on a relation r whose domain is the cross
product of the domains of r1 and ro. We write (&1, Z2)
to distinguish the attributes of r that come from each
of r; and 7y respectively.

The prioritized composition [12], == & >, is
defined as: r(Z1, @) = r(¥1, yo) iff

Tl(fl) -1 7‘1(:171) or (fl = :Ijl and Tg(fg) 9 7‘2(372))

Prioritized composition gives priority to the first pref-
erence order, and uses the second order only to break
ties in the first order.
The Pareto composition [12], ==>1 ® 2, is de-
fined as: r(&1, @) = r(¥1, g2 )iff
Tl(fl) 1 7”1(:171) and Tg(fg) 2 7‘2(:172), or
Tl(fl) 1 Tl(gl) and fg = gg, or
fl = gl and TQ(fQ) -9 TQ(gQ).

Pareto composition treats the component orders sym-
metrically. A record must be strictly better according
to at least one of the component orders than a com-
parison record, and either better or equal according to
the other component order.

The strict composition ==»1 X o, is defined as:
T(fl, fz) - T’(zjl, gg)lﬁ

Tl(fl) -1 7‘1(371) and Tg(fg) 9 7‘2(372)

Strict composition is also symmetric, and requires that
a record must be strictly better according to all of the
component partial orders.

Both prioritized composition and Pareto composi-
tion define partial orders [12], as does strict composi-
tion.

3.1 Covering Preferences

For <-allowed rules, Pareto-composition and prior-
itized composition may give unintuitive results, as
shown in the following example.

Example 3.1: Consider a preference >=; on prices
defined as in some of the examples above via a rule
with body like P; < 0.8 x P. Let 5 represent a
preference for red cars over blue cars. According to
=1 ® =2 (and also =1 & >2), (75,red) and (100,red)
are both preferred to (100,blue), while (90,red) is
not. This problem reflects a conflict between the
philosophy behind <-allowed rules and equality. An <-
allowed rule tries to express the requirement that small
differences do mot lead to a preference relationship.
The equality in Pareto-composition and prioritized
composition expresses the opposite: a preference is
possible when the column values match exactly. U]



To resolve this problem, we define the notion of
covering constraints. Covering constraints relax con-
straints just enough to bridge the gap between the
partial order and an equality constraint.

Definition 3.1: Let R be a set of <-allowed rules.
Define the cover of R, denoted by R, to be the
rules formed from R by replacing all multiplicative
constants in the body of the rules by 1, and all additive
constants in the bodies of rules by 0. If > is the partial
order defined by R, then = is the partial order defined

by R. [l

Ris <-allowed, and defines a partial order. Further,
by the construction of R, all preferences implied by R

are also implied by R, i.e., =C . We can now define
covering versions of prioritized and Pareto composi-
tion.

Definition 3.2: Given partial orders >=; and o,
where > is defined by <-allowed rules, define

=1 & =2 U ;\1><>-2
1 ® >0 U >=1X =2 ]

=1 & =y =
1 ® =2 =

Definition 3.2 defines “one-sided” versions of com-
position using covered preferences. It is also possible
to define a “two-sided” version of Pareto composition,
but the details are omitted here.

In general, =1 & =5 and =1 ® =9 are not partial
orders, because they may violate transitivity. They do
define partial orders for an important subclass of rules.

Lemma 3.1: >, & 5 and =1 ® = define partial
orders if > is defined using a single rigid rule. [l

Example 3.2: Revisiting Example 3.1, suppose we
instead used the covering versions >1 ® o (or =1
& >2) to define the preferences. Then even though
90 %1 100, we do have 90 =; 100, and so (90,red) is
now preferred to (100,blue). Note that (90,red) is still
not preferred to (100,red). (]

A potential alternative to these notions of composi-
tion, and the idea of covering, is defined by Chomicki
[4]. He defines a different version of prioritized com-
position that we will call “triangle composition” to
distinguish it from the previously defined notion of
prioritized composition.

Definition 3.3: The indifference relation ~ for a bi-
nary relation > is defined as

z~yiff x ¥ yandy ¥ x.

Given two binary relations =7 and >q, the triangle
composition = = 1 > >o is defined as

(@1, 22) > (y1,y2) iff
x1 =1y or (x1 ~1 y1 and x2 2 Y2)

where ~ is the indifference relation for 1. ]

The notion of indifference is intended to capture
the absence of a preference between elements. The
triangle composition of two strict partial orders is not
necessarily transitive [4]. Triangle composition can
give problematic preference relations, as illustrated in
the following example.

