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Abstract

This paper is concerned with information structures used in rigid formations of autonomous agents that have leader-follower
architecture. The focus of the paper is on sensor/network topologies to secure control of rigidity. This papers extends the previous
rigidity based approaches for formations with symmetric neighbor relations to include formations with leader-follower architecture.
We provide necessary and sufficient conditions for rigidity of directed formations, with or without cycles. We present the directed
Henneberg constructions as a sequential process for all guide rigid digraphs. We refine those results for acyclic formations, where
guide rigid formations had a simple construction. The analysis in this paper confirms that acyclicity is not a necessary condition
for stable rigidity. The cycles are not the real problem, but rather the lack of guide freedom is the reason behind why cycles have
been seen as a problematic topology. Topologies that have cycles within a larger architecture can be stably rigid, and we conjecture
that all guide rigid formations are stably rigid for internal control. We analyze how the external control of guide agents can be
integrated into stable rigidity of a larger formation. The analysis in the paper also confirms the inconsistencies that result from
noisy measurements in redundantly rigid formations. An algorithm given in the paper establishes a sequential way of determining
the directions of links from a given undirected rigid formation so that the necessary and sufficient conditions are fulfilled.
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Rigid Formations with Leader-Follower Architecture

I. INTRODUCTION

Multi-agent systems have lately received considerable atten-
tion due to recent advances in computation and communication
technologies (see for example [1]–[7]). In this paper, agents
will simply be thought of as autonomous agents including
robots, unmanned aerial vehicles, microsatellites, ground ve-
hicles, autonomous underwater vehicles, and sensor nodes. A
formation is a group of agents moving in real 2- or 3-space,
with some specified links whose distances are maintained. A
formation is called rigid if the distance between each pair
of agents does not change over time under ideal conditions.
A formation is called minimally rigid if it loses its rigidity
when any one of its links is removed from the formation. In
other words, a minimally rigid formation has the minimum
number of links to maintain rigidity. If a formation is rigid
but not minimally rigid, then it is called a redundantly rigid
formation.

Since minimally rigid formations have the least number
of sensing/communication links for maintaining rigidity, they
are more energy-efficient compared to redundantly rigid for-
mations. Moreover, when measurements are noisy, redundant
rigidity causes problems in formation realizability, and this
issue will be explored in the paper. Sensing/communication
links are used for maintaining fixed distances between agents.
The interconnection structure of sensing/communication links
is called sensor/network topology. In practice, actual agent
groups cannot be expected to move exactly as a rigid formation
because of sensing errors, actuation errors, actuation delays,
vehicle modelling errors, etc. The ideal benchmark formation
against which the performance of an actual agent formation is
to be measured is called a reference formation.

In reality, agents are entities with physical dimensions. For
modeling purposes in this paper, agents are represented by
points called point agents. Distances between all agent pairs
can be held fixed by directly measuring distances between
only some agents and keeping them at desired values. A
distance constraint or link, is a requirement that a distance
between two agents, depicted with d, be maintained through
a sensing/communication link and some control strategy.
Distance constraints are sometimes referred to as range or
separation constraints. With enough distance constraints, the
whole formation will be rigid, even without there being a
distance constraint between every pair of agents.

Two agents connected by a sensing/communication link are
called neighbors. There are two types of neighbor relations
in rigid formations. In the first type, the neighbor relation
is symmetric, i.e., if agent i senses/communicates with agent
j and performs action upon the information it receives, so
does agent j with agent i. A link with a symmetric neighbor
relation is represented graphically by a straight line. In the
second type, the neighbor relation is asymmetric, i.e., if agent i

senses/communicates with agent j and performs actions upon
the information it receives, then agent j does not make use
of any information received from agent i although it may
sense/communicate with agent i. For example, rigid forma-
tions with a leader-follower architecture have the asymmetric
neighbor relation. A link with an asymmetric neighbor relation
between a leader and a follower is represented by a directed
edge, or arrow, pointing from the follower to the leader, i.e.,
head is the leader and tail is the follower. The terms undirected
formation and directed formation are used throughout the pa-
per to describe formations with symmetric neighbor relations
and formations with leader-follower architecture, respectively
[3].

The work in [2], [8]–[10] suggested an approach based
on rigidity for maintaining formations of autonomous agents
with sensor/network topologies that use distance information
between agents, where the neighbor relation is symmetric.
Rigidity of undirected formations with distance information
is well understood in 2-space, and there are partial results
in 3-space [10]. Other researchers focused on using both
distance and bearing information to maintain formations that
have leader-follower architecture [6].

This paper is concerned with directed rigid formations with
distance constraints. We restrict our attention to minimally
rigid formations in 2-space. We wish to consider a broader
range of interconnection topologies, including both cyclic and
acyclic, and understand how the interconnection topology and
the directions affect the rigidity of a formation as it performs
a coordinated motion. Our ultimate goal is the development of
strategies to create minimally rigid directed formations, which
are scalable for any number of agents. There are a number
of issues that must be addressed in order to maintain a rigid
directed formation. We identify four key layers as follows:

1) rigidity of the undirected reference formation;
2) guide rigidity of the directed reference formation;
3) stable rigidity, or internal control of the formation;
4) external motion control of the formation or motion

planning of agents that have non-zero internal degrees
of freedom.

As it will become clear throughout the paper, if underlying
undirected formation is non-rigid, then directed formation
cannot be rigid, or stable. Thus, undirected rigidity is a
necessary condition for directed rigidity. On the other hand,
when we associate a direction to each link in a rigid undirected
formation, directed rigidity is not necessarily guaranteed. That
is, undirected rigidity is not a sufficient condition for directed
rigidity.

One can think of reference formation as if all agents
act like ideal agents that can perform actions instantly in
order to satisfy distance constraints. Joints in a bar-joint
framework, which will be explained in the next section, can
be considered as an example of such ideal agents and bars
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are ideal distance constraints. Internal control and stability
problems arise as the third layer, because agents cannot act
like ideal agents in practice due to actuation errors, delays,
errors in measurements, etc. Stability properties of directed
formations with acyclic interconnections were studied in [4],
and those with linear cyclic interconnections were studied in
[11]. Stability properties of acyclic directed rigid formations
were also studied in [5]. A directed formation that is both
rigid and stable is called a stably rigid formation. Reference
formations of stably rigid acyclic directed formations with
distance information in 2-space are studied in [12] and is
further refined here.

The fourth layer is moving the stably rigid formation as
a rigid object along an assigned path. This requires sensible
external control of agents that have nonzero internal degrees of
freedom. If an agent does not maintain any distance constraints
to any other agent, then this agent has two degrees of freedom
in 2-space, and is called a global leader. If an agent maintains
one distance constraint to one other agent, then this agent has
one degree of freedom, and is a free follower. A free follower
is called a first follower if it is a neighbor of the global leader.
The collection of global leaders and free followers make up the
set of guide agents of a formation. If an agent has to maintain
distances to two other agents, then this agent has zero degrees
of freedom and is called an ordinary agent. The choice of guide
agents determines the distribution of the external degrees of
freedom among agents.

It is easy to see that we need rigidity of reference formation
before attempting to solve the problem of stable rigidity and
the problem of motion planning for guide agents. Therefore,
the analysis of a directed rigid formation can be structured
sequentially into the four levels: (i) undirected rigidity; (ii)
directed rigidity; (iii) stable rigidity; (iv) motion planning of
guide agents. We will touch all of these four issues throughout
the paper, but the focus of the paper is mainly on the rigidity
of directed reference formation.

We note that redundantly rigid formations (with more links
than the minimum for rigidity) lead to overdetermined sys-
tems of constraints. Inconsistencies in overdetermined systems
caused by redundant rigidity and noisy measurements are
called redundancy-based inconsistencies. These inconsisten-
cies give rise to problems in realizability. Although 2-cycles
cause redundancy-based inconsistencies, we will see that cy-
cles of length 3 or more can be internally controlled in mini-
mally rigid formations, where they do not cause redundancy-
based inconsistencies.

In particular, it has been asserted that a formation that has
the topology of a 3-cycle is not stably rigid [5]. This brought
about the generalization that stable rigidity requires acyclicity
in rigid formations. However, we will show that such cycles
are not a real problem for stability, but are an issue for the
next layer of external control. As such they can be included
within a larger architecture.

The contributions of this paper are:
1) to extend the previous rigidity based approaches for

formations with symmetric neighbor relations to include
formations with leader-follower architecture;

2) to give necessary and sufficient conditions for rigidity

of directed formations, with or without cycles;
3) to develop techniques for directly creating sen-

sor/network topologies of directed rigid formations;
4) to present an algorithm to determine the directions of

links to create a stably rigid formation from a rigid
undirected formation;

5) to analyze how noisy measurements cause inconsisten-
cies in redundantly rigid formations;

6) to analyze the behavior of cycles in a leader-follower
formation, to distinguish: when they indicate internal
control problems, due to redundancy; when they fit
stable rigidity in minimally rigid formations; and how
they might impact external control through the guide
agents;

7) to analyze how the external control of guide agents can
be integrated into stable rigidity of a larger formation.

