
PalProtect: A Collaborative Security Approach to Comment Spam

Benny Wong, Michael E. Locasto, Angelos D. Keromytis

March 22, 2006

Abstract

Collaborative security is a promising solution to
many types of security problems. Organizations and
individuals often have a limited amount of resources
to detect and respond to the threat of automated
attacks. Enabling them to take advantage of the re-
sources of their peers by sharing information related
to such threats is a major step towards automating
defense systems.

In particular, comment spam posted on blogs as a
way for attackers to do Search Engine Optimization
(SEO) is a major annoyance. Many measures have
been proposed to thwart such spam, but all such mea-
sures are currently enacted and operate within one
administrative domain. We propose and implement
a system for cross-domain information sharing to im-
prove the quality and speed of defense against such
spam.

1 Introduction

The use of blogging software is an extremely popular
web application. Blogging complements traditional
means of Internet communication like email and in-
stant messaging. The use of blogs ranges from per-
sonal journals to corporate marketing. More serious
blogs attempt to supplement or replace traditional
journalism and political punditry.

While blogs facilitate group discussion, it is the
very interactive nature of this communication that
opens it to attack. Often, the blog software and users
themselves are not the target of attack. Rather, the
application is used as a platform for Search Engine
Optimization. Attackers use the comment posting

functionality of blogs to submit comments that in-
clude links to the sites they want to advertise. When
search engines index the blog, including the com-
ments of each post, the attacker hopes that the sheer
number of links that he has inserted across a number
of blogs will increase the ranking of the target site in
search results.

Besides threatening to decrease the quality of
search results, spam comments waste the time and
resources of blog owners and hosting companies. The
insertion of comment spam is often automated, and
the sheer amount of it makes manually identifying
and deleting comment spam a time–consuming pro-
cess, in addition to taking up a significant portion of
the space that a blog owner may have allocated (or
been allocated, in a hosted environment) for the blog
content.

Disabling comments is a somewhat unsatisfactory
solution to this problem. It is akin to an email spam
solution where no-one is allowed to send an unso-
licited email (and thus no-one can start an email con-
versation with an unknown contact). Such strategies
are self-defeating. What is needed is a high-quality,
high-confidence, automated mechanism for identify-
ing and deleting comment spam as it is submit-
ted. While a number of technologies have been pro-
posed and implemented (mostly adapted from cur-
rent email spam solutions), none perform automated
cross-domain sharing of comment spam signatures.

We present the design and implementation of Pal-
Protect, a plug-in for the popular WordPress blog-
ging software. PalProtect automatically identifies
comment spam, creates a signature for it, and dis-
tributes the signature to a collection of peers. Pal-
Protect is a concrete example of a collaborative secu-

1



rity system.

2 Related Work

Collaborative security is the growing trend towards
sharing information security resources within and
across administrative domains and systems to im-
prove the overall security of the peer group. Three
areas of computer security where a collaborative ap-
proach are immediately applicable are (a) worm de-
tection and notification, (b) self-healing software, and
(c) spam filtering. The reasoning is that a larger and
more widespread network of sensors can achieve more
complete knowledge of an attack more quickly than
a single isolated node.

This observation is a widespread one. In particular,
for worm detection [1], notification [2], and contain-
ment [3] systems, a collaborative approach is men-
tioned several times in the literature. Systems that
seek to generate signatures for worm traffic include
Autograph [4] and EarlyBird [5]. Both papers refer
to signature distribution as a fundamental step in de-
fending against worms. A recent study by Moore et
al. [2] concludes that a worm containment response
needs to occur within three minutes. In addition, the
participation of nearly all major AS’s is required for
a containment to be effective. While these require-
ments are quite challenging, they confirm that fore-
seeable threats are best addressed by a collaborative
approach.

Vigilante [6] is a system motivated by the need
to contain Internet worms. To that end, Vigilante
supplies a mechanism to detect an exploited vul-
nerability. A major advantage of this vulnerability-
specific approach is that Vigilante is exploit-agnostic
and can potentially be used to defend against poly-
morphic worms. While Vigilante doesn’t address the
self-healing of a piece of exploited software, it de-
fines an architecture for production and verification
of Self-Certifying Alerts (SCA’s), a data structure for
exchanging information about the discovered vulner-
ability. Vigilante works by analyzing the control flow
path taken by executing injected code.