Example 3.3: Consider again the rules from Exam-
ple 3.1, extending 2 so that red cars are preferred to
blue cars, which are in turn preferred to green cars. Let
> denote =1 > =o. Then according to the definition
of triangle composition, we have

(100, red) > (90, blue) = (75, green) >~ (100, red).

Thus, there is a cycle of preferences according to
triangle composition. [l

Cycles of preferences present several obvious prob-
lems. The transitive closure of such a relation is not
an order, and would be considered inconsistent (see
Section 2.2). An evaluation method that discards a
tuple in favor of a preferred tuple may get stuck in an
infinite loop, even in a finite domain.

In contrast, it is relatively easy to see that cycles do
not occur in the covering versions of composition (Def-
inition 3.2). In any chain of tuples, each preferred to
the next, the first argument will always be decreasing
relative to =1.

Example 3.4: The cycle identified in Example 3.3
does not occur with covering constraints. (100, red)
(90, blue), even though the value 100 is within 20% of
the value 90. This difference highlights the importance
of relaxing constraints slightly, to bridge the gap be-
tween inequalities and equality, without relaxing the
constraints so much that inconsistency results. [l

3.2 Complexity

We aim to investigate the complexity of prioritized,
Pareto, and strict composition. (The covering versions
of these compositions can be expressed in terms of
the three basic compositions.) At this level, we are
interested in the size of the computed transitive closure
of a composed partial order as a function of the sizes of
the transitive closures of the component partial orders.
Given a partial order > specified by a set of rules,
we let S(>) denote the cardinality of the transitive
closure.

Definition 3.4: Let R; and Rs be rules defining the
partial orders =1 and > on domains (Xl , 171) and
(X, Ys) respectively.

Define R1& R5 to be the rule set obtained by extend-
ing the domain of both rule sets to ()?1 U XQ, YU ?2),
and adding the constraint X 1= 371 to the body of rules
in RQ.



Define R1® R to be the rule set obtained by extend-
ing the domain of both rule sets to ()?1 U XQ, YU ?2),
adding the constraint X, =Y, to the body of rules in
R, and adding the constraint XQ = }_’é to the body of
rules in R;.

Define Ry x R5 to be Ehe ru_lp set obt_z}ined as follows.
Define a rule r over (X; U X5,Y; UY3) in which the
body of r applies r1 to ()?1,}_}1) and ro to ()?2,}_}2)

Rules for covering compositions can be derived as

unions of rules defined above, according to Defini-
tion 3.2. 0

Note that if Ry and Ry are <-allowed then so are
R1&R5 and R ® Rs, and similarly for =-allowed rules.
While R; X Ry is not necessarily allowed, we will
identify classes of rules below for which R; X Rs can
be written as an allowed set of rules.

Lemma 3.2: The &, ®, and x operators on rules
faithfully implement the corresponding operations on
the underlying partial orders. U]

Lemma 3.3: S(>1 & =2) = S(>1) + S(>2). H

Example 3.5: We illustrate Lemma 3.3 by consider-
ing =1 on (X1,Y7) defined by X; < Y7, and =2 on
(X2,Y2) defined by Xo = 1,Y> = 0. The rules in the
composition are

C1 T(X15X27}/15}/2)
c2 (X1, X0,Y1,Y2)

- X1 <N
- X1=Y,X=1Y,=0

c1 composed with co yields

c12 7(X1,X2,Y1,Y2)
C21 T(X15X27}/17}/2)

- X<V, =0
- X<, Xo=1

both of which are subsumed by c¢;. [l
Lemma 3.4: S(>1 ® »2) = (S(>1)+1)(S(>2)+1)—
1.

Example 3.6: We illustrate the construction in
Lemma 3.4 by considering >1 on (X7,Y7) defined by
X1 <Y, and =5 on (X3, Ys) defined by X5 < Ys. The
rules in the Pareto composition are

a r(X,Xe,Y,Y) - X1 <V, Xo=Y,
C2 T(X17X25Y1;}/2) E X1:Y1;X2<}/2

c1 and ¢y are closed under self-composition. ¢; com-
posed with ¢y (in either order) yields

3 r(X1,X5,Y1,Ys) - X1 <V, Xo <Y,
The transitive closure contains three rules. L]

When considering strict composition, we would like
to identify circumstances when »>; X >3 can be
expressed as an =-allowed or <-allowed set of rules.
Under such circumstances, we will be able to show
that strict composition has good scaling properties,
and we will not suffer the exponential blowup inherent
in Lemma 3.4.