The paper is organized as follows. In §II, we start with
definitions of rigidity. We review point formations in §II-
A, and rigid formations with symmetric neighbor relations
in §II-B. We investigate rigid formations that have leader-
follower architecture in §III. Acyclic formations are explored
in §IV. Cycles in rigid formations are studied in §V. Finally,
concluding remarks are given in §VII.

II. RIGIDITY AND POINT FORMATIONS

One way of visualizing rigidity with symmetric neighbor
relation is to imagine a collection of rigid bars connected to
one another by idealized ball joints, which is called a bar-
joint framework [13]. By an idealized ball joint we mean a
connection between a collection of bars which only imposes
the restriction that the bars share common endpoints, and
no angle constraints. Now, can the joints be moved in a
continuous manner without changing the lengths of any of the
bars, where translations and rotations do not count? If so, the
framework is flexible; if not, it is rigid. (Precise definitions will
appear in the next section.) In a bar-joint framework, the length
of a bar imposes a distance constraint for both end-joints.
This is modeled in a formation where two agents connected
by a sensing/communication link are mutually affected by the
information conveyed by this link. For example, if two agents
connected by a sensing/communication link are set to maintain
a ten meter distance between them, then both agents perform
action to maintain this distance. In the graph theoretic setting,
the edge corresponding to this link is denoted by an undirected
edge.

A. Point Formations

A point formation F(p) , (p, E) provides a way of
representing a formation of n agents. The configuration p ,
{p1, p2, . . . , pn} where the points pi represent the positions of
agents in R2 and i is an integer in {1, 2, . . . , n} denoting an
agent. E is the set of “maintenance links,” labelled (i, j), where
i and j are distinct integers in {1, 2, . . . , n}. The maintenance
links in E correspond to constraints between specific agents,
such as distances, which are to be maintained over time by
using sensing/communication links between certain pairs of
agents. Each point formation F(p) uniquely determines a graph
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GF(p) , (V, E) with vertex set V , {1, 2, . . . , n}, which is
the set of labels of agents, and edge set E . A formation with
distance constraints can be represented by (V, E , f) where
f : E 7−→ R+ measures the length of links. Each maintenance
link (i, j) ∈ E is used to maintain the distance f((i, j))
between certain pairs of agents fixed.

A trajectory of a formation is a continuously parameterized
one-parameter family of curves (q1(t), q2(t), ..., qn(t)) in
R2n which contain p and on which for each t, F(q(t)) is a
formation with the same measured values under f . We will say
that two point formations F(p) and F(r), with p, r ∈ q(t), are
congruent if p and r are congruent. That is p is congruent
to r in the sense that there is a distance-preserving map
T : IR2 → IR2 such that T (ri) = pi, i ∈ {1, 2, . . . , n}. A rigid
motion is a trajectory along which point formations contained
in this trajectory are all congruent to the original configuration.
If rigid motions are the only possible trajectories then the
formation is called rigid; otherwise it is called flexible [8],
[10].

B. Rigidity in Point Formations with Symmetric Neighbor
Relations

Whether the formation with symmetric neighbor relations
is rigid or not can be studied by the solutions to a system
of quadratic equations. In particular, the motion of F(p) =
({p1, p2, . . . , pn}, E) with m maintenance links, along the
trajectory q([0,∞)) , {{q1(t), q2(t), . . . , qn(t)} : t ≥ 0}
preserves the Euclidean distances dij , ||pi − pj || between
pairs of points (pi, pj) for which (i, j) is a link. Along such
a trajectory

(qi − qj) · (qi − qj) = d2
ij , (i, j) ∈ E , t ≥ 0 (1)

We note that the existence of a trajectory is equivalent to the
existence of a piecewise analytic path, with all derivatives at
the initial point [14]. Assuming a smooth (piecewise analytic)
trajectory, we can differentiate to get

(qi − qj) · (q̇i − q̇j) = 0, (i, j) ∈ E , t ≥ 0 (2)

Here, q̇i is the velocity of point i. The m linear equations are
collected into a single matrix equation

R(F; q)q̇T = 0 (3)

where q̇ = (q̇1, q̇2, . . . , q̇n) and R(F; q) is a specially struc-
tured m×2n matrix called the rigidity matrix [13], [15], [16].
The following theorem holds [15], [16]:

Theorem 2.1: An n-point formation F(p) with at least 2
points in 2-space is first-order rigid if and only if

rank R(F; p) = 2n− 3.
Note that rank R(F; p) = 2n − 3, also called first-order
rigidity, implies rigidity for the formation. First-order rigidity
is a robust property: a small change in the position of points,
or of the length of maintenance links within the neighborhood
preserves this rigidity. When the rank of R(F; p) is the
maximum, the behavior will be generic for E (the matrix will
have the same rank for almost all positions p ∈ IR2|V |). When

the rank is less than the maximum, a pattern GF(p) which is
rigid for most formations may become flexible and a pattern
which is flexible for most formations may become rigid. Both
of these non-generic situations will turn out to be unstable for
control purposes.

If we have a formation that is not at the generic rank,
then the rows of the rigidity matrix will be dependent and
there will also be first-order flexes. Therefore some small
errors or noise in the lengths will correspond to a pair of
nearby realizations that have all the same link lengths, and
the formation can easily vibrate between them under internal
control. The mathematical process of finding this pair is known
as ‘averaging’ and ‘deaveraging’ [13]. Other effects of noise
in formations that have dependent rigidity matrices will be
explored in §V.

1) Generic Rigidity: We define a type of rigidity, called
“generic rigidity,” that is most useful for our purposes. A
set A = (α1, . . . , αm) of distinct real numbers is said
to be algebraically dependent if there is a non-zero poly-
nomial h(x1, . . . , xm) with integer coefficients such that
h(α1, . . . , αm) = 0. If A is not algebraically dependent, it
is called generic [17]. We say that p = (p1, . . . , pn) is generic
in 2-space, if its 2n coordinates are generic. It can be shown
that the set of generic p’s form an open dense subset of
IR2n [18]. A graph G = (V, E) is called generically rigid,
if F(p) = (p, E) is rigid (equivalently first-order rigid) for a
generic p (and therefore for all generic p, see below).

The property of generic rigidity does not depend on the
precise distances between the points of F(p) but predicts the
rigidity of a formation from the graph of the vertices and
links, in other words, by the underlying graph. Moreover, this
describes the rigidity of F(p) for almost all configurations p.
For this reason, it is a preferred form of the concept of a “rigid
formation” for purposes of control. The following theorem
summarizes these key properties of a generically rigid graph
[16]:

Theorem 2.2: If |v| > 2, the following are equivalent:
1) a graph G = (V, E) is generically rigid in 2-space;
2) for some p, the formation F(p) with the underlying

graph G has rank{R(F; p)}= 2|V|−3 where |V| denotes
the cardinal number of V;

3) for almost all p, the formation F(p) with the underlying
graph G is rigid.

For 2-space, we have a complete combinatorial characteri-
zation of generically rigid graphs, which was first proved by
Laman in 1970 [19].

Theorem 2.3 (Laman [19]): A graph G = (V, E) is gener-
ically rigid in 2-space if and only if there is a subset E ′ ⊆ E
satisfying the following two conditions: (1) |E ′| = 2|V|−3, (2)
For all E ′′ ⊆ E ′, E ′′ 6= ∅, |E ′′| ≤ 2|V(E ′′)| − 3, where |V(E ′′)|
is the number of vertices that are end-vertices of the edges in
E ′′.

A generically rigid graph on |V | ≥ 2 vertices, with |E| =
2|V| − 3, is a generically minimally rigid graph. We will see,
in §VI, that there are efficient algorithms to construct such
graphs and to orient generically minimally rigid graphs.

2) Robust Formations: We will be dealing with formations
where there is some ‘noise’ in the link lengths. Accordingly,
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we need to know whether small changes in the link lengths
in a formation F(p) can be realized with small changes in
the underlying configuration p. If, for all small changes in
link lengths there is a realization nearby then the formation
is robust. There is a companion first-order concept which is
easier to test (and is equivalent, for almost all configurations,
see below). A directed formation F(p) with lengths E for the
directed edges is first-order robust if the system of equations
R(F; p)X = δ has solutions for all choices of the strains
(changes in length) in edge length δ.

When the rows of the rigidity matrix for F(p) are indepen-
dent, we say that F(p) is an independent formation, and we
also say that the links are independent.

Lemma 2.1: A formation F(p) is first-order robust if and
only if the links of F(p) are independent.

At a generic configuration, the formation F(p) is first-order
robust if and only if it is robust.

Proof: By basic linear algebra, the system R(F; p)X = δ
is solvable for all possible δ if and only if the rows of the
matrix are independent. This completes the proof of the first
part.

Assume that the formation F(p) is first-order robust so
the rows of the rigidity matrix are independent. Consider the
rigidity map: rF : IR2|V| → IR|E|, which measures the lengths
of all links in the formation. The independence of the rows
of the rigidity matrix means the Jacobian of rF (the rigidity
matrix) has maximum rank at p, so p is a regular point of
this map. As a result, the space of finite motions has the same
dimension as the space of first-order motions at the point.
Since the first-order map has inverse solutions for all δ (not
necessarily unique), it is onto. The map rF must also be onto
in a neighborhood of p. We conclude we can find a solution
q(δ) for each sufficiently small δ, and the formation is robust.

