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ABSTRACT

A Theory Of Spherical Harmonic Identities for
BRDF/Lighting Transfer and Image Consistency

Dhruv K. Mahajan

We develop new mathematical results based on the spherical harmonic convolution

framework for reflection from a curved surface. We derive novel identities, which are the

angular frequency domain analogs to common spatial domain invariants such as reflectance

ratios. They apply in a number of canonical cases, including single and multiple images of

objects under the same and different lighting conditions. One important case we consider

is two different glossy objects in two different lighting environments. Denote the spherical

harmonic coefficients by Blight,material
lm where the subscripts refer to the spherical harmonic

indices, and the superscripts to the lighting (1 or 2) and object or material (again 1 or

2). We derive a basic identity, B1,1
lm B2,2

lm = B1,2
lm B2,1

lm , independent of the specific lighting

configurations or BRDFs. While this paper is primarily theoretical, it has the potential to

lay the mathematical foundations for two important practical applications. First, we can

develop more general algorithms for inverse rendering problems, which can directly relight

and change material properties by transferring the BRDF or lighting from another object

or illumination. Second, we can check the consistency of an image, to detect tampering or

image splicing. In summary, this thesis introduces the basic theory, that can lead to much

future theoretical and practical work in inverse rendering and image consistency checking.
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Chapter 1

Introduction

The study of the appearance of objects with complex material properties in complex light-

ing is one of the challenging problems in both computer vision and computer graphics.

Variability in lighting has a huge effect on the appearance of objects in images. As a re-

sult, the recognition of objects like faces under unknown complex lighting conditions is an

area of active interest in computer vision. Moreover, we need to model complex material

properties and lighting to create realistic computer generated images. Therefore, inverse

rendering methods are extensively used in computer graphics to measure these attributes

from real photographs.

Substantial progress has been made in the analysis of Lambertian objects in com-

plex lighting. Recent work by Basri and Jacobs [BJ03], and Ramamoorthi and Hanra-

han [RH01b] has shown that the appearance of a curved surface can be described as a

spherical convolution of the (distant) illumination and BRDF. They assume curved homo-

geneous objects (single BRDF) of known shape lit by complex distant illumination, and

neglect cast shadows and interreflections. They prove that the set of all Lambertian re-

flectance functions (the mapping from surface normals to intensities) lies close to a 9D

linear subspace. This result often enables computer vision algorithms, previously restricted

to point sources without attached shadows, to work in general complex lighting and has led

to a number of novel algorithms for lighting-insensitive recognition, photometeric stereo,

and even fast rendering in computer graphics [BJ03, RH01a, BJ01, RH02, SKS02, HS05].

However, there has been relatively little work in vision on using the convolution formulae
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for glossy objects, even though the frequency analysis [RH01b] applies for general materials.

The main goal of this thesis is to derive new formulae and identities for direct frequency

domain spherical (de)convolution. Our work is based on the spherical convolution theory

of Ramamoorthi and Hanrahan [RH01b]. In addition to assumptions made by them, we

also assume that the BRDF is radially symmetric, which is a good approximation for most

specular reflectance. Specifically, we make the following theoretical contributions:

Derivation of New Frequency Domain Identities: Our main contribution is

the derivation of a number of new theoretical results, involving a class of novel frequency

domain identities. We study a number of setups, including single (chapters 5 and 6) and

multiple (chapter 7) images under single and multiple lighting conditions. For example, one

important case we consider (section 7.3) is that of two different glossy1 materials in two

different lighting environments. Denote the spherical harmonic coefficients by Blight,material
lm ,

where the subscripts refer to the harmonic indices, and the superscripts to the lighting (1 or

2) and object or material (again 1 or 2). We derive an identity for the specular component,

B1,1
lm B2,2

lm = B1,2
lm B2,1

lm , directly from the properties of convolution, independent of the specific

lighting configurations or BRDFs.

Analogy between Spatial and Frequency Domain Invariants: By definition, in-

variants are insensitive to certain appearance parameters like lighting. They usually trans-

form images to a simple feature space where more accurate algorithms can be developed for

the task at hand (for example, lighting-insensitive recognition). We show (chapter 8) that

the class of identities derived in the thesis can be considered the analog in the frequency

domain of fundamental spatial domain invariants, such as reflectance ratios (Nayar and

Bolle [NB96]) or photometric invariants (Narasimhan et al. [NRN03]). We consider curved

homogeneous glossy objects instead of textured Lambertian objects. Also, we consider gen-

eral complex lighting, while much of the previous spatial domain theory is limited to single

1Parts of the theory (in chapters 5 and 7) address only purely specular (or purely Lambertian) objects.

However, as discussed in the thesis and shown in our results, the theory and algorithms can be adapted in

practice to glossy objects having both diffuse and specular components. Hence, we use the term “glossy”

somewhat loosely throughout the thesis.
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point sources.

Analysis of Diffuse Irradiance in Reflected Parameterization: Another major

contribution of the thesis is the analysis of diffuse irradiance in the reflected parameteriza-

tion. This allows us to study objects with both diffuse and specular components in a unified

framework. We show that even with the parameterization by reflected direction, the effects

of diffuse irradiance are limited to low frequencies. To our knowledge, this is the first such

combined diffuse plus specular theory and is likely to have broader implications for other

problems in vision, such as photometric stereo and light-insensitive recognition.

The theory and novel identities presented in the thesis have potential applications in

many areas of vision and graphics like inverse rendering, consistency checking, BRDF-

invariant stereo and photometric stereo or lighting-insensitive recognition. In particular,

this thesis is motivated by the following three important practical applications, and seeks

to lay the mathematical foundations in these areas.

Inverse Rendering: Estimation of the BRDF and lighting has been an area of active

research in vision and graphics. Inverse Rendering deals with measuring these rendering

attributes from photographs. Rendering synthetic images by using these measurements

from real objects greatly enhances the visual realism of the rendered images. For example,

we estimate illumination from a single image of a glossy material with known BRDF. By

the convolution theorem, a glossy material will reflect a blurred version of the lighting.

It is appealing to sharpen or deconvolve this by dividing in the frequency domain by the

spherical harmonic coefficients of the BRDF. The basic formula is known [RH01b], but

cannot be robustly applied, since BRDF coefficients become small at high frequencies. Our

contribution is the adaptation of Wiener filtering [GW03, Wie42] from image processing

to develop robust deconvolution filters (figures 4.3 and 9.2). We are able to amplify low

frequencies to recover the lighting and reduce noise simultaneously.

BRDF/Lighting Transfer: Besides estimation of lighting and BRDFs, we also de-

velop more general algorithms, which directly relight and change material properties by

transferring the BRDF or lighting from another object or illumination. For example, we
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Figure 1.1: One application of our framework. We are given real photographs of two objects

of known geometry (shown in inset; note that both objects can be arbitrary, and one of

them is a sphere here only for convenience). The two objects have different (and unknown)

diffuse and specular material properties. Both objects are present in the first image under

complex lighting, but the cat is not available in the second image, under new lighting.

Unlike previous methods, none of the lighting conditions or BRDFs are known (lightings

on left shown only for reference). Our method enables us to render or relight the cat, to

obtain its image in lighting 2 (compare to actual shown on the right). This could be used

for example to synthetically insert the cat in the second image.

derive the identity B1,1
lm B2,2

lm = B1,2
lm B2,1

lm , where Bi,j denote the image of object j in lighting

i. This identity enables us to render the fourth light/BRDF image (say B2,2
lm ), given the

other three, without explicitly estimating any lighting conditions or BRDFs. A common

example (figure 1.1) is when we observe two objects in one lighting, and want to insert the

second object in an image of the first object alone under new lighting. It is difficult to

apply conventional inverse rendering methods in this case, since none of the illuminations

or BRDFs are known.

