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Abstract

Software faults and vulnerabilities continue to present
significant obstacles to achieving reliable and secure
software. In an effort to overcome these obstacles, sys-
tems often incorporate self-monitoring and self-healing
functionality. Our hypothesis is that internal monitoring
is not an effective long-term strategy. However, moni-
toring mechanisms that are completely external lose the
advantage of application-specific knowledge available to
an inline monitor. To balance these tradeoffs, we present
the design of VxF, an environment where both supervi-
sion and automatic remediation can take place by specu-
latively executing “slices” of an application. VXF intro-
duces the concept of an endolithic kernel by providing
execution as an operating system service: execution of
a process slice takes place inside a kernel thread rather
than directly on the system microprocessor.

1 Introduction

A key problem in computer security is the inability of
systems to automatically protect themselves from attack.
In order survive or deflect current attacks, systems need
an environment where defensive operations, including
remediation, can take place. Recent research on “self
healing” systems attempts to address this problem.

However, it is unlikely that applications can incorpo-
rate effective self-supervision mechanisms. First, any
such introspective security mechanism will be subject to
attack or subversion along with the rest of the applica-
tion proper. Second, there is no guarantee that the ad
hoc collection of security mechanisms developed for in-
dividual applications will be implemented correctly or
provide complete coverage. An independent, compre-
hensive, and general supervision mechanism would be
much more coherent and maintainable.

Most current technologies for supervising or sandbox-
ing application execution require that the entire applica-
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tion be inside the sandbox or virtual machine. It is our
hypothesis that supervising the entire execution of a pro-
cess is not necessary. Instead, we advocate a virtualiza-
tion approach in which only portions of an application’s
execution are supervised. Reducing the amount of su-
pervision seems like it would result in a significant per-
formance increase for most popular applications. This
paper examines the use of virtualization to abstract ac-
cess to the execution of a machine language from within
the operating system kernel.

1.1 Virtualization Within an OS

Virtualization is a layer of abstraction interposed be-
tween an underlying resource (often a physical device
or component) and “clients” of that resource. Virtualiza-
tion provides a construct that looks and behaves the same
as the real or physical component but is typically imple-
mented by a software substitute. This virtual component
enables three critical capabilities: isolation, inspection,
and enforcement.

Virtualization is not a new idea; it was first popularly
realized in the IBM System/360. Recently, the use of
virtual machines has come back into fashion in both re-
search and industry to leverage underutilized hardware,
reduce management complexity, and provide isolation.

Most approaches to OS virtualization place the virtual
layer either above (e.g.,, UML, VMWare, JVM, etc.) or
below (e.g., Xen) the operating system. We propose a
layer of virtualization within the kernel (VxF) that can
be selectively invoked for arbitrarily fine “slices” of a
process. In this approach, the entire “guest OS” is re-
duced to a kernel thread that is occasionally invoked, as
shown in Figure 1. VxF is complimentary to and not a
replacement for current VM implementations.

VxF introduces the notion of execution as an operat-
ing system service. It provides support for a set of virtual
executors (virX’s) within the kernel. We call this partic-
ular organization an endolithic kernel (“endo-" meaning



within and “-lithic” referring to tight integration with the
rest of the kernel). An endolithic kernel virtualizes the
CPU within a kernel thread for a portion of a process’s
execution. Although the main motivation for creating
VxF is to provide an environment in which self-healing
and automatic repair can take place, the framework can
be leveraged for more than just security; we discuss some
other applications in Section 3.

1.2 Motivation and Goals

Our motivation originates from our work on constructing
an emulator (STEM) [23] to supervise program execu-
tion in response to exploits and errors. Unfortunately, the
use of an emulator imposes a considerable performance
overhead since every program instruction is executed in
software. One way to ease this burden is to limit the
scope of emulation to portions of the program suspected
of being vulnerable, or to distribute the monitoring task
among a large collection of machines [13]. In addition,
our current emulator, STEM, does not follow execution
into the kernel; when a system call is invoked, STEM re-
linquishes control to the kernel, temporarily ending su-
pervision and protection until the system call returns.
VxF can be used to help address these shortcomings.

Most self-healing and automatic reaction mechanisms
follow what we term the ROAR (Recognize, Orient,
Adapt, Respond) workflow. These systems (a) Recog-
nize a threat or attack has occurred, (b) Orient the sys-
tem to this threat by analyzing it, (¢) Adapt to the threat
by constructing appropriate fixes or changes in state, and
finally (d) Respond to the threat by verifying and deploy-
ing those adaptations.

One way in which to gain enough time to execute the
ROAR workflow is to “delegate and wait” by combin-
ing micro-sandboxing with speculative execution of po-
tentially vulnerable slices of a process. If this micro-
speculation succeeds, then the results are committed. If
not, then the temporary results are ignored or replaced
according to the particular response strategy being em-
ployed. Of course, knowing how long to wait is not a de-
cidable problem'!. We are performing related work [14]
on a survey of the length of this window size for various
applications.