Lemma 3.5: A rule set containing a single rigid =-
allowed rule is transitively closed in L£s. A rule set
containing a single rigid <-allowed rule is transitively
closed in L5. U]

Since single rigid rules are transitively closed, we
can rewrite »=1 X > if one of the partial orders (say
>=9) is defined by a single rigid rule. The rules for
r1 and 72 can be unfolded into the combining rule in
=1 X 9, resulting in one rule for »=; x >, for each
rule in >;. Further, the resulting unfolded rules are
allowed if the rules for =1 are allowed.

Lemma 3.6: If > is defined by a single rigid allowed
rule, then S(>1 x =3) = S(>1). H

Lemmas 3.3, 3.4, and 3.6 have important impli-
cations for how one might build complex preferences
out of simpler components while keeping the overall
complexity under control. Lemma 3.3 indicates that
a prioritized composition scales additively, meaning
that the number of probes to the database required
to determine preference is likely to be manageable.

On the other hand, Lemma 3.4 indicates that a
Pareto-composition scales multiplicatively, and so the
number of probes may be exponential in the number of
component partial orders. This exponential behavior
holds even when the transitive closure of a component
partial order has just one rule, since the multiplicative
term is S(>) + 1. Example 1.4 is an instance of this
observation.

In contrast with Example 1.4, the following similar
set of rules is better behaved, because it is generated
using prioritized composition rather than Pareto com-
position.

Example 3.7: Consider the following set of ¢ rules on
relations with ¢ columns:

T(Xl,...,chl,l) - T(Xl,...,chl,O)
T‘(Xl,...,Xc_g,l,_) - T(Xl,...,Xc_2,07_)
r(l,o,...,0) = r(0,5...,.)

In these rules, an underscore denotes an unconstrained
variable; different instances of “_” represent different
variables. These rules are transitively closed: compos-
ing two rules gives an instance of an existing rule. []

Lemma 3.6 shows that this exponential behavior
can be broken if we use strict composition, and if one
of the component orders is defined by a single strict
allowed rule.

Suppose that we wish to limit the size of the transi-
tive closure to be polynomial in ¢ where ¢ is the number
of columns. We can achieve this effect as follows:

e Each basic partial order is allowed to mention
at most K columns, for some constant K. This
decouples the complexity of basic orders from the
number of columns.



e Prioritized composition can be used as needed.

e Strict composition with an order defined by a
single strict allowed rule can be used as needed.

e Pareto composition can be used a bounded num-
ber of times.

Example 3.8: Consider an example for finding
“good” flight plans from a travel agency database.
The flight records include columns: S, T, F, P that
respectively give the number of stops S in the flight
plan, the total time of the flight plan, whether the
flight is with an airline for which you are a member of
the frequent flier program (F = yes) or not (F = no),
and the price P of the flight plan. The three preference
relations of a flier might be: (a) Flights with fewer
stops are preferable.

f1 Tl(Sl) 1 T’l(SQ) i Sl < SQ

(b) Flights shorter by at least an hour are preferable

fo ro(Th) =2 ra(T2) := Ti<Tp—1
and (c) Cheaper flights are preferred but a non-
frequent flier flight must be 20% cheaper to be pre-
ferred over a frequent flier flight.

[z r3(F1, Pr) =3 r3(Fs, Pe) :-
F, = F2,P1 < P

fa 13(F1, Pr) =3 r3(Fa, Pp) :-
Fy =yes, Fo =no, P < P,

fs r3(F1, Pr) =3 r3(Fs, Pe) :-
F1 =no, F5, =yes, P, < 0.8 Py

The final ordering relation might be »1 &(>2 & -3
). That is better flights have fewer stops, and if the
number of stops is equal, then better flights are either
shorter by more than an hour, or both no longer and
better with respect to (qualified) price.