Image Consistency Checking and Tampering Detection: The final, newer appli-

cation, is to verify image consistency and detect tampering (Johnson and Farid [JF05], Lin

et al. [LWTS05]). The widespread availability of image processing tools enables users to

create “forgeries” such as by splicing images together (one example is shown in figure 9.3).
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Moreover, watermarking is not usually a viable option in many applications, such as ver-

ifying authenticity for news reporting. However, (in)consistencies of lighting, shading and

reflectance can also provide valuable clues. This thesis takes an important first step in

laying the theoretical foundations for this new research direction, by deriving a new class

of identities which can be checked to ensure image consistency.

The next chapter discusses the previous work done in related areas. We briefly explain

the spherical convolution and signal processing framework in chapter 3. Chapter 4 demon-

strates the use of deconvolution to estimate lighting. In chapters 5 and 6, we introduce

identities for the simple case of a single image of an object. Chapter 7 derives more identi-

ties for the case of multiple images. In chapter 8 we discuss the implications of our theory

and its relation with spatial domain invariants. Chapter 9 gives experimental validation of

our theory and shows potential applications. Finally, we conclude our discussion in chapter

10 and talk about the future research directions that this work makes possible. This thesis

is an extended and detailed version of the work [MRC06] to be presented at ECCV2006.
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Chapter 2

Previous Work

The theory discussed in the thesis has implications to a broad range of areas in vision and

graphics. This chapter briefly touches upon the related work in these areas.

Spherical Harmonics and Convolution Theorem: As discussed in the introduction,

our work is derived from the spherical convolution theory of Basri and Jacobs [BJ03], and

Ramamoorthi and Hanrahan [RH01b]. They show that the appearance of a curved surface

can be described as a spherical convolution of the (distant) illumination and BRDF and

hence as their product in the spherical harmonics or frequency domain. Many recent articles

in computer vision have explored theoretical and practical applications for Lambertian

surfaces (e.g., [BJ01, SFB03]). In graphics, the general convolution formulae have been

used for rendering with environment maps [RH02], and insights have been widely adopted

for forward and inverse rendering (e.g., [RH01b, SKS02]). However, as noted earlier, direct

application of the convolution theorem for general materials is still rare.

Image Relighting and Inverse Rendering: Given images of an object under a

sparse set of lighting condition(s), relighting it with novel lighting is an interesting problem.

Current methods [MWLT00, MG97, SSI99] require explicit estimation of lighting and BRDF

from the images of a scene. This thesis presents a novel identity to directly relight and

change material properties without explicit estimation of BRDF or illumination.
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Spatial Domain Invariants: As discussed above, the direct estimation of parameters

like lighting and BRDF from a set of images of a scene is a hard problem. Invariants

provide an intermediate solution to this problem. They have been previously used mostly

for material and lighting insensitive recognition [NRN03, DYW05]. There has been a lot of

previous work in developing spatial domain invariants. Nayar and Bolle [NB96] compute

the ratio of intensities at adjacent pixels to derive lighting independent reflectance ratios.

Davis et al. [DYW05] derive a similar BRDF independent ratio. Narsimhan et al. [NRN03]

consider a summation of multiple terms (diffuse plus specular), where each term is a product

of lighting, BRDF and scene geometry. However most of the above methods are limited to

point sources [NRN03, DYW05] and consider textured Lambertian objects only [DYW05,

NB96].

We for the first time derive the frequency domain analogs to these common spatial

domain invariants. Our frequency domain identities have a simple form and generalize well

to complex lighting and object materials. However we assume curved homegeneous objects

of known geometry. Moreover while our identities operate globally needing the full range of

reflected directions, spatial domain invariants involve mostly local pixel-based operations.

Image Consistency Checking and Tampering Detection: This is a new interest-

ing area of research. (In)Consistency in shading can provide important clues for tampering

detection. Most previous work has focused on checking consistency at a signal or pixel

level, such as the camera response [LWTS05], or wavelet coefficients (Ng et al. [NCS04]).

But most of these methods do not exploit consistencies of lighting, shading and reflectance.

Johnson and Farid [JF05] detect inconsistencies in lighting to expose forgeries. But their

method is limited to point light sources. Our frequency domain identities can be used di-

rectly to detect tampering and consistency of lighting and shading in a complex lighting

environment.
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Chapter 3

Background

We now briefly introduce the spherical convolution and signal-processing framework [BJ03,

RH01b] needed for our later derivations. We start with the Lambertian case,

B(n) =
∫

S2

L(ω)max(n · ω, 0) dω, (3.1)

where B(n) denotes the reflected light as a function of the surface normal. B is proportional

to the irradiance (we omit the albedo for simplicity), and L(ω) is the incident illumination.

The integral is over the sphere S2, and the second term in the integrand is the half-cosine

function. The equations in this paper do not explicitly consider color; the (R,G,B) channels

are simply computed independently. A similar mathematical form holds for other radially

symmetric BRDFs, such as the Phong model for specular materials. In this case, we repa-

rameterize by the reflected direction R (the reflection of the viewing ray about the surface

normal), which takes the place of the surface normal:

B(R) =
s + 1
2π

∫

S2

L(ω)max(R · ω, 0)s dω, (3.2)

where s is the Phong exponent, and the BRDF is normalized (by (s + 1)/2π).
If we expand in spherical harmonics Ylm(θ, φ), using spherical coordinates ω = (θ, φ),

n or R = (α, β), and ρ(θ) for the (radially symmetric) BRDF kernel, we obtain

L(θ, φ) =

∞X

l=0

lX

m=−l

LlmYlm(θ, φ) B(α, β) =

∞X

l=0

lX

m=−l

BlmYlm(α, β) ρ(θ) =

∞X

l=0

ρlYl0(θ). (3.3)

It is also possible to derive analytic forms and good approximations for common BRDF

filters ρ. For the Lambertian case, almost all of the energy is captured by l ≤ 2. For
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Phong and Torrance-Sparrow, good approximations [RH01b] are Gaussians: exp[−l2/2s] for

Phong, and exp[−(σl)2] for Torrance-Sparrow, where σ is the surface roughness parameter

in the Torrance-Sparrow model, and s is the Phong exponent.

In the frequency domain, the reflected light B is given by a simple product formula or

spherical convolution (see [BJ03, RH01b] for the derivation and an analysis of convolution),

Blm = ΛlρlLlm = AlLlm, (3.4)

where for convenience, we define the normalization constant Λl as

Λl =

√
4π

2l + 1
Al = Λlρl. (3.5)

It is also possible to extend these results to non-radially symmetric general isotropic

BRDFs [RH01b]. For this case, we must consider the entire 4D light field, expressed as a

function of both orientation and outgoing direction,

Blmpq = Λlρlq,pqLlm, (3.6)

where the reflected light field is now expanded in a mixed basis of representation matrices

and spherical harmonics, and has four indices because it is a 4D quantity. The 3D isotropic

BRDF involves an expansion over both incoming and outgoing directions.

The remainder of this thesis derives new identities and formulae from equation 3.4,

Blm = AlLlm. We focus on equation 3.4, since it is simple, and allows practical spherical

harmonic computations from only a single image—a single view of a sufficiently curved

object (assuming a distant viewer) sees all reflected directions1. Most glossy BRDFs (such as

Torrance-Sparrow) are approximately radially symmetric, especially for non-grazing angles

of reflection [RH01b, RH02]. Most of the theory in this thesis also carries over to general

isotropic materials, as per equation 3.6, if we consider the entire light field.