Conversely, assume the formation is robust, and we have
a generic configuration. The map rF is onto. The generic
configuration p gives maximum rank to the Jacobian so it is
regular for the map rF and the dimension of the space of first-
order motions matches the dimension of the space of motions.
Therefore the first-order map is also onto, and the formation
is first-order robust. We note that this also means the rows of
the rigidity matrix are independent.

We have seen that, in general, independence of the rows
of the rigidity matrix means that R(F; p) × ṗT = δ has
solutions for all δ (strains or instantaneous changes in length
of bars) where ṗ = (ṗ1, ṗ2, . . . , ṗn). If F(p) is not first-
order rigid, then there is an affine space of realizations
with the given instantaneous strains larger than the space of
congruences. First-order rigidity means R(F; p) × ṗT = δ
has at most one solution, up to congruence. Independence
and first-order rigidity (minimal first-order rigidity) means
R(F; p) × ṗT = δ has a unique solution (up to congruence),
for all δ. If a point formation is both first-order rigid and first-
order independent, the rows form a basis for the possible first-
order constraints, and the formation is both minimal first-order
rigid and maximal independent among link sets on the given
configuration. We call such a formation first-order basic. This
combination is even better, as a pair of nearby realizations
with the same lengths would cause ambiguity and possible

vibrations between several possible configurations when faced
with noise. We will return to this inherent problem of linear
dependence in §V.

Theorem 2.4: For a plane point formation F(p), the follow-
ing are equivalent:

1) F(p) is first-order basic for some configuration;
2) F(q) is first-order basic for every generic configuration

q;
3) F(q) is robust and rigid for an open dense subset of

configurations.
We call a graph basic if its corresponding formation satisfies

any of these equivalent properties. We will return to this in §V.
3) Sequential Techniques: In this section, we recall sequen-

tial techniques to create all basic point formations. As noted
earlier, Laman’s Theorem characterizes rigidity in 2-space.
There are sequential techniques for generating rigid classes
of graphs in 2-space based on what are known as the vertex
addition and edge splitting. Before explaining these operations
and sequences, we introduce some additional terminology.
We will omit the discussion of other sequential or inductive
techniques here [16], [20], [21].

If (i, j) is an edge, then we say that i and j are adjacent or
that j is a neighbor of i and i is a neighbor of j. The vertices i
and j are incident with the edge (i, j). Two edges are adjacent
if they have exactly one common end-vertex. The degree or
valency of a vertex i is the number of neighbors of i. If a
vertex has k neighbors, it is called a vertex of degree k or a
k-valent vertex. The set of neighbors of i, denoted by NG(i),
is called a (open) neighborhood. When i is also included, it
is called a closed neighborhood and is denoted by NG[i]. The
subscript G is usually dropped when there is no danger of
confusion.

One operation to extend a generically minimally rigid graph
is vertex addition: given a generically minimally rigid graph
G∗ = (V∗, E∗), we add a new vertex i with two edges between
i and two other vertices in V∗ in 2-space. A second operation
is edge splitting: given a minimally rigid graph G∗ = (V∗, E∗),
we remove an edge (j, k) in E∗ and then we add a new vertex
i with three edges by inserting two edges (i, j), (i, k) and one
edge between i and one vertex (other than j, k) in V∗.

Now we are ready to present the following theorems:
Theorem 2.5: (vertex addition in undirected case - Tay,

Whiteley [20]) Let G = (V, E) be a graph with a vertex i of
degree 2 in 2-space; let G∗ = (V∗, E∗) denote the subgraph
obtained by deleting i and the edges incident with it. Then G
is basic if and only if G∗ is basic.

Theorem 2.6: (edge splitting in undirected case - Tay,
Whiteley [20]) Let G = (V, E) be a graph with a vertex i
of degree 3, and let G′ = (V ′, E ′) be the subgraph obtained
by deleting i and its three incident edges. Then G is basic if
and only if there is a pair j, k of the neighborhood NG(i) such
that the graph G∗ = (V ′, E ′⋃(j, k)) is basic.

4) Henneberg Sequences: Henneberg sequences are a sys-
tematic way of generating minimally rigid graphs based on
the vertex addition and edge splitting operations [20]. In 2-
space, a Henneberg sequence for G is a sequence of graphs:
G2,G3, . . . ,G|V| = G such that:

1) G2 is a single edge with its two vertices;
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2) Gi+1 comes from Gi by adding a new vertex either by
i) the vertex addition or ii) the edge splitting operation.

Note that Gi and Gi+1 correspond to G∗ and G in the
statements of Theorem 2.5 and Theorem 2.6. All graphs in
this sequence are basic rigid in 2-space.

Theorem 2.7 (Henneberg’s Theorem [16], [20]): A graph
G with at least two vertices is basic if and only if G has
a Henneberg sequence starting with any preselected edge of
G.

If we wanted all generically rigid graphs, we simply add
edges to such basic graphs. If we want all generically in-
dependent graphs, we simply delete edges from such basic
graphs.

III. RIGIDITY IN DIRECTED FORMATIONS

In this section, we develop the concept of rigidity for leader-
follower (directed) reference formations. This is essentially
equivalent to a directed formation of agents under the assump-
tion that agents can perform actions instantly in order to meet
their desired distance constraints. This kind of response by
agents is similar to the movements that joints perform in a
bar-joint framework. Since joints are connected by rigid bars,
they continue to satisfy distance constraints instantly when
the bar-joint framework is moved. The difference between a
directed reference formation and a bar-joint framework is that
distance constraints apply on both ends of bars in bar-joint
frameworks whereas one end responds to the constraint in
directed reference formations.

We will, of course, be building on the results for undirected
formations. However, we will also explore directly the require-
ments for control in directed formations to confirm that what
we need is a set of directions satisfying additional properties,
whose underlying undirected graph is basic.

First, we give some definitions from graph theory, which are
relevant to all directed point formations with leader-follower
architecture. A graph in which each edge is replaced by
a directed edge is called a digraph, also called a directed
graph. When there is a danger of confusion, we will call a
graph, which is not a digraph, an undirected graph. A digraph
having no multiple edges or loops (corresponding to a binary
adjacency matrix with 0’s on the diagonal) is called a simple
digraph.

A directed edge is written with an ordered pair of end-
vertices (i, j) representing an edge directed from i to j and
drawn with an arrow from i to j, that is from the follower
to the leader of that edge. Symmetric pairs of directed edges
are called bidirected edges. In the context of formations, a
bidirected edge is mathematically equivalent to an undirected
edge in the underlying graph of a formation, but is effectively
a redundant graph with a double edge. In formations that have
a leader-follower architecture we will only use digraphs with
no bidirected edges.

The number of edges directed into a given vertex i in a
digraph G is called the in-degree of the vertex and is denoted
by d−G (i). The number of edges directed out from a given
vertex i in a digraph G is called the out-degree of the vertex
and is denoted by d+

G (i). The out-neighborhood N+
G (i) of a

vertex i is {j ∈ V : (i, j) ∈ E}, and the in-neighborhood
N−
G (i) of a vertex i is {j ∈ V : (j, i) ∈ E}. The union of

out-neighborhood and in-neighborhood is the set of neighbors
of i, i.e., the (open) neighborhood of i, NG(i). When i is also
included, it is the closed neighborhood of i, NG[i].

A directed path is a sequence {i, j, k, . . . , r, s} such that
(i, j), (j, k), . . . , (r, s) are directed edges of the graph. A cycle
is a directed path such that the first vertex of the path equals
the last. A digraph is acyclic if it does not contain any cycle.
When stated without any qualification, a cycle of n vertices,
denoted by Cn, is assumed to be a simple cycle, meaning every
vertex is incident to exactly two edges (that is the vertices of
the cycle are distinct). The length of a cycle is the number of
its edges. Cycles of length 1 are loops. Cycles of length 2 are
pairs of multiple edges or equivalently a bidirected edge. We
call a cycle of k edges a k-cycle. A k-cycle is represented by
a k+1-tuple of vertices separated by commas, e.g., (i, j, k, i).

A. 2-directed digraphs
Any agent in a leader-follower will be responsible for

maintaining the lengths of all of its outgoing links. Since this
agent has only two degrees of freedom with which to respond,
it can maintain at most two lengths. That is the out-degree
can be at most 2. Of course, some agents will be directing the
external motion of the formation, so they will reserve some of
their freedom to guide the formation, and have out-degree 1,
or 0. In summary, the digraph G = (V, E) is 2-directed: for
all i ∈ V , N+

G (i) ≤ 2.
A standard type of leader-follower topology is as follows:

There is one global leader who does not follow any other agent
and one first-follower who only follows the global leader. They
are connected with one link pointed from the first-follower to
the global leader. The rest of the agents are followers of two
other agents. Any agent can also be the leader of other agents.
We will call such an architecture a global leader-first follower
architecture. Fig. 1(a) shows such an example.

