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Abstract

A “top-k query” specifies a set ofpreferredval-
ues for the attributes of a relation and expects as a
result thek objects that are “closest” to the given
preferences according to some distance function.
In many web applications, the relation attributes
are only available viaprobesto autonomous web-
accessible sources. Probing these sources sequen-
tially to process a top-k query is inefficient, since
web accesses exhibit high and variable latency.
Fortunately, web sources can be probed in paral-
lel, and each source can typically process concur-
rent requests, although sources may impose some
restrictions on the type and number of probes that
they are willing to accept. These characteristics
of web sources motivate the introduction ofpar-
allel top-k query processing strategies, which are
the focus of this paper. We present efficient tech-
niques that maximize source-access parallelism to
minimize query response time, while satisfying
source access constraints. A thorough experimen-
tal evaluation over both synthetic and real web
sources shows that our techniques can be signifi-
cantly more efficient than previously proposed se-
quential strategies. In addition, we adapt our par-
allel algorithms for the alternate optimization goal
of minimizing source load while still exploiting
source-access parallelism.

1 Introduction

Web search engines usually return the best —or “topk”—
matches for a user query. Thistop-k query modelis preva-
lent over multimedia collections in general but also over
relational data for applications where users do not expect
an exact match for their queries. Top-k queries are a natu-
ral choice for applications where users have flexible prefer-
ences and tolerate (or even expect) fuzzy matches for their
queries. A top-k query then consists of an assignment of
target values to the attributes of a relation. To answer such
a query, a top-k query processing strategy has to identify
thek objects closest to the target values according to some
distance function.

Example 1: Consider a travel site offering last-minute
weekend vacation packages. The attributes associated with
each package include Origin, Destination, Price, Tempera-
ture, and Rating, which correspond, respectively, to the de-
parture city, destination, cost, expected temperature at the
destination over the weekend, and average customer rating
of the hotel included in the package (e.g., on a scale of 1
to 10). A potential traveler might then specify the depar-
ture city, together with preferred values for the Price at-
tribute (e.g., Price=$200), the Temperature attribute (e.g.,
Temperature=30C), and –perhaps implicitly– the Rating
attribute (e.g., Rating=10). (The Temperature value would
allow users to express a preference for “warm” destina-
tions, for example.) As a result, the travel site returns,
say, the 10 packages for the given departure city that best
match the preference specification on Price, Temperature,
and Rating, according to some matching function.

We consider top-k query processing scenarios in which
some of the “relation” attributes are handled by remote
web sources, and can only be obtained through limited
web-accessible interfaces. In the above example, the
Price attribute could be retrieved from the Orbitz Last-
Minute Package web page,1 which returns a list of vaca-
tion packages sorted by price for a given departure city
(sorted access). TheTemperatureattribute might be avail-
able through the AccuWeather web site,2 which returns
the weather forecast for a given location (random access).
Similarly, theRatingattribute might be available through
the CitySearch web site3. Existing sequentialalgorithms
for this top-k query processing scenario attempt to mini-
mize the number of accesses (orprobes) to the web sources.
Unfortunately, any sequential processing strategy for top-k
queries over web sources is bound to result in unnecessarily
long executions, since web-source accesses may be unreli-
able and slow due to load and network traffic characteris-
tics.

To radically improve the performance of top-k query
processing, in this paper we introduce techniques that
fully exploit web-source access parallelism: multiple web

1http://packages.orbitz.com
2http://www.accuweather.com
3http://www.citysearch.com



sources can be accessed simultaneously and, furthermore,
individual web sources can typically accept several concur-
rent accesses at a time. Our top-k query processing strate-
gies then naturally exploit this potential probing parallelism
to reduce query response time. A key challenge in the de-
sign of these strategies, however, is that sources may pose
restrictions on the number of concurrent requests from a
single user, to guarantee reasonable response times for all
users. Query processing strategies over web sources should
then take into account source-access constraints when de-
signing a query execution plan. Furthermore, straightfor-
ward adaptations of sequential top-k query processing al-
gorithms to a parallel setting might either not exploit all
available parallelism –leaving some sources underutilized–
or not adapt dynamically to source congestion –leading to
suboptimal source utilization. Some interesting ideas on
top-k query parallelization have been recently proposed in
the literature [3] (see Sections 4 and 7). However, to the
best of our knowledge, our new parallel top-k query pro-
cessing techniques are the first to be specifically tailored to
minimize query response time in the presence of source-
access constraints. Our main contributions are as follows:

• We define a realistic source-access model that con-
siders constraints on concurrent accesses that sources
might enforce (Section 2).

• We introduce top-k query processing strategies that
exploit the inherently parallel access nature of web
sources to minimize query response time, while ob-
serving source-access constraints (Section 3).

• We present an experimental evaluation of our paral-
lel top-k query processing techniques using both syn-
thetic and real web sources (Section 5). Our parallel
techniques manage to achieve close to the maximum
theoretical speedup over their sequential counterparts.

• We discuss algorithms for the alternate optimization
goal of minimizing source load while still exploiting
source-access parallelism.

The rest of the paper is structured as follows: Section 2
defines our query and source model. Section 3 presents our
new parallel top-k processing strategies for minimizing re-
sponse time. Then, Section 4 introduces the data sets and
metrics that we use to experimentally evaluate our strate-
gies in Section 5. Section 6 discusses algorithms that aim
at minimizing source load rather than query response time.
Finally, Sections 7 and 8 review related work and conclude
the paper.

2 Background and Problem Statement
The focus of this paper is on parallel query processing tech-
niques fortop-k queriesover web-accessible sources. In
this section, we define the top-k query model (Section 2.1)
and the source interface that we assume, with its associated
access times and source-access constraints (Section 2.2).
We also introduce notation (Section 2.3) and the problem
that we address in this paper (Section 2.4).

2.1 Query Model

Unlike queries in traditional relational systems, for which
the result is a set of tuples, a top-k query returns anordered
list of objects, where the ordering is based on how closely
each object matches the query. Furthermore, the answer to
a top-k query consists only of thek objects that match the
query the closest. We use the same query model as in [2],
which we review next.

A top-k query over a relationR simply specifies target
values for attributesA1, . . . , An of R. Given a top-k query
q = {A1 = q1, . . . , An = qn} over a relationR, the score
that each objectt in R receives forq is a function oft’s
score for each individual attributeAi with target valueqi,
which we denote asScoreAi(qi, t) and assume to be nor-
malized in the[0, 1] range. To combine these individual
attribute scores into a final score for each object, each at-
tributeAi has an associated weightwi indicating its relative
importance in the query. The final scoreScore(q, t) for ob-
ject t is then defined as a weighted sum of the individual
scores.4 The result of a top-k query is the ranked list of the
k objects with highestScorevalue, where ties are broken
arbitrarily.