1In case we do not have the full range of normals, we can use multiple cameras. As we move the

camera(viewer) the same point on the object now corresponds to a different reflected direction. Hence we

can get all the reflected directions even if the object has only a partial set of normals by the careful placement

of cameras.
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Chapter 4

Known BRDF: Deconvolution to

Estimate Lighting

Lighting Estimation is a specific example of the general inverse rendering problem. Given

a single image and BRDF of an object, we want to estimate the directional distribution of

the incident light. This information can then be used to insert new objects in the scene,

alter the lighting of the object or check lighting consistency between two objects. Since

reflected light (image) is a spherical convolution of lighting and BRDF, it makes sense to

deconvolve it to estimate lighting. We present a deconvolution algorithm for curved surfaces

under complex lighting. Section 4.1 describes the basic deconvolution idea and introduces

an ideal deconvolution filter. We then discuss the properties of this filter for Phong-like

BRDFs in section 4.2. Section 4.3 describes the Wiener regularization used to regularize

the inverse filter so that it can be used for practical purposes. Finally, we show the results

of applying this filter in section 4.4.

4.1 Deconvolution - Basic Idea

Given a single image of a curved surface, we can map local viewing directions to the reflected

direction, determining B(R), and then Blm by taking a spherical harmonic transform. If

the material includes a diffuse component as well as specular, we use the dual lighting

estimation algorithm of Ramamoorthi and Hanrahan [RH01b], which estimates the specular

Blm consistent with the diffuse component. As per equation 3.4, Blm will be a blurred
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version of the original lighting, filtered by the glossy BRDF.

From equation 3.4 in the spherical harmonic domain, we derive

Llm =
Blm

Al
= Al

−1Blm, (4.1)

where the last identity makes explicit that we are convolving with a new radially symmet-

ric kernel A−1
l , which can be called the inverse, sharpening or deconvolution filter. A−1

l

effectively amplifies high frequencies to recover blurred out details.

4.2 Analysis of Inverse Phong Filter

We now discuss the properties of the angular form of the inverse filter. Surprisingly, not

much work has been done to analyze this filter in detail. For simplicity, we will use the

Fourier transform rather than spherical harmonics. We will illustrate that the properties

discussed in the Fourier domain are also valid for spherical harmonics.

We use inverse Phong filter for our analysis. As mentioned earlier, Gaussian exp[−l2/2s]

gives a good approximation for Phong, where s is the Phong exponent. So, the inverse Phong

filter can be approximated by exp[l2/2s]. For applying this filter practically, we need to

truncate it first to a cutoff frequency m. The inverse Fourier transform of this truncated

filter is

f(x,m, s) =
∫ m

−m
e

u2

2s e2πixudu (4.2)

Putting u =
√

2sv

f(x,m, s) =
√

2s

∫ m√
2s

− m√
2s

ev2
e2
√

2sπivxdv

f(x,m, s) =
√

2sg(
√

2sx,
m√
2s

), (4.3)

g(x, k) =
∫ k

−k
et2e2πitxdt (4.4)

g(x, k) is the inverse Fourier transform of the cannonical filter exp[t2] truncated at k and

is independent of Phong exponent s. Going from f to g is just the application of Fourier

Scale Theorem. Let H(u) be the Fourier transform of h(x).

h(x) ↔ H(u)
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Then, the Fourier scale theorem says that

h(ax) ↔ 1
| a |H(

u

a
)

In our case a = 1√
2s

. The frequencies u of the cannonical filter exp[u2] get scaled by 1√
2s

. By

the Fourier scale theorem, this means that x gets scaled by
√

2s in the spatial domain. Hence

f(x, m, s) is just the spatially scaled version of g(x, k). g(x, k) can be further simplified as

g(x, k) =
2πek2

k
n(kx,

π

k
), (4.5)

n(α, β) =
∫ ∞

α
eβ2(α2−u2)sin(2πu)du (4.6)

A detailed derivation is given in Appendix A. n(α, β) can be considered as a normalized

form of the inverse filter and is independent of both Phong exponent s and cutoff frequency

m. Plots for f(x, m, s), g(x, k) and n(α, β) are shown in figure 4.1(a)-(f). Here k and m are

related to each other by k = m√
2s

. We now discuss some important properties of f(x, m, s).

4.2.1 Periodicity:

We have found empirically that n(α, β) has a period 1 in α (figure 4.1(c,f)). Hence g(x, k)

has period 1
k (from equation 4.5). From equation 4.3,

Period of f(x,m, s) =
1√
2s
∗ Period of g(x, k)

=
1√
2s
∗ 1

k

=
1√
2s
∗
√

2s

m

=
1
m

(4.7)

So as cutoff frequency m increases, filter becomes more and more oscillatory (figure 4.1(a,d)).

4.2.2 Amplitude:

We now discuss the effect of truncation m and Phong exponent s on the amplitude of

the filter f(at x = 0). The next subsection discusses the amplitude fall-off of the filter.
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Figure 4.1: Row 1 and 2: f , g and n functions for two different values of frequency cut-off

m. As m increases, f become more and more oscillatory with period 1
m . The period of n

however does not change. Bottom Row: (g) shows that the amplitude of f (at x = 0)

increases exponentially with m2. The log-log plot (h) of amplitude of f vs. x is a straight

line with slope -1, showing that filter falls off as 1
x .

Equations 4.3 and 4.5 suggest that amplitude introduced due to frequency cutoff m and

Phong exponent s is

√
2s

ek2

k
=

2se
m2

2s

m
(4.8)

As m increases, amplitude grows almost exponentially, as can be seen from figure 4.1(g)

4.2.3 Amplitude Fall-off:

Amplitude fall-off of f(x,m, s) is same as that of n(α, β). Figure 4.1(h) shows that the

log-log plot of amplitude falloff for f(x,m, s) is a straight line with slope = −1. Hence

amplitude of f(x,m, s) falls off as 1
x with x.
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Figure 4.2: Left: Wiener filters in frequency domain. (a) shows the Wiener filters for

different values of K for Phong BRDF (s = 100). Note that the maxima occurs at l∗ =√
log( 1

Ks ), the value being A∗max

l = 1
2
√

K
. The convolution of the filter (a) with the original

Phong filter (blue graph in b) lets through most frequencies without attenuation, while

filtering out the very high frequencies. Right: Wiener filters in angular domain. Note the

decrease in oscillations as we increase the value of K (c,e and d,f). Also the period of the

filter decreases with increasing Phong exponent s (c,d and e,f).

4.3 Wiener Regularization

Section 4.2 shows that it is difficult to apply equation 4.1 directly and we need regularization.

However a hard cutoff at a certain frequency is not best to reduce ringing or for practical

implementation.

These types of problems have been well studied in image processing, where a number of

methods for deconvolution have been proposed. We adapt Wiener filtering [GW03, Wie42]

for this purpose. Specifically, we define a new inverse filter,

A∗l =
1
Al

( | Al |2
| Al |2 +K

)
=

Al

| Al |2 +K
Llm = Al

∗Blm, (4.9)

where K is a small user-controlled constant. When | Al |2À K, the expression in parenthe-

ses on the left is close to 1, and A∗l ≈ A−1
l . When | Al |2¿ K, A∗l ≈ Al/K.

Figure 4.2 shows the Wiener filter in spatial and frequency domain for Phong BRDF with

different Phong exponents and K values. Note the smooth falloff of the filter in the frequency
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Figure 4.3: (a): Original synthetic image (Phong BRDF with exponent s = 100, diffuse

Kd = 2 and specular Ks = 1) with noise—close examination of (a),(b) will reveal the noise.

