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Abstract— In this paper, we consider using angle of arrival
information (bearing) for network localization and control in
two different fields of multi-agent systems: (i) wireless sensor
networks; (ii) robot networks. The essential property we require
in this paper is that a node can infer heading information from
its neighbors. We address the uniqueness of network localization
solutions by the theory of globally rigid graphs. We show that
while the parallel rigidity problem for formations with bearings
is isomorphic to the distance case, the global rigidity of the
formation is simpler (in fact identical to the simpler rigidity
case) for a network with bearings, compared to formations
with distances. We provide the conditions of localization for
networks in which the neighbor relationship is not necessarily
symmetric.

I. INTRODUCTION

Network localization is a basic service of many emerging
computing/networking paradigms. It is typically required
for wireless sensors and robotic agents for monitoring the
environment or for surveillance, or for routing packets using
geometric-aware routing. In pervasive computing, knowing
the locations of the computers and the printers in a building
will allow a computer to send a printing job to the nearest
printer. The aim of localization is to assign geographic
coordinates to each node in the sensor network. In this paper,
nodes are thought of as sensor nodes in sensor networks
or robotic agents in robot formations. The locations may
be computed relatively with respect to one another, with
unknown translation and rotation, yielding a relative local-
ization; or, the locations may be computed with respect to a
global coordinate system, producing an absolute localization.
In wireless sensor networks, localization of sensors is a
key enabling technology, because the sensor nodes need to
know their locations in order to detect and record events
so that their data is meaningful. Manual assignment of
node coordinates is one possibility, but is often impractical
or impossible due to the number of nodes or method of
deployment. Equipping each sensor with a GPS receiver is
another solution, however it is often cost prohibitive in terms
of both hardware and power requirements. Furthermore,
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since GPS requires line-of-sight between the receiver and
satellites, it may not work well in buildings or in the
presence of obstructions such as dense vegetation, buildings,
or mountains blocking the direct view to the GPS satellites.
There is usually a sparse set of nodes, called anchor nodes,
that have their world coordinates from either GPS or manual
configuration.

There has been research in using mobile ad hoc networks
for multi-robot systems. Such networks are formed by robots
establishing communication links whenever possible. Robots
become nodes and can act as routers in this type of net-
work to pass information between robots which might not
otherwise be able to communicate, hence more information
is provided to robots about the system. Sharing local infor-
mation with the rest of the system to improve performance
in the deployment of robots as sensor networks, and on
facilitating multi-robot systems has been a motive behind
the research that specifically investigates the application of
ad hoc networks to mobile robots. These multiple robot
platforms are dynamic so that they can split or merge with
other networks over time.

Pure distance information is used extensively in studying
sensor networks and formations of robotic agents [1], [2],
[3], [4], [5]. Rigidity of formations with distance information
is well understood in 2-space and there are partial results
in 3-space. Bearings along with distances have been used
for navigation, surveying, and localization in single robot
applications. The use of bearings in sonar and radar ap-
plications are decades old. Although the bearing resolution
of sonar systems is improving rapidly, computer vision
technology tends to have greater resolution than sonar in
bearing angle. In multi-agent applications, bearings are used
in robot formations and in sensor networks [6]. There is
a concept termed ‘parallel drawings’ [7] which can assist
analysis of the rigidity of formations where there is bearing
data, and this paper draws on this tool, carrying further
preliminary results that were published in [8].

For ad hoc sensor networks, localization has been ad-
dressed by many authors (see references in [1] and [9]).
Approaches vary in the sensor wavelength that is in use
such as optical, radio frequency (RF), ultrasound, or acoustic.
Computation methods fall into three classes: centralized
(only one node computes), locally centralized (some nodes
with unknown positions compute), fully distributed (each
node with unknown position computes). Approaches differ in
the problem formulation (deterministic versus probabilistic),
propagation assumptions, and the assumed density of anchor
nodes with known location.



Received signal strength (RSS) is available from the RF
communications typically resident on a node; however there
are high variability of propagation losses in RSS. The RSS
is usually quantized to a single bit to indicate proximity. Ul-
trasonic and acoustic transducers have been used to measure
time difference of arrival (TDoA), exploiting the relatively
slow propagation speeds, and to measure angle of arrival us-
ing an array of microphones. Sub-meter accuracy is available
from ultrasonic or acoustic measurements, however these
modalities require additional hardware and may compromise
stealth.

