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Abstract

A “top-k query” specifies a set gireferredval-

ues for the attributes of a relation and expects as a
result thek objects that are “closest” to the given
preferences according to some distance function.
In many web applications, the relation attributes
are only available vi@robesto autonomous web-

accessible sources. Probing these sources sequen-

tially to process a tog=query is inefficient, since
web accesses exhibit high and variable latency.
Fortunately, web sources can be probed in paral-
lel, and each source can typically process concur-
rent requests, although sources may impose some
restrictions on the type and number of probes that
they are willing to accept. These characteristics
of web sources motivate the introduction udr-

allel top-k query processing strategies, which are
the focus of this paper. We present efficient tech-
nigues that maximize source-access parallelism to
minimize query response time, while satisfying
source access constraints. A thorough experimen-
tal evaluation over both synthetic and real web
sources shows that our techniques can be signifi-
cantly more efficient than previously proposed se-
guential strategies. In addition, we adapt our par-
allel algorithms for the alternate optimization goal
of minimizing source load while still exploiting
source-access parallelism.

Introduction

Web search engines usually return the best —or ktop-
matches for a user query. Thigp-k query modeis preva-

}@cs.columbia.edu

Example 1: Consider a travel site offering last-minute
weekend vacation packages. The attributes associated with
each package include Origin, Destination, Price, Tempera-
ture, and Rating, which correspond, respectively, to the de-
parture city, destination, cost, expected temperature at the
destination over the weekend, and average customer rating
of the hotel included in the package (e.g., on a scale of 1
to 10). A potential traveler might then specify the depar-
ture city, together with preferred values for the Price at-
tribute (e.g., Price=$200), the Temperature attribute (e.g.,
Temperature=30C), and —perhaps implicitly— the Rating
attribute (e.g., Rating=10). (The Temperature value would
allow users to express a preference for “warm” destina-
tions, for example.) As a result, the travel site returns,
say, the 10 packages for the given departure city that best
match the preference specification on Price, Temperature,
and Rating, according to some matching functibn.

We consider tope: query processing scenarios in which
some of the “relation” attributes are handled by remote
web sources, and can only be obtained through limited
web-accessible interfaces. In the above example, the
Price attribute could be retrieved from the Orbitz Last-
Minute Package web pagdewhich returns a list of vaca-
tion packages sorted by price for a given departure city
(sorted accegs The Temperaturattribute might be avail-
able through the AccuWeather web siteyhich returns
the weather forecast for a given locatioar{dom accegs
Similarly, the Ratingattribute might be available through
the CitySearch web site Existing sequentialalgorithms
for this top+ query processing scenario attempt to mini-
mize the number of accesses foobeg to the web sources.
Unfortunately, any sequential processing strategy forktop-

rqueries over web sources is bound to result in unnecessarily
CIong executions, since web-source accesses may be unreli-
éble and slow due to load and network traffic characteris-

lent over multimedia collections in general but also ove
relational data for applications where users do not expe
an exact match for their queries. Tépgueries are a natu-

ral choice for applications where users have flexible prefer-
ences and tolerate (or even expect) fuzzy matches for thej
queries. A topk query then consists of an assignment of
target values to the attributes of a relation. To answer suc
a query, a tops query processing strategy has to identify  http://packages.orbitz.com

the k objects closest to the target values according to some *http://www.accuweather.com
distance function. Shttp://www.citysearch.com

To radically improve the performance of tdpguery
rocessing, in this paper we introduce techniques that
Lully exploit web-source access parallelism: multiple web




sources can be accessed simultaneously and, furthermo2;l Query Model
individual web sources can typically accept several concur- . . . . .
rent accesses at a time. Our tbjgriery processing strate- Unlike queries in traditional relational systems, for which
gies then naturally exploit this potential probing parallelismthe resultis a set of tuples, a tamuery returns aordered

to reduce query response time. A key challenge in the deIjst of objects, where the ordering is based on how closely

sign of these strategies, however, is that sources may po&?‘Ch object matches the query. Furt.hermore, the answer to
restrictions on the number of concurrent requests from & top+ query consists only of the objects that match the
single user, to guarantee reasonable response times for gﬁ:ﬁry the clo_s,est. We use the same query model as in [2],
users. Query processing strategies over web sources shodk ich we review next. . . o

then take into account source-access constraints when de- A 1OP-k query over a relatior? simply specifies target
signing a query execution plan. Furthermore, straightfor-values for attributesd; . .., An Of R. G|veﬂ a topk query
ward adaptations of sequential tépguery processing al- 4 = (A= di-- s Ap = q”.} overa r_elatlonR, Fhe scgre
gorithms to a parallel setting might either not exploit all that each object in 1 receives forg is a function oft's
available parallelism —leaving some sources underutilizedSC0re for ach individual attributé; with target valuey;,

or not adapt dynamically to source congestion —leading td?Nich we denote ascorey, (¢;,t) and assume to be nor-
suboptimal source utilization. Some interesting ideas odn@lized in the[0, 1] range. To combine these individual

top-k query parallelization have been recently proposed irftiribute scores into a final score for each object, each at-
the literature [3] (see Sections 4 and 7). However, to thérlbuteAi has an associated weigh{ indicating its relative

best of our knowledge, our new parallel tbpguery pro- importance in the query. The final sc@eordg, t) for ob-

cessing techniques are the first to be specifically tailored €t t IS then defined as a weighted sum of the individual

minimize query response time in the presence of sources-coreé' The result of a top: query is the ranked list of the

access constraints. Our main contributions are as foIIows:’;rgng:(r’it; with highesBcorevalue, where ties are broken

e We define a realistic source-access model that con-
siders constraints on concurrent accesses that SOUrcgs, oo rce Model
might enforce (Section 2). '
e We introduce topt query processing strategies that ]\c/c\)lfg Si%:rrfﬁZgrﬁcfdij%gL'gé%;?;?S ttr?eatcv\(/: fsn?oostfjfgﬁfrﬁgﬁes
exploit the inherently parallel access nature of Websuch interfaces amr¥éd acce swhic)% returns a sorted list
sources to minimize query response time, while ob- f obi ked b f savn drand
serving source-access constraints (Section 3). of objects ranked by score for a given qugrandrandom
accesswhich returns the score of a particular input object
e We present an experimental evaluation of our paralfor ¢ [5, 6]. The web sources that we consider in this paper
lel top-k query processing techniques using both syn-can support one or both access interfaces:
thetic and real web sources (Section 5). Our parallel
techniques manage to achieve close to the maximurdefinition 1: [Source Types and Access TimeTonsider
theoretical speedup over their sequential counterpartsn attribute 4; with target valuey; in a top+ queryq. As-
sume further that4; is handled by a sourcé. We say
that S is anS-Sourceif, giveng;, we can obtain front a
list of objects sorted in descending order of Scory (re-
peated) invocation of getNext (g;) probe interface with
The rest of the paper is structured as follows: Section ZosttS(S). (¢S stands for “sorted-access time””) Alterna-
defines our query and source model. Section 3 presents oyely, assume that; is handled by a sourc® that returns
new parallel topk processing strategies for minimizing re- scoring information only when prompted about individual
sponse time. Then, Section 4 introduces the data sets afhjects. In this case, we say th&tis an R-Source R
metrics that we use to experimentally evaluate our strateprovides random access of) through agetScore (g, t)
gies in Section 5. Section 6 discusses algorithms that aifprobe interface, where is a set of attribute values that
at minimizing source load rather than query response timedentify the object in question, with cosR(R). (tR
Finally, Sections 7 and 8 review related work and concludestands for “random-access time”) Finally, we say that a
the paper. source that provides both sorted and random access is an
SR-Source

e We discuss algorithms for the alternate optimization
goal of minimizing source load while still exploiting
source-access parallelism.