2.2 Source Model

Web sources offer several interfaces to access object scores
for a given user query. Conceptually, the two most common
such interfaces aresorted access, which returns a sorted list
of objects ranked by score for a given queryq, andrandom
access, which returns the score of a particular input object
for q [5, 6]. The web sources that we consider in this paper
can support one or both access interfaces:

Definition 1: [Source Types and Access Time]Consider
an attributeAi with target valueqi in a top-k queryq. As-
sume further thatAi is handled by a sourceS. We say
that S is anS-Sourceif, givenqi, we can obtain fromS a
list of objects sorted in descending order of ScoreAi by (re-
peated) invocation of agetNext (qi) probe interface with
costtS(S). (tS stands for “sorted-access time.”) Alterna-
tively, assume thatAi is handled by a sourceR that returns
scoring information only when prompted about individual
objects. In this case, we say thatR is an R-Source. R
provides random access onAi through agetScore (qi, t)
probe interface, wheret is a set of attribute values that
identify the object in question, with costtR(R). (tR
stands for “random-access time.”) Finally, we say that a
source that provides both sorted and random access is an
SR-Source.

The top-k evaluation strategies that we consider do not
allow for “wild guesses” [6]: an object must be “discov-
ered” under sorted access before it can be probed using
random access. Therefore, we need to have at least one

4Our model and associated algorithms can be adapted to handle other
scoring functions (e.g.,min), which we believe are less meaningful than
weighted sums for the applications that we consider.



source with sorted access capabilities to discover new ob-
jects. In this paper, we assume that we have one or more
SR-Sources available, plus arbitrarily manyR-Sources (see
Section 7 for further discussion on this subject).

On the web, sources can typically handle multiple
queries in parallel. In this paper, we will produce efficient
top-k query processing techniques that exploit this web-
source functionality and potentially query each source with
multiple probes at a time. However, our techniques must
avoid sending large numbers of queries to sources. More
specifically, our query processing strategies must be aware
of any access restrictions that the sources in a realistic web
environment might impose. Such restrictions might be due
to network and processing limitations of a source, which
might bound the number of concurrent queries that it can
handle. This bound might change dynamically, and could
be relaxed (e.g., at night) when source load is lower.

Definition 2: [Source-Access Constraints]Let R be a
source that supports random accesses. We refer to themax-
imum number of concurrent random accesses that a top-k
query processing technique can issue toR aspR(R), where
pR(R) ≥ 1. In contrast, sorted accesses to a source are se-
quential by nature (e.g., matches 11-20 are requested only
after matches 1-10 have been computed and returned), so
we assume that we submitgetNext requests to a source
sequentially when processing a query. However, random
accesses can proceed concurrently with sorted access: we
will have at most one outstanding sorted access request to
a specific SR-SourceS at any time, while we can have up
to pR(S) outstanding random-access requests to this same
source, for a total of up to1 + pR(S) concurrent accesses.

2.3 Notation

At a given point in time during the evaluation of a top-k
query q, we might have partial score information for an
object, after having probed the object for some sources but
not for others:

• U(t), the score upper boundfor an objectt, is the
maximum score thatt might reach forq, consistent
with the information already available fort. L(t) is
the correspondingscore lower bound.

• E(t), the expected scoreof an objectt, is the score
that t would get forq if t had the “expected” score
for every attributeAi not yet probed fort. In ab-
sence of further information, the expected score for
Ai is assumed to be 0.5 if its associated sourceDi is
an R-Source, and s`(i)

2 if Di is anSR-Source, where
s`(i) is theScoreAi score of the last object retrieved
from Di via sorted access. (Initially,s`(i) = 1.) 5

We refer to the set of all objects available through the
SR-Sources as theObjectsset. Additionally, we assume
that all sourcesD1, . . . , Dn “know about” all objects in

5Several techniques can be used for estimating score distribution (e.g.,
via sampling) but this topic is beyond the scope of this paper.

Objects. In other words, given a queryq and an object
t ∈ Objects, we can probeDi and obtain the score corre-
sponding toq andt for attributeAi, for all i = 1, . . . , n. Of
course, this is a simplifying assumption that is likely not to
hold in practice, where each source might be autonomous
and not coordinated in any way with the other sources. In
this case, we simply use a default value fort’s score for
attributeAi.

2.4 Problem Statement

We consider processing a top-k query overnsr SR-Sources
D1, . . ., Dnsr (nsr ≥ 1) andnr R-Sources Dnsr+1, . . .,
Dn (nr ≥ 0), wheren = nsr + nr is the total number
of sources. Each sourceDi has associated probe times as
in Definition 1, and can process at mostpR(Di) concur-
rent random accesses for the query at any given time, with
pR(Di) ≥ 1 as in Definition 2. In contrast, since sorted
access is sequential by nature, eachSR-Sourcecan process
no more than one sorted access for the query at any given
time. We focus on returning the top-k objects for the query
as fast as possible. Thus, we will define algorithms that
aim atminimizing the total parallel query processing time,
while observing the concurrent-access constraints imposed
by each source. In Section 6 we discuss an alternate cost
model in which algorithms aim at minimizing source load
rather than query response time.

3 Minimizing Response Time

In this section, we focus on top-k query processing algo-
rithms that attempt to minimize query response time. We
first discuss existing algorithms designed for a sequential-
processing scenario (Section 3.1). Then, we present our
new parallel top-k query processing strategies that observe
source-access constraints (Section 3.2).

3.1 Sequential-Processing Scenario

Sequential top-k query processing algorithms can have at
most one outstanding (random- or sorted-access) probe at
any given time. When a probe completes, a sequential strat-
egy chooses either to perform sorted access on a source to
potentially obtain unseen objects, or to pick an already seen
object, together with a source for which the object has not
been probed, and perform a random-access probe on the
source to get the corresponding score for the object.

Strategies for a sequential processing scenario differ in
their choice of probes. TheTAalgorithm by Fagin et al. [6]
retrieves objects for a top-k query via sorted access, and
completely probes a retrieved object via random access be-
fore probing a new object.6 The process ends when the

6Strictly speaking, the high level description ofTA in [6] is compatible
with implementations in which accesses on multiple sources are allowed
to proceed in parallel. In fact, in Section 4.3 we discuss a parallel im-
plementation ofTA that we use in our experiments in which both sorted
and random accesses are allowed to proceed in parallel to minimize query
response time.



score of no unseen object can exceed that of the bestk ob-
jects already seen (which have been fully probed). In sum-
mary, when a probe completes,TAcan either (a) perform a
sorted-access probe on a source if the “current” object has
been fully probed, or (b) perform a random-access probe
on the current object.

TheTA algorithm completely probes each object that is
processed. In contrast, theUpper algorithm by Bruno et
al. [2] allows for more flexible probe schedules in which
sorted and random accesses can be interleaved even when
some objects have only been partially probed. When a
probe completes,Upper decides whether to perform a
sorted-access probe on a source to get new objects, or to
perform the “most promising” random-access probe on the
“most promising” object that has already been retrieved via
sorted access. More specifically,Upperexploits the follow-
ing property to make its choice of probes [2]:

Property 1: Consider a top-k query q. Suppose that at
some point in time Upper has retrieved some objects via
sorted access from the SR-Sources and obtained additional
attribute scores via random access for some of these ob-
jects. Consider an objectt ∈ Objects whose score upper
boundU(t) is strictly higher than that of every other object
(i.e.,U(t) > U(t′) ∀t′ 6= t ∈ Objects), and such thatt has
not been completely probed. Then, at least one probe will
have to be done ont before the answer toq is reached:

• If t is one actual top-k object, then we need to probe
all of its attributes to return its final score forq.