Collaborative security can also be leveraged for
more mundane intrusion detection tasks. DOMINO

[7] is a system for correlating intrusion alerts. Lin-
coln et al. examine the problem of privacy–preserving
alert sharing for IDS systems [8], one of the challenges
proposed in Du and Atallah [9]. Kruegel et al. [10]
propose a peer-to-peer system that recognizes attacks
in a distributed manner. In their system, only a small
number of messages needed to be exchanged to de-
termine that an attack was underway.

A collaborative approach to security also seems
useful in the context of self-healing software. Not
only can networks and end-hosts exchange informa-
tion about intrusion alerts, but they can also ex-
change information about exploited vulnerabilities
and code patches for these vulnerabilities. Appli-
cation Communities [11] are one particular expres-
sion of this idea whereby a large collection of hosts
agree to collaboratively monitor small slices of each
instance of an application locally. When a fault or
vulnerability is discovered, information that enables
the host to prevent further occurrences of that fault
is exchanged with peers.

The system most closely related to ours is Vipul’s
Razor (http://razor.sourceforge.net). It is a
reputation-based system for filtering email spam, but
the identification of spam is not automated. Like
most collaborative security approaches, it requires
some amount of community buy-in to increase its ef-
fectiveness. Challenges for this system (as with ours)
also include privacy-preservation, trust and reputa-
tion issues, and peers with differing profiles. While
some of these problems can be solved with white-
listing, our approach uses Z-strings to help address
privacy concerns. Z-strings are one-way data struc-
tures that remove the ability to reconstruct the origi-
nal input that forms a signature, but can still be used
to match.

3 Architecture

PalProtect is a plug-in to the WordPress blog soft-
ware that enables weblog owners to prevent spam
comments from entering the system. It does this
by creating signatures of comments that have been
identified as spam. Comments can be classified as
spam by both automated (another anti-spam plug-in)

2



or manual (blog administrator review) mechanisms.
This information can then be used to identify future
comments that may be spam.

In addition, PalProtect not only uses this informa-
tion to prevent potential spam comments, it shares
this information with its peers so that they can ben-
efit from it as well. When a signature is created for
the blog that initially catches the spam comment, and
the signature is inserted into PalProtect’s database,
PalProtect proceeds to notify its peers of the new
signature.

3.1 Spam Detection

Initial classification of a comment as spam can be
done through a number of other anti-spam plug-ins.
We treat these plug-ins as sensors to PalProtect. Pal-
Protect’s primary function is correlation, although it
does maintain its own signature database as a last re-
sort to classify and block comment spam. These sen-
sors include Akismet, Bayesian Comment Spam filter,
Spam Assassin, WP Blacklist, and Graphic Turing
Tests (GTT’s). When one of these filters classifies
a comment as a suspected piece of spam, PalProtect
will be invoked.

In order to reduce dependencies on other modules
and plug-ins, one major assumption of PalProtect’s
design is that PalProtect can observe some external
action, signal, or notification that other anti-spam
plug-ins exhibit. Provided that such a signal ex-
ists, PalProtect captures the raw text data of the
comment. From there, it creates a signature from
the spam comment and saves it to the WordPress
database. After this information has been saved, the
raw comment is forwarded to peers. The methods of
signature creation and methods of broadcasting are
discussed in Section 3.3 and Section 3.4.

3.2 Enforcement

In addition to providing its own enforcement via
matching against its internal signature database, Pal-
Protect still leverages any other spam filters that are
present in the blog. In this way, PalProtect is posi-
tioned as a last resort mechanism to catch comments
suspected of being spam. If the comment has passed

all of the other filters that are in place, PalProtect
compares the contents of the comment with the sig-
natures in its database. The comment can only enter
the system once it has passed through all of the tests,
including PalProtect’s enforcement.

PalProtect can employ a variety of signature types
to match and discard spam comments. Depending
on the type of signature preference that is currently
set, PalProtect converts the new comment into an
instance of the current signature type. From there,
PalProtect will use signature specific methods to de-
termine whether the comment is in fact recognizable
as a piece of comment spam. For example, using
URL lists (discussed in Section 3.3) PalProtect will
flag comments that have half of the URLs that are in
a URL list. However, for the hash function, matching
is based on taking a hash of the raw comment text
and comparing it with the hash values already in the
signature database.

3.3 Signature Creation

The data in the comment can be modeled in a vari-
ety of ways to create signatures for matching spam.
PalProtect provides five ways to create these signa-
tures. User-defined signature creation methods are
easy to integrate into PalProtect. Because of this,
the range of signature creation methods is easily ex-
tensible. The five base methods that are integrated
into PalProtect are:

1. Exact Match - This method takes the raw data
from the comment received and compares it with
the raw data that is in the database. This is
the simplest and quickest, but arguably the least
effective at catching even slightly polymorphic
spam.