From an external control point of view, the leader will direct
the translations of the formation, and the first follower will
turn to control the rotations of the formation. Since the global
leader has no out-going links, the first follower has one link
of out-degree 1 and every other agent has out-degree 2, we
have 2(n − 2) + 1 = 2n − 3 links in total. This matches the
count needed for the underlying graph to be generically rigid.
If any one of the other agents had less than two links, the result
would be an additional degree of freedom, and the formation
need not be rigid anymore (see below).

One can also consider other types of topologies for leader-
follower formations which satisfy the basic rigidity count of
|E| = 2|V| − 3. For example, even with a global leader, the
remaining agent of out-degree 1 following only one agent,
may not follow the global leader. There will be still one global
leader of out-degree 0, one agent of out-degree 1, and other
agents of out-degree 2. Fig. 1(b) shows such an example.
Another possibility is that all agents have out-degree 2, except
three agents of out-degree 1 as shown in Fig. 1(c). We will
see, below, that these alternative topologies all contain cycles
(Theorem 4.1), while a global leader-first follower architecture
may be acyclic.



DECEMBER 1, 2005 6

(a)

(b)

(c)

Fig. 1. Three different topologies for a leader-follower architecture are
shown. In (a), all vertices are of out-degree 2, except that there is one vertex
of out-degree 0 (labeled with 1), and another vertex of out-degree 1 (labeled
with 2), and these two vertices are neighbors. In (b), all vertices are of out-
degree 2, except that there is one vertex of out-degree 0 (labeled with 1), and
another vertex of out-degree 1 (labeled with 2), and these two vertices are not
neighbors. In (c), all vertices are of out-degree 2, except that there are three
vertices of out-degree 1. These vertices are labeled with 1, 2, and 3.

Even 2-directed digraph with leader first-follower architec-
ture may not have an underlying rigid graph. See the example
in Fig. 2. Below, we propose a definition of ‘guide rigidity’
that will apply if and only if the underlying undirected graph
is generically rigid.

B. Guide rigidity for directed formations

We are interested in concepts of motion and guidance under
directed constraints. The goal is an intermediate theory of
‘rigidity’ which respects the direction of links and becomes
an appropriate foundation for stable rigidity.

Let V−2 = {i ∈ V : N+
G (i) < 2}. Given a directed

formation F with an underlying graph G, the guide freedom
Γ(F) is defined by

Γ(F) :=
∑

i∈V−2

[
2−N+

G (i)
]
.

This guide freedom is the apparent freedom of agents which
is unconstrained by the existing leader-follower links of the

Fig. 2. An example showing that a digraph G = (V, E) may have an
underlying non-rigid graph although it is a 2-directed digraph that has global
leader-first follower architecture with count |E| = 2|V| − 3.

formation. We will ask that this guide freedom be realized in
the possible first-order motions of the formation.

A directed formation F(p) has motion control if the dimen-
sion of the space of first order motions tangent to motions of
the formation is the guide freedom. A directed formation F(p)
has first-order motion control if the dimension of the space of
first-order motions is the guide freedom.

Lemma 3.1: If p is generic, then the formation F(p) has
first-order motion control if and only if the formation has
motion control.

Moreover, if the rows of the rigidity matrix R(F; p) are
independent, then the formation has motion control if and only
if the digraph is 2-directed.

Proof: Assume that the formation is generic. Then the
first-order motions form the tangent space to the space of
motions in the configuration space with fixed edge lengths.
All first-order motions are tangent to motions and the two
spaces have the same dimension. The first part is complete.

Assume that the rows are independent. The formation is
then generic (or regular) and the formation has control if and
only if the formation has first-order motion control. We now
show that the formation has first-order motion control, if and
only if the digraph is 2-directed.

Let Φ(F) denote the first-order degrees of freedom of
formation F(p). By the independence, the rank of the rigidity
matrix is the number of rows: |E| = 2|V| − Φ(F).

The set of vertices that have out-degree greater than 2 is
denoted by V+2 = {i ∈ V : N+

G (i) > 2}. The excess Ω(F) is

Ω(F) :=
∑

i∈V+2

[N+
G (i)− 2].

Since all edges are oriented, the total out-degree is also

|E| =
∑

i∈V
N+
G (i) = 2|V|+

∑

i∈V
[N+
G(i)−2] = 2|V|−Γ(F)+Ω(F).

Moreover, by the first-order motion control, Γ(F) = Φ(F).
Together these give the equation:

2|V| − Φ(F) = |E| = 2|V| − Γ(F) + Ω(F).

Therefore, Ω(F) = 0 and N+
G (i) ≤ 2 for all i ∈ V .

Conversely, assume the graph is 2-directed, which sets
Ω(F) = 0. Since the edges are independent,

2|V| − Γ(F) = |E| = 2|V| − Φ(F).

Therefore Γ(F) = Φ(F) and F(p) has first-order motion
control.
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In §2, we presented initial reasons to want independence and
rigidity in an undirected formation, in terms of robust rigidity.
We now have additional reasons for wanting independence and
rigidity in terms of effective control for a directed formation.
In terms of simulations, we will reinforce the importance of
these properties in the next section.

In the previous subsection, we argued that stable control
will require the formation is 2-directed. We say a formation
has effective motion control if it has motion control and is
2-directed.

Proposition 3.1: A directed formation F(p) at a generic
configuration has effective motion control if and only if it
is 2-directed and the links are independent.

Proof: The previous proof shows that if the formation
is 2-directed and the links are independent, then the directed
formation has effective control.

Assume that the directed formation has effective control.
By definition, the graph is 2-directed, and the number of rows
is 2|V| − Γ(F). If the edges are not independent then 2|V| −
Φ(F) = #(independent rows) < 2|V|−Γ(F). However, since
F(p) has motion control, we also know Γ(F) = Φ(F). This
contradiction shows the edges were independent.

We summarize the situation both in terms of first-order
properties of a single formation and in terms of combinatorial
properties of a generic configuration.

Proposition 3.2: For a directed point formation F(p), the
following are equivalent:

1) F(p) is first-order rigid and has first-order motion con-
trol;

2) F(p) is first-order robust and has first-order motion
control;

3) F(p) has first-order motion control and is 2-directed;
4) F(p) is first-order robust and is 2-directed;
5) the links of F(p) are independent and F(p) is 2-directed.

Proof: The key is that each of the other conditions is
equivalent to 4).

If a directed formation F(p) has any of these equivalent
properties, we say it is first-order guided.

Theorem 3.1: At a generic point p, for a directed point
formation F(p), the following are equivalent:

1) F(p) is first-order guided;
2) the links of F(p) are independent and F(p) is 2-directed.
3) F(p) is robust and has motion control;
4) F(p) has motion control and is 2-directed;
5) F(p) is robust and is 2-directed
6) the underlying graph G is basic and G is 2-directed.

Proof: For generic configurations, we have already seen
that these general properties are equivalent to their first-order
equivalents.

If a directed generic formation F(p) has any of these
equivalent properties, we say the digraph is guided. Notice
that a digraph G = (V, E) is guided if F(p) = (p, E) is guided
(equivalently first-order guided) at all generic configurations p.
A directed formation with at least two vertices is guide rigid
if it is guided and is rigid.

We have analyzed several factors which are relevant to con-
trol of directed formations. After working out the connections
among these properties, we have provided a single definition

Fig. 3. Vertex Addition - directed case.

which captures all of the essential properties. For generic
formations, the properties can be verified by direct algorithms
on the underlying digraph. In the next subsection we outline
one of these algorithms.

C. Sequential Techniques for Generating Guide Rigid Di-
graphs

As with undirected graphs, one operation for extending a
guide rigid graph is directed vertex addition: given a minimally
rigid graph G∗ = (V∗, E∗), we add a new vertex i of out-
degree 2 with two edges directed from i to two other vertices
in V∗.

Example 3.1: The vertex addition operation for a digraph
is shown in Fig. 3.

Theorem 3.2 (vertex addition - directed case): Let G =
(V, E) be a digraph with a vertex i of out-degree 2 in 2-space;
let G∗ = (V∗, E∗) denote the subgraph obtained by removing
i and the edges incident with it. Then G is guided (guide rigid)
if and only if G∗ is guided (guide rigid).

Proof: Inserting/removing i from the undirected graph G
is equivalent to the vertex addition operation in an undirected
graph. Undirected minimally rigid graphs maintain rigidity un-
der the vertex addition operation. Hence generic independence
of edges is satisfied in both G and G∗.

The operation also preserves the generic rigidity of the
graph.

Now suppose that G is 2-directed. If we remove i, then the
out-degrees of the vertices of G∗ do not change. Similarly,
suppose that G∗ is 2-directed. If we insert i with out-degree
2, then the out-degrees of the remaining vertices do not change
and it is still 2-directed.

The second operation preserving guide rigidity is directed
edge splitting: given guide rigid graph G∗ = (V∗, E∗), we
remove a directed edge (j, k) (directed from j to k) in E∗ and
then we add a new vertex i of out-degree 2 and in-degree 1
with three edges by inserting two edges (j, i), (i, k), and one
edge between i and one other vertex (other than j, k) in V∗
such that the edge (j, i) is directed from j to i and the other
two edges are directed from i to the other vertices.

Example 3.2: The edge splitting operation for a digraph is
shown in Figure 4.