• If t is not one of the actual top-k objects, its upper
boundU(t) is higher than the score of any of the top-
k objects. Hencet requires further probes so thatU(t)
decreases before a final answer can be established.7

Exploiting this property,Upperchooses to probe the object
with the highest score upper bound, since this object will
have to be probed at least once before a top-k solution can
be reached. After the object to probe next is picked, the
choice of source to probe for the object is influenced by
factors such as the access time and the query weight asso-
ciated with each source. In summary, when a probe com-
pletes,Uppercan either (a) perform a sorted-access probe
on a source if the unseen objects have the highest score up-
per bound, or (b) select both an object and a source to probe
next, guided in both cases by Property 1.

TA andUpperare two state-of-the-art processing algo-
rithms for top-k queries. (We discuss others later.) These
algorithms do not exploit all the inherent parallelism with
which we can access web sources: multiple web sources
can be accessed in parallel, and typically web sources ac-
cept several concurrent accesses at a time. In the next sec-
tion, we exploit this observation and present novel parallel
processing algorithms for top-k queries. We will focus on
adaptations ofUpper for our parallel scenario, and defer
the discussion onTAuntil Section 4.3.

7Reference [3] independently presented a top-k query processing algo-
rithm that is based on a similar property. (See Sections 4 and 7 for further
discussion.)

3.2 Parallel-Processing Scenario

The focus of this section is on parallel top-k query process-
ing techniques that minimize query response time in the
presence of source-access constraints. As explained, each
sourceDi can process up topR(Di) random accesses con-
currently. Whenever the number of outstanding probes to a
sourceDi falls belowpR(Di), a parallel processing strat-
egy can decide to send one more probe toDi. Maximiz-
ing source-access parallelism helps reduce query process-
ing time. Unlike in the sequential scenario in which strate-
gies decide on object-source pairs to probe, our parallel-
scenario strategies choose which object to probefor the
available source. In this section we first presentpDynamic,
a parallelization ofUpper for our scenario (Section 3.2.1).
As we argue (and show experimentally in Section 5.1),
pDynamicrequires expensive probe scheduling and results
in poor overall performance. To address these limitations,
we modifypDynamicand presentpUpper, a parallel algo-
rithm that results in efficient query executions while ob-
serving source-access constraints (Section 3.2.2).

3.2.1 The pDynamic Strategy

Time t Time t +1

D1

D3

D2

o1

o1 finishes

o2
o2

o1

o3find best object to probe
on D2

Figure 1: An execution step ofpDynamic.

As discussed above, a parallel query processing strat-
egy might react to a sourceDi having fewer thanpR(Di)
outstanding probes by picking an object to probe onDi.
A direct way to parallelize theUpper algorithm suggests
itself: every time a sourceDi becomes underutilized, we
pick the objectt with the highest upper bound among those
objects that need to be probed onDi according toUpper.
Figure 1 shows an example execution step of the result-
ing parallel algorithm,pDynamic. In the example, when a
sourceD2 is done processing a probe on objecto1, we use
Upper’s probe selection criteria to determine the best ob-
ject to probe forD2 (o3 in this case). We now discuss in
detail this new algorithm, which is outlined in Figure 2.

pDynamicis aggressive with respect to sorted accesses:
the algorithm attempts to always have exactly one outstand-
ing sorted-access request perSR-SourceDi (sorted ac-
cesses are sequential by nature; see Definition 2). As soon
as a sorted access toDi completes, a new one is sent until
all needed objects are retrieved fromDi (Steps 2-4). When
a random access toDi is available (i.e., when fewer than
pR(Di) outstanding accesses onDi are being performed),
pDynamicselects an object (see below) and sends the cor-
responding random-access probe toDi (Steps 5-8). Source
accesses are performed by callingpGetNext (Step 4) and
pGetScore (Step 8), which are asynchronous versions of
the getNext andgetScore source interfaces (Defini-



Algorithm pDynamic (Input: top-k queryq)
(01) Repeat
(02) For eachSR-SourceDi (1 ≤ i ≤ nsr):
(03) If no sorted access is being performed onDi and

more objects are available fromDi for q :
(04) CallpGetNext(Di, q) asynchronously
(05) For each sourceDi (1 ≤ i ≤ n):
(06) While fewer thatpR(Di) random accesses are

being performed onDi:
(07) Select objectt to probe forDi (see text)
(08) CallpGetScore(Di, q, t) asynchronously
(09) Until we have identifiedk top objects
(10) Return the top-k objects along with their scores

Figure 2: AlgorithmpDynamic.

Function SelectBestSubset (Input: objectt)
(01) Lett′ be the object with thekth largest expected

score, and letT = E(t′)
(02) If E(t) ≥ T :
(03) DefineS ⊆ {D1, . . . , Dn} as the set of all

sources not yet probed fort
(04) Else:
(05) DefineS ⊆ {D1, . . . , Dn} as the set of

sources not yet probed fort such that (i)U(t) < T
if each sourceDj ∈ S were to return the expected
value fort, and (ii) the time

∑
Dj∈S

eR(Dj , t)

is minimum among the source sets with this property
(06) ReturnS

Figure 3: FunctionSelectBestSubset.

tion 1); these asynchronous calls allow the query process-
ing algorithm to continue without waiting for the source
accesses to complete.pGetNext andpGetScore send
the corresponding probes to the sources, wait for their re-
sults to return, and update the appropriate data structures
with the new information.pDynamicterminates when the
top-k objects are identified, i.e., when no object can have
a final score greater than that of any of the current top-k
objects (Step 9).

To select which object to probe next for a sourceDi

(Step 7 of Figure 2),pDynamicuses theSelectBestSubset
function shown in Figure 3. This function attempts to pre-
dict what probes will be performed on an objectt before
the top-k answer is reached: (1) ift is expected to be one of
the top-k objects, all random accesses on sources for which
t’s attribute score is missing will be considered (Step 3);
otherwise (2) only the fastest subset of probes expected to
help discardt –by decreasingt’s score upper bound below
the kth (expected) object score– are considered (Step 5).
SelectBestSubsetbases its choices on the known attribute
scores of objectt at the time of the function invocation,
as well as on theexpected access timeeR(Dj, t) for each
sourceDj not yet probed fort. eR(Dj , t) is the sum of two
terms:

1. The timewR(Dj , t) that objectt will have to “wait in
line” before being probed forDj : any objectt′ with
U(t′) > U(t) that needs to be probed forDj will
do so beforet. Then, if precede(Dj , t) denotes the
number of such objects, we can definewR(Dj , t) =
bprecede(Dj ,t)

pR(Dj) c · tR(Dj).

2. The timetR(Dj) to actually perform the probe.

The timeeR(Dj , t) is then equal to:
eR(Dj , t) = wR(Dj , t) + tR(Dj)

= tR(Dj ) · (bprecede(Dj , t)

pR(Dj)
c + 1)

Without factoring in thewR waiting time, all best sub-
sets tend to be similar and include only sources with high
weight in the query and/or with low access timetR. Con-
sidering the waiting time is critical todynamically ac-
count for source congestion, and allows for slow sources
or sources with low associated query weight to be used for
some objects, thus avoiding wasting resources by not tak-
ing advantage of all available concurrent source accesses.