The term bearing refers to an angle measurement with
respect to another object. In our case, the angle of arrival
(AoA) capability provides for each node bearings to neigh-
boring nodes with respect to a nodes own axis. There are
a couple of ways that sensors measure AoA. One is phase
interferometry: the angle is estimated by phase differences
in the signal received by two or more individual sensors
(microphones for acoustic signals or antennas for RF sig-
nals). With directional antennas, AoA estimation uses the
RSS ratio between two (or more) directional antennas located
on the sensor. Two directional antennas pointed in different
directions, such that their main beams overlap, can be used
to estimate the AoA from the ratio of their individual RSS
values.

By providing information about the direction to neigh-
boring sensors rather than the distance to neighboring sen-
sors, bearing is a technique for determining the direction
of propagation of a radio-frequency wave or an acoustic
signal incident on an antenna array (microphones for acoustic
signals) [10], [6]. Bearing information is used in the geo-
location of cell phones to comply with regulations that
require cell systems to report the location of a cell phone
placing an emergency call. The AoA of the cell phone’s
signal from multiple base stations would be combined to
determine the phone’s location on the earth. In formations of
mobile robotic agents, bearings have been used extensively
to maintain formations [11].

All the approaches for measuring bearings require multiple
sensor array elements, which can contribute to sensor device
cost and size. However, acoustic sensor arrays may already
be required in devices for many environmental monitoring
and security applications, in which the purpose of the sensor
network is to identify and locate acoustic sources. Locating
the sensors themselves using acoustics in these applications
is a natural extension. RF antenna arrays imply large de-
vice size unless center frequencies are very high. However,
available bandwidth and decreasing manufacturing costs at
millimeterwave frequencies may make them desirable for
sensor network applications.

A drawback of AoA is that highly coherent receiver is
needed, i.e., all channels must have the same effect on the
received signal. Moreover, the cost of the receiver increases
as the array size increases. The size should be reduced as
much as possible, but, the number of elements required
to obtain a given accuracy strongly depends on the radio
environment.

Uniqueness of network localization solutions is addressed
by the theory of rigid graphs. The theory of rigid graphs is
also used in maintaining rigid formations of robotic agents.
For distance measurements, a key insight from the theory
is that sufficiently high connectivity guarantees, with high
probability, a unique solution and computational complexity
that scales only linearly with the number of nodes. Direc-
tions, bearings, angles in undirected formations were studied
in [8]. The graph rigidity problem for undirected formations
with bearings is the dual of the distance case. However, there
exists no complete theory for point formations based solely
on angles. Yet, with sufficient connectivity and one fixed
direction, the bearing results may be applied to the abstract
graph of links as vertices and angles as edges [12].

Rigidity in directed formations of mobile autonomous
agents was studied in [13], [14], [15], [16], [17], [18].
Localization in robotic networks was studied in [11] using
kinematics of linear mechanisms. In this paper, we derive
the conditions for unique network localization by using
rigidity and global rigidity of digraphs that represent the
network topologies in which links are directed and bearing
information is used. Graph theoretic results prove to be
valuable as they only depend on the interconnection structure
of the links without a need for actual positions of nodes. We
will restrict our attention to networks in 2-space. A sequel
paper will provide the results for 3-space.

The paper is organized as follows. In §II, we start with the
problem statement of network localization and defining point
formations and rigidity, which will be used throughout the
paper. We then present parallel rigidity of formations using
parallel drawings in §III. We investigate directed parallel
rigidity in §IV. Finally, concluding remarks are given in §V.

II. NETWORK LOCALIZATION AND FORMATIONS

A. Formulation of Network Localization

The interconnection structure of sensing/communication
links between nodes is called network topology and is
denoted with N. Consider a network N in real 2-space
consisting of a set of m > 0 nodes labelled 1 through m that
represent special “anchor” nodes together with n − m > 0
additional nodes labelled m + 1 through n that represent
ordinary nodes. Each node is located at a fixed position in
IR2. Anchor nodes have GPS capabilities, thus they know
their world coordinates. We will use the term heading with
the meaning of bearing to north. In this paper, we assume
that either all nodes have compass capabilities, or some
nodes do have and others can infer heading information
from their neighbors. (A sequel paper will deal with the
case in which compasses are either not available, or biased
by local conditions.) An example of propagation of heading
information between nodes is given in [6]. Before going into
detail, it is useful to formally state the network localization
problem.