2 Background and Problem Statement

The focus of this paper is on parallel query processing tech- The top# evaluation strategies that we consider do not
niques fortop-k queriesover web-accessible sources. In aIIovx’/, for "wild guesses” [6]: an object must be “discov-
this section, we define the tdpguery model (Section 2.1) ered” under sorted access before it can be probed using
and the source interface that we assume, with its associatégndom access. Therefore, we need to have at least one
access t|_mes and sourc_e-accessf constraints (SeCtlon 2")"‘Our model and associated algorithms can be adapted to handle other
We also |ntr0duqe nqtatlon (Sectlo.n 2.3) and the probleMcoring functions (e.gmin), which we believe are less meaningful than
that we address in this paper (Section 2.4). weighted sums for the applications that we consider.




source with sorted access capabilities to discover new ol®bjects In other words, given a query and an object

jects. In this paper, we assume that we have one or more< Objects we can probe); and obtain the score corre-

SR-Sourceavailable, plus arbitrarily mang-Source (see  sponding tgy andt for attributeA;, foralli = 1,...,n. Of

Section 7 for further discussion on this subject). course, this is a simplifying assumption that is likely not to
On the web, sources can typically handle multiplehold in practice, where each source might be autonomous

gueries in parallel. In this paper, we will produce efficientand not coordinated in any way with the other sources. In

top-k query processing techniques that exploit this web-this case, we simply use a default value fsrscore for

source functionality and potentially query each source withattribute A;.

multiple probes at a time. However, our techniques must

avoiq §ending large numbers Qf queries to sources. MOre 4 problem Statement

specifically, our query processing strategies must be aware

of any access restrictions that the sources in a realistic weti/e consider processing a tépguery ovem,,. SR-Source

environment might impose. Such restrictions might be dueD1, ..., D, (ns > 1) andn, R-Source D,,_ 41, ...,

to network and processing limitations of a source, whichD,, (n, > 0), wheren = ng,. + n, is the total number

might bound the number of concurrent queries that it carof sources. Each sourd®; has associated probe times as

handle. This bound might change dynamically, and couldn Definition 1, and can process at mgg®(D;) concur-

be relaxed (e.g., at night) when source load is lower. rent random accesses for the query at any given time, with

pR(D;) > 1 as in Definition 2. In contrast, since sorted

Definition 2: [Source-Access Constraints]Let R be a  access is sequential by nature, e8éhSourcean process

source that supports random accesses. We refer tmébe  no more than one sorted access for the query at any given

imum number of concurrent random accesses that akop- time. We focus on returning the tdpebjects for the query

query processing technique can issuétaspR(R), where  as fast as possible. Thus, we will define algorithms that

pR(R) > 1. In contrast, sorted accesses to a source are seaim atminimizing the total parallel query processing time,

quential by nature (e.g., matches 11-20 are requested onlyhile observing the concurrent-access constraints imposed

after matches 1-10 have been computed and returned), doy each sourceln Section 6 we discuss an alternate cost

we assume that we subrgietNext requests to a source model in which algorithms aim at minimizing source load

sequentially when processing a query. However, randomather than query response time.

accesses can proceed concurrently with sorted access: we

will have at most one outstanding sorted access request tg Minimizing R Ti

a specific SR-Sourcg at any time, while we can have up INimizing kesponse lime

to pR(S) outstanding random-access requests to this samen this section, we focus on top-query processing algo-

source, for a total of up ta + pR(.S) concurrent accesses. rithms that attempt to minimize query response time. We
) first discuss existing algorithms designed for a sequential-

2.3 Notation processing scenario (Section 3.1). Then, we present our

At a given point in time during the evaluation of a tap- New parallel topk query processing strategies that observe
query ¢, we might have partial score information for an SOUrce-access constraints (Section 3.2).

object, after having probed the object for some sources but

not for others: 3.1 Sequential-Processing Scenario

e U(t), the score upper boundor an objectt, is the  Sequential top: query processing algorithms can have at
maximum score that might reach forg, consistent most one outstanding (random- or sorted-access) probe at
with the information already available for L(t) is  any giventime. When a probe completes, a sequential strat-
the correspondingcore lower bound egy chooses either to perform sorted access on a source to

. . potentially obtain unseen objects, or to pick an already seen

e [(t), the expected scoref an objectt, is the score  gpiect, together with a source for which the object has not
that¢ would get forg if ¢ had the “expected” score peen probed, and perform a random-access probe on the
for every attributed; not yet probed for. In ab-  goyrce to get the corresponding score for the object.
sence of further information, the expected score for - gy ateqies for a sequential processing scenario differ in
A; is assumed tosb(?) 0.5 if its associated SOUKES  yqir choice of probes. THBAalgorithm by Fagin et al. [6]
anR-Sourcgand == if D; is anSR-Sourcewhere retrieves objects for a top-query via sorted access, and
s¢(i) is theScorey, score of the last object retrieved ¢ompletely probes a retrieved object via random access be-
from D; via sorted access. (Initially, (i) = 1.) ® fore probing a new objeét. The process ends when the

We refer to the set of all objects available through the—(_ , . - - .

. .. Strictly speaking, the high level descriptionAin [6] is compatible
SR-Source as theObjectsset. Additionally, we assume it implementations in which accesses on multiple sources are allowed
that all sourcesD,, ..., D, “know about” all objects in  to proceed in parallel. In fact, in Section 4.3 we discuss a parallel im-
plementation ofTA that we use in our experiments in which both sorted

5Several technigques can be used for estimating score distribution (e.gand random accesses are allowed to proceed in parallel to minimize query
via sampling) but this topic is beyond the scope of this paper. response time.




score of no unseen object can exceed that of theibest 3.2 Parallel-Processing Scenario
jects already seen (which have been fully probed). In sum- . .
mary, when a probe complet@3) can either (a) perform a The focus_ of this sectpn_ls on parallel témuery process-
sorted-access probe on a source if the “current” object hadd techniques that minimize query response time in the
been fully probed, or (b) perform a random-access probgresence of source-access constraints. As explained, each
on the current objéct sourceD; can process up teR(D;) random accesses con-

The TA algorithm completely probes each object that iScurrently. Whenever the number of outstanding probes to a

processed. In contrast, thépper algorithm by Bruno et sourceD; falls belowpR(D;), a parallel processing strat-

al. [2] allows for more flexible probe schedules in which egy can decide to send one more probéto Maximiz-

sorted and random accesses can be interleaved even whig§ Source-access parallelism helps reduce query process-

some objects have only been partially probed. When dng time..UnIike in Fhe sequential _scenario in which strate-
probe completesUpper decides whether to perform a gies dgmde on quect-source pairs to' probe, our parallel-
sorted-access probe on a source to get new objects, or gyenario strategies ‘?hOOS? Wh'Ch. object to prtohahe
perform the “most promising” random-access probe on théivallable .sou.rceln this section we first presepD_ynamlc
“most promising” object that has already been retrieved vieh parallelization ofJpperfor our scenario (Section 3.2.1).