In Step 7,pDynamicconsiders the objectt with the
highest score upper bound (Property 1), and computes its
best subset. If an available sourceDi is in SelectBestSub-
set(t), thenpDynamicsends a random-access probe toDi

for t. Otherwise, the algorithm considers the object with
the next highest score upper bound, and so on, until an ob-
ject that containsDi in its best subset is found. If no object
to probe forDi is found (which can happen if, for exam-
ple, all known objects have already been probed forDi), no
probe is sent toDi andpDynamicprocesses the next source
to become available.

The pDynamicstrategy is expensive in local computa-
tion time: it might require several calls toSelectBestSub-
seteach time a random-access source becomes available,
and SelectBestSubsettakes time exponential in the num-
ber of sources. To reduce local processing time, we could
modify pDynamicso that it computes theL next best ob-
jects to probe for a sourceDi at a time, for a parameter
L that regulates the “granularity” at which the algorithm
makes decisions. Although this modification would save
local processing time, we can devise a more efficient algo-
rithm based on the following observation: wheneverpDy-
namic invokesSelectBestSubsetto schedule probes for a
sourceDi, the algorithm obtains information on the best
probes to perform forDi as well as for other sources. Since
pDynamicattempts to schedule probes for just one source
at any given time, it discards the information on valuable
probes to the other sources, which results in redundant
computation when these other sources become underuti-
lized and can then receive further probes. We now show
how we can exploit this observation to design an efficient
parallel processing algorithm for top-k queries.

3.2.2 The pUpper Strategy

We now presentpUpper, a new parallel top-k processing
algorithm that precomputes sets of objects to probe for each
source. When a source becomes available,pUpperchecks
whether an object to probe for that source has already been
chosen. If not,pUpperrecomputes objects to probe forall
sources, as shown in Figure 4. This way, earlier choices of
probes on any source might be revised in light of new in-
formation on object scores: objects that appeared “promis-
ing” earlier (and hence that might have been scheduled for
further probing) might now be judged less promising than



Time t Time t +1
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o1
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o2 o2
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o3
flush and regenerate all

source queues

         o3
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Queue(D1 )

Queue(D2 )

Queue(D3)

        o5
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Queue(D1 )

Queue(D2 )

Queue(D3)

Figure 4: An execution step ofpUpper.

Algorithm pUpper (Input: top-k queryq)
(01) Repeat
(02) For eachSR-SourceDi (1 ≤ i ≤ nsr):
(03) If no sorted access is being performed onDi and

more objects are available fromDi for q :
(04) CallpGetNext(Di, q) asynchronously
(05) For each sourceDi (1 ≤ i ≤ n):
(06) While fewer thatpR(Di) random accesses are

being performed onDi:
(07) If Queue(Di) = ∅:
(08) GenerateQueues()
(09) Else:
(10) t = Dequeue(Di)
(11) CallpGetScore(Di, q, t) asynchronously
(12) Until we have identifiedk top objects
(13) Return the top-k objects along with their scores

Figure 5: AlgorithmpUpper.

other objects after some probes complete. By choosing sev-
eral objects to probe for every source in a single computa-
tion, pUpperdrastically reduces local processing time.

The pUpper algorithm (Figure 5) associates a queue
with each source for random access scheduling. The
queues are regularly updated by calls to the functionGen-
erateQueues(Figure 6). During top-k query processing,
if a sourceDi is available,pUpperchecks the associated
random-access queueQueue(Di). If Queue(Di) is empty,
then all random access queues are regenerated (Steps 7-8 in
Figure 5). IfQueue(Di) is not empty, then simply a probe
to Di on the first object inQueue(Di) is sent (Step 9-11).
To avoid repeated calls toGenerateQueueswhen a random
access queue is continuously empty (which can happen, for
example, if all known objects have already been probed for
its associated source), a queue left empty from a previous
execution does not trigger a new call toGenerateQueues.

To allow for dynamic queue updates at regular intervals,
and to ensure that queues are generated using recent in-
formation, we define a parameterL, which indicates the
length of the random-access queues generated by theGen-
erateQueuesfunction. A call toGenerateQueuesto pop-
ulate a source’s random-access queue provides up-to-date
information on current best objects to probe for all sources,
thereforeGenerateQueuesregenerates all random-access
queues. An objectt is only inserted into the queues of
the sources returned by theSelectBestSubset(t)function of
Section 3.2.1 (Steps 6-8 in Figure 6). Additionally, as in
pDynamic, objects are considered in the order of their score
upper bound (Step 5).

pUpper precomputes a list of objects to access per

Function GenerateQueues()
(01) LetConsidered be the set of objects with score upper

bounds greater than thekth largest score lower bound
(02) For each sourceDi (1 ≤ i ≤ n):
(03) EmptyQueue(Di)
(04) WhileConsidered 6= ∅ and

∃i ∈ {1, ..., n} : |Queue(Di)| < L:
(05) ExtracttH from Considered such that:

U(tH) = maxt∈Considered U(t)
(06) S = SelectBestSubset(tH)
(07) For each sourceDi ∈ S:
(08) If |Queue(Di)| < L: Enqueue(Di, tH)

Figure 6: FunctionGenerateQueues.

source, based on expected value information. Of course,
during processing the best subset for an object might vary,
andpUppermight perform “useless” probes. ParameterL
regulates the tradeoff between queue “freshness” and lo-
cal processing time, sinceL determines how frequently the
random access queues are updated and how reactivepUp-
per is to new information. We explore values forL experi-
mentally and report our conclusions in Section 5.1.

4 Experimental Setting

In this section, we define the synthetic sources (Sec-
tion 4.1), real web sources (Section 4.2), techniques we
compare (Section 4.3), and metrics (Section 4.4) that we
use to evaluate the strategies of Section 3.

4.1 Synthetic Sources

We generate a number of syntheticSR-Sources and
R-Sources for our experiments. The attribute values for
each object are generated using one of the three following
distributions:

Uniform: Attributes are independent of each other and at-
tribute values are uniformly distributed (default setting).

Gaussian: Attributes are independent of each other and
attribute values are generated from five overlapping multi-
dimensional Gaussian bells [13].

Correlated: We divided sources into two groups and gen-
erated attribute values so that object attributes values from
sources within the same group are correlated. In each
group, the attribute values for a “base” source are gener-
ated using a uniform distribution. The attribute values for
an object for the other sources in a group are picked from
a short interval around the object’s attribute value in the
“base” source. Our defaultCorrelateddata set consists of
two groups of three sources each.

We vary the number ofSR-Sources nsr, the number
of R-Sources nr, the number of objects available through
sorted access|Objects|, the random access timetR(Di) for
each sourceDi (a random value between 1 and 10), the
sorted access timetS(Di) for each sourceDi (a random
value between 0.1 and 1), and the maximum number of
parallel random accessespR(Di) for each sourceDi. Ta-
ble 1 lists the default value for each parameter. Unless we
specify otherwise, we use this default setting.



k nsr nr |Objects| tR tS pR Data Sets
50 3 3 10,000 [1, 10] [0.1, 1] 5 Uniform

Table 1: Default parameter values for experiments over
synthetic data.