1) Problem Statement:: The 2-dimensional network lo-
calization problem is the determination of n − m unknown
node locations p = {pm+1, p2, . . . , pn} given the known an-
chor locations {p1, p2, . . . , pm}, and measurements {Mi,j},



where Mi,j is a measurement by node i related to any
physical reading that indicates distance, or bearing by using
a signal coming from node j. We do not assume full mea-
surements, so we define the set N (i) to be the set of sensors
with which sensor i makes measurements. Clearly, i /∈ N (i),
and N (i) ⊂ {1, . . . , n}. Note that these measurements could
be attained via different modalities, e.g., RF, infrared (IR),
acoustics, or a combination of these.

Neighbor relationship

Although a node’s “neighbors” are typically defined to be
all other nodes within some specified range, other definitions
could also be used. Ideally, sensors are assumed to have
sensing regions in circular shape. Let i and j be two nodes in
the network and d(i, j) be the Euclidean distance between
them. Let also r(i) and r(j) be the transmitting range of
nodes i and j, assuming the ideal case where coverage zones
are perfect disks. If there exist two nodes i, j in the network
such that min[r(i), r(j)] < d(i, j) and max[r(i), r(j)] >
d(i, j), then N has directed links. In practice, the sensing
region of a sensor is not necessarily a circle. In most cases,
it is location-dependent and likely irregular. Thus, an inherent
characteristic of wireless networks relies on the directionality
of the associated graph. Directed graphs are likely to occur
in scenarios where nodes perform independent transmitting
range control or have heterogeneous terminals [19], [20].
Then implementing an efficient distributed topology control
is crucial. In practice, this depends on the underlying proto-
cols [20]. In robot networks, localization with directed graphs
was studied in [11].

If we assume a centralized computation, with a supervisor
that has access to all the data, the directed constraints
just become constraints (linear equations without direction).
The computation of the location is then direct. As it will
become clear later, the calculation with directions is solving
linear equations, with a one-parameter solution space, up to
translation of the first node. This parameter can be scaled
to make any single edge the desired length. Now, if we
want fully distributed computation of locations by the nodes,
then directed link matters a lot. The essential property we
require in this paper is that the neighbor relationship is not
necessarily a symmetric relation on {1, 2, . . . , n}. In this
paper, we use the following definition: Given a node i, any
node that is in the sensing region of i is called a neighbor
of i. It is possible that while node j is in the sensing region
of node i, vice versa may not be true.

Under these conditions N’s neighbor relationships can
be conveniently described by a digraph GN = (V, E) with
vertex set V = {1, 2, . . . , n} where the elements of V denote
the labels of nodes, and E is the set of ordered pairs of
vertices called directed edges defined so that (i, j) is one of
the graph’s edges precisely when node j is in the sensing
region of node i. A graph in which each edge is replaced
by a directed edge is called a digraph. A digraph having no
multiple edges or loops (corresponding to a binary adjacency
matrix with 0’s on the diagonal) is called a simple digraph.
We assume throughout that GN is a connected digraph. The

network localization problem is to determine the locations pi

of all nodes in IR2 given the graph of the network GN, the
positions of the anchor nodes pj , j ∈ {1, 2, . . . ,m} in IR2,
and the measurements MN(i, j) in EN. The network local-
ization problem is generically solvable at {p1, p2, . . . , pn}
if it is solvable at each point in an open neighborhood
of {p1, p2, . . . , pn}. To be more precise, generic points are
defined as follows. A set A = (α1, . . . , αm) of distinct real
numbers is said to be algebraically dependent if there is a
non-zero polynomial h(x1, . . . , xm) with integer coefficients
such that h(α1, . . . , αm) = 0. If A is not algebraically
dependent, it is called generic [21]. We say that p =
(p1, . . . , pn) is generic in 2-space, if its 2n coordinates are
generic. It can be shown that the set of generic p’s form an
open dense subset of IR2n.

To study the solvability of the network localization prob-
lem, we reformulate the problem in terms of a “point
formation.” The point formation relevant to the network
localization problem has associated with it the grounded
graph of the network, ĜN, with the same vertices as GN but
with a slightly larger edge set which adds “links” or edges
from every anchor node to every other [1]. It is a property
of ĜN rather than GN which proves to be central to the
solvability of the localization problem under consideration.