Top row: We recover (c) the “ECCV” text in the original lighting (d). Previous techniques

(b) can estimate only a blurred result. Note that top and bottom rows show a closeup of the

sphere. Bottom row: We can use the recovered illumination to create a new rendering

of a high-frequency material (f). This compares well with the actual result (g); a previous

method (e) creates a very blurred image.

domain.. The maxima obtained by differentiating equation 4.9 occurs at Amax
l =

√
K with

the maximum value A∗max

l = 1
2
√

K
. Amax

l can be thought of as the effective cutoff frequency

value of the filter. For Phong filter exp[−l2/2s], this corresponds to the cutoff frequency

l∗ =
√

log( 1
Ks ). For a given s, as K increases, l∗ decreases and hence more and more of the

higher frequencies get truncated. The convolution of the filter (a) with the original Phong

filter (blue graph in b) lets through most frequencies without attenuation, while filtering

out the very high frequencies. (c)-(f) shows these filters in the angular domain. Inreasing

the value of K(c,e and d,f) decreases the amplitude of the filter and makes it less oscillatory,

thus decreasing the ringing effects. Increasing the Phong exponent s(c,d and e,f) decreases

the periodicity of the filter.
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4.4 Lighting Estimation in Frequency Domain

The top row in figure 4.3 shows the results (on the synthetic noisy sphere in (a)) of decon-

volution (c)—the “ECCV” text used in the lighting (d) can be recovered fairly clearly. One

interesting point is the effect of noise. In our case, the image in a glossy surface is already

low pass filtered (because of the BRDF), while any noise usually has much higher frequency

content, as seen in the original synthetic image (a). The filter in equation 4.9 amplifies the

low frequencies (to invert the effects of low-pass filtering), but reduces the high frequencies

(because of the inherent regularization). Hence, we can simultaneously deconvolve the light-

ing and suppress noise (compare the noise in (c) with that in (a) or (b)). Figure 9.2 shows

an application of our method with real data and a geometrically complex object.

It is also interesting to compare our results to previous techniques. Angular-domain

approaches are usually specialized to point lights, use higher-frequency information like

shadows (Sato et al. [SSI99]) or recover large low-frequency lighting distributions (Marschner

and Greenberg [MG97]). Even the more precise dual angular-frequency lighting estimation

technique of Ramamoorthi and Hanrahan [RH01b] can obtain only a blurred estimate of

the lighting (b). The effect of these results is clearly seen in the bottom row of figure 4.3,

where [RH01b] produces a blurred image (e) when trying to synthesize renderings of a new

high-frequency material, while we obtain a much sharper result (f).
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Chapter 5

Theoretical Analysis: Single Image

of one Object with specular BRDF

We now carry out our theoretical analysis and derive a number of novel identities for image

consistency checking and relighting. We structure the discussion from the simplest case of

a single image of one object in this section, to more complex examples in chapter 7—two

objects in the same lighting, the same object in two lighting conditions, and finally two (or

many) objects in two (or many) lighting conditions. Deconvolution discussed in chapter 4 is

a special single image case where we know the BRDF of the object but lighting is unknown.

In this section we discuss the converse case, where the lighting is known, but the BRDF

is unknown. The objects are assumed to be purely specular. We then present a general

theory for objects with both diffuse and specular components in the next section.

We show that for radially symmetric specular BRDFs, described using equation 3.4, we

can eliminate the BRDF to derive an identity that must hold and can be checked independent

of the BRDF. This is the first of a number of frequency domain identities we will derive in

a similar fashion. First, from equation 3.4, we can write

Al =
Blm

Llm
. (5.1)

This expression could be used to solve for BRDF coefficients1. However, we will use it in a

1Since natural lighting usually includes higher frequencies than the BRDF, we can apply equation 5.1

directly without regularization, and do not need to explicitly discuss deconvolution—however, the next
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different way. Our key insight is that the above expression is independent of m, and must

hold for all m. Hence, we can eliminate the (unknown) BRDF Al, writing

Bli

Lli
=

Blj

Llj
(5.2)

for all i and j. Moving terms, we obtain our first identity,

BliLlj −BljLli = 0. (5.3)

For checking the consistency of images, the above identity can be used without needing

to explicitly know or calculate the BRDF. In effect, we have found a redundancy in the

structure of the image, that can be used to detect image tampering or splicing. To normalize

identities in a [0...1] range, we always use an error of the form

Error =
| BliLlj −BljLli |
| BliLlj | + | BljLli | .

There are many ways one could turn this error metric into a binary consistency checker

or tamper detector. Instead of arbitrarily defining one particular approach, we will show

graphs of the average normalized error for each spherical harmonic order.

Figure 5.1 applies our theory to synthetic data of an ideal Phong BRDF, with noise

added. We show closeups of spheres generated with “ECCV” and “ICCV” lighting. To

the naked eye, these look very similar, and it is not easy to determine if a given image

is consistent with the lighting. However, our identity in equation 5.3 clearly distinguishes

between consistent (i.e., the image is consistent with the lighting [ECCV or ICCV] it is

supposed to be rendered with) and inconsistent illumination/image pairs. As compared to

Johnson and Farid [JF05], we handle general complex illumination. Moreover, many of the

identities in later sections work directly with image attributes, not even requiring explicit

estimation or knowledge of the illumination.

Our framework could be used to blindly (without watermarking) detect tampering of

images, making sure a given photograph (containing a homogeneous object of known shape)

chapter does derive a new robust formula (equation 6.4) for BRDF estimation when both diffuse and specular

components are present. Conversely, the frequency space identity in this chapter (equation 5.3) cannot be

derived for the known BRDF case, since the lighting is not radially symmetric and therefore cannot be

eliminated.
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Figure 5.1: Left: The synthetic images used. These correspond to closeups of specular

spheres rendered with “ECCV” and “ICCV” lighting. To the naked eye, the two images

look very similar. Middle and Right: The graphs show that our identity can clearly

distinguish consistent image/lighting pairs (lower line) from those where lighting and image

are inconsistent (upper line).

is consistent with the illumination it is captured in.2 To the best of our knowledge, ours

is the first theoretical framework to enable these kinds of consistency checks. Example

applications of tamper detection on real objects are shown in figures 9.1 and 9.3.

Finally, it should be noted that if we are given the full light field (all views) instead of

simply a single image, a similar identity to equation 5.3 holds for general BRDFs that need

not be radially symmetric. In particular, from equation 3.6,

BlipqLlj −BljpqLli = 0. (5.4)

For the rest of this thesis, we will not explicitly write out the form of the identities for

general light fields, but it should be understood that similar properties can be derived for

general isotropic BRDFs and light fields for most of the formulae we discuss here.

2 Our identities are “necessary” conditions for image consistency, under our assumptions and in the

absence of noise. They are not theoretically “sufficient”. For example, if an unusual material were to zero

out a certain frequency, tampering at that frequency may go undetected. Also note that noise tends to add

high frequencies, while materials tend to filter out high frequencies, causing the consistency errors to rise

(become less reliable) with harmonic order.
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Chapter 6

Single Image: Combining Diffuse

and Specular

We now consider the more general case of an unknown glossy BRDF with both specular and

Lambertian (diffuse) reflectance. To our knowledge, this is the first such combined diffuse

plus specular theory of the single image case, and the analysis (such as equations 6.1 and 6.4)

is likely to have broader implications for other problems in vision, such as photometric stereo

and lighting-insensitive recognition. Some readers may wish to skim this chapter, which

is slightly more technical, on a first reading of the thesis.

6.1 Common Parameterization

The major technical difficulty is that while both diffuse (Lambertian) and specular compo-

nents are radially symmetric, they are so in different parameterizations (normal vs reflected

direction). An important technical contribution of this thesis is to express the diffuse irra-

diance in the reflected parameterization,

Blm = KdDlm + Aspec
l Llm. (6.1)

The parameters of reflectance are the diffuse coefficient Kd and the specular BRDF filter

coefficients Al (we drop the superscript from now on). Dlm are the spherical harmonic

coefficients of the irradiance written in the reflected parameterization. They depend lin-

early on the lighting coefficients Llm (assumed known) as Dlm ≈ ∑2
n=0 ALamb

n LnmTlmn,
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Figure 6.1: Reflected vs Normal Parameterization

with Tlmn =
∫
S2 Ynm(α

2 , β)Y ∗
lm(α, β) dΩ. The α/2 in the first term converts from normal to

reflected parameterization. Figure 6.1 shows the relation between reflected and normal pa-

rameterization. Assuming that the coordinate system is aligned with the viewing direction

V, if normal N makes an angle α with V, the reflected direction R makes an angle 2α. 1

The coefficients Tlmn can be determined analytically or numerically, since the formulae

for Ynm and Y ∗
lm are well known. Plots for Dlm and Tlmn are shown in figure 6.2 for a

particular complex natural lighting environment. Since n ranges from 0 to 2 for Lambertian

reflectance, m varies from −2 to +2, so we can safely neglect terms with | m |> 2 or

| n |> 2. Moreover, for l ≥ 2, we find that Tlmn either vanishes or falls off rapidly as

l−3/2 or l−5/2. Hence, though somewhat more complex, Lambertian effects in the reflected

parameterization are still relatively simple and low frequency. Please see Appendix B for a

more detailed derivation.