2. Longest Common Substring - This method
is similar to the exact match, except that it will
take substrings of the data in the database and
compare that to substrings in the pending com-
ment. In the database, it will not be stored in
an extra table because the data used is stored
for the exact match.

3



3. URL Lists - Since the purpose of most spam
comments is to lead the reader or a search en-
gine to another site, one of the most effective
ways to identify spam threats is to extract the
URLs from the spam comments. PalProtect will
extract all of the URLs in the spam comment
and store it as an array in the database. The way
URLs are stored can be full URLs or a smaller
substring (i.e. the domain name) to broaden the
scope of enforcement.

4. Hashing - Another way to create these signa-
tures is by hashing the data and storing the hash
key into the database. This is used mostly with
the comment data, but there is a possibility that
it can be used on URLs.

5. Z-String - Using the Z-String method, we can
create a string signature based on the frequency
of the letters in the comment. This method is
effective when the spam comments are different,
but similar enough that most of the comment is
the same. The secondary purpose of the Z-string
is to assist user privacy. The original message
cannot be recovered, but the Z-string is still the
basis of a good signature. Of course, this this
case, peers would not forward the raw text, but
rather the pre-computed Z-string.

3.4 Message Packaging and Encoding

The main motivation behind creating this plug-in is
to record information that we have learned and no-
tify our “peers” of this information. The method that
is used to encapsulate and distribute that data is a
crucial part of the process. For each comment broad-
cast, the data will be sent to each peer along with the
URL of the source blog. This information will serve
to identify the sender. This is important to include
because we want to avoid sending the message back
to its sender.

Each message will also be PGP-encoded to ensure
that the message sent was indeed a valid message.
Each PalProtect installation will have a buddy list
to hold all of its peers information (e.g., URLs and
PGP-key information). This list will be discussed
further in Section 3.6.

Encoding the message with a PGP-key will cut
down significantly on user intervention as well as en-
sure that the message is an authentic message from a
peer. Instead of having a message enter a queue or an
“inbox” of some sort where the user of the receiving
blog must approve the signature, the PGP-encoded
message can be automatically approved provided that
it is signed with a valid peer public key and encrypted
with the receiver’s public key. If decryption fails, the
message was not meant for this PalProtect instance.
If verification fails, the message was forged. Extend-
ing and delegating trust (perhaps via a system like
KeyNote) is interesting future work.

3.5 Sending and Receiving

This package of information will be sent to the peer
using an HTTP POST request that is generated by
the PHP code. The POST request contains these two
parameters: the URL of the sender and the PGP-
encoded message. Since we are sending simple text
between the blogs, a POST request is the perfect ve-
hicle and a low-overhead method.

The way PalProtect receives the messages from its
peers is by having a dedicated page for it to receive
messages. Since it will never have to display any-
thing, it is a page containing only PHP and will parse
the POST parameters that it receives. Once the mes-
sage is received and decoded, the raw comment is first
checked against PalProtect’s local database to make
sure that it is not a duplicate signature. If the com-
ment is new, then it is inserted into the local database
(and optionally forwarded to a set of peers).

3.6 Buddy List

PalProtect uses an array of objects to keep track of
its “buddies.” The objects will contain two pieces
of information: the URL of the peer blog and the
PGP-key of that blog. To ensure the integrity of the
information in the buddy list, the URL and PGP-
key will have to be entered by the owner of the blog.
This will prevent problems that may arise from any
automated system.

4



3.7 Additional Functionality

A previously undiscussed feature of PalProtect is the
ability to maintain a white-list. This white-list pro-
vides the capability for the user to guard against hav-
ing certain messages enter the signature list. In par-
ticular, attackers may attempt to submit spam com-
ments that include links to popular legitimate sites
like cnn.com, citibank.com, and whitehouse.gov

or other strings that the user deems acceptable.
Without a white-list, We require the new table due
to some limitations of the list management function-
ality in WordPress’s API. For every comment that
is considered spam, PalProtect creates an encapsu-
lated object that will hold the raw text as well as any
of the other signature representations determined by
PalProtect’s settings. By creating a table specifically
for the signatures, each record will represent one com-
ment with the columns being the different signature
representations. This organization makes the signa-
ture creation scalable by easily adding a column if
needed.

When PalProtect receives a comment, it will first
check the signature creation method preference that
is currently set. It immediately stores the raw text
in the object and then proceeds to store the newly
created signature.