B. Point Formations

We begin by reviewing the point formation concept. By a
2-dimensional point formation [1] at p � [p1, p2, . . . , pn]T ,
written Fp, is meant a set of n points {p1, p2, . . . , pn} in IR2

together with a set E of k links, labelled (i, j), where i and
j are distinct integers in {1, 2, . . . , n}. In this context, the
points pi represent the positions of nodes (i.e., both anchor
nodes and ordinary nodes), in IR2 and the ordered pairs in
E label those specific ordered node pairs between which
there is a physical reading. Specifically, we denote the set of
links with distance measurements by L, the one with bearing
measurements with B. For the network N, E would consist
of all edges in ĜN, since the distance between every pair
of anchor nodes is determined by their specified positions.
In a network in which nodes have only distance and bearing
measurements, E is the union of L, B and the set of implicit
links among anchor nodes.

A definition of global rigidity for networks with distance
measurements was given in [1]. Here we generalize this
definition to include other types of physical measurements,
e.g., direction, angle, bearing. Each point formation Fp

uniquely determines a graph GFp � {V, E} with vertex set
V � {1, 2, . . . , n} and edge set E , as well as a measurement
function f : L �→ IR (for distances), h : B �→ [0, 2π)
(for bearings) whose value at (i, j) ∈ E is the measured
quantity (distance, angle, etc.) between pi and pj . Let us
note that the measurement function of Fp is the same as the
measurement function of any point formation Fq with the
same graph as Fp provided q is congruent to p in the sense
that there is a distance preserving map T : IR2 → IR2 such
that T (qi) = pi, i ∈ {1, 2, . . . , n}. We say that two point
formations Fp and Fq are congruent if they have the same



graph and if q and p are congruent. It is clear that Fp is
uniquely determined by its graph and measurement function
at most up to a congruence transformation. A formation that
is exactly determined up to congruence by its graph and
measurement function is called “globally rigid.”

Now we focus on rigidity which is closely related to
global rigidity. Rigidity has been used extensively for mobile
formations [2], [3], [8]. Let us imagine a point formation
moving in real 2-space. A point formation is called rigid
if the distance between each pair of nodes does not change
over time under ideal conditions. In reality, nodes are entities
with physical dimensions. For modelling purposes, nodes are
represented by points called point nodes. A point node with
an attached coordinate system is called an oriented node. A
graph G = (V, E) is called generically rigid, if F(p) = (p, E)
is rigid for a generic p. The property of generic rigidity does
not depend on the precise distances between the points of
F(p) but predicts the rigidity of a formation from the graph
of the vertices and links, in other words, by the underlying
graph.

Distances between all node pairs can be held fixed by
directly measuring distances between only some nodes and
keeping them at desired values. A ‘distance constraint’
is a requirement that a distance between between two
nodes, depicted with d, be maintained through a sens-
ing/communication link and some control strategy. For ex-
ample, a distance constraint between two nodes, depicted
with dij , is shown in Figure 1(a). Distance constraints are
sometimes referred to as range or separation constraints.
With enough distance constraints, the whole formation will
be rigid, even without there being a distance constraint
between every pair of nodes.

Another form of constraint is a ‘bearing constraint’, and
such constraints, generally in conjunction with distance con-
straints, can contribute to establishing rigidity. A bearing is
the angle between a sensing/communication link and the x-
axis of a node’s local coordinate system. For example, if two
nodes i and j have a sensing/communication link between
each other as shown in Figure 1(a), then bearing constraints
for i and j, denoted by θij and θji respectively, are the
angles between the x-axis of each node’s local coordinate
system and the link (i, j). As it will become clear later,
bearing information can be used by both nodes in a formation
with symmetric neighbor relation, i.e., node i measures θij

and node j measures θji concurrently. Alternatively, bearing
information can be used by only one of the nodes in a
formation with directed links, i.e., either node i measures
θij or node j measures θji. Our aim is to obtain a relation
between the coordinates of node i and j given the bearing
constraint between them. In real implementations of bearing
information, the information about a global coordinate sys-
tem (xG, yG) is either known by all nodes or is transmitted
from anchor nodes to ordinary nodes. This is done by
passing “heading” information from one node to another.
By heading is meant the angle between the y-axis of the
global coordinate system and the x-axis of the node’s local
coordinate system. For example, φi is the heading of i in

(a) (b)

(c)

Fig. 1. (a) Bearing constraints for i and j are denoted by θij and θji,
respectively; (b) φi is the heading of i; (c) Once nodes know the global
coordinate system, they can transform the bearing information measured in
their local coordinate systems (θij and θji) into bearing information in the
global coordinate system (Θij and Θji).