6.2 Determining Kd and Image Consistency:

We now seek to eliminate Al from equation 6.1 to directly estimate Kd for inverse rendering

and reflectance estimation.

As before, Al can be eliminated by considering different values of m,

Bli −KdDli

Lli
=

Blj −KdDlj

Llj
=⇒ Kd =

BliLlj −BljLli

DliLlj −DljLli
. (6.2)

Since the above equation is true for all l,i,j, we also get an identity that must hold for

1We would like to emphasize that the reflected parameterization is not directly related to Rusinkiewicz’s

half-angle [Rus98]. In fact convolution theorem does not hold for the half-angle parameterization.
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Figure 6.2: (a),(b): Dlm plots for low and high frequencies. Note that Dlm coefficients

are neglegible for | m |> 2 and hence can be safely neglected. (c): Tlmn plot. Tlmn falls

off rapidly as l−3/2 or l−5/2 for l ≥ 2.

any l, i and j, and can be used for image consistency checking,

Bl1iLl1j −Bl1jLl1i

Dl1iLl1j −Dl1jLl1i
=

Bl2mLl2n −Bl2nLl2m

Dl2mLl2n −Dl2nLl2m
. (6.3)

6.3 Determining Al and Image Consistency:

Equivalently, we can eliminate Kd,

Bli −AlLli

Dli
=

Blj −AlLlj

Dlj
=⇒ Al =

BliDlj −BljDli

LliDlj − LljDli
. (6.4)

This can be used to directly estimate the specular BRDF coefficients, irrespective of

the diffuse coefficient Kd. As a sanity check, consider the case when Kd = 0. In this case,

Bli = AlLli, so the expression above clearly reduces to Al. Hence, equation 6.4 can be

considered a new robust form of reflectance estimation that works for both purely specular

and general glossy materials. Further note that we estimate an accurate non-parametric

BRDF representation specified by general filter coefficients Al.

Since the formula above is true for all i, j, we get an identity for image consistency,

BliDlj −BljDli

LliDlj − LljDli
=

BlmDln −BlnDlm

LlmDln − LlnDlm
. (6.5)

Figure 6.3 shows these ideas applied to a synthetic sphere with both diffuse and specular

components. In this case, we used as input Al from measurements of a real material,
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Figure 6.3: Left: Synthetic sphere image with both diffuse (Kd set to 1) and specular

(taken from measurements of a real material) components. Middle: Image consistency

checks (equation 6.5) can distinguish small inconsistencies between illumination and image

(“ECCV” vs “ICCV” lighting). Right: For estimation of Al, our approach gives accurate

results, outperforming a parametric estimation technique.

and they do not correspond exactly to a Phong BRDF. Hence, our technique recovers the

specular BRDF somewhat more accurately than a comparison method that simply does

nonlinear estimation of Phong parameters. We also show image consistency checks similar

to those in the previous section, using equation 6.5. As in the previous chapter, we can

distinguish small inconsistencies between lighting and image. An application to detect

splicing for a real object is shown in the left graph of figure 9.3.
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Chapter 7

Theoretical Analysis: Two

Materials and/or Lighting

Conditions

Chapter 5 analyzed the single object, single image case. In this chapter1, we first consider

two different objects (with different materials) in the same lighting. Next, we consider one

object imaged in two different lighting conditions. Then, we consider the two lighting/two

BRDF case corresponding to two images (in different lighting conditions), each of two

objects with distinct BRDFs. In the next chapter, we will discuss some broader implications.

7.1 Two Objects/BRDFs: Same Lighting

We consider a single image (hence in the same lighting environment) of two objects, with

different BRDFs. Let us denote by superscripts 1 or 2 the two objects,

B1
lm = A1

l Llm B2
lm = A2

l Llm. (7.1)

1This chapter will primarily discuss the purely specular case. For consistency checking, we have seen that

in the reflective reparameterization, the diffuse component mainly affects frequencies Dlm with | m |≤ 2.

Therefore, it is simple to check the identities for | m |> 2. Diffuse relighting is actually done in the spatial

domain, as discussed in chapter 8. Chapter 9 provides experimental validation with objects containing both

diffuse and specular components.
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From these, it is possible to eliminate the lighting by dividing,

B2
lm

B1
lm

=
A2

l

A1
l

= γl. (7.2)

We refer to γl as the BRDF transfer function. Given the appearance of one object in

complex lighting, multiplication of spherical harmonic coefficients by this function gives the

appearance of an object with a different material. γl is independent of the lighting condition,

and can be used in any (unknown) natural illumination. Also note that this function is

independent of m, so we can average over all m, which makes it very robust to noise—in our

experiments, we have not needed any explicit regularization for the frequencies of interest.

Moreover, we do not need to know or estimate the individual BRDFs. It is not clear that

one can derive such a simple formula, or bypass explicit lighting/reflectance estimation, in

the spatial/angular domain. Section 7.3 will explore applications to rendering.

It is also possible to use these results to derive a frequency space identity that de-

pends only on the final images, and does not require explicit knowledge of either the lighting

condition or the BRDFs. We know that equation 7.2 should hold for all m, so

B2
li

B1
li

=
B2

lj

B1
lj

=⇒ B2
liB

1
lj −B1

liB
2
lj = 0. (7.3)

This identity can be used for consistency checking, making sure that two objects in an

image are shaded in consistent lighting. This enables detection of inconsistencies, where

one object is spliced into an image from another image with inaccurate lighting. Also note

that the single image identity (equation 5.3) is just a special case of equation 7.3, where

one of the objects is simply a mirror sphere (so, for instance, B1 = L).

7.2 Two Lighting Environments: Same Object/BRDF

We now consider imaging the same object in two different lighting environments. Let us

again denote by superscripts 1 or 2 the two images, so that,

B1
lm = AlL

1
lm B2

lm = AlL
2
lm. (7.4)

Again, it is possible to eliminate the BRDF by dividing,

B2
lm

B1
lm

=
L2

lm

L1
lm

= L
′
lm. (7.5)
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We refer to L
′
lm as the lighting transfer function. Given the appearance of an object in

lighting condition 1, multiplication of spherical harmonic coefficients by this function gives

the appearance in lighting condition 2. L
′
lm is independent of the reflectance or BRDF of

the object. Hence, the lighting transfer function obtained from one object can be applied

to a different object observed in lighting condition 1. Moreover, we never need to explicitly

compute the material properties of any of the objects, nor recover the individual lighting

conditions.

The relighting application does not require explicit knowledge of either lighting condi-

tion. However, if we assume the lighting conditions are known (unlike the previous subsec-

tion, we need the lighting known here since we cannot exploit radial symmetry to eliminate

it), equation 7.5 can be expanded in the form of an identity,

B2
lmL1

lm −B1
lmL2

lm = 0. (7.6)

This identity can be used for consistency checking, making sure that two photographs of an

object in different lighting conditions are consistent, and neither has been tampered.

7.3 Two Materials And Two Lighting Conditions

Finally, we consider the most conceptually complex case, where both the lighting and ma-

terials vary. This effectively corresponds to two images (in different lighting conditions),

each containing two objects of different materials. We will now use two superscripts, the

first for the lighting and the second for the material.