1.3 Contributions and Organization

The major contribution of VXF is to add a policy-driven
layer of indirection to the operating system to intercept
and examine the actions of a process before they become
“committed” or visible at the architectural level. This
mechanism is accomplished by performing virtualization
of a process’s execution within a kernel thread. An ana-
log to this approach at the OS level is system call interpo-

sition [7, 25, 19], which is the basis of many sandboxing
techniques. These approaches differ from VxF primarily
because they only seek to detect or contain the damage
rather than provide any way to fix the underlying fault or
vulnerability. In addition, VxF’s main operation does not
perform system call interposition. Instead, virX’s super-
vise the execution of a process’s instruction stream?.

This paper presents a feasibility study; we introduce
the notion of an endolithic kernel, illustrate the basic de-
sign concept, and report on our prototype implementa-
tion of VXF for the 2.6.15.6 kernel in Section 1 and Sec-
tion 3. We focus on the mechanism of VxF — discussion
of the design and construction of the policy layer is de-
ferred to future work. In order to provide context for
VxF’s design decisions, we next consider related work
on virtualization and self-healing software systems.

2 Redated Work

Virtual machine emulation of operating systems or pro-
cessor architectures to provide a sandboxed environment
is an active area of research [1, 10, 8]. As an interest-
ing twist, King et al. [9] have recently proposed using
VMMs to implement rootkits. Our micro-speculation
techinque is akin to approaches [21, 18] that utilize a sec-
ondary host machine as a sandbox or instrumented hon-
eypot: work is offloaded to this host, thus minimizing
exposure to the primary host.

2.1 Speculative Execution

Speculative execution is a technique used in micropro-
cessors to execute the instructions in a code branch be-
fore the evaluation of the branch conditional is finished.
Micro-speculation introduces an additional layer of spec-
ulative execution in which the acceptance of a particular
execution path is not based on the evaluation of a branch
conditional, but rather a higher-order constraint.

Several recent efforts make use of speculation in a
number of interesting ways. Work that is closely re-
lated to ours is Oplinger and Lam’s proposal [17] for us-
ing thread-level speculation (TLS) to improve software
reliability. The key idea is to execute an application’s
monitoring code in parallel with the primary computa-
tion and roll back the computation “transaction” depend-
ing on the results of the monitoring code. Chang and
Gibson [5] speculatively execute an application’s code
during otherwise idle cycles in order to discover targets
of future read operations. Similarly, Nightingale et al.
[16] discuss ways for performing speculative execution
at the file system level in order to overcome delays in
network-mounted file systems. Finally, the Pulse system
uses speculation to detect and break deadlocks [12].



2.2 Recovery and Repair

Effective remediation strategies remain a challenge. The
traditional response of protection mechanisms has been
to terminate the attacked process. This approach is un-
appealing for a variety of reasons; to wit, the loss of ac-
cumlated state is an overarching concern. Furthermore,
crashing leaves systems susceptible to the original fault
upon restart. More elegant approaches include failure
oblivious computing [22], STEM’s error virtualization
[23], DIRA’s rollback of memory updates [24], crash-
only software [4], and data structure repair [6].

The key idea of the Rx system [20] is to checkpoint
the execution of a process in anticipation of system er-
rors. When an error is encountered, execution is rolled
back and replayed, but with the process’s environment
changed in a way that does not violate the API’s its code
expects. This procedure is repeated with different en-
vironment alterations until execution proceeds past the
detected error point. Rx is a clever attempt to avoid the
semantically incorrect fixes of failure oblivious comput-
ing [22] and error virtualization [23].

3 Virtual eXecution Framework Design

Since merely inserting emulator code into the kernel isn’t
likely to be easily maintainable or extensible, we propose
a framework for providing this service. An endolithic
kernel views the set of available CPUs as a dynamic col-
lection where members join and leave as part of regular
operation.

While some multiprocessor systems support hot plug-
gable CPUs, a key idea of VxF (besides implementing
this capability for COTS operating systems) is that a
virX that registers with VxF need not be hardware. Fur-
thermore, a virX doesn’t necessarily need to interpret or
emulate the execution of machine code. This approach
enables a more general response mechanism than mere
software emulation. Such tasks can include delegating
work to a remote CPU (i.e.,, RPC/RMI at the instruction
level), collecting data for performance tuning, or even
providing a different micro-architecture. Tasks can also
include a wide variety of security monitoring (€.9., virus
detection, DRM, host-based anomaly detection, taint-
tracking [15], Secure Return Address Stack (SRAS) [11],
or Instruction Set Randomization (ISR) [2]).