3.8 Limitations

Many of the problems that PalProtect may encounter
are problems with most intrusion detection systems.
One of the more common problems is that of iden-
tifying comments as “false positives.” If there is a
comment that is wrongly identified as spam and has
had a signature created and distributed, we need to
find a way to remove this entry from the list of signa-
tures and somehow relay that message to the peers
that we have sent it to. This problem is partially ad-
dressed by creating a revocation message type, but
some process that identifies false positives still needs
to be established.

One sensor that we would like specifically exploit
would be the Graphic Turing Test (or GTT) due to
its high confidence system to detect whether the com-
menter is human or not. The basis of the Graphic

Turing Test is a challenge-response system. Given an
image of distorted alphanumeric characters, a human
will be able to distinguish the characters while an au-
tomated process will find it difficult. If the GTT field
is left empty or is incorrectly guessed, this is a strong
indication that the comment was posted by an auto-
mated process and should be considered spam.

However, we are unable to utilize the the GTT sen-
sor. The other sensors that we employed to catch
spam would only mark a comment appropriately.
However, when the GTT refuses a comment, it auto-
matically prevents the comment data from entering
the database. Because of this, the comment would
not be able to be marked as spam – thus depriving
us of the event that PalProtect uses. The GTT di-
rectly manipulates the database in its code (which
does not involve WordPress itself), thus eliminating
the medium that PalProtect and GTT would poten-
tially communicate through. Since one of our design
requirements was to be standalone and have no de-
pendencies on or changes made to other modules, we
are currently unable to use the GTT plug-in as a sen-
sor.

Another problem that arises in our system is in
the distribution of the spam data. Currently, PalPro-
tect iterates through the buddy list and broadcasts
a comment out to everyone on the list, except to the
immediate sender. We would ideally want the sys-
tem to forward the message to a few peers, and then
have them forward it to others – in essence, controlled
flooding. This approach would be the most effective
way to distribute messages over a large network and
would also alleviate the load on the sender, especially
if the peer list is lengthy.

4 Evaluation and Results

Currently, PalProtect has not been widely deployed,
and we are unable to report on the behavior of a large
scale deployment. However, our evaluation focuses
on basic performance measurements of the system as
deployed in our testbed. The evaluation of our cur-
rent PalProtect system is mainly a feasibility study
and focuses on the actual development of the plug-in
so that is can be distributed to the WordPress com-

5



Table 1: Transmission test times for ten trials. Each
trial represents the average of 1000 transmissions.

Trial mean (s)
1 1.123607881
2 1.127622069
3 1.143602064
4 1.120167783
5 1.112963404
6 1.127018733
7 1.464225132
8 1.225920218
9 1.112342873
10 1.233204941

munity. There is much to do in terms of follow-up
analysis of PalProtect, including analyzing privacy
concerns and optimizing the routing of notifications
and revocations.

4.1 Data Transmission

To see how feasible PalProtect is as add-on software
to WordPress, we must first test the efficiency of the
messaging process between two blogs. This measure-
ment is crucial in seeing how quickly the plug-in can
work before any more development is done. The
average time it takes for messages to get from one
place to another must be reasonably quick – other-
wise the plug-in is only another component that will
slow down the process of submitting a comment.

To quantify how long it would take for each trans-
mission, we first took a median-length (see Sec-
tion 4.2) spam comment and sent it 1000 times from
one blog to another. We repeated this process for ten
more trials. We then took the average time for each
of the 1000 transmissions. The results are listed in
Table 1

From these trials, we can see that the PalProtect
plug-in transmits a spam message of typical length
quite consistently. The typical time it takes for the
transaction to complete is just about 1.1 seconds.
This is a fairly reasonable base cost. Future work
would involve analyzing the impact of an unreliable

or broken network between the two peers. Since we
are sending all the messages to one blog, the trans-
mission time may be even faster since the target Pal-
Protect system may be a bottleneck.

4.2 Space Efficiency

It is important to estimate how much space in stor-
age the raw data and the signature will take up for
every entry. First, we will need to find out how long
a typical spam comment is. To do this, we had to
manually browse the web looking for blogs that have
fallen victim to spam comments. After browsing over
twenty blogs, we had collected 161 spam comments.
Many of the blogs we had found were very vulnerable,
which led to many different types of bots and differ-
ent types of spam. Though the number of blogs were
not many in number, the different types of comments
from each were sufficient.

The statistics of the lengths of these 161 spam com-
ments were as follows:

1. Mean: 646.7081

2. Median: 154

3. Standard Deviation1: 1901.8820

From this data, we can conclude that the average
length of the comment data will be around 650 char-
acters, but half of the time it will be around 150
characters and below.