sorted access. More specificalllpperexploits the follow- Aé We argue (and show _experlrQenta;:Iydlr} Sectlgn Sll)t
ing property to make its choice of probes [2]: pDynamicrequires expensive probe scheduling and results
in poor overall performance. To address these limitations,

Property 1: Consider a topk queryg. Suppose that at we modify pDynamicand presenpUpper, a parallel algo-
some point in time Upper has retrieved some objects viaithm that results in efficient query executions while ob-
sorted access from the SR-Souraed obtained additional  serving source-access constraints (Section 3.2.2).
attribute scores via random access for some of these ob-

jects. Consider an objecte Objects whose score upper ;

boundU (¢) is strictly higher than that of every other object 3:2.1 The pDynamic Strategy

(i.e.,U(t) > U(t') V' # t € Objects), and such thathas

not been completely probed. Then, at least one probe will 5

have to be done ohbefore the answer tgis reached: -
] ) D, eDcqu
e If ¢ is one actual topk object, then we need to probe . ® :
all of its attributes to return its final score fay. ’

¢ If ¢ is not one of the actual top-objects, its upper Figure 1: An execution step gDynamic
boundU (¢) is higher than the score of any of the top-
k objects. Hencerequires further probes so tha(1) As discussed above, a parallel query processing strat-

decreases before a final answer can be establighed. egy might react to a sourde; having fewer thapR(D;)

Exploiting this propertylJpperchooses to probe the object outstanding probes by picking an object to probelon
with the highest score upper bound, since this object willA direct way to parallelize th&pper algorithm suggests
have to be probed at least once before akamlution can  itself: every time a sourc®; becomes underutilized, we
be reached. After the object to probe next is picked, thedick the object with the highest upper bound among those
choice of source to probe for the object is influenced byobjects that need to be probed 6 according toUpper.
factors such as the access time and the query weight assbigure 1 shows an example execution step of the result-
ciated with each source. In summary, when a probe coming parallel algorithmpDynamic In the example, when a
pletes,Uppercan either (a) perform a sorted-access probgourceD: is done processing a probe on objectwe use

on a source if the unseen objects have the highest score ugPpers probe selection criteria to determine the best ob-
per bound, or (b) select both an object and a source to prodect to probe forD; (o3 in this case). We now discuss in
next, guided in both cases by Property 1. detail this new algorithm, which is outlined in Figure 2.

TA andUpperare two state-of-the-art processing algo- ~ pDynamidis aggressive with respect to sorted accesses:
rithms for top% queries. (We discuss others later.) Thesethe algorithm attempts to always have exactly one outstand-
algorithms do not exploit all the inherent parallelism with ing sorted-access request g8R-SourceD; (sorted ac-
which we can access web sources: multiple web sourcegesses are sequential by nature; see Definition 2). As soon
can be accessed in parallel, and typically web sources a@s a sorted access 1o, completes, a new one is sent until
cept several concurrent accesses at a time. In the next seall needed objects are retrieved frdm (Steps 2-4). When
tion, we exploit this observation and present novel paralleh random access tb; is available (i.e., when fewer than
processing algorithms for top-queries. We will focus on  pR(D;) outstanding accesses @n are being performed),
adaptations ofJpper for our parallel scenario, and defer pDynamicselects an object (see below) and sends the cor-
the discussion oA until Section 4.3. responding randofm—acc(:jebss prlclJbé);p(Steps(S-B). S)ourc(:je

o , . accesses are performed by callp@etNext (Step 4) an
it that 1 hasetl on & Simiar propery. (See Sections 4 and 7 for frhePGetScore  (Step 8), which are asynchronous versions of
discussion.) the getNext andgetScore source interfaces (Defini-




Algorithm pDynamic (Input: top£ queryq)
(01) Repeat
(02)  For eactBR-SourcD; (1 < i < ng):

(03) If no sorted access is being performed/@pand
more objects are available from; for q :

(04) CallpGetNext(D;, q) asynchronously

(05)  Foreach sourc®; (1 < i < n):

(06) While fewer thap R(D;) random accesses are
being performed o;:

07) Select object to probe forD; (see text)

(08) CallpGetScore(D;, q,t) asynchronously

(09) Until we have identified: top objects
(10) Return the tope objects along with their scores

Figure 2: AlgorithmpDynamic.

Function SelectBestSubset (Input: object}
(01) Lett’ be the object with th&*" largest expected
score, and leT” = E(¢')
02)IfE({) >T:
(03) DefineS C {D1,...,Dxn} as the set of all
sources not yet probed for
(04) Else:

The timeeR(Dj, t) is then equal to:
eR(Dj,t) = wR(Dj,t) + tR(Dy)
precede(Dj, t)
= tR(D;) (L pR(D;) I+1
Without factoring in thewR waiting time, all best sub-
sets tend to be similar and include only sources with high
weight in the query and/or with low access time. Con-
sidering the waiting time is critical talynamically ac-
count for source congestipand allows for slow sources
or sources with low associated query weight to be used for
some objects, thus avoiding wasting resources by not tak-
ing advantage of all available concurrent source accesses.
In Step 7,pDynamicconsiders the objeat with the
highest score upper bound (Property 1), and computes its
best subset. If an available sourbeg is in SelectBestSub-
set(t) thenpDynamicsends a random-access probditp
for t. Otherwise, the algorithm considers the object with

(05) DefineS C {D1,...,Dn} as the set of
sources not yet probed fosuch that (iU (¢) < T
if each sourceD; € S were to return the expected

the next highest score upper bound, and so on, until an ob-
ject that contain®; in its best subset is found. If no object

value fort, and (i) the time}" ) _ ¢ eR(D;,¢) to probe forD; is found (which can happen if, for exam-

is minimum among the source Sets with this property ple, all known objects have already been probedgr no
(06) ReturnS probe is sent t@; andpDynamigrocesses the next source
to become available.

The pDynamicstrategy is expensive in local computa-

éi_on time: it might require several calls ®electBestSub-
seteach time a random-access source becomes available,

Figure 3: FunctiorSelectBestSubset.

tion 1); these asynchronous calls allow the query proces

ing algorithm to continue without waiting for the source . A i
accesses to completpGetNext andpGetScore send and SelectBestSubstdkes time exponen_tlal in the num
ber of sources. To reduce local processing time, we could

the corresponding probes to the sources, wait for their re= =~ = . .
sults to return, and update the appropriate data structur odity pDynamicso that it computes thé next best ob-
jects to probe for a sourcB; at a time, for a parameter

with the new informationpDynamicterminates when the p e . f
top-k objects are identified, i.e., when no object can haveL that regu'le}tes the granulan_ty at Wh'Ch. the algorithm
a final score greater than that of any of the currentiop- makes decisions. Although this modification would save
objects (Step 9) local processing time, we can devise a more efficient algo-

To select WhiCh object to probe next for a soutiog ”th”? pased on the following abservation: wheneggy-
(Step 7 ofFigure 2pDynamiuses heselecipestSubet "2 IOkeSSelecBestoutem schedu proves or
function shown in Figure 3. This function attempts to pre- i g .