The ordering can be defined by a collection of rules
with head

r(S1, T, F1, Pr) = r(S2, T2, F2, Py) :-
and bodies given below:

S| < Ss

S1 :SQ,Tl <Ty -1
S1=8,T1=TF=FNP<DP

S1 ZSQ,Tl =Ty, :y€S7F2 =no, P, < P,
S1=82,T1 =T, F1 =no, Iy, =yes, P1 <0.8x% Py
S1=8,T1 <Tp, 1 =P <P

S ZSQ,Tl <Ts, Fy :y€S7F2 =no, P, < P

S ZSQ,Tl <Ts, Fy =no, F» :y€S7P1 <0.8>(<P2|:|

Pareto() { /* All entries start unmarked */
while (there are unmarked records) {
X := some unmarked record;
while (X is unmarked & there is
some Y such that Y = X)
{ mark X; X :=Y; }
if (X is unmarked)
{ output X; mark X; }
b}

Figure 1: Outputting the Pareto-optimal elements

3.3 Ceteris Paribus vs. Global Rules

By using Datalog-like rules, we have the flexibility to
define preferences that span the range between global
preferences and ceteris-paribus preferences. A global
preference is something like “Cy is better than Cy if
the price of C7 is less than the price of Cs,” where
all attributes other than the price are irrelevant to the
preference function. A ceteris-paribus preference [5, 3]
is something like “C1 is better than Cs if the price of
C1 is less than the price of Cs, all else being equal.”
The “all else being equal” clause implies that C; and
C5 will be comparable according to this rule only if all
attributes besides price are the same in C7 and Cs.

There has been some discussion in the preference
literature about the relative merits of each of these ap-
proaches [5]. Compared to global preferences, ceteris-
paribus permits a finer granularity of expressiveness
by providing some context to the preference. How-
ever, this added expressiveness comes at a cost in the
size of the transitive closure. Our discussion of the
complexity of composition adds to this discussion by
quantifying the cost of a pure ceteris paribus approach.
Example 1.4 is a classic ceteris paribus formulation,
and the transitive closure has size exponential in the
number of columns. Example 3.7 has some ceteris
paribus features. The “all else being equal” is applied
partially, according to a lexicographic ordering of at-
tributes. By doing so, the size of the transitive closure
has become linear in the number of columns.

4 Preferences and Indexing
4.1 The Pareto-Optimal Set

Based on the preference relation, one can generate as
output the Pareto-optimal set of records, i.e., those
records R for which there is no R’ in the database with
R’ = R. Pseudo-code is given in Figure 1. We assume
that the database records have all been inserted into
an appropriate index structure. (The choice of index
data structure will be discussed in Section 4.2.).

An index structure may be useful to efficiently find a
single record Y better than a given record X. If O(f(n))
is the complexity of this lookup step, it is relatively
easy to see that the overall complexity of the Pareto
algorithm is O(nf(n)). Note that the mark-related
operations of the algorithms above can be performed



in constant time and linear space using a hash table.

Algorithm Pareto shares some similarities with the
TA algorithm [7]. Pareto outputs one of the top
records when it knows that the record is undominated.
TA outputs the top-k objects, when no other object
in the data set can have a higher grade than the
current k best objects. However, their query models
are different: TA needs to aggregate information from
several indexes to get complete object information,
and unlike Pareto does not need to consider all objects
but can stop as soon as it has reached some guarantees
on the scores of the k best objects.

4.2 Index Structures

Given a set of rules, one applies the transitive closure

operation to get a set of rules of the form
T(Xl,...,Xn) }T(Yl,...,yn) .

C(X1,....,.Xn,1,...,Y0)

where C' is a constraint (from the constraint lan-
guage) on the variables Xi,...,X,,Y1,...,Y,. For
the Pareto algorithm, we need to determine records
that are “better” than a given record r(as,...,an),
where the a; are known constants. We must therefore
search the database for records r(X1, ..., X,,) satisfy-
ing C(X1,...,Xn,a1,...,a5,).