The next step is to analyze how much additional
space each different signature type requires. For ex-
ample, the MD5 hash signature will always be 128-
bits simply because it is implemented that way. The
Z-String will also be fixed at 256 characters. How-
ever, other methods, such as the URL list, can still
vary a lot from comment to comment. It can range
from having no URLs to having over 1000 characters
of links to other websites.

4.3 Enforcement Time

The final performance concern is how quickly enforce-
ment can occur; that is, how quickly the local sig-
nature database and matching algorithm operates.

6



The way that PalProtect currently implements en-
forcement, we expect that the performance grows lin-
early with time. This method is a simple traversal of
every element in the signature list that compares a
signature of the incoming comment with the current
record. This operation is O(n).

However, we can improve on the time complexity
of the enforcement. Instead of traversing a list, Pal-
Protect can maintain a hash table with entries for
each signature in the database. This means that in-
stead of having an O(n) operation, enforcement can
achieve O(1) time complexity.

5 Conclusions

Collaborative security is an emerging area of research
and a powerful tool against attackers whose activities
are “globally loud but locally quiet.” Such attackers
seek to spread their activities over space and time
so that they do not raise above a local threshold.
Comment spam is one particular type of threat that
can be addressed by a collaborative security system.
We have presented PalProtect, a WordPress plug-in
that identifies such spam and notifies its peers. At
the cost of having a few community members or peers
detect the spam, the entire group can be inoculated
against future instances of that spam comment (or
closely related variations thereof).

There remain a number of challenges for collabo-
rative security systems. First, the utility of cross-
domain information sharing is questionable when the
domains sharing information do not share common
interests. These sorts of incompatibility lead to larger
questions of trust between peers. In addition, suffi-
ciently large-size networks require elegant and scal-
able routing algorithms to help compress, store, and
transmit information in a timely manner while mini-
mizing the required bandwidth.

References

[1] D. J. Malan and M. D. Smith, “Host-Based De-
tection of Worms through Peer-to-Peer Cooper-

ation,” in Proceedings of the 3rd ACM Workshop
on Rapid Malcode (WORM), November 2005.

[2] D. Moore, C. Shannon, G. Voelker, and S. Sav-
age, “Internet Quarantine: Requirements for
Containing Self-Propagating Code,” in Proceed-
ings of the IEEE Infocom Conference, April
2003.

[3] K. Anagnostakis, M. B. Greenwald, S. Ioannidis,
A. D. Keromytis, and D. Li., “A Cooperative Im-
munization System for an Untrusting Internet,”
in Proceedings of the 11th IEEE International
Conference on Networks (ICON), pp. 403–408,
October 2003.

[4] H.-A. Kim and B. Karp, “Autograph: Toward
Automated, Distributed Worm Signature Detec-
tion,” in Proceedings of the USENIX Security
Conference, 2004.

[5] S. Singh, C. Estan, G. Varghese, and S. Savage,
“Automated Worm Fingerprinting,” in Proceed-
ings of Symposium on Operating Systems Design
and Implementation (OSDI), 2004.

[6] M. Costa, J. Crowcroft, M. Castro, and A. Row-
stron, “Vigilante: End-to-End Containment of
Internet Worms,” in Proceedings of the Sympo-
sium on Systems and Operating Systems Princi-
ples (SOSP 2005), 2005.

[7] V. Yegneswaran, P. Barford, and S. Jha, “Global
Intrusion Detection in the DOMINO Overlay
System,” in ISOC Symposium on Network and
Distributed Systems Security, February 2004.

[8] P. Lincoln, P. A. Porras, and V. Shmatikov,
“Privacy-Preserving Sharing and Correlation of
Security Alerts,” in Proceedings of the USENIX
Security Symposium, pp. 239–254, 2004.

[9] W. Du and M. J. Atallah, “Secure Multi-Party
Computation Problems and their Applications,”
in Proceedings of the New Security Paradigms
Workshop, pp. 11–20, September 2001.

7



[10] C. Krugel, T. Toth, and C. Kerer, “Decen-
tralized Event Correlation for Intrusion Detec-
tion,” in Proceedings of the International Con-
ference on Information Security and Cryptology
(ICISC), December 2001.

[11] M. E. Locasto, S. Sidiroglou, and A. D.
Keromytis, “Application Communities: Using
Monoculture for Dependability,” in Proceedings
of the 1st Workshop on Hot Topics in System
Dependability (HotDep-05), June 2005.

8