probes to perform fob; as well as for other sourceSince

dict what probes will be performed on an objediefore X hedul bes for i
the top% answer is reached: (1)dfis expected to be one of prnam_lcatte'mpts.to schedule probes for just one source
ﬁ‘t any given time, it discards the information on valuable

the top% objects, all random accesses on sources for whic . .

t's attribute score is missing will be considered (Step 3);prObes to the other sources, which results in redundan_t

otherwise (2) only the fastest subset of probes expected pmputation when thesg other sources become underut-

help discard —by decreasing's score upper bound below ized and can ther_1 receive further probes._ We now_s_how
ow we can exploit this observation to design an efficient

the £t (expected) object score— are considered (Step S)I?arallel rocessing algorithm for tabeueries
SelectBestSubsbases its choices on the known attribute P P galg dpe )

scores of object at the time of the function invocation,
as well as on thexpected access timé?(D;, t) for each
SOUfCEDj notyet probed fot. 6R(Dj, t) is the sum of two We now presenpUpper, a hew para||e| topk processing
terms: algorithm that precomputes sets of objects to probe for each

1. The timewR(D;,t) that object will have to “waitin ~ source. When a source becomes availabléyperchecks
line” before being probed fob;: any objectt’ with whether an object to probe for that source has already been

3.2.2 The pUpper Strategy

U(t') > U(t) that needs to be probed fdp; will chosen. If notpUpperrecomputes objects to probe falt
do so beforet. Then, if precede(D;,t) denotes the sourcesas shown in Figure 4. This way, earlier choices of
number of such objects, we can defim@(Dj, t) = probes on any source might be revised in light of new in-

formation on object scores: objects that appeared “promis-
ing” earlier (and hence that might have been scheduled for
further probing) might now be judged less promising than

de(D; t
|eedeBt) 4D,

2. The timetR(D;) to actually perform the probe.



Time t Time t+1 Function GenerateQueues()
(01) LetConsidered be the set of objects with score upper
D, 0, 05 | 0,
) .. bounds greater than tié" largest score lower bound
’ (02) For each sourcB; (1 < i < n):

[ o] (03)  EmptyQueue(D;)

Queve(D,) (04) While Considered # @ and

Queue(D,)

flush and regenerate all
source queues

Queue(D,)

i e {1,...,n} : |Queue(D;)| < L:
o, (05)  Extracttg from Considered such that:
Queued,) Queued) U(tn) = maxseconsidered U(t)
(06) S = SelectBestSubset(ty)
. . . (07)  Foreach sourcB; € S:
Figure 4: An execution step glUppet. (08) If |Queue(D;)| < L: Enqueue(Ds, tsr)

Figure 6: FunctiorGenerateQueues
Algorithm pUpper (Input: top£ queryq)

Egg Retl):eat SRS ( ) source, based on expected value information. Of course,
or eac -Sourcd); (1 <71 < ngp): H H H H

03) If no sorted access is being performedianand during processing the besasubset T,or an object might vary,

more objects are available from; for ¢ : andpUppermight perform “useless” probes. Parameler

(04) CallpGetNext(D;, q) asynchronously regulates the tradeoff between queue “freshness” and lo-

(05)  For each sourc®; (1 < i < n): cal processing time, sindedetermines how frequently the

(06) t‘)’g ir‘r:'ge‘zi‘;‘;ﬁ:rr:(f’féf“ random accesses are random access queues are updated and how reptive

©07) If Queue(D;) = 0 peris to new information. We explore values fbrexperi-

(08) GenerateQueues() mentally and report our conclusions in Section 5.1.

(09) Else:

(10) t = Dequeue(D;) . .

(11) CallpGetScore(D;, g, t) asynchronously 4 Experimental Setting

(12) Until we have identified: top objects ) ] ) ]

(13) Return the toge objects along with their scores In this section, we define the synthetic sources (Sec-

tion 4.1), real web sources (Section 4.2), techniques we
compare (Section 4.3), and metrics (Section 4.4) that we

. . use to evaluate the strategies of Section 3.
other objects after some probes complete. By choosing sev-

eral objects to probe for every source in a single computa- _
tion, pUpperdrastically reduces local processing time. 41 Synthetic Sources

The pUpper algorithm (Figure 5) associates a queueWe generate a number of synthetBR-Source and
with each source for random access scheduling. Th&-Source for our experiments. The attribute values for
queues are regularly updated by calls to the fundBem-  each object are generated using one of the three following
erateQueuegFigure 6). During tops query processing, distributions:

Irfaﬁ dsgrﬁt;i?éslz ;‘::&ggif(%?ﬁ;gggﬁ (th) gs:rc;]cs?;ed U_niform: Attributes are indepen_dent of each other_and at-

then all randorm access v v ' _ér.lbute values are uniformly distributed (default setting).
queues are regenerated (Steps 7-8'in

Figure 5). IfQueue(D;) is not empty, then simply a probe Gaussian: Attributes are independent of each other and

to D; on the first object iQueue(D;) is sent (Step 9-11).  attribute values are generated from five overlapping multi-

To avoid repeated calls BenerateQueueshen arandom dimensional Gaussian bells [13].

access queue is continuously empty (which can happen, fatorrelated: We divided sources into two groups and gen-
example, if all known objects have already been probed fograted attribute values so that object attributes values from
its associated source), a queue left empty from a previousources within the same group are correlated. In each
execution does not trigger a new call@enerateQueues  group, the attribute values for a “base” source are gener-
To allow for dynamic queue updates at regular intervalsated using a uniform distribution. The attribute values for
and to ensure that queues are generated using recent #m object for the other sources in a group are picked from
formation, we define a parametéf which indicates the a short interval around the object’s attribute value in the
length of the random-access queues generated b@déine  “base” source. Our defaultorrelateddata set consists of
erateQueuesunction. A call toGenerateQueue® pop-  two groups of three sources each.
ulate a source’s random-access queue provides up-to-date We vary the number o8R-Source n,,., the number
information on current best objects to probe for all sourcespf R-Source n,., the number of objects available through
thereforeGenerateQueuesgenerates all random-accesssorted acces©bjects, the random access tim&(D;) for
queues. An object is only inserted into the queues of each sourceD; (a random value between 1 and 10), the
the sources returned by tiselectBestSubset{tnction of  sorted access timesS(D;) for each source; (a random
Section 3.2.1 (Steps 6-8 in Figure 6). Additionally, as invalue between 0.1 and 1), and the maximum number of
pDynamic objects are considered in the order of their scoreparallel random accessp®(D;) for each sourcd;. Ta-
upper bound (Step 5). ble 1 lists the default value for each parameter. Unless we
pUpper precomputes a list of objects to access perspecify otherwise, we use this default setting.