Example 4.1: Consider the rules rq,rs, 721 from Ex-
amples 2.1 and 2.2. Suppose we have a database record
d = r(blue, 1000), and want to determine records that
are better than d. Substituting the constants from d
as values for C; and P, in the three rules yields the
queries (Cq = red, Py < 900), (Cy = blue, P, < 800),
and (C; = red, P, < 720). (If the system is suffi-
ciently smart, it might notice that the third query is
redundant, being a special case of the first query.) For
this example, a tree index on (C, P) would allow such
records to be found efficiently. U]

Example 4.1 highlights the advantages of using =-
allowed and <-allowed rules. The constraints that
are generated when values for the Y; variables are
fixed are guaranteed to be of the form X; = a or
X; < b, where a and b are constants. Further, at
most one such constraint is needed for each variable —
other constraints on that variable will be redundant.
These will be easier to support directly using standard
indexes than non-allowed rules. For example, the non-
=-allowed rule

r(Xy, Xo) = r(Y1,Y2) - X1 =Xp,Y1=0a,Ya=0
yields a query of the form r(X,X), which is not
efficiently supported in standard index structures.

For allowed rules, a query template will be a collec-
tion of equality and inequality predicates on distinct
variables. Let us call the equality variables Ey, ..., Ep,

and the inequality variables Iy,...,I,. If ¢ =0, then a
hash table or tree-index on (E1,..., E,) are good can-
didates. If ¢ = 1, one could also employ a hash table
on (Ei,...,Ep) where the elements of the hash table
are tree indexes on I; on the corresponding subsets
of the data. A simple tree index on (E1,...,Ep, I1)
is another candidate. If ¢ > 1, we could employ a
hash table of kd trees or a hash table of range-trees,
where the trees index the Iy,...,I; columns. The
various choices and their complexity are summarized
in Table 1. Note that the probe time refers to a
probe that returns a single match. (In a database
context, one would use 1/O efficient versions of these
tree structures, such as Bkd-trees [15] or KDB-trees
[16].)

In general, the transitive closure rules may yield
multiple lookup templates, each of which may be best
handled by a different kind of index. It is likely to
be worthwhile to build multiple indexes to facilitate
such lookups. The lookup templates are database
independent, and so building multiple indexes does
not add to the data complexity of the approach. In
practice, the number of indexes needed is likely to be
small. In some cases, such as when one template is a
prefix of another, a single index can support multiple
templates.

If we do not have control over which indexes are
built, then we should simply choose the best available
index for each template. For example, if we need
to probe on (E1,...,Ey,, 1), and an index exists on
(Er,...,Ep_1) then we can use the index to narrow
down the search, and explicitly check the conditions
on F, and I; on each returned record until a match is
found.

4.3 Alternative Presentations

There are other ways to give prominence to preferred
records besides outputting only the Pareto-optimal
records. Omne could output all records in strata, with
the first stratum being the Pareto-optimal records, the
second stratum being those that are Pareto-optimal
among the remaining records, and so on [4]. One
could alternatively generate a total order of the records
that is consistent with the preference partial order,
and output records according to that total order. A
third alternative would be to output records r in an
ascending order with respect to the number of records
in the data set that dominate r.

Each of these alternatives could potentially be
achieved by using the Pareto algorithm as a subrou-
tine, although it is possible that faster direct methods
exist for some of these alternatives. We outline here
one way to present records according to the third
alternative above; a full discussion of such alternatives
is left to future work.

Consider a B-tree index structure augmented with
counts at each node, representing the number of ele-



Structure Applicability Space Build-time Probe-time Pareto

Hash table gq=0 O(n) O(n) O(1) O(Tn)
B-tree g<1 O(n) O(nlogn) O(logn) O(Tnlogn)
Hash table of kd trees g=k>1 O(n) O(nlogn) O(n'=Vky  O(Tn?>~1/F)
Hash table of k dimen- ¢g=#k>1 O(nlog"'n) O(nlog"'n) O(loghn) O(Tnlog" n)

sional range trees

Table 1: Space and time complexity as a function of the number of records n, and the size T of the transitive

closure of the rules, for various index structures.

ments in the subtree rooted at that node. Such counts
can be maintained without increasing the asymptotic
complexity of insert/delete/probe operations. Using
these counts, it is possible to return the number of
records preferable to a given record according to a sin-
gle preference tuple in time logarithmic in the number
of records in the index.

There are many preference tuples in the transitive
closure, and so we need to combine the counts for
each such preference tuple. However, naively adding
the counts may overcount the number of dominating
records, because a single record may be preferable
according to more than one rule in the transitive
closure. One can deal with this issue in three possible
ways.

1. One could look for sets of rules for which over-
counting is guaranteed not to happen because two
rules will never relate the same pair of records.
See Example 4.2 below. In such a case, adding the
counts will correctly generate the total number of
dominating records.