4.2 Real Web Sources

In addition to experiments over synthetic data, we evalu-
ated our algorithms over real, autonomous web sources.
For this, we implemented a prototype of our algorithms
to answer top-k queries about New York City restaurants.
Our prototype is written in C++ and Python, using C++
threads and multiple Python subinterpreters to support con-
currency. Users input a starting address and their desired
type of cuisine (if any), together with importance weights
for the following R-Sourceattributes: SubwayTime(han-
dled by the SubwayNavigator site8), DrivingTime(handled
by the MapQuest site9), Popularity (handled by the Al-
taVista search engine10; see below),Food (handled by the
Zagat Review web site11), andPrice (provided by the New
York Times at the New York Today web site12). The Veri-
zon Yellow Pages listing13, which for sorted access returns
restaurants of the user-specified type sorted by shortest dis-
tance from a given address, is the onlySR-Source. We ap-
proximate the “popularity” of a restaurant with the num-
ber of pages that mention this restaurant as reported by the
AltaVista search engine. (This idea of using web search
engines as a “popularity oracle” has been used before in
the WSQ/DSQ system [7] and in [2].) AttributesDistance,
SubwayTime, DrivingTime, andFoodhave “default” target
values in the queries (e.g., aDrivingTimeof 0 and aFood
rating of 30). The target value forPopularity is arbitrar-
ily set to 100 hits, while thePrice target value is set to the
least expensive value in the scale. In the default setting,
the weights of all six sources are equal. In a real web en-
vironment, the access timetR for a source is usually not
constant but rather depends on network traffic. We adapted
techniques for estimating round trip time of network pack-
ets [10] to develop accurate adaptive estimates fortR.

4.3 Techniques for Comparison

We compare the performance of our newpDynamic(Sec-
tion 3.2.1) andpUpper(Section 3.2.2) algorithms against
the following three techniques.

Upper: The sequentialUppertechnique [2] (Section 3.1).

pTA: We adapted Fagin et al.’sTA algorithm [6] (Sec-
tion 3.1) for our parallel scenario. The resulting parallel
algorithm,pTA, probes objects in the order in which they
are retrieved from theSR-Sources, while respecting source-
access constraints. Each object retrieved via sorted access
is placed in a queue of discovered objects. When a source

8http://www.subwaynavigator.com
9http://www.mapquest.com

10http://www.altavista.com
11http://www.zagat.com
12http://www.nytoday.com
13http://www.superpages.com

Di becomes available,pTAchooses which object to probe
next for that source by selecting the first object in the queue
that has not yet been probed forDi. Additionally,pTAcon-
siders optimizations overTA so that it can stop probing an
object whose score cannot exceed that of the best top-k ob-
jects already seen [2].

MPro-Constraints: Chang and Hwang [3] recently pre-
sented theMPro algorithm, which is based on an inde-
pendently introduced variation of Property 1. Specifically,
their key observation is that thek objects with the highest
score upper bounds all have to be probed before the final
top-k solution is found. Chang and Hwang propose a par-
allelization ofMPro, Probe-Parallel MPro, that simultane-
ously sends one probe for each of thek objects with the
highest score upper bounds.14 Thus, this strategy might re-
sult in up tok probes being sent to a single source, hence
potentially violating source-access constraints. To observe
such constraints, we adaptProbe-Parallel MProso that we
block a probe for a chosen object if issuing the probe would
violate the access constraints on the associated source.

There are some key differences betweenMPro andUp-
per. UnlikeUpper, MPro uses a “global” probe scheduling
where the source-access order is the same for every ob-
ject. Also, to determine the global schedule, Chang and
Hwang resort to an initial object sampling phase. This
sampling step is not appropriate for our scenario for two
reasons: (1) we cannot easily extract an unbiased, random
object sample from the type of web sources that we con-
sider. (MPro was designed to optimize the execution oflo-
cal expensive predicates.) Nevertheless, we implemented
and experimented with theMPro sampling approach over
our synthetic sources, and observed that (2) the source or-
dering guidelines derived via sampling seem not to be ef-
fective for weighted-sum scoring functions. Sampling was
used primarily in conjunction withminas the scoring func-
tion in [3], where each individual score is often enough to
discard many objects and hence sources can effectively be
ordered as a function of their “selectivity.” In contrast,
the individual selectivity of sources for a weighted-sum
scoring function is less useful, as we concluded experi-
mentally. To still be able to compare against (an adap-
tation of) MPro, we replace the sampling-based source
scheduling step in [3] with an alternate approach that ranks
sources based on their weight/access-time ratio. Finally,
note thatMPro handles only oneSR-Source(and multiple
R-Sources), so we restrict our comparison with this tech-
nique to this setting. We refer to the resulting parallel tech-
nique asMPro-Constraints.

4.4 Evaluation Metrics

To understand the relative performance of the various top-k
processing techniques over synthetic sources, we time the
two main components of the algorithms:

• tprobes is the time spent accessing the remote sources.

14Chang and Hwang proposed a second parallelization ofMPro that is
not applicable to our web-source setting; see Section 7.



• tlocal is the time spent locally scheduling remote
source accesses, in seconds.

While source access and local scheduling happen in par-
allel, it is revealing to analyze thetprobes andtlocal times
associated with the query processing techniques separately,
since the techniques that we consider differ significantly in
the amount of local processing time they require. For the
experiments over the real-web sources, we report the total
query execution time:

• ttotal is the total time spent executing a top-k query,
in seconds, including both remote source access and
scheduling.

We also report the number of random probes issued by
each technique:15

• |probes| is the total number of random probes issued
during a top-k query execution.

Finally, we quantify the extent to which our parallel
techniques exploit the available source-access parallelism.
ConsiderUpper, the best sequential algorithm according
to the experimental evaluation presented in [2, 8]. Ideally,
parallel algorithms would keep sources “humming” by ac-
cessing them in parallel as much as possible. At any point
in time, up tonsr +

∑n
i=1 pR(Di) concurrent source ac-

cesses can be in progress. Hence, iftUpper is the time that
Upperspends accessing remote sources sequentially, then
tUpper/(nsr +

∑n
i=1 pR(Di)) is a (loose) lower bound on

the paralleltprobes time for the parallel algorithms, assum-
ing that parallel algorithms perform at least as many source
accesses asUpper. To observe what fraction of this po-
tential parallel speedup the parallel algorithms achieve, we
report:

Parallel Efficiency =
tUpper/(nsr +

∑n
i=1 pR(Di))

tprobes

A parallel algorithm withParallel Efficiency = 1 man-
ages to essentially fully exploit the available source-access
parallelism. Lower values ofParallel Efficiency indicate
that either some sources are left idle and not fully utilized
during query processing, or that some additional probes are
being performed by the parallel algorithm.

For the synthetic sources, we generate 100 queries ran-
domly. We report the average values of the metrics for dif-
ferent settings ofnsr, nr, |Objects|, pR, andk for different
attribute distributions. We conducted experiments on 1Ghz
516Mb RAM machines running Red Hat Linux 7.1.

For the real web sources, we defined 12 queries that ask
for top French, Italian, and Japanese restaurants in Manhat-
tan, for users located in four different addresses. We report
the averagettotal value for different settings ofpR andk.
We conducted experiments on a 550Mhz 758Mb RAM ma-
chine running Red Hat Linux 7.1.