Lighting 1 Lighting 2

BRDF 1 B1,1
lm = A1

l L
1
lm B2,1

lm = A1
l L

2
lm

BRDF 2 B1,2
lm = A2

l L
1
lm B2,2

lm = A2
l L

2
lm

Simply by multiplying out and substituting the relations above, we can verify the basic

identity discussed in the introduction to this thesis,

B1,1
lm B2,2

lm = B1,2
lm B2,1

lm = A1
l A

2
l L

1
lmL2

lm, (7.7)

or for the purposes of consistency checking,

B1,1
lm B2,2

lm −B1,2
lm B2,1

lm = 0. (7.8)
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An interesting feature of this identity is that we have completely eliminated all lighting and

BRDF information. Consistency can be checked based simply on the final images, without

estimating any illuminations or reflectances. Note that if the second object is a mirror

sphere, this case reduces to the two lightings, same BRDF case in equation 7.6.

Equation 7.7 also leads to a simple framework for estimation. The conceptual setup is

that we can estimate the appearance of the fourth lighting/BRDF image (without loss of

generality, say this is B2,2
lm ), given the other three, without explicitly computing any illumi-

nation or reflectances. Clearly, this is useful to insert the second object into a photograph

where it wasn’t present originally, assuming we’ve seen both objects together under another

lighting condition. From equation 7.7, we have

B2,2
lm =

B1,2
lm B2,1

lm

B1,1
lm

(7.9)

= B1,2
lm (

B2,1
lm

B1,1
lm

) = B1,2
lm L

′
lm (7.10)

= B2,1
lm (

B1,2
lm

B1,1
lm

) = B2,1
lm γl. (7.11)

This makes it clear that we can visualize the process of creating B2,2
lm in two different

ways. Figure 7.1 further illustrates the two approaches. One way (a) is to start with another

object in the same lighting condition, i.e. B2,1
lm and apply the BRDF transfer function γl.

The BRDF transfer function is found from the image of both objects in lighting condition

2. Alternatively (b), we start with the same object in another lighting condition B1,2
lm and

apply the lighting transfer function L
′
lm obtained from another object. In practice, we

prefer using the BRDF transfer function (equation 7.11), since γl is more robust to noise.

The image (e), obtained using lighting transfer function L
′
lm has artifacts, whereas the one

(c), obtained by using BRDF transfer function γl is consistent with actual image (d) due to

robustness of γl to noise. However, the equations above make clear that both interpretations

are equivalent, following naturally from equation 7.7.

The idea of estimating the fourth light/BRDF image, given the other three, has some

conceptual similarity to learning image analogies [HJO+01]. However, we are considering

a convolution of lighting and BRDF, while image analogies try to synthesize images by
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Figure 7.1: Top Row: Shows two different approaches for image relighting. We can

either use BRDF Transfer function (a) or Lighting Transfer function (b). All the spheres

are synthetic, with Lighting 1 being St. Peters environment map and Lighting 2 Grace

Cathedral. Bottom Row: Comparison of spheres generated using two approaches with

actual sphere. Sphere (e) generated using Lighting Transfer has artifacts (note the ringing)

whereas the sphere (c) generated using BRDF Transfer matches closely with the acutal

sphere (d).

rearranging input pixels, irrespective of the physics, and cannot achieve the desired result

in general. Since none of the lightings or BRDFs are known, it would also be very difficult

to render B2,2
lm with alternative physics-based inverse rendering methods.
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Chapter 8

Implications and Discussion

We now briefly discuss some of the broader implications of our theory. First, we extend the

two BRDF/two lighting case to multiple lighting conditions and BRDFs. Then, we discuss

spatial domain setups and identities analogous to our frequency domain analysis. Finally,

we show how many previous spatial domain algorithms and invariants can be considered

special cases, extensions or variants of this general class of identities.

8.1 Multiple lighting conditions and BRDFs

Let us consider r lighting conditions and s BRDFs, instead of assuming r = s = 2, with

superscripts i ≤ r and j ≤ s, so that

Bi,j
lm = Aj

l L
i
lm =⇒ Blm = LlmAT

l , (8.1)

where in the last part, for a given spherical harmonic index (l, m), we regard Blm as an r×s

matrix obtained by multiplying column vectors Llm (r × 1), corresponding to the lighting

conditions, and the transpose of Al (s× 1), corresponding to the BRDFs.

Equation 8.1 makes it clear that there is a rank 1 constraint on the r × s matrix Blm.

Section 7.3 has considered the special case r = s = 2, corresponding to a 2×2 matrix, where

the rank 1 constraint leads to a single basic identity (equation 7.8). In fact, equation 7.8

simply states that the determinant of the singular 2× 2 matrix Blm is zero.
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8.2 Spatial Domain Analog

Equation 8.1 expresses the image of a homogeneous glossy material in the frequency domain

as a product of lighting and BRDF. Analogously, a difficult to analyze frequency domain

convolution corresponds to a simple spatial domain product. For example, the image of a

textured Lambertian surface in the spatial domain is a product of albedo ρk and irradiance

Ek, where k denotes the pixel.

Bi,j
k = ρj

kE
i
k =⇒ Bk = Ekρ

T
k . (8.2)

Equation 8.2 has the same product form as the basic convolution equation (Blm =

AlLlm). Hence an identity similar to equation 7.8 holds in the angular domain for textured

Lambertian objects.

B1,1
diffuse(θ, φ)B2,2

diffuse(θ, φ) = B1,2
diffuse(θ, φ)B2,1

diffuse(θ, φ) (8.3)

The BRDF transfer function γ(θ, φ) is just the ratio of diffuse albedos and is constant for

homegeneous objects.

These identities enable spatial domain techniques for re-rendering the diffuse component

(which in our case has constant albedo since the material is homogeneous), while still using

the frequency domain for the specular component. In order to separate the diffuse and

specular components from the images, we observe that in a parameterization by surface

normals, Blm will have essentially all of its diffuse energy for l ≤ 2, while the specular

energy falls away much more slowly [RH02], and therefore mostly resides in l > 2. So we

assume that

Bdiffuse(θ, φ) ≈
2∑

l=0

l∑

m=−l

BlmYlm(θ, φ) (8.4)

But a single image gives information only for a hemisphere of surface normals, so we cannot

directly calculate Blm for normal parameterization. Spherical harmonics do not form a

linearly independent basis for the hemisphere. We pose the diffuse computation as a fitting

problem where we want to find Blm, l ≤ 2 that best fits the hemisphere. We solve a

system of equations AX = B corresponding to equation 8.4, where A is a N × 9 matrix

of Ylm computed at sample points on hemisphere, X is a 9 × 1 matrix of 9 Blm and B

is a N × 1 matrix of irradiance at sample points. The specular component can then be
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handled as discussed in the previous section and the diffuse component can be computed

using equation 8.3. The diffuse computation is more stable in the angular domain than in

the spherical harmonics domain. This method is used in all our rendering examples. As

expected, our practical results work less well for the extremes when the specular intensity

is very small relative to the diffuse component (in the limit, a purely Lambertian surface)

or vice versa (a purely specular object).

8.3 Analogies with Previous Spatial Domain Results

While the exact form of, and rank 1 constraint on, equation 8.2 is not common in previous

work, many earlier spatial domain invariants and algorithms can be seen as using special

cases and extensions thereof. We briefly discuss some prominent results in our framework,

also describing our analogous frequency domain results. In this way, we provide a unified

view of many spatial and frequency domain identities, that we believe confers significant

insight.

Reflectance ratios [NB96] are widely used for recognition. The main observation is that

at adjacent pixels, the irradiance is essentially the same, so that the ratio of image intensities

corresponds to the ratio of albedos. Using superscripts for the different pixels as usual (we

do not need multiple super- or any subscripts in this case), we have B2/B1 = ρ2/ρ1.

The analogous frequency domain result is equation 7.2, corresponding to the two BRDFs,

same lighting case. In both cases, by dividing the image intensities (spherical harmonic

coefficients), we obtain a result independent of the illumination.