2. One could try to adjust for overcounting by sub-
tracting counts for records that are identified by
more than one rule. This solution requires extra
work, and one has to be careful not to “oversub-
tract” for records that are generated by multiple
rules.

3. One could accept that the counts are only an ap-
proximation of the number of dominating records,
an approximation that is useful enough for deter-
mining the order of result presentation. Even with
this approximation, the Pareto-optimal records
(those with a count of 0) are correctly identified.

Once counts are generated, the records would be
sorted into an increasing count order and output. The
net complexity would be O(Tnlogn) where T is the
size of the transitive closure, and n is the number of
records.

Example 4.2: Consider the rules of Example 3.7. No
rule instance in the transitive closure generates the
same preference between the same pair of records. To
see this, let us number the rules so that rule ¢ has the
form

T(Xl,...,Xifl,l,_,...,_) >-T’(X1,...

)X’L'*1707—7"'7—)'

Suppose that rules j and k (where j < k) both
generate a fact of the form
r(a1, ..., an) = 7(b1,...,by).

According to rule k, by = 0, ay = 1, and a; = b;.
According to rule j, b; = 0 and a; = 1, contradicting
a; = b;. Thus two rules never generate a common
fact. Therefore, for this set of rules, one can compute
the number of dominating records as the sum of the
number of dominating records for each rule.

Suppose there was a B-tree index on r over
(X1,...,X,), augmented with counts as described
above. Consider a record z that is 0 in positions j and
k (j < k) and 1 elsewhere. Using rule j, we would use
the B-tree to count the number of records with a prefix
of j 1’s. Using rule & we would use the B-tree to count
the number of records with a prefix of 1...101...1,
where there are k elements in the prefix and the zero
element is at position j. These two numbers would be
added to get the total number of records that dominate
record . U]

5 Conclusions

We have defined an expressive and useful constraint
language using equalities, inequalities, and arithmetic.
We have shown that the transitive closure of partial
order constraints expressed in our language can be
effectively computed. We have investigated the com-
plexity of composing preferences into larger preference
relations, and have described how to eliminate cer-
tain semantic anomalies present in previous notions of
composition. We have described the selection of index
structures to support the selection of Pareto-optimal
records.

We believe that the constraints introduced here
are practical, and can form the basis of a large-scale
preference management system.

References

[1] R. Agrawal and E. L. Wimmers. A framework
for expressing and combining preferences. In
SIGMOD Conference, 2000.

[2] S. Borzsonyi, D. Kossmann, and K. Stocker. The
skyline operator. In IEEE Conf. on Data Engi-
neering, 2001.



[3] C. Boutilier, R. I. Brafman, C. Domshlak, H. H.
Hoos, and D. Poole. CP-nets: A tool for rep-
resenting and reasoning with conditional ceteris

paribus preference statements. J. Artif. Intell.
Res. (JAIR), 21, 2004.

[4] J. Chomicki. Preference formulas in relational
queries. ACM Trans. Database Syst., 28(4), 2003.

[5] J. Doyle and M. P. Wellman. Representing
preferences as ceteris paribus comparatives. In
Decision-Theoretic Planning: Papers from the

1994 Spring AAAI Symposium, 1994.

[6] R. Fagin, R. Kumar, and D. Sivakumar. Compar-
ing top k lists. In SODA, 2003.

[7] R. Fagin, A. Lotem, and M. Naor. Optimal
aggregation algorithms for middleware. In PODS,
2001.

A formula for
Theor.

[8] R. Fagin and E. L. Wimmers.
incorporating weights into scoring rules.
Comput. Sci., 239(2):309-338, 2000.

[9] J.-B. Fourier. reported in: Analyse des travaux
de ’acadamie royale des sciences, pendant I’annee
1824, partie mathematique. In Histoire de
l’Academie Royale des Sciences de lInstitut de
France 7, volume 7, pages xlvii-lv. 1827. (Partial
English translation in: D.A. Kohler, Translation
of a Report by Fourier on his work on Linear
Inequalities, Opsearch 10 (1973) 38-42.).

[10] J. Jaffar, M. Maher, P. Stuckey, and R. Yap.
Projecting CLP(R) constraints. New Generation
Computing, 11:449-469, 1993.