Figure 5: AlgorithmpUpper



sko Rer | \?giggtge [1”130] [Otls 1 pé% %?ﬁof;ts D; becomes availablggTAchooses which object to probe
: : = next for that source by selecting the first objectin the queue
that has not yet been probed f0¢. Additionally,pTAcon-
Table 1: Default parameter values for experiments ovekjders optimizations ovéFA so that it can stop probing an
synthetic data. object whose score cannot exceed that of the best tufp-

4.2 Real Web Sources Jects already seen [2].

N } } MPro-Constraints Chang and Hwang [3] recently pre-
In addition to experiments over synthetic data, we evalusented theviPro algorithm, which is based on an inde-
ated our algorithms over real, autonomous web sourceendently introduced variation of Property 1. Specifically,
For this, we implemented a prototype of our algorithmstheir key observation is that tHeobjects with the highest
to answer topk queries about New York City restaurants. score upper bounds all have to be probed before the final
Our prototype is written in C++ and Python, using C++ .k solution is found. Chang and Hwang propose a par-
threads and multiple Python subinterpreters to support coryjejization ofMPro, Probe-Parallel MPrg that simultane-
currency. Users input a starting address and their desire@ius|y sends one probe for each of thebjects with the
type of cuisine (if any), together with importance weights highest score upper boun#sThus, this strategy might re-
for the following R-Sourceattributes: SubwayTimghan- gyt in up tok probes being sent to a single source, hence
dled by the SubwayNavigator sfieDrivingTime(handled  potentially violating source-access constraints. To observe
by the MapQuest sif, Popularity (handled by the Al-  gych constraints, we adatobe-Parallel MProso that we
taVista search engif& see below)Food (handled by the  piock a probe for a chosen object if issuing the probe would
Zagat Review web sité), andPrice (provided by the New yiplate the access constraints on the associated source.
York Times at the New York TOday web S}@ The Veri- There are some key differences betw&épro and Up_
zon Yellow Pages listing, which for sorted access returns per. Unlike Upper, MPro uses a “global” probe scheduling
restaurants of the user-specified type sorted by shortest digzhere the source-access order is the same for every ob-
tance from a given address, is the o8IR-SourceWe ap-  ject. Also, to determine the global schedule, Chang and
proximate the “popularity” of a restaurant with the num- Hwang resort to an initial object sampling phase. This
ber of pages that mention this restaurant as reported by th@mpling step is not appropriate for our scenario for two
AltaVista search engine. (This idea of using web searcheasons: (1) we cannot easily extract an unbiased, random
engines as a “popularity oracle” has been used before igpject sample from the type of web sources that we con-
the WSQ/DSQ system [7] and in [2].) Attributesstance  sider. (MPro was designed to optimize the executioraf
SubwayTimeDrivingTime andFood have “default” target  ca| expensive predicatdsNevertheless, we implemented
values in the queries (e.g.,xivingTimeof 0 and aFood 5 experimented with thélPro sampling approach over
rating of 30). The target value fdopularity is arbitrar-  oyr synthetic sources, and observed that (2) the source or-
ily set to 100_h|ts, whlle_ th@rice target value is set to tht_a dering guidelines derived via sampling seem not to be ef-
least expensive value in the scale. In the default settingtective for weighted-sum scoring functions. Sampling was
the weights of all six sources are equal. In a real web engsed primarily in conjunction witminas the scoring func-
vironment, the access tintéz for a source is usually not tjon in [3], where each individual score is often enough to
constant but rather depends on network traffic. We adaptegiscard many objects and hence sources can effectively be
techniques for estimating round trip time of network pack-grdered as a function of their “selectivity.” In contrast,
ets [10] to develop accurate adaptive estimatesfor the individual selectivity of sources for a weighted-sum

) ) scoring function is less useful, as we concluded experi-

4.3 Techniques for Comparison mentally. To still be able to compare against (an adap-
We compare the performance of our npynamic(Sec-  tation of) MPro, we replace the sampling-based source

tion 3.2.1) andpUpper(Section 3.2.2) algorithms against Scheduling step in [3] with an alternate approach that ranks
the following three techniques. sources based on their weight/access-time ratio. Finally,
. . . note thatMPro handles only on&R-Sourcéand multiple
Upper. The sequentialippertechnique [2] (Section 3.1). R-Source), so we restrict our comparison with this tech-

pTA: We adapted Fagin et al.BA algorithm [6] (Sec- nique to this setting. We refer to the resulting parallel tech-
tion 3.1) for our parallel scenario. The resulting parallelnique asviPro-Constraints

algorithm,pTA, probes objects in the order in which they

are retrieved from th8R-Source while respecting source- 4.4 Evaluation Metrics

access constraints. Each object retrieved via sorted access

is placed in a queue of discovered objects. When a sourck0 understand the relative performance of the variousitop-

processing techniques over synthetic sources, we time the

8http://www.subwaynavigator.com two main components of the algorithms:
Shttp://www.mapquest.com

Onttp://www.altavista.com ® i,robes IS the time spent accessing the remote sources.
Uhttp://www.zagat.com

Pnttp://www.nytoday.com 14chang and Hwang proposed a second parallelizatidRib that is

Bhttp://www.superpages.com not applicable to our web-source setting; see Section 7.



e t,cq1 IS the time spent locally scheduling remote

source accesses, in seconds. = pUpper Spoynaric w00 - Boupper  mpDynamic
5000 — 2500
While source access and local scheduling happen in par- , “°
allel, it is revealing to analyze thg, opes andtiyeq; times . e
associated with the query processing techniques separately o m
since the techniques that we consider differ significantly in O o o corelaes ot j —
the amount of local processing time they require. For the Aurbute Value Distibution
experiments over the real-web sources, we report the total
query execution time: (a) Parallel probing time. (b) Local processing time.

Figure 7: pUppervs. pDynamicfor the different attribute

e t;01q1 IS the total time spent executing a tépguery, \éalue distributions.
n

in seconds, including both remote source access al ]
scheduling. 5 Experimental Results

%Ip this section, we present the experimental results for the

echniques of Section 3 using the sources and general set-

tings described in Section 4. We first focus on the synthetic

e |probes| is the total number of random probes issuedsources (Section 5.1), followed by experiments over real
during a topk query execution. web sources (Section 5.2).

We also report the number of random probes issued b
each techniqué&

Finally, we quantify the extent to which our parallel 5.1 Results for Synthetic Sources

techniques exploit the available source-access parallelisnyg ran experiments using the synthetic sources of Sec-
ConsiderUpper, the best sequential algorithm according s 4.1, for various settings of the synthetic-source param-
to the experimental evaluation presented in [2, 8]. ldeallygers e also compared the execution time of the parallel
parallel algorithms would keep sources *humming” by ac-iechnigues against that of the sequeritigper technique
cessing them in parallel as much as possible. Atany poink,q report the correspondiduraliel Efficiency values.

in time, up tons, + >_;_, pR(D:) CQ”C“UG’;} squrcehac- To deploy thepUpperalgorithm, we first need to experi-
cesses can be in progress. Henceéyjf., is the time that o a)ly establish a good value for theparameter, which
Upperspends accessing remote sources sequentially, thefiermines how frequently the random-access queues are
tﬁm’”/(ﬁs’" T Zi:.l pr(Dir)]) ISa (Ilclnolsel) IOWﬁr bound on updated (Section 3.2.2). To tune this parameter, we ran
the parallek,,.op. time for the parallel algorithms, assum- o e riments over a number of synthetic sources for differ-
ing that parallel algorithms perform at Ieasft as many sourc@nt settings ofObjects, pR, andk. As expected, smaller
accesses adpper. To observe what fraction of this po- \51yes off, result in higher local processing time. Interest-

tential parallel speedup the parallel algorithms achieve, Wehgly, while the query response time increases itivery
report: small values off. (i.e., L < 30) yield largert,, s values