3.1 Overall Design

There are a few degrees of freedom to consider when
designing VxF, since it represents one particular vector in
the design space of automatic intrusion defense systems.
VxF’s design goals include being minimally invasive for
applications and supporting legacy software — in order to

take advantage of VxF, an application should not have
to be recompiled. However, VXF may provide a means
for exporting control and information to any applications
that explicitly want to take advantage of it.

VxF adopts an endolithic kernel. Whereas VMM'’s
host multiple guest OS’s on a single hypervisor, an en-
dolithic kernel “hosts” multiple processes on multiple
virtual execution engines within the operating system it-
self. As depicted in Figure 1, a process executes nor-
mally until it requests (or is placed by some monitor in
response to a signal) to be scheduled on a virtual CPU.
We currently implement entry and exit into and from a
virX as a system call® (discussed further in Section 3.4).
Signals that trigger the invocation of this system call may
include alerts or alarms from intrusion detection systems.

VxF changes the kernel to allow the addition of virX’s
(virtual processors) as loadable kernel modules (LKM).
Encapsulating virX’s as LKM’s helps to achieve clean
(un)loading semantics. Therefore, the changes made by
VxF should include enough infrastructure that writing a
virX as an LKM should be straightforward.

Once a new virX is loaded, processes can be scheduled
for execution on it. When a process is micro-sandboxed,
it is the virX that is actually executing on the hardware
as a kernel thread in supervisor mode. Interesting fu-
ture work would allow any virX to run on another virX
(i.e. self-hosting). We are currently adapting the x86
dynamic translator QEMU [3] to be a virX. Other possi-
ble virX’s can include our STEM system, which is based
on Bochs, Bochs itself, or Valgrind.

3.2 Limitations

The two most significant challenges for VXF center on
when supervision should be invoked and for how long
this supervision should last. The second obstacle in-
volves determining the scope of supervision. Even
though VXF could run continuously, many applications
(especially interactive ones, or those working in a power-
constrained environment) may wish to avoid the over-
head associated with constant monitoring.

The second difficulty with automatic supervision is
that attacks and faults can be relatively rare events, and
sandboxing the application for its entire execution would
needlessly impact the normal operation of the software.
This observation is one of the motivations behind micro-
sandboxing. However, VxF still needs a policy mech-
anism to indicate when the micro-sandbox should be
engaged. Enabling the enforcement of such policy is
fairly straightforward. Entering the micro-sandbox can
be driven by asynchronous events such as alerts from an
IDS. Alternatively, the invocation of the micro-sandbox
can occur at well-known places in the application’s exe-
cution (such as function entry or entry into a new scope).
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Figure 1: Overall Design of VXF. VxF consists of two primary components: a wrapper for the scheduler and a service provider.

The purpose of the scheduler wrapper is to intercept regular scheduling of processes and redirect them to an appropriate virX

runqueue. The framework’s API defines a namespace and specifies contracts for a a set of services needed by virtual executors

(virX’s). The service provider implements the API and supports the operation of multiple virX’s. In this example, app3 normally

executes on the hardware; however, a portion of it is micro-sandboxed. As a result, when execution reaches this slice, app3 is

scheduled on the virX rather than the hardware. The virX runs as a kernel thread.

However, instead of blithly executing the micro-sandbox,
a small prologue can check whether policy requires that
portion of the code to be supervised at that time, or in the
particular state or environment configuration. Therefore,
having the policy mechanism remember a snapshot of the
application state and environment when attacks do occur
is useful as evidence in the future. Follow-on work could
build a system that learns when environment conditions
are ripe for attack. If those conditions are recreated, then
the policy mechanism could direct the micro-sandbox to
kick in when it reaches the instrumentation point.
Virtualization, interpretation, and emulation all incur
relatively hefty performance overhead. VxF is meant to
supervise only portions of a process’s execution — natu-
rally, not emulating the entire execution reduces the per-
formance penalty. However, making VxF as fast as pos-
sible is not a design goal. A clear design and implemen-
tation is favored over complexity aimed at extracting the
last drop of performance from the system, since highly
tuned systems are usually brittle. The properties that vir-
tualization offers can be leveraged for security, and we
assume that users are willing to justify the cost of virtual-
ization with the capabilities afforded by these properties.

3.3 Design Alternatives

There are a number of methods for building somewhat
equivalent functionality. First, we can use pt race()
to intercept every assembly instruction, and pass control
to a handler in the kernel or in user space. Such an ap-
proach is akin to how debuggers work. We want to avoid
servicing an interrupt for each machine instruction, pre-
ferring instead that the kernel remain in control of exe-

cution rather than handing control back to the hardware,
being signaled, taking control back, performing some
work, handing control back, etc. Second, we could take
advantage of Linux’s “personality” infrastructure: Linux
can recognize the “type” of a file and associate an exe-
cution action with it such that another program is given
the responsbility for running the “executable.” Finally,
rather than adding a system call for virX entry and exit
operations, we could add a device to the OS that manages
control signals to VxF.