Similarly, a simple version of the recent BRDF-invariant stereo work of Davis et al. [DYW05]

can be seen as the two lighting, same BRDF case. For fixed view and point source lighting,

a variant of equation 8.2 still holds, where we interpret ρj
k as the (spatially varying) BRDF

for pixel k and fixed view, and Ei
k as the (spatially varying) light intensity at pixel k. If

the light intensity changes (for the same pixel/BRDF), we have B2/B1 = E2/E1. The

frequency domain analog is equation 7.5. In both cases, we have eliminated the BRDF by

dividing image intensities or spherical harmonic coefficients.

Narasimhan et al. [NRN03] also assume point source lighting to derive photometric in-

variants in the spatial domain—note that our frequency domain framework, by contrast,
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easily handles general complex lighting. However, we would like to point that we assume

curved homegeneous objects of known geometry. Moreover while our identities operate glob-

ally needing the full range of reflected directions, spatial domain invariants involve mostly

local pixel-based operations. Narasimhan et al. [NRN03] consider a variant of equation 8.2

with a summation of multiple terms (such as diffuse plus specular). For each term, ρ encodes

a material property such as the diffuse albedo, while E encodes the illumination intensity

and geometric attributes (such as a cosine term for diffuse or a cosine lobe for specular).

Their work can be seen as effectively deriving a rank constraint on B, corresponding to

the number of terms summed. For diffuse objects, this is a rank 1 constraint, analogous to

that in the frequency domain for equation 8.1. For diffuse plus specular, this is a rank 2

constraint. They then effectively use the rank constraint to form appropriate determinants

that eliminate either material or geometry/lighting attributes, as in our frequency domain

work. Jin et al. [JSY03] employ a similar rank 2 constraint for multi-view stereo with both

Lambertian and specular reflectance.

Finally, we note that while there are many analogies between previous spatial domain

identities and those we derive in the spherical/angular frequency domain, some of our

frequency domain results have no simple spatial domain analog. For example, the concept

of angular radial symmetry does not transfer to the spatial domain, and there is no known

spatial analog of the identities in equations 5.3, 5.4, 6.3, 6.5, and 7.3.
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Chapter 9

Experimental Validation and

Results

We now present some experiments to validate the theory, and show potential applications.

We start with diffuse plus specular spheres in figure 9.1, since they correspond most closely

with our theory. We then describe results with a complex cat geometry (figures 1.1, 9.2

and 9.3). All of these results show that the theory can be applied in practice with real data,

where objects are not perfectly homogeneous, there is noise in measurement and calibration,

and specular reflectance is not perfectly radially symmetric.

Experimental Setup

We ordered spheres from http://www.mcmaster.com. The cat model was obtained at a

local craft sale. All objects were painted to have various specular finishes and diffuse

undercoats. While homogeneous overall, small geometric and photometric imperfections

on the objects were visible at pixel scale and contributed “reflection noise” to the input

images. To control lighting, we projected patterns onto two walls in the corner of a room.

We placed a Canon EOS 10D camera in the corner and photographed the objects at a

distance of 2-3m from the corner (see top left of figure 9.1). This setup has the advantage

of more detailed frontal reflections, which are less compressed than those at grazing angles.

However, frontal lighting also gives us little information at grazing angles, where the BRDF

might violate the assumption of radial symmetry due to Fresnel effects; we hope to address
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Figure 9.1: Top Left: Experimental setup. Top Middle: Two lightings (shown only

for reference) and images of two glossy (diffuse plus specular) spheres in that lighting. Top

Right: We can accurately render (b1), given (a1,a2,b2), and render (b2), given (a1,a2,b1).

Bottom: We tamper (b2) to generate (c) by squashing the specular highlights slightly

in photoshop. While plausible to the naked eye, all three identities in chapter 7 clearly

indicate the tampering (red graphs).

this limitation in future experiments. To measure the lighting, we photographed a mirror

sphere. To measure BRDFs (only for deconvolution), we imaged a sphere under a point

source close to the camera, determining Al by simply reading off the profile of the highlight,

and Kd by fitting to the diffuse intensity. For all experiments, we assembled high-dynamic

range images.

Glossy Spheres

Figure 9.1 shows the two lighting, two materials case. The top right shows a relighting

application. We assume (b1) is unknown, and we want to synthesize it from the other 3

lighting/BRDF images (a1,a2,b2). We also do the same for rendering (b2) assuming we

know (a1,a2,b1). The results are visually quite accurate, and in fact reduce much of the
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Figure 9.2: Deconvolution on a real cat image. Left: Geometry estimation, using example-

based photometric stereo (we take a number of images with the cat and example sphere; the

sphere is also used to find the BRDF). Middle: Input image under unknown lighting, and

mapping to a sphere using the surface normals. Right: Closeups, showing the original

sphere map, and our deconvolved lighting estimate on top. This considerably sharpens the

original, while removing noise, and resembles the BRDF*Wiener filter applied to the actual

lighting (bottom row).

Figure 9.3: Image consistency checking for cat (labels are consistent with figure 1.1). The

tampered image (c) is obtained by splicing the top half (b1) under lighting 1 and the bottom

half (b2) under lighting 2. Image (c) looks quite plausible, but the splicing is clearly detected

by our identities.

noise in the input. Quantitatively, the L1 norm of the errors for (b1) and (b2) are 9.5%

and 6.5% respectively. In the bottom row, we tamper (b2) by using image processing to

squash the highlight slightly. With the naked eye, it is difficult to detect that image (c) is

not consistent with lighting 2 or the other spheres. However, all three identities discussed

in the previous chapter correctly detect the tampering.
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Complex Geometry

For complex (mostly convex) known geometry, we can map object points to points on the

sphere with the same surface normal, and then operate on the resulting spherical image.

Deconvolution is shown in figure 9.2. We used a sphere painted with the same material as

the cat to aquire both the cat geometry, using example-based photometric stereo [HS05]

for the normals, and the BRDF (needed only for deconvolution). Errors (unrelated to our

algorithm) in the estimated geometry lead to some noise in the mapping to the sphere.

Our deconvolution method for lighting estimation substantially sharpens the reflections,

while removing much of the input noise. Moreover, our results are consistent with taking

the actual lighting and convolving it with the product of the BRDF and Wiener spherical

harmonic filters.

The cat can also be used directly as an object for relighting/rendering and consistency

checking. An example of rendering is shown in figure 1.1. The L1 norm of the error

is somewhat higher than in figure 9.1, at 12%, primarily because this is a much more

challenging example. We are using the BRDF transfer function from a much lower-frequency

material to a higher-frequency one—the blue sphere has a much broader specular lobe than

the green cat. Moreover, inaccuracies in the normal estimation (not part of our algorithm)

lead to some visible contouring in the results. Nevertheless, we see that the results are

visually plausible. Figure 9.3 illustrates photomontage image tampering, in which the top

half under lighting 1 (b1 in figure 1.1) is spliced with the bottom half under lighting 2 (b2

in figure 1.1). While the image (c) looks plausible in itself, the identities for both single

and multiple images clearly detect the tampering.
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Chapter 10

Conclusions and Future Work

In this thesis, we have introduced a new theoretical framework for using spherical convolu-

tion and deconvolution in inverse rendering, BRDF/lighting transfer and image consistency

checking. The main contribution is the set of new frequency space formulae, which represent

fundamental identities following from the convolution theorem. These identities often elim-

inate the lighting and/or BRDF, enabling a new class of inverse rendering algorithms that

can relight or change materials by using BRDF/lighting transfer functions, without explicit

illumination or BRDF estimation. In the future, similar ideas may be applied to other

problems, such as BRDF-invariant stereo and photometric stereo, or lighting-insensitive

recognition. The theoretical framework also makes a contribution to the relatively new

area of image consistency checking, describing a suite of frequency domain identities to de-

tect tampering and other undesirable image processing operations. We have also presented

a new unified view of spatial and frequency domain identities and rank constraints, that

can give insight for developing future algorithms in either, or even a combination of both

domains.