[11] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz.
Constraint query languages. J. Comput. Syst.
Sei., 51(1), 1995.

[12] W. Kielling. Foundations of preferences in
database systems. In VLDB, 2002.

[13] W. KieBling and G. Kostler. Preference SQL -
design, implementation, experiences. In VLDB,
pages 990-1001, 2002.

[14] L. Page, S. Brin, R. Motwani, and T. Winograd.
The pagerank citation ranking: Bringing order
to the web. Technical report, Stanford Digital
Library Technologies Project, 1998.

[15] O. Procopiuc, P. K. Agarwal, L. Arge, and J. S.
Vitter. Bkd-tree: A dynamic scalable kd-tree. In
SSTD, 2003.

[16] J. T. Robinson. The K-D-B-tree: a search struc-
ture for large multidimensional dynamic indexes.
In SIGMOD Conference, pages 10-18, New York,
NY, USA, 1981. ACM Press.

A  Proofs

Lemma 2.1. Let C1(Xy,...,X,,Y1,...,Y,) and
Co(Y1,...,Yn,Z1,...,Z,) be =-allowed constraints in
Ls. Then 3Y7,...,Y, : C1 A Cs can be expressed as
an =-allowed constraint C5(X1, ..., X, Z1,...,Z,) in
Ls.

Proof. Assume that C; ACY is satisfiable, otherwise the
result C'3 can be expressed as L. There is at most one
equation of the form X; =Y} in C; for each Y;. We
can replace each other occurrence of Y; in equations
of the form Y; = Zj or ¥; = a by X;. The system
Cs resulting from all such replacements has at most
one occurrence of Zj (the original occurrence after
replacement), and hence is =-allowed. (]

Lemma 2.2. Let C1(Xq,...,X,,Y1,...,Y,) and

Co(Y1,...,Yn, Z1,...,Zy,) be <-allowed constraints in
Lgr. Then 3Y7,...,Y, : C1 A Cy can be expressed as
an <-allowed constraint C5(X1, ..., X, Z1,...,Z,) in
Lr.

Proof. We construct C'3 as the conjunction of pred-
icates formed by combining the conjuncts within C4
and () as follows. We aim to eliminate the variables Y}
while preserving equivalence, using (extended) Fourier
elimination [9, 10]

Consider the constraint ¢ in C; containing X;. It is
either of the form X; =Yj or

X, <aY;—b

If Y; does not appear on the left hand side of any
equation or inequality in Cs, then no constraint on
X, in C5 results from c. Otherwise, there is exactly
one equation or inequality ¢’ € Cy with Y; on the left
hand in C5, because Cs is <-allowed. The equation
or inequality resulting from the Fourier elimination is
given below. If ¢ =Y, = Zj, the resulting equation or
inequality is X; = Zy or X; < aZy — b respectively. If
d =Y, < dZy -V the resulting inequality is X; <
a'Zy—bor X; < aa'Z, —b—ab'. Clearly the equation
is <-allowed, and for each inequality the coefficient of
Zy, is in (0,1] and the constant term is nonnegative,
and hence it is <-allowed.

Any Z;, can appear in at most one resulting equa-
tion, since Y; appears in at most one equation in Cj.
Each X; appears in at most one equation or inequality
since it only generates one equation or inequality.

Cjs is equivalent to 3Y7,...,Y, : C1 A Cy, by the
soundness and completeness of Fourier elimination [9)].

O

Theorem 2.3. Transitive closure of <-allowed
rules in L5 terminates under an evaluation that checks
whether a newly generated constraint is dominated by
any single previously generated constraint.

Proof. Suppose to the contrary that there was an
infinite sequence C4,Co, ... of <-allowed constraints,



where C),41 is generated by the transitive closure
rule using C,, and one of the original rules, and for
which each element is not dominated by any of its
predecessors.

No C}, can be empty, because then Cy, 11 = C,,, and
we would have terminated. As a result, there must be
at least one X; that is constrained in every member
of the sequence. Without loss of generality, let the X;
variables that are always constrained be Xi,...,X),.
Further, once an X is constrained in some C,, by an
inequality constraint, all subsequent occurrences of X;
must also be in inequality constraints. (Of course, X;
may be constrained by an equality constraint in all
members of the sequence.) For what follows below,
we ignore the prefix C1,...,Cys of the sequence that
either mentions X variables not among X1,..., X, or
mentions an X; in an equality constraint when X is
later mentioned in an inequality constraint. We focus
our attention on the remainder of the sequence.