3.4 Implementation

VxF has two primary responsibilities. The first is to
maintain a dynamic collection of virXs by supplying
functionality that includes (de)registration services, entry
and exit mechanisms, and an interface that encapsulates
common functionality needed by each virX. The second
task is to support the ability to schedule processes for
execution on a virX rather than the hardware.

VxF includes a service provider component that ad-
dresses the first task, and a wrapper to the scheduler that
manages the affinity between a micro-sandboxed process
and the virX it runs on. The service provider defines
a namespace for virX types. The virX namespace has
four parts: the namespace qualifier (currently “virx”),
the prefix (an organization-specific identifier), the com-
mon name (a descriptive identifier of the virX itself), and
the version. Common names describe the functionality
of the virX and typically include two parts: the CPU
architecture that the virX implements and a descriptive
string that summarizes any additional modifications to
the core execution. Examples of common names include



x86-native, x86-stem, x86-gemu, and sparc-native.

The straightforward approach to providing a mi-
crosandbox enter/exit signaling mechanism is to imple-
ment a new system call. Inserting this system call into the
source code of existing applications violates our trans-
parency requirements, but allows new applications to
take direct advantage of VxXF. Legacy applications can
use a monitor that invokes the system call on behalf of the
monitored application. Alternatively, we could change
the OS program loader to automatically insert such calls
at various places in the executable. We do not adopt
this latter approach, preferring instead to cleanly sepa-
rate process creation from process supervision.

VxF creates a runqueue for each virX that is loaded.
Entering and exiting a virX is accomplished via a new
system call, virtexec(). The system call doesn’t
immediately execute the named process on the virX;
rather, it moves the process from its current runqueue
to the runqueue for the appropriate virX. The modified
schedular then round-robins between the multiple run-
queues, giving the illusion of a multi-processor system
while retaining the semantics of a uniprocessor environ-
ment. Scheduling is therefore O(n) in the number of
virX’s loaded on the system, but otherwise retain O(1)
semantics of the multi-level feedback queues for each
CPU/virX.

4 Future Work

Virtualization imposes a performance penalty. In order to
justify this cost, we must first discover what it is. We plan
to assess QEMU’s performance (both standalone and as
part of VxF) using the SPEC CPU2000 benchmark. We
expect that its standalone performance will not be de-
graded by moving to the kernel.

Automatic remediation is a hard problem. Detection
mechanisms are not perfect, and initiating an automated
response based on a false positive is undesirable. Most
remediation strategies usually result in self-induced DoS.
Automating a response strategy is difficult, as it is often
unclear what a program should do in response to an error
or attack. A response system is forced to anticipate the
intent of the programmer, even if that intent was not well
expressed.

Even if automatic response capabilities existed, sys-
tem security is often a matter of policy; systems need
flexibility to remain useful in a variety of evolving
environments. While VxF provides an environment
for micro-sandboxing and micro-speculation, it requires
some detection mechanism to trigger it and a remediation
component to direct its actions when a fault occurs. We
leave as future work the implementation of such a policy
framework. Finally, it is of value to port VXF from Linux

to other operating systems (€.g., Windows, OpenBSD, or
Solaris 10).

5 Conclusions

VxF is free software, and it is available at our website*.
We welcome any comments, suggestions, or bug reports.

The ability for computing systems to autonomously
detect and correct faults and vulnerabilities would im-
prove their stability and security. The ability to execute
this ROAR workflow is predicated on having an environ-
ment where supervision, detection, and repair can take
place. To support this goal, VXF introduces the concept
of execution as an operating system service by imple-
menting an endolithic kernel organization. Such micro-
sandboxing can be used to speculatively execute code
that may contain faults or vulnerabilities.

There is no silver bullet for system security, and al-
though it can be leveraged for more than just security,
VxF is not meant to be a panacea. We advocate modi-
fying general-purpose operating systems to (a) provide
implicit supervision of instruction stream execution, (b)
export a policy-driven interface for that supervision, and
(¢) provide the foundation for an automatic response ca-
pability via speculative execution within this supervision
environment.
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Notes

IThis instance of the Halting Problem is typically solved by get-
ting impatient and terminating supervision or the supervised program.
Other strategies may include perturbing the environment, as suggested
by the Rx system.

2Such supervision does, of course, enable a virX to intercept system
calls, and a hybrid approach combining both machine-level and system-
call supervision is probably most effective.

3Given appropriate hardware support, entry and exit could be im-
plemented as assembly language instructions.
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