Figure 1(b). Once node i passes the information φi and θij

to node j, then node j can compute its heading by φj =
π− (θij −φi)+ θji. Once nodes know the global coordinate
system, they can transform the bearing information measured
in their local coordinate systems (θij and θji) into bearing
information in the global coordinate system (Θij and Θji)
as shown in Figure 1(c). We note that Θji = π + Θij .

III. PARALLEL RIGIDITY

Before proceeding further, we introduce “parallel draw-
ings.” Parallel drawings have been studied in rigidity and
plane configurations in computer-aided design (CAD). They
are particularly relevant when the configurations being con-
sidered are constrained using bearing-only information, as
will become clear later. A plane configuration is a collection
of geometric objects such as points, line segments, and
circular arcs in the plane, together with constraints on and
between these objects. Two point formations on the same
graph are parallel drawings if corresponding edges are
parallel. Parallel drawings, used by engineering draftsmen
in the nineteenth century, have reappeared in a number of
branches of discrete geometry [22].

Given a point formation Fr, we are interested in parallel
drawings Fs in which si − sj is parallel to ri − rj for all
(i, j) ∈ E . Using the operator (.)⊥, for turning a plane vector
by π

2 counterclockwise, these constraints can be written:

(ri − rj)⊥ · (si − sj) = 0. (1)

Each such constraint is called a direction constraint in CAD
literature. This gives a system of |E| homogeneous linear
equations, and a parallel drawing is a solution of this system.



We have the following proposition.
Proposition 3.1: A bearing constraint can be written as a

parallel drawing constraint.
Proof: A bearing constraint for node i along the

trajectory q can be expressed as:

�[(qj(t) − qi(t)), ex] = Θij (2)

and similarly the bearing constraint for node j along the
trajectory q can be expressed as:

�[(qi(t) − qj(t)), ex] = Θji (3)

where ex is the unit vector along the x-axis of the global
coordinate system, and �[.] stands for the function that
maps the two vectors in the argument to the angle between
them, where the angle is measured in the counterclockwise
direction from the second vector to the first vector in the
argument. Let us consider a particular fixed set of points,
pd = (p1, p2, . . . , pn), along the trajectory q(t) where the
bearing constraints are satisfied. We can think of pd as a
reference set of points that determines the desired bearing
constraints for the formation and the nodes can be thought
of satisfying the bearing constraints set by pd at all other
points along the trajectory. For node i, we can write

�[(pj − pi), ex] = Θij (4)

and for node j, we get

�[(pi − pj), ex] = Θji. (5)

Next, let us consider the vector (pj − pi)⊥ which is
obtained by rotating the vector (pj−pi) counterclockwise by
90o and the vector (pi − pj)⊥ which is obtained by rotating
the vector (pi − pj) counterclockwise by 90o. For these two
vectors we write,

�[(pj − pi)⊥, ex] =
π

2
+ Θij (mod 2π) (6)

and,

�[(pi − pj)⊥, ex] =
π

2
+ Θji (mod 2π) (7)

By (2) and (6), we can write

�[(pj − pi)⊥, (qj(t) − qi(t))] =
π

2
(8)

and by (3) and (7), we can write

�[(pi − pj)⊥, (qi(t) − qj(t))] =
π

2
. (9)

(10) and (9) imply

(pi − pj)⊥ · (qi(t) − qj(t)) = 0. (10)

For every link with a bearing constraint in the point forma-
tion, it is now straightforward to write

(pi−pj)⊥ ·(qi(t)−qj(t)) = 0, (i, j) ∈ B, t ≥ 0. (11)

Fig. 2. Parallel point formations.

This gives a system of |B| homogenous linear equations. A
solution of this system is called a parallel point formation.

Central to the development in the rest of this section
will be the use of parallel drawings of configurations [23],
[24], [25]. Given a point formation in 2-space with bearing
constraints Fp, we are interested in parallel point forma-
tions Fr in which ri − rj is parallel to pi − pj for all
(i, j) ∈ B. Trivially parallel point formations are translations
and dilations of the original point formation, including the
parallel point formation in which all points are coincident.
All others are non-trivial. For example, Figure 2b shows a
translation of the point formation in Figure 2a; and Figure 2c
and Figure 2d are dilations of the point formation in Figure
2a. In particular Figure 2c is a contraction and Figure 2d
is an expansion. Figure 2e shows a non-trivial parallel point
formation of Figure 2a because the point formation in Figure
2e cannot be obtained from the point formation in Figure
2a by translation or dilation although all the corresponding
links in these two point formations are parallel to each other
((i, j) and (i′, j′) are corresponding links). A point formation
with bearing constraints is called parallel rigid if all parallel
point formations are trivially parallel. Otherwise it is called
flexible. For example, the point formation in Figure 2a is
flexible. On the other hand, the point formation in Figure
2f, which is obtained from the point formation in Figure 2a
by inserting an extra link (3′, 6′), is a parallel rigid point
formation.