Theorem 3.3 (edge splitting - directed case): Let G∗ =
(V∗, E∗) be the graph with directed edge (j, k), and let G =
(V, E), be the graph with an added vertex i and added directed
edges (i, k), (i,m), (j, i), where m ∈ V∗. If G∗ is guided
(guided rigid), then G is guided (guided rigid).

Proof: Generic independence, and generic rigidity fol-
lows from the edge splitting operation for undirected graphs as
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Fig. 4. Edge Splitting - directed case.

(a) A counterexample for the edge
splitting operation in the reverse
direction.

(b) If vertex 4 is removed, neither
(3, 5) nor (5, 3) can be inserted
because these edges increase the
out-degree of vertices 3 and 5,
respectively.

(c) To resolve the difficulty in di-
rected edge splitting, we use edge
reversal to make the vertex in
question have out degree 1.

(d) The edge (3, 5) can be in-
serted after edge reversal.

Fig. 5.

explained in §II-B. Suppose that G∗ is 2-directed. The newly
inserted vertex i is of out-degree 2. These edges do not change
the out-degree of other vertices. In the replacement of the edge
(j, k) by (j, i), the out-degree of j is also preserved.

Remark 3.1: Theorem 3.3 is not in the form of ‘if and only
if’. A counterexample for reversing the edge splitting operation
is shown in Figs. 5(a) and 5(b). There may be some vertex that
can be removed in every guide rigid digraph, but it is not every
3-valent vertex that can be removed. Moreover, if we apply
these two steps to a single directed edge, we will always have
a global leader in the topology. We will see below that there
are topologies which meet all our conditions which do no have
a global leader. We add one more simple step which will help
us generate all guide rigid graphs, with or without a global
leader-follower.

The third operation which will complete the constructions
is edge reversal: edge (a, b) is reversed to (b, a), if for the
in-vertex b, N+

G (b) < 2.

Theorem 3.4 (edge reversal): Let G = (V, E) be a digraph
with an edge (a, b); let G∗ = (V∗, E∗) denote the graph
obtained by reversing the edge (a, b) to (b, a) if for the in-
vertex b, N+

G (b) < 2. If G is guided (guide rigid) then G∗ is

guided (guide rigid).
Proof: Reversing an edge does not change the underlying

undirected graph. Thus generic independence and generic
rigidity are maintained under edge reversal. Now suppose that
G is 2-directed. If we reverse (a, b) to (b, a), the only vertex
of which out-degree is increased is b. Since N+

G (b) < 2, then
N+
G∗(b) ≤ 2. Therefore G∗ is still 2-directed.
A directed Henneberg sequence for the graph G, is a

sequence of steps, starting from a single edge, using the
following steps, and ending with the graph G:

1) directed vertex addition;
2) directed edge split;
3) edge reversal.

This final step is related to a key step of the ‘pebble game
algorithm’ [22], [23] used for testing the generic rigidity of
graphs in the plane. Throughout the next discussion, we will
use the image of ‘pebbles’ on vertices to visualize the guide
freedom from vertices of out-degree less than 2. Overall, in a
minimally rigid graph, there will be 3 pebbles (guide freedom
3). The pebbles then can move back down a directed path,
as edges are reversed, cascading along, reversing a directed
path that previously ran into a vertex with the pebble. When
a pebble arrives at a vertex from such a cascade, it now has
fewer than two out-directed edges.

Theorem 3.5: These steps all preserve guide rigidity for
graphs.

Proof: (i) 2-valent directed addition preserves the prop-
erty of being minimally rigid, as well as being 2-directed.

(ii) Directed edge splitting preserves the property of being
minimally rigid, as well as being 2-directed.

(iii) Edge reversal does not change the graph, and therefore
does not change the property of being basic. It also preserves
the property of being 2-directed, simply moving the lower out-
degree from one vertex to another.

It is the removal of 3-valent vertices that will require edge
reversal. If they have out-degree 2, they may not be removable
to proper digraph as shown in Figs. 5(a) and 5(b). To resolve
this problem, we make the vertex in question have out degree
1, by reversal, as shown with the example in Fig. 5(c), and
then we remove the 3-valent vertex as shown in Fig. 5(d). The
following lemma shows that this is always possible.

Lemma 3.2: In a minimally rigid digraph, we can draw a
pebble (guide freedom) to any selected vertex a.

Proof: Start at the intended target vertex 0, and search up
the digraph, for a free pebble. If we find a free pebble, then it
can be drawn down reversing the edges on the path, so that the
pebble is at a. We can then take the edge (0, a) and reverse it.
If we do not find a free pebble, then the searched subgraph has
all vertices of out degree 2, and all out-edges from vertices in
this subgraph stay within the subgraph (otherwise we would
search more widely). Therefore, the subgraph must have |E| =
2|V|. This is not possible in a minimally rigid graph which has
|E| = 2|V| − 3.

Theorem 3.6: All possible guide rigid graphs are generated
by a directed Henneberg sequence.

Proof: Assume we have a guide rigid graph. The under-
lying graph is generically minimally rigid, and is 2-directed.
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The result is true for a single edge. Beyond a single ege, it is
clear that vertices must have degree at least 2.

Assume the graph is larger with a vertex of degree 2. If
this is not of out-degree 2, we do one or two edge reversals
to generate an out-degree 2. Then we remove the vertex. The
smaller graph G∗ will be basic , guided and 2-directed.

Otherwise, since there are no vertices of degree ≤ 2, by
a simple count Σi∈V |N (i)| = 2|E| = 2(2|V| − 3), the graph
must have a vertex 0 of degree 3, connected to vertices a, b, c.
By Henneberg’s Theorem, this vertex 0 can be removed, and
an undirected edge (a, b) for some pair, is inserted to create a
new minimally rigid graph G∗, such that G∗ is created from
G by an edge split. It remains to prove that this can be done
in a directed manner that preserves the 2-directedness.

There are now three alternatives:
(i) the edge (a, 0) is directed into 0 then (0, b) is directed out
(or the reverse). In this case, we can then assign the direction
(a, b) to the inserted edge. A directed edge split will return to
the original digraph;
(ii) both of the edges (a, 0) and (b, 0) are directed in. Since
we have only one out-directed edge, there is a free pebble on
0. This can be used to reverse (0, b) to (b, 0) and we return to
case (i);
(iii) both of the edges (0, a) and (0, b) are directed out. The
other edge must be directed in. We can use Lemma 3.2 to
draw a pebble to 0. This must reverse one of these two key
edges. As a result, we return to case (i).

As in the proof of Henneberg’s Theorem, we can start with
an initial edge, directed in either direction (the direction can be
reversed), build up to any generically minimally rigid graph.
The previous arguments, show that we can build up to any
2-directed minimally rigid graph, since the necessary edge
reversal steps are themselves reversible.

We now have an inductive construction for all guide rigid
digraphs.

IV. ACYCLIC FORMATIONS

In this section, we will refine the results for guide rigidity
under the additional assumption that there are no cycles in the
leader-follower topology.

Theorem 4.1: For a digraph G, with at least two vertices,
the following are equivalent:

1) the digraph is guide rigid and acyclic;
2) the digraph is 2-directed and acyclic, with |E| = 2|V|−3;
3) the digraph is constructed from a single edge by a

sequence of directed vertex additions;
4) the digraph has global leader-first follower architecture,

and is acyclic with all other vertices having out-degree
exactly 2.

Proof: (i) implies (ii): We have already seen that guide
rigid digraphs are 2-directed and minimally rigid. Minimally
rigid digraphs have |E| = 2|V| − 3;

(ii) implies (iii): We are given that there are no cycles
in the digraph. Therefore the digraph represents a partial
order between vertices. The partial order can be made into a
complete order. The smallest element in the order is the global
leader, and the next smallest is the first follower, and this will
be our target edge for the directed Henneberg sequence.

Assume there are more than 3 vertices. The maximal
element has all edges out so it has degree ≤ 2. Overall, since
each edge is directed:

∑

i∈V
N+(i) = |E| = 2|V| − 3.

However, the two initial vertices have a total out-degree of 1,
so on all other vertices V ′:

∑

i∈V′
N+(i) = |E| = 2|V ′|.

We also know that all vertices have N+(i) ≤ 2, so we
conclude that all other vertices have N+(i) = 2. Take the
maximal vertex in the linear order. All edges are out-directed,
so the overall valence is 2. We can apply 2-valent vertex
removal to get a smaller guide rigid acyclic graph, with the
induced linear order. We continue with this until there are only
the global leader and first follower. Reversing this sequence
gives the desired construction.

(iii) is equivalent to (iv): This is immediate, as the initial
edge is the global leader, first-follower edge and the valence
assumption is equivalent to the count of (iii).

(iii) implies (i): It is clear from the inductive construction
that the digraph is acyclic. From the directed Henneberg
sequence it is also clear that the digraph is 2-directed and
minimally rigid. Therefore it is guide rigid.

This result can be easily extended to more general acyclic
guided graphs, which are independent but perhaps not rigid,
provided we include ‘general directed vertex addition’ in
which the added vertex has valence ≤ 2.

We also note that for formations constructed by vertex
addition alone, which engineers call simple, we actually know
the geometry of which configurations are generic. At each
step, we need only to ensure that the added vertex and its
two attaching vertices are not collinear [20]. This gives the
following geometric corollaries.