. toomer ] (sr + S pR(D; than moderate values éf (i.e.,50 < L < 200) do: when
Parallel Efficiency = —222 /( " 2izy PR(DY)) L is small,pUppertends to “rush” into performing probes
probes that would have otherwise been discarded later (see discus-

A parallel algorithm withParallel Efficiency = 1 man- sion onpUpper vs. pDynamicbelow). We observed that

ages to essentially fully exploit the available source—accesg_ = 100 is a robust choice for moderate to Ia_rge database
parallelism. Lower values aParallel Efficiency indicate sizes and for the query parameters tha'g we iried. Thus, we
that either some sources are left idle and not fully utilizedS€tL 0 100 for the synthetic data experiments.
during query processing, or that some additional probes areUppervs. pDynamic We experimentally compargaDy-
being performed by the parallel algorithm. namicandpUpper. Results of this comparison for different
For the synthetic sources, we generate 100 queries raflata sets are shown in Figure 7. As expecfslynamic
domly. We report the average values of the metrics for dif-iS significantly more expensive in terms of local process-
ferent settings of.., n,., |Objects, pR, andk for different ing time (around 25 times more expensive for the default
attribute distributions. We conducted experiments on 1Gh2etting): it requires at least one (and probably many) best-
516Mb RAM machines running Red Hat Linux 7.1. subset computation per source access. By making random
For the real web sources, we defined 12 queries that agkccess choices in batchgs/ppersaves local processing
for top French, Italian, and Japanese restaurants in Manhdime without harming query response time, since choices
tan, for users located in four different addresses. We repofre reevaluated frequently. Surprisingly, while we expected
the average;...; value for different settings gfR andk. ~ PDynamicto have lower probing time thapUpper, our

We conducted experiments on a 550Mhz 758Mb RAM ma-€xperiments showed the opposigJppers probing time
chine running Red Hat Linux 7.1. was 10 to 20% lower thapDynamic¢s. This can be ex-

plained by the greedy nature pDynami¢ which tends
15The number of sorted accesses is more uniform across techniques. to choose probes that would have become useless if cur-
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Figure 9: Effect of the number of source objef@bjects$

on the performance @fTAandpUpper Figure 11: Performance opTA pUpper and MPro-

Constraintsover different attribute value distributions (one

rent outstanding probe results were known. Additionally,SR-SOUr%®

pDynamictends to concentrate probes on the first few ob-. . . .
. . : linearly with |Objects$ (Figure 9(a)).pUpperscales better
jects with the highest score upper bounds, whep&hsper Wan 0TA Interestingly pUppeis Parallel Efficiency in-

considers a wider range of objects. Since experiments ocreases with the number of objects, while it decreases for

pDynamicare very expensive in local processing time and ; ) )
. : ; — pTA(Figure 9(b)): unlikepTA pUppercarefully chooses
pUpperis consistently faster thapDynamic we only con what sources to probe for each object, thus saving random

siderpUpperin the rest of our evaluation. Also, we defer

a comparison witiMPro-Constraints which as discussed accesses.
only handles on&R-Sourceuntil later in this section. Effect of the Number of Parallel Accesses to each
SourcepR(D;): Figure 10 reports performance results as

a function of the total number of concurrent random ac-
tesses per source. As expected, the parallel query time
decreases when the number of parallel accesses increases
(Figure 10(a)). HowevepTAandpUpperhave the same
performance for highpR(D;) values. Furthermore, the
Parallel Efficiency of both techniques dramatically de-
creases whepR(D;) increases (Figure 10(b)). This re-
sults from a bottleneck on sorted accesses: wh(D,) is

high, random accesses can be performed as soon as objects

for small values oft. For example, whe& = 10, pUp- . .
perhas aParallel Efficiency value of 0.76, which means are discovered, and algorithms spend most of the query
o processing time waiting for new objects to be retrieved

it is only 30% slower than the ideal parallelization bfp-

per. Whenk increases, the best source subsets computef om theSR-Source
in pUppertend to contain more sources (thé expected Additional Experiments: We also experimented with dif-
value is low), which leads to smaller savings in terms offerent attribute weights and source access times. Consis-
random accesses. tent with the experiments reported abopélpperoutper-

Effect of the Number of Source Objects|Objects: Fig- ;ormetddeAfortahll weight-;c:mfe ct:ﬁnfigurations tfested. \INe't
ure 9 shows the impact dDbjects, the number of ob- 40 Notdiscuss these results further because of space limita-

jects available in the sources. As the number of object:%ions' Appendix A reports additional expe_rimental resu_lts
increases, the parallel time taken by both algorithms inJor varying numbers of sources and attribute-correlation

creases since more objects need to be processed. The pg?‘—ta set configurations.
allel time of bothpTAandpUpperincreases approximately Comparison with MPro-Constraints Figure 11(a) com-

Effect of the Number of Objects Requested:: Figure 8
shows results for the default setting described in Table 1
with ¢,,06cs and Parallel Efficiency reported as a func-
tion of k. As k increases, the parallel time neededdA
and pUpperincreases since both techniques need to re
trieve and process more objects (Figure 8(a)). plpper
strategy consistently outperformp3A pUppels andpTAs
Parallel Efficiency decrease when we increasdeyond
small values (Figure 8(b)pUpperis particularly efficient



to perform all needed sorted accesses, so no technique can

NoTa pUpper Cupper EPTA_ BpUbper DUpper return an answer in less than 20 seconds. For all methods,
— A an initialization time that is linear in the number of paral-
00 n - lel accesses is needed to create the Python subinterpreters
I (e.g., this time was equal to 12 secondsg@{(D;) = 5).
ol - We do not include this uniform initialization time in Fig-
| w0 ure 12. Interestingly, we noticed that sometimes source
, I ‘W T ; ﬂ ‘ m [, random access time increases when the number of parallel
: s 1 2 : 2 5 ) accesses to that source increases, which might be caused

by sources slowing down accesses from a single applica-
tion after exceeding some concurrency level, or by sources
not being able to handle the increased parallel load. When
the maximum number of accesses per source iplpper
Figure 12: Effect of the number of objects requeskted returns the tope query results in 35 seconds. For a real-
(a) and the number of accesses per sopigeD;) (b) on istic setting of five random accesses per souptipperis

the performance g§TA pUpper, andUpperover real web  the fastest technique and returns query answers in less than
sources. one minute. In contrast, the sequential algoritbipper
needs seven minutes to return the same answer. In a web
gnvironment, where users are unwilling to wait long for
an answer and delays of more than a minute are generally
unacceptablgpUppermanages to answer tdpgueries in
quastically less time than its sequential counterparts.