For each X; appearing in an inequality constraint,
1 =1,...,p, let a]” denote the a coefficient for the
constraint on X; in C,,, and b]" the corresponding
b term, where m > M. (Note that the constraints
may mention different Y; variables in each C,,.) As
m increases, the b]" values are nondecreasing and the
a;" values are nonincreasing, since the multipliers are
positive numbers less than or equal to 1. Since there
are only finitely many variables, the combination of
p Y, variables corresponding respectively to the p
constraints on X; must eventually repeat. When they
do repeat, the second constraint is dominated by the
first because the b value is no smaller, the a value is
no larger, and the constraints mention the same X;s,
each in terms of the same Y;s.

For each X; appearing in an equality constraint, a
similar argument applies, showing that since there are
only finitely many Y; variables that could be equated
with X, eventually there is repetition. [l

Lemma 3.1 >, & =9 and =1 @ = define partial
orders if > is defined using a single rigid rule.
Proof. Since =1, =2, >/-\1, =1 & =9, and =1 ® =5 are
all partial orders, irreﬂexivity is immediate. Antisym-
metry follows for =1 & =5 and > ® =4 because they
are subsets of the relations =7 & =9 and =7 @ o,
respectively, which are themselves partial orders.

For transitivity, consider first 1 & >=9. Both
=1 & =9 and =7 X =9 are transitively closed, being
themselves partial orders. We therefore need to look
only at compositions of an element from > & =5 with
an element from =1 x =o. Suppose (z,y) € (=1 & =2)
and (y,2) € (=1 x =2). We can write =; & >
as the disjoint union (=1 xXDs2) U (=1 X >3), where
Dy is the complete binary relation on the domain of
=2 and =; is the equality relation on the domain of
=1. If (x,y) € (=1 X =2), then (x,2) € =1x >o.
If (z,y) € (=1 xDy), then (z,2) € (=1 o =1, D),

where o denotes the standard composition of binary
relations. If >; is defined by a single rigid <-allowed
rule 7, it is relatively easy to see that » composed with
T gives exactly r. As a result, (z,2) € (>1, Da2).

The opposite composition is similar, as is the tran-
sitivity proof for =1 ® >. [l

Lemma 3.2. The &, ®, and x operators on rules
faithfully implement the corresponding operations on
the underlying partial orders.

Proof. We give the proof for R; ® Ro; the others are
similar. Let »=; and >2 be the orders defined by R;
and R respectively. We first show -1 ® =2C R1® Rs.
By the construction of Ry ® Rp, it is clear that both
=1 X =9 and =1 X > are contained in (the transitive
closure of) R1® Ra, where =, is the equality relation on
domain i. Since any fact in =1 X =9 can be expressed
as the composition of a fact in =1 X =5 and a fact in
=1 X »9, we are done. We now show =1 ® >=9D R ®
R5. Any constraint generated by rules originally from
R, yields a fact in =1 X =5; any constraint generated
by rules originally from Ry yields a fact in =1 X =o. A
constraint that mixes rules from both original sources
must generate a fact in =1 X >o. ]

Lemma 3.3. S(>-1 & =2) = S(>1) + S(>2).
Proof. A rule r1 of =1 when (left or right) composed
with a rule ro of =4 yields an instance of ry, due to
the equalities on the variables in the domain of >=; and
the “free variables” in the domain of »». U

Lemma 3.4. S(>1 ® »=2) = (S(~1) + 1)(S(>2
)+1)—1.
Proof. The size of the transitive closure is equal to
S(2) for the rules defining >, plus S(>1) for the
rules defining 1, plus S(>1)S(>2) for the preferences
that can be generated by composing a preference from
each transitive closure. U]

Lemma 3.5. A rule set containing a single rigid
=-allowed rule is transitively closed in Lg. A rule set
containing a single rigid <-allowed rule is transitively
closed in Lx.

Proof. When a rigid rule is composed with itself,
the resulting rule is, by the definition of allowedness,
subsumed by the original rule. U]

Lemma 3.6. If >, is defined by a single rigid
allowed rule, then S(>-1 x >=2) = S(>1).
Proof. By the unfolding construction described in the
main text. [l