Corollary 4.1: A formation F(p) with an acyclic, global
leader-first follower topology, and all other vertices of out-
degree exactly two, is first-order guide rigid if and only if
for all vertices except the global leader-first follower, the two
out-directed edges are not collinear.

Corollary 4.2: Assume that the topology of a directed point
formation is acyclic. The underlying digraph is guide rigid if
and only if the underlying graph is minimally generically rigid.

Simulation 1 (Acyclic and Guide Rigid): Fig. 6(a) shows
a formation created by vertex addition only. Notice that this
formation satisfies the condition 3) in Theorem 4.1. The agent
with out-degree 0 (global leader) is labeled with 1 and the
agent with out-degree 1 is labeled with 2. Agents are fully
actuated omnidirectional point agents, i.e., they can move
in any direction with any speed. The trajectories of agents
obtained in simulations are shown in Fig. 6(b). As the global
leader moves on a zigzag trajectory, rigidity is preserved as
shown in Fig. 7.

In simulations throughout the paper the following dis-
tributed relative distance control is used:
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(
ẋi

ẏi

)
=

∑

j∈N+
G (i)

[
dij −

√
(xi − xj)2 + (yi − yj)2

]

(
xi − xj

yi − yj

)
(4)

for i 6= 1, 2 where dij is the set-point distance between agents
i and j. The distances between all agent pairs remain (almost)
constant over time as the formation moves. Notice that de-
sired distances are reached asymptotically in (4). So small
actuation errors are allowed in simulations, which produce
small deviations from constant link lengths in the plots. In
simulations throughout the paper, measurement noise levels on
link lengths are randomly chosen for each link at the beginning
of a simulation program, and remain constant for each link
over time during simulation. Noise level ranges between 0%
and 15% of link lengths.

Initial actual distances between agents are set to the desired
distances between agents at the beginning of each simulation
throughout the paper. But agents have measurement errors.
Therefore their measured distances, which are corrupted with
noise, do not satisfy the desired distance constraints. Thus
they start moving to reach to positions where their measured
distances can satisfy the desired distance constraints. While
they are doing this, the global leader is also moving on a
prescribed zigzag trajectory. Fig. 8 shows a zoomed region of
Fig. 7 to show the initial changes in one of the link lengths
of the formation shown in Fig. 6(a). Since agents are fully
actuated and omnidirectional, transient changes disappear fast.
Recall that small actuation errors are allowed in simulations,
which produce small deviations from constant link lengths
after transient changes disappear in link lengths.

Recall that the global leader and the first follower determine
the translation and rotation of the formation. In the simulations
throughout the paper, only the global leader’s trajectory is
prescribed to determine translation. Intentionally, we did not
prescribe the one degree of freedom that the first follower
had, so that more challenging trajectories are generated to test
rigidity. When we prescribe the trajectories of both the global
leader and the first follower such that rotations are disallowed,
then we obtain translation-only motion.

Simulation 2 (Acyclic and Non-Rigid): Fig. 9(a) shows a
formation that does not satisfy condition 2) in Theorem 4.1.
Although, the underlying digraph G = (V, E) is 2-directed
and acyclic, it does not satisfy the edge count, i.e., |E| <
2|V| − 3. The agent of out-degree 0 (global leader) is colored
in red and the agents of out-degree 1 are colored with green.
The agents of out-degree 2 are colored in blue. As the global
leader moves, the rigidity is lost. This can be seen in Figs.
9(b) and 10. The distances between agent pairs, where there
is no sensing/communication link, change over time as the
formation moves.

V. CYCLES IN DIRECTED FORMATIONS

The acyclic guide rigid formations have simple construc-
tions and are seen to be stably rigid even for a simple dis-
tributed control law of the form in (4). We want to investigate

(a)

(b)

Fig. 6. (a) A rigid formation created by vertex addition only. It satisfies
condition 3) given in Theorem 4.1. The agent of out-degree 0 (global leader)
is depicted with color red and has index 1. The agent of out-degree 1 is
depicted with green and has index 2. The agents of out-degree 2 are depicted
with color blue and have indices 3, 4, 5. The set of maintenance links is
{(2, 1),(3, 1),(3, 2),(4, 2),(4, 3),(5, 3),(5, 4)}; (b) Trajectories of agents in
the formation shown in Fig. 6(a). The initial positions of agents are shown
with red circles, and the final positions are shown with green asterisks.

the guide rigid formations which do contain cycles, both
via simulations and by direct analysis of possible sources of
instability.

It is well known that topologies that contain C2 cause
problems for stability. We note that cycles of length 2 result in
redundancies, so they cannot exist in minimally rigid forma-
tions or guided formations. The instabilities associated with C2

were also addressed in [5], and were called information-based
instabilities. In [5], [24], problems controlling the external path
of a directed formation with C3 were seen, and the conclusion
was that all cycles cause instabilities.

However, our separation of the internal behavior (guide
rigidity) from external motion control, lets us resolve the
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Fig. 7. Distances between agent pairs (of the formation shown in Fig. 6(a))
are shown over time as the global leader moves. The blue solid lines show
the distances between agents where there exist links between those pairs. The
red dotted lines show the distances between agent pairs where there are no
links between those pairs.

problems for such cycles. In this section, we revisit the
instabilities associated with the cycles C2 and C3. We show
that:
• formations with redundant links do have instability, gen-

eralizing the analysis of C2,
• directed formations which are guide rigid, can still be

stably rigid even if there are cycles within the formation,
generalizing our analysis of C3 .

A. The 2-Cycle

In undirected formations, both agents at the end-points of a
sensing/communication link maintain a set-distance between
each other. For this reason, an undirected link can be con-
sidered as two directed links between these two agents with
opposite directions, and the underlying graph of an undirected
formation can be represented as a directed multigraph where
each link is replaced by a cycle of length 2 between the end-
points of the link. An example is shown in Fig. 11. We assume
that the desired distance between point agent i and point agent
j is dij while the actual distance between these two point
agents is ‖pi−pj‖. In real applications, there are measurement
errors, for instance due to noise, and it is reasonable to assume
that these two agents will have different measurement errors.
Let us assume that agent i has a constant measurement error
of ni and agent j has a constant measurement error of nj .
Therefore the measured distance by agent i is ‖pi− pj‖+ ni,
and the measured distance by agent j is ‖pi − pj‖ + nj .
When agents reach to positions where they satisfy the distance
constraint between each other, we would expect that agent
i satisfies ‖pi − pj‖ + ni = dij , and agent j satisfies
‖pi−pj‖+nj = dij . We assume that agents act autonomously
in a decentralized, non-communicating way. If ni 6= nj , then
there is no way that these two agents will reach positions such
that the distance constraint is satisfied by both agents. The

Fig. 8. Initial actual distances between agents are set to the desired distances
between agents at the beginning of a simulation. But agents have measurement
errors. Therefore their measured distances do not satisfy the desired distance
constraints. Thus they start moving to reach to positions where their measured
distances (corrupted with noise) can satisfy the desired distance constraints.
While they are doing this, the global leader is also moving on a prescribed
zigzag trajectory. This figure shows a zoomed region of Fig. 7 to show the
initial changes in one of the link lengths of the formation shown in Fig.
6(a). Since agents are fully actuated and omnidirectional, transient changes
disappear fast.

agents push and pull each other. Notice that this is a result
of inconsistency created by noise in an overdetermined set of
equations.

We say that a formation (V, E , f) is realizable if there exists
a point δ such that rF(δ) = f , using the rigidity map from §III.
That is rF(δ) = ‖δ(i)− δ(j)‖ = f(i, j). Of course, given any
realization, there is a subspace of congruent realizations. If a
formation is flexible, it has infinite number of non-congruent
realizations beyond the congruent images. If a formation is
rigid, it may still have a second non-congruent realization
which is flexible. So we do not immediately know whether
there are only a finite number of realizations for a given
f . However, for a rigid formation, we do know that there
is a neighborhood that has only this one realization (up to
congruence) [14]. In general, if a graph is generically rigid,
then almost all realizations will have at most a finite number of
other realizations with the same lengths (up to congruence). If
a formation has a unique realization, then it is called globally
rigid. Beyond a triangle, every generic formation which is
globally rigid is redundant.

The underlying graph of a minimally rigid formation, may
still have no realization for a given new set of link lengths.
This is due to a choice of impermissible link lengths, e.g., the
triangle inequality is not satisfied. If a formation is redundantly
rigid, a choice of impermissible link lengths, e.g., the triangle
inequality, may still be an obstacle to realizing a given f .