(a) Parallel timet;yq; as a (b) Parallel timet;,:q; as a
function ofk (pR(D;) = 2). function ofpR(D;) (k = 5).

parespTA pUpper and MPro-Constraintsover different
data distributions, when only one source provides sorte
access. (As notellPro was designed to handle only one
SR-Sourcé MPro-Constraintsis slower than the other
two techniques, because it does not take full advantage
source-access parallelism: a key design goal behind the Conclusions of Experiments: We evaluategTA and
original MPro algorithm is probe minimality. Then, po- PUpperon both synthetic and real-web sources. Both al-
tentially “unnecessary probes” to otherwise idle Sourcegorithms exploit the available source parallelism, while re-
are not exploited, although they might help reduce overalBpecting source-access constraints. Our results show that
query response time. Figure 11(b) confirms this observaparallel probing significantly decreases query processing
tion: MPro-Constraintsissues on average fewer random- time. For example, when the number of available concur-
access probes for our three data sets than p@thand rent accesses over six real web sources is set to five per
pUpper. The three techniques perform approximatively thesource pUpperperforms 9 times faster than its sequential
same number of sorted accesses. As we discuss in SegounterpartUpper, returning the topk query results —on

tion 6, MPro-Constraintgand adaptations gfAandpUp- ~ average—in under one minute. In addition, our techniques
per) are good candidates for the alternate scenario in whicire faster than our adaptationfrobe-Parallel MPro

we attempt to minimize source load, rather than query re-

sponse time. 6 Minimizing Source Load

The main focus of this paper is on minimizing the total par-
allel query processing time while observing source-access
Our next results are for the real web sources described inonstraints. We now discuss a different optimization sce-
Section 4.2. All queries evaluated consider 100 to 15(hario, where source load is the minimization objective.
restaurants. During tuning pUpper(Section 5.1), we ob- In other words, we now attempt to minimize the number
served that the best value for paramdidbr small object  of probes that we issue, while still exploiting parallelism
sets is 30, which we use for these experiments. whenever possible. Such a scenario would be appropri-
Figure 12(a) shows the actual total execution time (inate for “pay-per-view” sources, or to maximize through-
seconds) opTA pUpper, and the sequential algorithbp- put when many queries are competing for source access.
per for different values of the number of objects requestedNe present some preliminary discussion on how to adapt
k. Up to two concurrent accesses can be sent to eadhe algorithms of Section 3 to reduce their required source
R-SourceD; (i.e., pR(D;) = 2). Figure 12(b) shows load, and also report an initial experimental evaluation of
the total execution time of the same three algorithms fotthe competing strategies.
a top-5 query when we vary the number of parallel ran- In the spirit of minimizing source load, all the tech-
dom accesses available for each sow®éD;). (Note that  niques that we discuss below perform sorted accesses on
pR does not apply tdJpper, which is a sequential algo- only one SR-Sourceand attempt to minimize the num-
rithm.) We also performed experiments varying the relativeber of random accesses for the objects retrieved from
weights of the different sources, which we do not report dughe SR-Source If multiple SR-Source are available, one
to space limitations. In general, our results are consistergource is arbitrarily chosen for sorted access (e.g., the
with those for synthetic sources, apdpperandpTAsig-  source with the highest associated query weight). This
nificantly reduce query processing time comparetUm helps avoid redundant accesses (sorted access on an at-
per. We observed that a query needs 20 seconds on averagéute value that was retrieved via random access). To min-

5.2 Results for Real Web Sources



minimize response time and is therefore able to exploit par-

ooy PP e Consuans Buupper ITASE - meuener memuppervboconsens e it glllelism more aggressively than the other two algorithms
ol N (e.g., the average source utilization fiypperis 95% over
g the Correlateddata set, while it is only 25% and 4% for
£ e F oo - pmUpper/MPro-ConstraintsndTA-EP, respectively) TA-
o e 1 EP is of course much slower than all other techniques as
U o aussn T em | case | coemes It ACCESSES SOUrCES sequentially. All techniques perform a
Attt Value Disirbution tibute Value Distibuion similar number of sorted accesses.
(a) Number of random probes. (b) Parallel probing time. wUpper  So far, we have discussed query processing

technigues that either minimize response time or source
Figure 13: Performance OIﬁTA pUpper, and MPro- load. A simple variation omepper however, exhibits
Constraintsover different attribute value distributions (one an interesting trade-off between response time and source
SR-Source load: the new algorithmwUpper, considers source con-
gestion during scheduling, and hence incorporates the Sec-
imize the number of sorted-access probes, sorted accesdé 3.2.1 waiting times when scheduling probes specifi-

to the SR-Sourcare stopped as soon as no undiscoveredally for each individual objectwUppermight then not
objects can be part of the tdpguery answer. choose the source with the “highest impact” for an object

) L but rather settle for a probe that can be performed imme-
pmUpper/MPro-ConstraintsTo minimize query response  giately. HoweverwUpper only probes objects that will

time, pUpperaggressively issues probes that might not beénaye 1o be probed (Property 1). By considering source
strictly necessary to reach a solution. To minimize Sourceyiability in its choiceswUpperexhibits low query re-
load, we adappUpperso that it only issues probes for the gnonse times (Figure 13(b)). At the same timéJpper
current topk objects, following the generalization of Prop- performs only slightly more probes thamUpper/MPro-

erty 1 (Section 3.1) in [3]. Furthermore, to favor “high im- consiraintgFigure 13(a)). In shoriyUpperis just a good
pact” sources, which would hopefully help reduce_ the numMynitial “trade-off” algorithm. A thorough study of how
ber of random probes needed, we do not consider sourGg 5chieve an appropriate balance of response time and

access time during scheduling. Instead, we use the queRk o, ghput for a specific workload is subject of interesting
weight of the sources as the only criterion for choosings,ture work.

sources. We refer to the resulting algorithmpasUpper

Interestingly,pm_Uppe(uses the same random-pro_be o7 Related Work

der for each object, since now time (and congestion) are

not considered during source-access scheduling. Therdo process tog queries over multimedia attributes, Fagin
fore,pmUpperandMPro-Constraintdbecome virtually the et al. proposed a family of algorithms ov@R-Source[5,
same algorithm, if we order sources fdPro-Constraints 6]. These algorithms can evaluate tbjueries that in-
just by their query weight (rather than by their associated/olve several independent multimedia “subsystems,” each
weight/access-time ratio as before). producing scores that are combined using arbitrary mono-
tonic aggregation functions. In an expanded version of [6],

. . Fagin et al. presented a variation of their algorithms to han-
in turn and decides whether to continue processing a neW - "R-Source. We discussed adaptations of these algo-

object based on the (complete) scores of the preViOUSI}{ithms to our parallel access model in Sections 4.3 and 6,

probed objects. Therefore, 1o strictly minimize the M- and compared them experimentally against our other paral-
ber of probes we need to process objects one at a tlm(?el algorithms

e g each e et o Nepal and Ramakrishna (1] iz ot . (0] re-
the TA-EPvariant of TA. TA-EPis a sequential algorithm sented variations of Fagin et al.'s TA algorithm [6] for mul-

. . ; timedia query processing. The MARS system [12] also
that foIIows_theTA algorithm but stop_s probing an object uses variations of the TA algorithm and views queries as bi-
as soon as it can be shown not to be in the query result.

nary trees where the leaves are single-attribute queries and
Experiments Figure 13(a) reports the number of ran- the internal nodes correspond to “fuzzy” query operators.
dom probes performed by the two source-load minimiza<Chaudhuri and Gravano built on Fagin’s original FA algo-
tion algorithms,pmUpper/MPro-Constraintand TA-EP, rithm [5] and proposed a cost-based approach for optimiz-
against that opUpper, for the experimental setting of Sec- ing the execution of to-queries over multimedia reposi-
tion 5.1 with oneSR-Sourceand five R-Source. (wUp-  tories [4]. Their strategy translates a given toguery into

per is explained below.) As expectegmUpper/MPro- a selection query that returns a (hopefully tight) superset of
Constraints and TA-EP perform fewer random probes the actual tops tuples.