15The number of sorted accesses is more uniform across techniques.
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Figure 7: pUppervs. pDynamicfor the different attribute
value distributions.

5 Experimental Results
In this section, we present the experimental results for the
techniques of Section 3 using the sources and general set-
tings described in Section 4. We first focus on the synthetic
sources (Section 5.1), followed by experiments over real
web sources (Section 5.2).

5.1 Results for Synthetic Sources

We ran experiments using the synthetic sources of Sec-
tion 4.1, for various settings of the synthetic-source param-
eters. We also compared the execution time of the parallel
techniques against that of the sequentialUpper technique
and report the correspondingParallel Efficiency values.

To deploy thepUpperalgorithm, we first need to experi-
mentally establish a good value for theL parameter, which
determines how frequently the random-access queues are
updated (Section 3.2.2). To tune this parameter, we ran
experiments over a number of synthetic sources for differ-
ent settings of|Objects|, pR, andk. As expected, smaller
values ofL result in higher local processing time. Interest-
ingly, while the query response time increases withL, very
small values ofL (i.e.,L < 30) yield largertprobes values
than moderate values ofL (i.e.,50 ≤ L ≤ 200) do: when
L is small,pUppertends to “rush” into performing probes
that would have otherwise been discarded later (see discus-
sion onpUppervs. pDynamicbelow). We observed that
L = 100 is a robust choice for moderate to large database
sizes and for the query parameters that we tried. Thus, we
setL to 100 for the synthetic data experiments.

pUppervs.pDynamic: We experimentally comparedpDy-
namicandpUpper. Results of this comparison for different
data sets are shown in Figure 7. As expected,pDynamic
is significantly more expensive in terms of local process-
ing time (around 25 times more expensive for the default
setting): it requires at least one (and probably many) best-
subset computation per source access. By making random-
access choices in batches,pUppersaves local processing
time without harming query response time, since choices
are reevaluated frequently. Surprisingly, while we expected
pDynamicto have lower probing time thanpUpper, our
experiments showed the opposite:pUpper’s probing time
was 10 to 20% lower thanpDynamic’s. This can be ex-
plained by the greedy nature ofpDynamic, which tends
to choose probes that would have become useless if cur-
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Figure 8: Effect of the number of objects requestedk on
the performance ofpTAandpUpper.
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Figure 9: Effect of the number of source objects|Objects|
on the performance ofpTAandpUpper.

rent outstanding probe results were known. Additionally,
pDynamictends to concentrate probes on the first few ob-
jects with the highest score upper bounds, whereaspUpper
considers a wider range of objects. Since experiments on
pDynamicare very expensive in local processing time and
pUpperis consistently faster thanpDynamic, we only con-
siderpUpperin the rest of our evaluation. Also, we defer
a comparison withMPro-Constraints, which as discussed
only handles oneSR-Source, until later in this section.

Effect of the Number of Objects Requestedk: Figure 8
shows results for the default setting described in Table 1,
with tprobes andParallel Efficiency reported as a func-
tion of k. As k increases, the parallel time needed bypTA
and pUpper increases since both techniques need to re-
trieve and process more objects (Figure 8(a)). ThepUpper
strategy consistently outperformspTA. pUpper’s andpTA’s
Parallel Efficiency decrease when we increasek beyond
small values (Figure 8(b)).pUpperis particularly efficient
for small values ofk. For example, whenk = 10, pUp-
per has aParallel Efficiency value of 0.76, which means
it is only 30% slower than the ideal parallelization ofUp-
per. Whenk increases, the best source subsets computed
in pUppertend to contain more sources (thekth expected
value is low), which leads to smaller savings in terms of
random accesses.

Effect of the Number of Source Objects|Objects|: Fig-
ure 9 shows the impact of|Objects|, the number of ob-
jects available in the sources. As the number of objects
increases, the parallel time taken by both algorithms in-
creases since more objects need to be processed. The par-
allel time of bothpTAandpUpperincreases approximately
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Figure 10: Effect of the number of parallel accesses per
sourcepR(Di) on the performance ofpTAandpUpper.
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Figure 11: Performance ofpTA, pUpper, and MPro-
Constraintsover different attribute value distributions (one
SR-Source).

linearly with |Objects| (Figure 9(a)).pUpperscales better
thanpTA. Interestingly,pUpper’s Parallel Efficiency in-
creases with the number of objects, while it decreases for
pTA (Figure 9(b)): unlikepTA, pUppercarefully chooses
what sources to probe for each object, thus saving random
accesses.

Effect of the Number of Parallel Accesses to each
SourcepR(Di): Figure 10 reports performance results as
a function of the total number of concurrent random ac-
cesses per source. As expected, the parallel query time
decreases when the number of parallel accesses increases
(Figure 10(a)). However,pTA andpUpperhave the same
performance for highpR(Di) values. Furthermore, the
Parallel Efficiency of both techniques dramatically de-
creases whenpR(Di) increases (Figure 10(b)). This re-
sults from a bottleneck on sorted accesses: whenpR(Di) is
high, random accesses can be performed as soon as objects
are discovered, and algorithms spend most of the query
processing time waiting for new objects to be retrieved
from theSR-Sources.

Additional Experiments: We also experimented with dif-
ferent attribute weights and source access times. Consis-
tent with the experiments reported above,pUpperoutper-
formedpTA for all weight-time configurations tested. We
do not discuss these results further because of space limita-
tions. Appendix A reports additional experimental results
for varying numbers of sources and attribute-correlation
data set configurations.

Comparison with MPro-Constraints: Figure 11(a) com-
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Figure 12: Effect of the number of objects requestedk
(a) and the number of accesses per sourcepR(Di) (b) on
the performance ofpTA, pUpper, andUpperover real web
sources.

parespTA, pUpper, andMPro-Constraintsover different
data distributions, when only one source provides sorted
access. (As notedMPro was designed to handle only one
SR-Source.) MPro-Constraintsis slower than the other
two techniques, because it does not take full advantage of
source-access parallelism: a key design goal behind the
original MPro algorithm is probe minimality. Then, po-
tentially “unnecessary probes” to otherwise idle sources
are not exploited, although they might help reduce overall
query response time. Figure 11(b) confirms this observa-
tion: MPro-Constraintsissues on average fewer random-
access probes for our three data sets than bothpTA and
pUpper. The three techniques perform approximatively the
same number of sorted accesses. As we discuss in Sec-
tion 6,MPro-Constraints(and adaptations ofTA andpUp-
per) are good candidates for the alternate scenario in which
we attempt to minimize source load, rather than query re-
sponse time.

5.2 Results for Real Web Sources

Our next results are for the real web sources described in
Section 4.2. All queries evaluated consider 100 to 150
restaurants. During tuning ofpUpper(Section 5.1), we ob-
served that the best value for parameterL for small object
sets is 30, which we use for these experiments.