Recall that independent links are necessary for effective
motion control (Proposition 3.1). There is an additional reason
to anticipate that the edges are independent in a formation
which can have stable control. In redundantly rigid formations,
there is a larger source that usually prevents realization. This
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(a)

(b)

Fig. 9. (a) A flexible formation is shown. It does not satisfy condition
2) in Theorem 4.1. Although, the underlying digraph G = (V, E) is 2-
directed and acyclic, it does not satisfy the edge count, i.e., |E| < 2|V| − 3.
The agent of out-degree 0 (global leader) is depicted with color red and
has index 1. The agents of out-degree 1 are depicted with color green
and have indices 2 and 4. The agents of out-degree 2 are depicted with
color blue and have indices 3, 5, and 6. The set of maintenance links
is {(2, 1),(3, 1),(3, 2),(4, 1),(5, 3),(5, 4),(6, 2),(6, 5)}; (b) Trajectories of
agents in the formation shown in Fig. 9(a). The initial positions of agents
are shown with red circles, and the final positions are shown with green
asterisks.

is due to the fact that, in a redundantly rigid formation, the set
of equations for link lengths is overdetermined and almost any
noise in measurements results in inconsistencies. Inconsisten-
cies in overdetermined systems caused by redundant rigidity
are called redundancy-based inconsistencies. Thus noisy mea-
surements are a source of redundancy-based inconsistencies
that prevent a realization in redundantly rigid formations. To
avoid redundancy-based inconsistencies, we focus on guide-
rigid, and therefore robust formations which do no have any
redundancy.

Fig. 10. Distances between agent pairs (of the formation shown in Fig. 9(a))
are shown over time as the global leader moves. The blue solid lines show
the distances between agents where there exist links between those pairs. The
red dotted lines show the distances between agent pairs where there are no
links between those pairs.

Fig. 11. A link in an undirected formation can be represented by two directed
links. Thus it forms a 2-cycle in 1-space. This results in redundant rigidity in
1-space. Measurement errors cause redundancy-based inconsistencies in this
overdetermined system.

B. Analysis of 3-cycles

The behavior of agents on a cycle of length 3 is strikingly
different. Let us consider the formation shown in Fig. 12.
The underlying graph is minimally rigid. The global leader
is labeled with 1, and the first-follower is labeled with 2.
Every other vertex has out-degree 2. It can be verified that
there is a cycle of length 3 (4, 5, 6, 4). We denote the desired
distance between agent i and j by dij , and write pi = (xi, yi).
The position (x3, y3) is completely determined by d31, d32,
and the positions (x1, y1), (x2, y2), which are the positions
of the global leader and the first follower, respectively. Once
the global leader and the first follower take their positions,
the agent with index 3 also has a known position. Thus the
positions p1, p2, p3 are known. If there are no measurement
errors, we expect the following hold: ‖pi − pj‖ = dij , for
(i, j) ∈ {(1, 4), (2, 5), (3, 6), (4, 5), (5, 6), (6, 4)}. There are
six unknowns in this set of equations. If the triangle inequality
is satisfied, then we would expect that a solution exists.
Consider the case where there are measurement errors denoted
by nij on each link (i, j) on the cycle (4, 6, 5, 4). We expect
the following equations hold:

‖pi − pj‖ = dij , for (i, j) ∈ {(1, 4), (2, 5), (3, 6)}
‖pi − pj‖+ nij = dij , for (i, j) ∈ {(4, 5), (5, 6), (6, 4).}
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There is no reason to expect that introducing nij’s create an
immediate inconsistency as it happened in the case of a 2-
cycle. There are no redundant measurements so the system
is not overdetermined. Note this is also true for formations
that have cycles of length 4 and higher. If, for example, the
triangle inequality is not satisfied, then the reason behind it is
not cycles themselves, but rather the selection of link lengths.
Even acyclic formations with no noise can fail the triangle
inequality if link lengths are poorly chosen.

A direct geometric analysis for this formation may also add
insight: Consider the case with no noise in measurements in
Fig. 13(a). Given the positions p1, p2, and p3 are fixed, then
the points p4, p5, and p6 are located such that all six equations
are satisfied for the positions shown in Fig. 13(a). Now, let us
add noise to the edges (4, 5), (5, 6), and (6, 4) as shown in
Fig. 13(b). Clearly, the current positions of point do not satisfy
the measured link lengths. The new link lengths determine a
unique triangle as shown in Fig. 13(c). Can we locate this
triangle such that its vertices touch the three circles but not
cross the circles? The answer to this question is ‘yes’ provided
the triangle inequality is satisfied. Therefore there is still a new
set of solutions for the positions of points that satisfy the link
lengths corrupted with noise. This is shown in Fig. 13(d). For
comparison purposes, the solution for the positions of points
with no noise are denoted with empty circles in this figure.

A second concern about cycles raised in [24] is the asymp-
totic instability associated with motions of C3, as a rigid body,
across the plane. This causes an indeterminacy of the positions
of the points in C3. However, this is a result of the absence
of a ‘tie-down’ [20] or adequate motion control for the three
guide agents in C3. The problem is not in the cycle, but rather
it is in the lack of constraints to ‘direct’ the overall motion
of the guide rigid formation. It is as if the global leader-first
follower agents in our acyclic formation had no fixed position,
or direction, and the formation wandered.

Recall that translations and rotations are still allowed in
rigid formations. We need to control these 3-degrees of
freedom to move a formation sensibly along a target path or
towards a target position. This can be done for cycles within
a larger architecture, as with the cycle C3 inside Fig. 12. In a
global leader-first follower topology, if the formation is rigid,
the global leader and the first follower completely determine
the translation and rotation of the formation. The connection
to ‘cycles’ is Theorem 4.1 - all problematic guide agents are
in formations with cycles. However, the cycles themselves are
not the problem, as we will see below.

Simulation 3 (Guide Rigid with Cycles): Figure 14(a) shows
a formation with seven agents. It has three cycles, two of which
have length 4, (7, 6, 5, 3, 7) and (4, 3, 7, 6, 4), and one of which
has length 5, (4, 3, 7, 6, 5, 4). The global leader moves on a
zigzag trajectory. The plot of the trajectories of agents are
shown in Fig. 14(b). The distances between all agent pairs are
shown in Fig. 15.

A final concern about cycles raised in [5] is the situation all
point agents move at the same nonzero velocity and are aligned
one behind the other in C3. This formation has a singular
geometric configuration which is non-generic and causes a
geometry redundance in the rows of the rigidity matrix. This

Fig. 12. A point formation that has a 3-cycle, (4, 6, 5, 4). It is minimally rigid
in 2-space, and has no redundancy contrary to the redundancy in the formation
shown in Fig. 11. Thus measurement errors do not cause redundancy-based
inconsistencies in this formation.

problem is not specific to cycles, but would be a problem even
for a global leader-first follower formation of three agents in
a triangle on a line. Such geometric redundance does cause
instability, as described when we introduced the concept of
first-order robust formations. Therefore, we will work with
independent formations.

Recall that there are three possibilities for a guide rigid
formation: (i) a formation with all agents have out-degree
2 except a global leader of out-degree 0, a first follower of
out-degree 1, and these two are connected by a link; (ii) a
formation with all agents have out-degree 2 except a global
leader of out-degree 0, a free follower of out-degree 1, and
these two are not connected by a link; (iii) a formation with
all agents of out-degree 2 except three agents of out-degree 1.

In case (i), with no cycles, we have seen that the formation
is stably rigid. If there are cycles, then the proof for directed
Henneberg constructions shows that a set of edge reversals on
paths will make it a formation which is acyclic, and stably
rigid. All that remains is to verify that edge reversal does not
change stable rigidity. It is certainly plausible that reversing
such a path, while maintaining the same edge lengths, with the
same noise, will not alter the realizations or the stability. We
conjecture that this is true, but have not provided a detailed
argument.

In case (ii), we could add an artificial ‘controlling first
follower’ attached to first global leader, and attach the previous
free follower to this vertex. This creates an enlarged guide rigid
global leader-first follower architecture. It will have a cycle,
since the original formation had a cycle. As long as this new
formation is stably rigid, then the only stability problem for
the original formation was the ‘motion control’ information for
the original free follower, now captured through the artificial
vertex. This could be directly integrated into motion control
for this free follower, and the original formation was stably
rigid, internally.

In case (iii), we could add an artificial ‘controlling global
leader-first follower’ pair, and attach the free followers to this
pair with three links, two to the global leader and one to the
first follower, and create an enlarged guide rigid global leader-
first follower architecture. This will contain a cycle, since the
original formation had a cycle. As long as this new formation
is stably rigid, then the only stability problem for the original
formation was the ‘motion control’ information for the free
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(a)

(b)

(c)

(d)

Fig. 13. (a) This figure shows the distance constraints that need to be satisfied
by agents 4, 5, and 6 of the formation shown in Fig. 12. The points in this
figure clearly satisfy the constraints; (b) If noise is added to the lengths of
links that lie on the 3-cycle (4, 6, 5, 4), then points p4, p5, and p6 fail to
satisfy the distance constraints at their current positions; (c) The new distance
constraints corrupted with noise can be represented by a triangle. It can be
seen that the triangle can be placed between the circles in such a way that
its vertices touch the circles at one single point, thus satisfying the distance
constraints. (d) The vertices of this triangle determine the new locations of
points p4, p5, and p6 as shown with filled circles. The previous positions of
the points are shown with empty circles.