than pUpper, with pmUpper/MPro-Constraintperform- More recently, Chang and Hwang [3] presentégro,

ing fewer probes than any other technique. Howeveran algorithm to optimize the execution etpensive pred-
pmUpper/MPro-Constraintand TA-EP are slower than icatesfor top-k queries, rather than for our web-source
pUpper(Figure 13(b)): the latter algorithm was designed toscenario. As such, their “probes” are typically not as ex-



pensive as our web-source accesses, hence the need &murces. Our evaluation showed that our techniques man-
faster probe scheduling. Unlikgpper, MPro assumes a age to circumvent the high latency of web-source accesses,
fixed schedule of accessesReSource, and thus selects and perform significantly better than sequential processing

which object to probe next but ignores source selection ostrategies in terms of query processing time. In addition,
a per-object basis. In the same paper, Chang and Hwange discussed algorithms for the alternate optimization goal

briefly discussed parallelization techniques KéPro and

of minimizing source load, and presented preliminary re-

proposed thé&robe-Parallel-MProalgorithm, which sends  sults for this scenario.

one probe per object for theobjects with the highest score

upper bounds. We adapted this algorithm so that it observeReferences

source-access constraints and evaluated it experimentallyl]
in Section 6. A second proposed parallelizatiorivii?ro,
Data-Parallel MPrq partitions the objects into several pro-
cessors and merges the results of each processor’s individyg)
ual top£ computations. This parallelization is not applica-
ble to our scenario where remote autonomous web sources
“handle” specific attributes dll objects. [3]
Bruno et al. [2] presentedpper (Section 3.1) and
other sequential algorithms for our tépquery setting,
but handled only oné&-Source(or SR-Sourceand sev-
eral R-Source. This restriction is relaxed in [8] to allow
for a more flexible scenario of any number®R-Source
andR-Source. Bruno et al.'s original model [2] is a spe-
cific instance of this more flexible scenario: when only one
SR-Sourcés available, it will only be accessed in sorted
access because of the no “wild guesses” restriction. A sce{6l
nario with severalS-Source (with no random-access in-
terface) is problematic: to return the tépebjects for a
guery together with their scores, as required by our query
model, we might have to acceah objects in some of the
S-Source to retrieve the corresponding attribute score for
one of the topk objects. This can be extremely expensive
in practice. Fagin et al. presented tiRAalgorithm [6] to
deal with multipleS-Source; howeveMNRAonly identifies
the top+4 objects and does not compute their final scores.
The WSQ/DSQ project [7] presented an architecture for 4
integrating web-accessible search engines with relational
DBMSs. The resulting query plans can manage asyn-
chronous external calls to reduce the impact of potentially10]
long latencies. Thissynchronous iteratiois closely re-
lated to our handling of concurrent accesses to sources.
Finally, Avnur and Hellerstein introduced “Eddies” [1], a [11]
guery processing mechanism that reorders operator eval-
uation in query plans. This work shares the same desigﬂz]
philosophy apUpper, where we dynamically choose the
sources to access next for each object depending on previ-
ously extracted probe information. [13]

(4]

(5]

(7]

(8]

8 Conclusion

Sequential tops query processing techniques over web-
accessible sources do not take advantage of the inherently
parallel access nature of web sources, and spend most of
their query execution time waiting for web accesses to re-
turn. In this paper, we presented efficigrdtrallel top-k
query processing techniques to minimize query response
time while taking source-access constraints that arise in
real-web settings into account. We evaluated our new al-
gorithms experimentally using both synthetic and real web
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A Additional Experiments (Figure 15(b)). Surprisingly, for higher values of,.,

. . . . we reportParallel Efficiency values that are greater than
In this appendix, we present add'“oﬂa' exper|ment§1I resulti This is possible since, in the parallel case, algorithms
for the sources and settings of Section 5.1. Specifically, wé’’ ' '

. can get more information from sorted accesses than they
reporton the effeqt on the performancgai(Section 4.3) would have in the sequential case where sorted accesses
and pUpper (Section 3.2.2) of the number of sources

the number oSR-Sourcen,, andR-Source n,., and the are stopped as early as possible
attribute-score correlation .
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(a) Parallel probing time. (b) Local processing time. Figure 16: Effect of attribute value correlation on the per-

Figure 14: Effect of the number of sourcesn the perfor-  formance opTAandpUpper

mance ofpTAandpUpper.
b pUpp Effect of Attribute Correlation: To study the effect of

attribute-value correlation, we now consider Garrelated
data sets. Specifically, we divided sources into two groups
so that the object values in sources within the same group

Effect of the Number of Sourcesn: Figure 14 shows the
performance opUpperand pTAwhen we vary the num-

ber of sources.. In all cases, we let,,, = n, = n/2. .
' ST T are correlated. Figure 16 reports the performangeliy-
(See below for other values far,, andn,.) Whenn = 2, per and pTA for six sources for three configurations: (1,

the two algorithms are virtually equivalent. Adncreases, 5): one group has one source and the other five sources; (2
the execution time of both algorithms also increases, with4). one group has two sources and the other four sourc’es:
pUpperoytperforminngA (Figurg 14(a)). 'I_'he_local Pro- and (3, 3): both groups have three sources. Figure 16(a),
cessmg_tlm_e O.f.bOth algorithms is s_hown In Figure 14(b)'shows that both algorithms have faster parallel query time
pUpperis significantly more expensive thaiTAwhenn or the (1, 5) case, when a large group of five sources is
increases: to choose the best sources to probe for an ob ' '

) X X o ositively correlated. In Figure 16(b), we see théatp-
ect,pUppertakes time that is exponential in the number of : .
Js ourf:)esppHowever this is gener%lly acceptable because pers Parallel Efficiency decreases when sources are split

. . ; V‘é?/enly (i.e., for the (3, 3) case), sinp&ppers optimiza-
ex?tect the nclijber dOf a:tnbute; |nvoIved16n aTOPIETY  iong are less efficient in such a setting. In contrp$&s
hot to exceed a moderate number (.g., 10). Parallel Efficiency is constant among all configurations
tested.
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(a) Parallel probing time. (b) Parallel efficiency.

Figure 15: Effect of the number &R-Sourcen,, on the
performance opTAandpUpper.

Effect of the Number of SR-Sourcen,, and R-Source

n,. Figure 15 shows the effect of the relative number
of SR-Source ng,. out of a total of 6 sources on the
performance ofpTA and pUpper. When the number of
SR-Source increases, the processing time of both algo- 16sequential algorithms stop sorted accesses as soon as possible to fa-
rithms decreases, as more information is obtained fronyor random accesses. Parallel algorithms do not have this limitation since

sorted accesses and thus fewer random accesses are neeta an perform sorted access in parallel with random accesses. The extra
information learned from those extra sorted accesses might help discard

(Figure 15(a)). Also, we observe an increasg%mllal objects faster, thus avoiding some random accesses and decreasing query
Efficiency for both pUpperandpTAwhenng, increases processing time.