Figure 12(a) shows the actual total execution time (in
seconds) ofpTA, pUpper, and the sequential algorithmUp-
per for different values of the number of objects requested
k. Up to two concurrent accesses can be sent to each
R-SourceDi (i.e., pR(Di) = 2). Figure 12(b) shows
the total execution time of the same three algorithms for
a top-5 query when we vary the number of parallel ran-
dom accesses available for each sourcepR(Di). (Note that
pR does not apply toUpper, which is a sequential algo-
rithm.) We also performed experiments varying the relative
weights of the different sources, which we do not report due
to space limitations. In general, our results are consistent
with those for synthetic sources, andpUpperandpTAsig-
nificantly reduce query processing time compared toUp-
per. We observed that a query needs 20 seconds on average

to perform all needed sorted accesses, so no technique can
return an answer in less than 20 seconds. For all methods,
an initialization time that is linear in the number of paral-
lel accesses is needed to create the Python subinterpreters
(e.g., this time was equal to 12 seconds forpR(Di) = 5).
We do not include this uniform initialization time in Fig-
ure 12. Interestingly, we noticed that sometimes source
random access time increases when the number of parallel
accesses to that source increases, which might be caused
by sources slowing down accesses from a single applica-
tion after exceeding some concurrency level, or by sources
not being able to handle the increased parallel load. When
the maximum number of accesses per source is 10,pUpper
returns the top-k query results in 35 seconds. For a real-
istic setting of five random accesses per source,pUpperis
the fastest technique and returns query answers in less than
one minute. In contrast, the sequential algorithmUpper
needs seven minutes to return the same answer. In a web
environment, where users are unwilling to wait long for
an answer and delays of more than a minute are generally
unacceptable,pUppermanages to answer top-k queries in
drastically less time than its sequential counterparts.

Conclusions of Experiments: We evaluatedpTA and
pUpperon both synthetic and real-web sources. Both al-
gorithms exploit the available source parallelism, while re-
specting source-access constraints. Our results show that
parallel probing significantly decreases query processing
time. For example, when the number of available concur-
rent accesses over six real web sources is set to five per
source,pUpperperforms 9 times faster than its sequential
counterpartUpper, returning the top-k query results –on
average– in under one minute. In addition, our techniques
are faster than our adaptation ofProbe-Parallel MPro.

6 Minimizing Source Load
The main focus of this paper is on minimizing the total par-
allel query processing time while observing source-access
constraints. We now discuss a different optimization sce-
nario, where source load is the minimization objective.
In other words, we now attempt to minimize the number
of probes that we issue, while still exploiting parallelism
whenever possible. Such a scenario would be appropri-
ate for “pay-per-view” sources, or to maximize through-
put when many queries are competing for source access.
We present some preliminary discussion on how to adapt
the algorithms of Section 3 to reduce their required source
load, and also report an initial experimental evaluation of
the competing strategies.

In the spirit of minimizing source load, all the tech-
niques that we discuss below perform sorted accesses on
only one SR-Source, and attempt to minimize the num-
ber of random accesses for the objects retrieved from
the SR-Source. If multiple SR-Sources are available, one
source is arbitrarily chosen for sorted access (e.g., the
source with the highest associated query weight). This
helps avoid redundant accesses (sorted access on an at-
tribute value that was retrieved via random access). To min-
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Figure 13: Performance ofpTA, pUpper, and MPro-
Constraintsover different attribute value distributions (one
SR-Source).

imize the number of sorted-access probes, sorted accesses
to theSR-Sourceare stopped as soon as no undiscovered
objects can be part of the top-k query answer.

pmUpper/MPro-Constraints: To minimize query response
time, pUpperaggressively issues probes that might not be
strictly necessary to reach a solution. To minimize source
load, we adaptpUpperso that it only issues probes for the
current top-k objects, following the generalization of Prop-
erty 1 (Section 3.1) in [3]. Furthermore, to favor “high im-
pact” sources, which would hopefully help reduce the num-
ber of random probes needed, we do not consider source
access time during scheduling. Instead, we use the query
weight of the sources as the only criterion for choosing
sources. We refer to the resulting algorithm aspmUpper.
Interestingly,pmUpperuses the same random-probe or-
der for each object, since now time (and congestion) are
not considered during source-access scheduling. There-
fore,pmUpperandMPro-Constraintsbecome virtually the
same algorithm, if we order sources forMPro-Constraints
just by their query weight (rather than by their associated
weight/access-time ratio as before).

TA-EP: The originalTA algorithm [6] probes each object
in turn and decides whether to continue processing a new
object based on the (complete) scores of the previously
probed objects. Therefore, to strictly minimize the num-
ber of probes we need to process objects one at a time.
However, rather than completely probing each retrieved ob-
ject, we can use the shortcut condition presented in [2] for
the TA-EPvariant ofTA. TA-EP is a sequential algorithm
that follows theTA algorithm but stops probing an object
as soon as it can be shown not to be in the query result.

Experiments: Figure 13(a) reports the number of ran-
dom probes performed by the two source-load minimiza-
tion algorithms,pmUpper/MPro-Constraintsand TA-EP,
against that ofpUpper, for the experimental setting of Sec-
tion 5.1 with oneSR-Sourceand fiveR-Sources. (wUp-
per is explained below.) As expected,pmUpper/MPro-
Constraints and TA-EP perform fewer random probes
than pUpper, with pmUpper/MPro-Constraintsperform-
ing fewer probes than any other technique. However,
pmUpper/MPro-Constraintsand TA-EP are slower than
pUpper(Figure 13(b)): the latter algorithm was designed to

minimize response time and is therefore able to exploit par-
allelism more aggressively than the other two algorithms
(e.g., the average source utilization forpUpperis 95% over
the Correlateddata set, while it is only 25% and 4% for
pmUpper/MPro-ConstraintsandTA-EP, respectively).TA-
EP is of course much slower than all other techniques as
it accesses sources sequentially. All techniques perform a
similar number of sorted accesses.

wUpper: So far, we have discussed query processing
techniques that either minimize response time or source
load. A simple variation ofpmUpper, however, exhibits
an interesting trade-off between response time and source
load: the new algorithm,wUpper, considers source con-
gestion during scheduling, and hence incorporates the Sec-
tion 3.2.1 waiting times when scheduling probes specifi-
cally for each individual object.wUpper might then not
choose the source with the “highest impact” for an object
but rather settle for a probe that can be performed imme-
diately. However,wUpper only probes objects that will
have to be probed (Property 1). By considering source
availability in its choices,wUpperexhibits low query re-
sponse times (Figure 13(b)). At the same time,wUpper
performs only slightly more probes thanpmUpper/MPro-
Constraints(Figure 13(a)). In short,wUpperis just a good
initial “trade-off” algorithm. A thorough study of how
to achieve an appropriate balance of response time and
throughput for a specific workload is subject of interesting
future work.

7 Related Work
To process top-k queries over multimedia attributes, Fagin
et al. proposed a family of algorithms overSR-Sources [5,
6]. These algorithms can evaluate top-k queries that in-
volve several independent multimedia “subsystems,” each
producing scores that are combined using arbitrary mono-
tonic aggregation functions. In an expanded version of [6],
Fagin et al. presented a variation of their algorithms to han-
dle R-Sources. We discussed adaptations of these algo-
rithms to our parallel access model in Sections 4.3 and 6,
and compared them experimentally against our other paral-
lel algorithms.