Taking the derivative of (11) (recall that p is a fixed point
set and q(t) is time varying in (11)), we obtain



(a) (b)

Fig. 3. Consider a planar point formation Fp with bearing constraints
shown in (a). We assume that at least one node knows the global coordinate
system and the information about this global coordinate system is passed
to the other nodes in the formation. The same point formation drawn with
bearing constraints in the global coordinate system is shown in (b).

(pi − pj)⊥ · (q̇i(t)− q̇j(t)) = 0, (i, j) ∈ B, t ≥ 0 (12)

These equations can be rewritten in matrix form as

RB(p)q̇ = 0 (13)

where q̇ = [q̇1, q̇2, . . . , q̇n]T and RB(p) is the rigidity matrix
for formations with bearing information.

It is shown in [26] that any statement for a point formation
of distances can be given for the same point formation of
directions where distances are switched with directions. The
isomorphism goes down the pairs of columns for each vertex,
turning all the vectors by 90o (in a direction of choice). This
process preserves the solution space (just turning the solu-
tions by 90o as well), and turns each row for a distance into
a row for a direction. Because of this geometric switching,
there is a generic switching theorem in [26] that converts
results in a direct fashion, so the generic type of rigidity is
defined in the same manner as in the case of distances. Thus
the graph theoretic test is given with the following theorem:

Theorem 3.1: A graph G = (V,B) is generically parallel
rigid in 2-space if and only if there is a subset B′ ⊆ B
satisfying the following two conditions: (1) |B′| = 2|V| − 3,
(2) For all B′′ ⊆ B′,B′′ �= ∅, |B′′| ≤ 2|V(B′′)| − 3, where
|V(B′′)| is the number of vertices that are end-vertices of the
edges in B′′.

For networks using pure distance information, the condi-
tions for global rigidity are stronger than those for rigidity
[1]. For networks in 2-space with bearing information be-
tween nodes, the situation is strikingly different. Because the
key constraints are linear equations, if there are two non-
similar parallel formations with points p and q, then both
formations are not rigid. Therefore, for these formations,
rigidity implies global rigidity up to similarity. In 2-space, if
we have the 2n−3 bearings of a parallel rigid formation, and
add one length, we will have a globally rigid formation. We
do have a simple combinatorial characterization (counting)
and fast algorithms for global rigidity.

Theorem 3.2: If Fp is a formation in 2-space, then Fp

is parallel rigid if and only if Fp is globally rigid under
translation and dilation maps.

Proof: Suppose that Fp is not globally rigid. Therefore,
there is a parallel drawing Fq which is not similar to Fp as a
configuration. We will show that Fp is flexible with Fq as a
non-trivial parallel drawing. For all edges (i, j) ∈ B, (pi−pj)
is parallel to (qi − qj). Therefore, (pi − pj)⊥ · (qi − qj) = 0
as required. Since Fp is not similar to Fq, there is some pair
(h, k) �∈ B such that ph − pk is not parallel to qh − qk.
Therefore, (ph − pk)⊥ · (qh − qk) �= 0. This confirms that Fq

is a non-trivial parallel drawing of Fp.
Conversely, suppose that Fp is flexible with a non-trivial

parallel drawing Fq . Then Fq itself is the non-similar parallel
drawing of Fp which shows it is not globally rigid.

More generally, nodes are not confined to use their sensing
and communication links for measuring distances only. We
can exploit such a possibility to generate point formation that
is not only locally unique but also globally unique with as
few links as a minimally rigid formation.

For formations with combined distance-bearing con-
straints, there is the following combinatorial characterization
of parallel rigidity.

Theorem 3.3: With L for distances and B for bearings, a
graph G = (V,L,B) is generically parallel rigid in 2-space if
and only if the following conditions hold: (i) |L∪B| = 2|V|−
2; (ii) for all subsets V ′ of vertices: |L′∪B′| ≤ 2|V ′|−2; (iii)
for all subsets V ′ of at least two vertices: |B′| ≤ 2|V ′|−3 (iv)
for all subsets V ′ of at least two vertices: |L′| ≤ 2|V ′| − 3.