In the future, from a theoretical perspective, we want to develop a framework for oper-

ating on local subsets of the entire image, corresponding to small portions of the full sphere

of directions. From a practical perspective, we want to better understand the sensitivity of

our identities—initial tests indicate they are fairly robust, but more work needs to be done.

We wish to apply our algorithms in more complex cases like faces where the geometry is

not known accurately, and where objects may not be perfectly convex. We would also like
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to handle textured objects by automatic diffuse/specular separation methods [MZB06]. We

believe that the theory may also lead to the construction of better light probes where we

can replace the mirror sphere by a sphere of general material and hence bypass the serious

issues like dynamic range associated with current light probes.

In summary, we see this thesis as introducing the basic theory, that can lead to much

future theoretical and practical work in inverse rendering and image consistency checking.
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Appendix A

Deconvolution - Angular Domain

Analysis

f(x,m, s) =
∫ m

−m
e

u2

2s e2πixudu (A.1)

where m is the cutoff frequency. Putting u =
√

2sv

f(x, m, s) =
√

2s

∫ m√
2s

−m√
2s

ev2
e2
√

2sπivxdv (A.2)

f(x, m, s) =
√

2sg(
√

2sx,
m√
2s

) (A.3)

g(x, k) =
∫ k

−k
et2e2πitxdt

= eπ2x2

∫ k

−k
e(t+iπx)2dt

= eπ2x2

∫ k+iπx

−k+iπx
ez2

dz (A.4)

Since function ez2
is analytic, its integration along closed rectangular path (−k + iπx, k +

iπx, k,−k,−k + iπx) is 0, which gives

g(x, k) = eπ2x2
[
∫ k

−k
et2dt + p(x, k)] (A.5)
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where

p(x, k) =
∫ k+iπx

k
ez2

dz −
∫ −k+iπx

−k
ez2

dz

= iπ

∫ x

0
e(k+iπt)2dt− iπ

∫ x

0
e(−k+iπt)2dt

= iπek2

∫ x

0
e−π2t2 [e2πikt − e−2πikt]dt

= −2πek2

∫ x

0
e−π2t2sin(2πkt)dt (A.6)

Hence

g(x, k) = eπ2x2
[
∫ k

−k
et2dt− 2πek2

∫ x

0
e−π2t2sin(2πkt)dt]

= eπ2x2
[(

∫ k

−k
et2dt− 2πek2

∫ ∞

0
e−π2t2sin(2πkt)dt) + 2πek2

∫ ∞

x
e−π2t2sin(2πkt)dt]

= 2πek2
[eπ2x2

(
e−k2

2π

∫ k

−k
et2dt−

∫ ∞

0
e−π2t2sin(2πkt)dt) +

∫ ∞

x
eπ2(x2−t2)sin(2πkt)dt]

= 2πek2
[eπ2x2

q(k) + h(x, k)] (A.7)

where

q(k) =
e−k2

2π

∫ k

−k
et2dt−

∫ ∞

0
e−π2t2sin(2πkt)dt (A.8)

h(x, k) =
∫ ∞

x
eπ2(x2−t2)sin(2πkt)dt (A.9)

Using Mathematica, we get
∫ k

−k
et2dt =

√
πErfi(k) (A.10)

∫ ∞

0
e−π2t2sin(2πkt)dt =

e−k2
Erfi(k)
2
√

π
(A.11)

where Erfi(z) is the imaginary part of 2√
π

∫ iz
0 e−t2dt. Hence q(k) = 0.

g(x, k) = 2πek2
[eπ2x2

q(k) + h(x, k)]

= 2πek2
h(x, k) (A.12)

h(x, k) =
∫ ∞

x
eπ2(x2−t2)sin(2πkt)dt (A.13)
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Substituting u = kt

h(x, k) =
∫ ∞

x
eπ2(x2−t2)sin(2πkt)dt

=
1
k

∫ ∞

kx
e

π2

k2 (k2x2−u2)sin(2πu)du

=
1
k
n(kx,

π

k
) (A.14)

where

n(α, β) =
∫ ∞

α
eβ2(α2−u2)sin(2πu)du (A.15)
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Appendix B

Analysis of Dnm

First, let E(α, β) be the diffuse irradiance parameterized in the usual way by the surface

normal,

E(α, β) ≈
∞∑

n=0

n∑
u=−n

ALamb
n LnuYnu(α, β), (B.1)

where as usual, a very good approximation can be obtained with n ≤ 2 for Lambertian

reflectance. Let D(α, β) represent the irradiance parameterized by the reflection vector.

Assuming that the coordinate system is aligned so the viewer is on the positive z axis, a

normal (α, β) corresponds to a reflection vector (2α, β). Conversely, a reflected direction

(α, β) corresponds to a normal (α/2, β),

D(α, β) = E(
α

2
, β). (B.2)

Consider the spherical harmonic coefficients Dlm of D(α, β), (and with Y ∗
lm being the com-

plex conjugate of the spherical harmonic Ylm),

Dlm =
∫

S2

D(α, β)Y ∗
lm(α, β)dΩ (B.3)

=
∫

S2

E(
α

2
, β)Y ∗

lm(α, β)dΩ. (B.4)
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We now substitute for E(α/2, β) in terms of spherical harmonic coefficients, and move the

summations out of the integral,

Dlm =
∞∑

n=0

n∑
u=−n

∫

S2

ALamb
n LnuYnu(

α

2
, β)Y ∗

lm(α, β)dΩ (B.5)

=
∞∑

n=0

∫

S2

ALamb
n LnmYnm(

α

2
, β)Y ∗

lm(α, β)dΩ, (B.6)

where in the last line, we have used orthogonality of spherical harmonics for the integral

over β, to require that u = m. Continuing,

Dlm =
∞∑

n=0

ALamb
n Lnm

∫

S2

Ynm(
α

2
, β)Y ∗

lm(α, β)dΩ (B.7)

=
∞∑

n=0

ALamb
n LnmTlmn, (B.8)

where

Tlmn =
∫

S2

Ynm(
α

2
, β)Y ∗

lm(α, β)dΩ. (B.9)

Since n ranges from 0 to 2, m varies from −2 to 2, and we can neglect terms with | m |> 2

or | n |> 2,

Dlm ≈
2∑

n=0

ALamb
n LnmTlmn. (B.10)

So we need to consider Tlmn for n = 0, 1, 2 and | m |≤ n, which is a total of only 9 (m,n)

pairs. Note that this means we can safely neglect the effects of the diffuse component for

| m |> 2, in calculating identities. Figure 6.2(a)-(b) shows plots of Dlm for small and large

values of l respectively, for a particular complex natural lighting environment.

The coefficients Tlmn are simple numerical constants, which can be determined analyt-

ically in some cases. In general, the integrals can be difficult to do analytically, and we

determine the coefficients by numerical integration, directly from the definition in equa-

tion B.9. This is easy since we know the analytic forms of the spherical harmonics.

We have also analyzed the numerical values of the coefficients Tlmn. For l = 0, only

T000 = 1, and other terms are zero (since | m |≤ n and | m |≤ l). Also, for l ≥ 2, we find

that Tl00 = Tl02 = Tl−12 = Tl12 = 0. Also Tl01 falls off as n−2.5, Tl11 = Tl−11 as l−1.5 and
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Tl22 = Tl−22 also varies as l−1.5. Figure 6.2(c) shows the fall off of Tlmn with increasing

values of l.

Because many of the Tlmn terms are 0, we can substantially simplify the value of Dlm.

In particular, if m = 0, then we must have n = 1 for l ≥ 2, so that

D(l≥2)0 = ALamb
1 L10Tl01. (B.11)

Similarly, if | m |= 1, 2 and l ≥ 2, the only nonzero terms have n =| m |, and we can write

D(l≥2)m = ALamb
|m| L|m|mTlm|m|. (B.12)
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