Nepal and Ramakrishna [11] and G¨untzer et al. [9] pre-
sented variations of Fagin et al.’s TA algorithm [6] for mul-
timedia query processing. The MARS system [12] also
uses variations of the TA algorithm and views queries as bi-
nary trees where the leaves are single-attribute queries and
the internal nodes correspond to “fuzzy” query operators.
Chaudhuri and Gravano built on Fagin’s original FA algo-
rithm [5] and proposed a cost-based approach for optimiz-
ing the execution of top-k queries over multimedia reposi-
tories [4]. Their strategy translates a given top-k query into
a selection query that returns a (hopefully tight) superset of
the actual top-k tuples.

More recently, Chang and Hwang [3] presentedMPro,
an algorithm to optimize the execution ofexpensive pred-
icates for top-k queries, rather than for our web-source
scenario. As such, their “probes” are typically not as ex-



pensive as our web-source accesses, hence the need for
faster probe scheduling. UnlikeUpper, MPro assumes a
fixed schedule of accesses toR-Sources, and thus selects
which object to probe next but ignores source selection on
a per-object basis. In the same paper, Chang and Hwang
briefly discussed parallelization techniques forMPro and
proposed theProbe-Parallel-MProalgorithm, which sends
one probe per object for thek objects with the highest score
upper bounds. We adapted this algorithm so that it observes
source-access constraints and evaluated it experimentally
in Section 6. A second proposed parallelization ofMPro,
Data-Parallel MPro, partitions the objects into several pro-
cessors and merges the results of each processor’s individ-
ual top-k computations. This parallelization is not applica-
ble to our scenario where remote autonomous web sources
“handle” specific attributes ofall objects.

Bruno et al. [2] presentedUpper (Section 3.1) and
other sequential algorithms for our top-k query setting,
but handled only oneS-Source(or SR-Source) and sev-
eral R-Sources. This restriction is relaxed in [8] to allow
for a more flexible scenario of any number ofSR-Sources
andR-Sources. Bruno et al.’s original model [2] is a spe-
cific instance of this more flexible scenario: when only one
SR-Sourceis available, it will only be accessed in sorted
access because of the no “wild guesses” restriction. A sce-
nario with severalS-Sources (with no random-access in-
terface) is problematic: to return the top-k objects for a
query together with their scores, as required by our query
model, we might have to accessall objects in some of the
S-Sources to retrieve the corresponding attribute score for
one of the top-k objects. This can be extremely expensive
in practice. Fagin et al. presented theNRAalgorithm [6] to
deal with multipleS-Sources; howeverNRAonly identifies
the top-k objects and does not compute their final scores.

The WSQ/DSQ project [7] presented an architecture for
integrating web-accessible search engines with relational
DBMSs. The resulting query plans can manage asyn-
chronous external calls to reduce the impact of potentially
long latencies. Thisasynchronous iterationis closely re-
lated to our handling of concurrent accesses to sources.
Finally, Avnur and Hellerstein introduced “Eddies” [1], a
query processing mechanism that reorders operator eval-
uation in query plans. This work shares the same design
philosophy aspUpper, where we dynamically choose the
sources to access next for each object depending on previ-
ously extracted probe information.

8 Conclusion

Sequential top-k query processing techniques over web-
accessible sources do not take advantage of the inherently
parallel access nature of web sources, and spend most of
their query execution time waiting for web accesses to re-
turn. In this paper, we presented efficientparallel top-k
query processing techniques to minimize query response
time while taking source-access constraints that arise in
real-web settings into account. We evaluated our new al-
gorithms experimentally using both synthetic and real web

sources. Our evaluation showed that our techniques man-
age to circumvent the high latency of web-source accesses,
and perform significantly better than sequential processing
strategies in terms of query processing time. In addition,
we discussed algorithms for the alternate optimization goal
of minimizing source load, and presented preliminary re-
sults for this scenario.
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A Additional Experiments
In this appendix, we present additional experimental results
for the sources and settings of Section 5.1. Specifically, we
report on the effect on the performance ofpTA(Section 4.3)
and pUpper (Section 3.2.2) of the number of sourcesn,
the number ofSR-Sources nsr andR-Sources nr, and the
attribute-score correlation .
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Figure 14: Effect of the number of sourcesn on the perfor-
mance ofpTAandpUpper.

Effect of the Number of Sourcesn: Figure 14 shows the
performance ofpUpperandpTA when we vary the num-
ber of sourcesn. In all cases, we letnsr = nr = n/2.
(See below for other values fornsr andnr.) Whenn = 2,
the two algorithms are virtually equivalent. Asn increases,
the execution time of both algorithms also increases, with
pUpperoutperformingpTA (Figure 14(a)). The local pro-
cessing time of both algorithms is shown in Figure 14(b).
pUpper is significantly more expensive thanpTA whenn
increases: to choose the best sources to probe for an ob-
ject,pUppertakes time that is exponential in the number of
sources. However, this is generally acceptable because we
expect the number of attributes involved in a top-k query
not to exceed a moderate number (e.g., 10).
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Figure 15: Effect of the number ofSR-Sources nsr on the
performance ofpTAandpUpper.

Effect of the Number of SR-Sources nsr and R-Sources
nr: Figure 15 shows the effect of the relative number
of SR-Sources nsr out of a total of 6 sources on the
performance ofpTA and pUpper. When the number of
SR-Sources increases, the processing time of both algo-
rithms decreases, as more information is obtained from
sorted accesses and thus fewer random accesses are needed
(Figure 15(a)). Also, we observe an increase inParallel
Efficiency for both pUpperandpTA whennsr increases

(Figure 15(b)). Surprisingly, for higher values ofnsr,
we reportParallel Efficiency values that are greater than
1. This is possible since, in the parallel case, algorithms
can get more information from sorted accesses than they
would have in the sequential case where sorted accesses
are stopped as early as possible16.

0

1000

2000

3000

4000

5000

6000

7000

(1,5) (2,4) (3,3)

Groups of Correlated Sources

t p
ro

be
s

pTA pUpper

(a) Parallel probing time.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(1,5) (2,4) (3,3)

Groups of Correlated Sources

P
ar

al
le

l E
ffi

ci
en

cy

pTA pUpper

(b) Parallel efficiency.

Figure 16: Effect of attribute value correlation on the per-
formance ofpTAandpUpper.

Effect of Attribute Correlation: To study the effect of
attribute-value correlation, we now consider theCorrelated
data sets. Specifically, we divided sources into two groups
so that the object values in sources within the same group
are correlated. Figure 16 reports the performance ofpUp-
per and pTA for six sources for three configurations: (1,
5): one group has one source and the other five sources; (2,
4): one group has two sources and the other four sources;
and (3, 3): both groups have three sources. Figure 16(a)
shows that both algorithms have faster parallel query time
for the (1, 5) case, when a large group of five sources is
positively correlated. In Figure 16(b), we see thatpUp-
per’s Parallel Efficiency decreases when sources are split
evenly (i.e., for the (3, 3) case), sincepUpper’s optimiza-
tions are less efficient in such a setting. In contrast,pTA’s
Parallel Efficiency is constant among all configurations
tested.

16Sequential algorithms stop sorted accesses as soon as possible to fa-
vor random accesses. Parallel algorithms do not have this limitation since
they can perform sorted access in parallel with random accesses. The extra
information learned from those extra sorted accesses might help discard
objects faster, thus avoiding some random accesses and decreasing query
processing time.