The proof for the characterization of parallel rigidity
for distance-direction constraints is given in [23]. Since it
is closely related to parallel rigidity for distance-bearing
constraints, the proof is omitted here.

This characterization also covers the distance-bearing
combinations that permit more than one distance. Note that
this is the criterion for rigidity up to translation, not for
global rigidity, if there are multiple distance constraints. We
suspect that it is probably the criterion for global rigidity,
up to translation, if there are enough bearing constraints.
Under this assumption, and assuming that angle of arrival is
measured in trigonometric direction, we have a conjecture
for global rigidity. But before that, we need a few auxiliary
definitions. A tree is a graph in which any two vertices are
connected by exactly one path. Given a connected, undirected
graph, a spanning tree of that graph is a subgraph which is
a tree and connects all the vertices together.

Conjecture 3.1: Provided that the bearing constraints
form at least a spanning tree, then for generic formations,
rigidity up to translation is equivalent to global rigidity of
the formation.

IV. DIRECTED PARALLEL RIGIDITY

A directed edge is written with an ordered pair of end-
vertices (i, j) representing an edge directed from j to i and
drawn with an arrow from j to i, that is from the source to
the sink. The number of edges directed into a given vertex
i in a digraph G is called the in-degree of the vertex and is
denoted by d−

G
(i). The number of edges directed out from

a given vertex i in a digraph G is called the out-degree of
the vertex and is denoted by d+

G
(i). The out-neighborhood



N+
G

(i) of a vertex i is {j ∈ V : (j, i) ∈ E}, and the in-
neighborhood N−

G
(i) of a vertex i is {j ∈ V : (i, j) ∈ E}.

The union of out-neighborhood and in-neighborhood is the
set of neighbors of i, i.e., the (open) neighborhood of i,
NG(i). When i is also included, it is the closed neighborhood
of i, NG[i]. A directed path is a sequence {i, j, k, . . . , r, s}
such that (i, j), (j, k), . . . , (r, s) are directed edges of the
graph. A cycle is a directed path such that the first vertex of
the path equals the last. A digraph is acyclic if it does not
contain any cycle.

Since parallel rigidity problem for formations with bear-
ings is isomorphic to the distance case, we can make use
of some of the techniques developed for formations with
distance information. There are sequential steps to create
directed rigid formations developed in [14], [15]. Then, one
operation for extending a parallel rigid graph is directed ver-
tex addition: given a minimally rigid graph G

∗ = (V∗,B∗),
we add a new vertex i of out-degree 2 with two edges
directed from i to two other vertices in V∗. The second
operation preserving directed parallel rigidity is directed edge
splitting: given directed parallel rigid graph G

∗ = (V∗,B∗),
we remove a directed edge (j, k) (directed from j to k) in B∗

and then we add a new vertex i of out-degree 2 and in-degree
1 with three edges by inserting two edges (j, i), (i, k), and
one edge between i and one other vertex (other than j, k)
in V∗ such that the edge (j, i) is directed from j to i and
the other two edges are directed from i to the other vertices.
The third operation which will complete the constructions
is edge reversal: edge (a, b) is reversed to (b, a), if for the
in-vertex b, N+

G
(b) < 2.

A directed Henneberg sequence for the graph G, is a
sequence of steps, starting from a single edge, using the
following steps, and ending with the graph G:

1) directed vertex addition;
2) directed edge split;
3) edge reversal.
From the isomorphism between distances and bearings,

and from Theorem 3.6 in [15], all possible directed parallel
rigid graphs are generated by a directed Henneberg sequence.
A digraph constructed by using only directed vertex addition
is called a simple graph.

2-directed digraphs

Any ordinary node in a network with directed bearing links
needs to have at least two in-coming links to localize itself,
that is, d−

G
(i) ≥ 2. Of course, anchor nodes do not need any

in-coming links to localize themselves. However, we insert
the implicit links among anchor nodes to obtain the grounded
graph. Furthermore, the existence of one anchor node rules
out translation. If there is only one anchor node, then scaling
is still allowed. This means that one ordinary node can have
one degree of freedom. We call such a node a free node.
Anchor node and free node together make up the set of guide
nodes. The digraph G = (V, E) is 2-directed if for all i ∈ V ,
d−

G
(i) ≤ 2.
A point formation with directed bearing constraints is

called directed parallel rigid if all directed parallel point

formations are trivially parallel. There are a number of issues
that must be addressed in the localization of networks with
directed links. We identify three key layers as follows: 1)
parallel rigidity of the underlying undirected formation; 2)
directed parallel rigidity of the formation; 3) convergence
and the quality of initial position estimates in the network.
If underlying undirected formation is non-rigid, then directed
formation cannot be rigid. Thus, undirected rigidity is a
necessary condition for directed rigidity. On the other hand,
when we associate a direction to each link in a rigid undi-
rected formation, directed parallel rigidity is not necessarily
guaranteed, because an in-degree of a node may be set
to 1 while another node has an in-degree of 3 resulting
from a poor selection of directions. Consequently, undirected
parallel rigidity is not a sufficient condition for directed
parallel rigidity. Even if there is subset of the grounded
graph that is 2-directed, the undirected graph may still be
flexible. Thus, we can state the conditions for global rigidity
for a directed graph as follows: Given a grounded digraph
Ĝ = (V, B̂) of the network N, there is a subset B′ ⊆ B̂
satisfying the following conditions:

1) |B′| = 2|V| − 3,
2) For all B′′ ⊆ B′,B′′ �= ∅, |B′′| ≤ 2|V(B′′)| − 3, where

|V(B′′)| is the number of vertices that are end-vertices
of the edges in B′′.

3) G
′ = (V,B′) is 2-directed.

In a fully distributed computation, the propagation of
position/bearing information works as follows: Nodes imme-
diately adjacent to an anchor node get their distance/bearings
directly from the anchor node. Assuming that a node has
some neighbors with distance/bearing information for an an-
chor node, it will be able to compute its own distance/bearing
with respect to that anchor node, and forward it further
into the network. Assuming that the conditions 1 through
3 above are met, convergence problems arise as the third
layer, because initial position estimates by each node, delays,
errors in measurements, may cause non-convergent solutions.
Moreover, accumulation of errors in cycles arise in digraphs.
‘Simple graphs’ as described above are inherently much
easier to work with to avoid convergence problems.

If all nodes have only bearing measurements and the
formation is directed parallel rigid, at least one distance
constraint is necessary to rule out scaling. Distance constraint
can exist in the network in two scenarios: (i) at least one node
measures distance; (ii) there are at least two anchor nodes in
the network. The set of anchor nodes is denoted by A. Let
us note that the distance and bearing between every pair of
anchor nodes are implicitly known.

Recall that there are absolute and relative localization.
Let us consider absolute localization. If a formation with
bearings is globally rigid, translations are still possible in a
parallel rigid formation. We need at least one anchor node
with world coordinates to pin down the whole network to
exclude translations. Thus |A| ≥ 1. Furthermore, we need at
least one distance information to rule out scaling. If |A| ≥ 2
then scaling is automatically excluded. If |A| = 1 then



we need at least one ordinary node that has a distance
measurement from its neighbor. For relative localization,
anchor nodes are not necessary, and parallel rigidity and one
distance constraint will be sufficient.

We summarize the conditions for network localization with
bearings as follows: A network N is localizable (in the
absolute sense) if the following conditions hold:

1) its underlying directed graph is globally rigid;
2) |A| ≥ 1.
3) there exists at least one distance constraint - this

condition holds if either
• |A| ≥ 2; or,
• there exists at least one ordinary node that has a

distance measurement from its neighbor.
A network N is localizable (in the relative sense) if the

following conditions hold:
1) its underlying directed graph is globally rigid;
2) there exists at least one distance constraint - this

condition holds if either
• |A| ≥ 2; or,
• there exists at least one ordinary node that has a

distance measurement from its neighbor.

V. CONCLUDING REMARKS

If there is more than one distance constraint in the
network, then multiple realizations again become possible
depending on the distribution of distance and bearing con-
straints.

A sequel will provide the results for the following types
of networks:

• networks in both 2- and 3-space under the assumption
that the information obtained by compasses is either not
available, or biased by local conditions;

• networks with mixed bearings-distances or angles-
distances in both 2- and 3-space;

Finally, directed rigidity have been applied for coordinated
motion of robotic agents in directed rigid formations (see for
example [8], [14], [15], [16], [17], [18]). Our results on using
bearing-angle information in mobile directed formations will
be in a separate consecutive paper.
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