(a)

(b)

Fig. 14. (a) A rigid formation created by vertex addition and edge
splitting. The agent of out-degree 0 (global leader) is depicted with
color red and has index 1. The agent of out-degree 1 is depicted with
green and has index 2. The agents of out-degree 2 are depicted with
color blue and has indices 3, 4, 5, 6, 7. The set of maintenance links is
{(2, 1),(3, 2),(3, 7),(4, 2),(4, 3),(5, 3),(5, 4),(6, 4),(6, 5),(7, 1),(7, 6)}. It
has three cycles, two of which have length 4, (7, 6, 5, 3, 7) and (4, 3, 7, 6, 4),
and one of which has length 5, (4, 3, 7, 6, 5, 4); (b) Trajectories of agents in
the formation shown in Fig. 14(a). The initial positions of agents are shown
with red circles, and the final positions are shown with green asterisks.

followers, now captured through the artificial leader follower.
This guidance could be directly integrated into motion control
for these free follower, and the original formation was stably
rigid, internally.

In summary, we have indicated that the problems of in-
stability can be separated into different forms. Those caused
by flexibility are obvious, so we need rigidity. Those caused
by redundance (either in the graph or in the geometry) are
unavoidable. We need minimal rigidity, and guide rigidity.
Once we have guide rigidity, we claim that cycles are not
a problem, though they may indicate that the control of the
guide agents requires more careful planning.
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Fig. 15. Distances between agent pairs (of the formation shown in Figure
14(a)) are shown over time as the global leader moves. The blue solid lines
show the distances between agents where there exist links between those pairs.
The red dotted lines show the distances between agent pairs where there are
no links between those pairs.

VI. CREATING A RIGID DIRECTED FORMATION FROM A
RIGID UNDIRECTED FORMATION

Stable rigidity of a directed formation depends not only on
the underlying undirected formation but also on the directions
of links between agents. In particular, the directed formation
must be 2-directed. Given a generically minimally rigid undi-
rected formation, how do we find the directions of links to
create a stably rigid directed formation? Below we present
one way of doing this.

We start with giving preliminary definitions. A graph is
connected, if there is a path from any vertex to any other
vertex in the graph. A tree is a graph in which any two
vertices are connected by exactly one path. A spanning tree of
a connected, undirected graph is a tree which includes every
vertex of that graph. There is a standard way of partitioning the
edges in a generically minimally rigid graph with the following
properties:

1) there are three trees;
2) there are exactly two trees at each vertex;
3) no two non-empty subtrees span the same set of vertices.
These properties define a 3Tree2 partition of the edges [21],

[25], [26]. For a generically minimally rigid graph G = (V, E),
it is also known that, for each (i, j) ∈ E , the multigraph
obtained by doubling the edge (i, j) is the union of two
spanning trees [21], [27].

Now we give a sequential algorithm to find the direction of
links to create a stably minimally rigid directed formation from
a minimally rigid undirected formation: (Let us assume that
i represents the global leader, j represents the first follower
connected to i by the edge (j, i).)

Algorithm 6.1: 2-Direction of a Minimally Rigid Forma-
tion.

1) Double the edge (j, i) - The entire graph can now be
partitioned into two spanning trees.

(a) (b)

(c) (d)

Fig. 16. A minimally rigid point formation is shown in (a). The graph with
the double edge (2, 1) is shown in (b). The global leader is labeled with 1
and the first follower is labeled with 2. The graph in (b) can be partitioned
into two spanning trees as shown in (c) and (d).

2) Remove (j, i) from one of the two trees - We now
have 3-trees, one spanning, and one each containing the
original two vertices.

3) Orient the spanning tree down to the selected leader.
4) Orient each of the other two trees down to the global

leader or the first follower, whichever is in this revised
tree.

This algorithm gives a guide rigid directed formation with
out-degree 2 at each point except the first-follower of out-
degree 1 and the global leader of out-degree 0. We have
conjectured that such a directed formation will always be
stably rigid. We give the following example to illustrate this
algorithm:

Example 6.1: Consider the generically minimally rigid
point formation shown in Figure 16(a). Assume that the global
leader is labeled with 1 and the first follower is labeled with 2.
The graph with the double edge (2, 1) is shown in Fig. 16(b).
This graph can be partitioned into two spanning tress as shown
in Figs. 16(c) and 16(d). When we remove (2, 1) from one
of the two trees, in this case from Fig. 16(d), we now have
three trees: one spanning as shown in Fig. 16(c), and one each
containing the original two vertices as shown in Figures 17(a)
and 17(b). Fig. 18(a) shows the oriented spanning tree down to
the global leader. Figs. 18(b) and 18(c) show the oriented two
trees down to the global leader or the first follower. Finally, if
we put together the edge topologies in Figs. 18(a), 18(b), and
18(c), we obtain the directed point formation shown in Fig.
18(d).

We note that this algorithm permits an arbitrary choice of
the first edge in the graph. There is also a way to deduce this
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(a) (b)

Fig. 17. When we remove (2, 1) from one of the two spanning trees in Figs.
16(c) and 16(d), in this case from Fig. 16(d), we now have three trees: one
spanning as shown in Fig. 16(c), and one each containing the original two
vertices as shown in (a) and (b) in this figure.

(a) (b)

(c) (d)

Fig. 18. The oriented spanning tree down to the global leader is shown in
(a). The oriented two trees down to the global leader or the first follower are
shown in (b) and (c). If we put together the edge topologies in (a), (b) and
(c), we obtain the directed point formation shown in (d).

decomposition directly from the assumption that the rigidity
matrix has independent rows and full rank [28].

Given a rigid graph G, there is a refined fast (worst case
O(|V||E|)) implemented algorithm (the pebble game) which:

• selects a minimally rigid subgraph in O(|V||E|) time and
gives an orientation towards a selected leader-follower
edge with out-degree 2 on all other vertices for any
minimally rigid graph;

• can switch from one such choice of leader-follower edge
in a minimally rigid graph to an orientation towards
another leader-follower edge in linear time, by cascading
pebbles;

• can detect whether there is an acyclic 2-directed orienta-
tion towards a given leader-follower edge.

The algorithm is related to our simpler process of finding
two spanning trees, as well as the counts in Laman’s Theorem.
In common with tree finding algorithms, it is greedy, so the
order of testing edges etc. does not effect the size of maximal
independent sets found, or the distribution of the edges through
the agents. The normal implementation can give, as an imme-
diate output, the desired 2-directed graph. Given some set of
vertices and independent edges, the algorithm can also select
additional edges to extend this to an (oriented) minimally rigid
graph, in order |V|2 time.

There is a third way to generate the digraph. Given a
minimally rigid graph, there is a Henneberg sequence starting
with the selected global leader-first follower edge. Applied as
directed vertex addition and edge splitting, this generates a
stably rigid directed formation. Combined with arbitrary cas-
cades of pebbles, these give all possible guide rigid formations.
There are order O(|V|2) algorithms for directly extracting
either a 3Tree2 covering or the Henneberg sequence from the
minimally rigid graph. However, some recent implementations
for these actually use the pebble game as their core engine.

VII. CONCLUDING REMARKS

We provided the necessary and sufficient conditions for
guide rigidity in directed reference formations in §III, as a
bridge between rigidity for undirected formations, and stable
rigidity for directed formations. This analysis addressed prob-
lems caused by redundance as well as the possible distribution
of directed edges on a minimally rigid digraph. The analysis
in §V also confirmed the inconsistencies that result from noisy
measurements in redundantly rigid formations. We presented
the directed Henneberg constructions as a sequential process
for all guide rigid digraphs. We refined those results for acyclic
formations §IV, where the guide rigid formations had a simple
construction. The analysis in §V confirmed that acyclicity is
not a necessary condition for stable rigidity. The cycles are not
the real problem, but rather the lack of guide freedom is the
reason behind why C3 has been seen as a problematic topology.
Topologies that have cycles within a larger architecture can be
stably rigid, and we conjecture that all guide rigid formations
(minimally rigid directed formations with all vertices of out-
degree at most 2) are stably rigid for internal control. One
possible future direction of research is to determine how guide
freedom is used to control the otherwise rigid formation.

We anticipate that the pattern of analysis given in this paper
will be useful in the analysis of formation rigidity and stability
problems and will be a useful tool to create directed rigid
formations. We list the overarching comments on two related
matters, namely guide rigidity and cycles. Guide rigidity of
the formation is lost by:
• the failure of the underlying digraph to be directed rigid;
• redundancy (noise, unrealizability);
• vertices with more than 2 out-degree edges;
Control of the formation is lost, even when the formation

itself is guide rigid, if the guide freedom is not handled ap-
propriately (a problem for some alternate topologies). Cycles
play only an accidental role in this:
• 2-cycles are redundant, hence problematic;



DECEMBER 1, 2005 17

• alternate topologies (not global leader-first follower) have
cycles, so cycles are associated with these problematic
situations.

However, we claim cycles inside a global leader-first fol-
lower formation are not a problem. Moreover, by adding
artificial guide agents as described in §V-B, cycles in the alter-
nate topologies actually occur for subformations within larger
global leader-first follower configurations. They are therefore
still stably rigid (in the sense of the internal distances). They
just require nonstandard contact information.

We want to highlight that this paper strongly suggests that
both cyclic and acyclic directed formations can be stably rigid.
The question of whether one pattern is ‘better’ than the other
or both types are equivalent in terms of the performance of
stable rigidity is still open. It requires more work to determine
whether a simple control law, such as the one in (4), is always
sufficient, or more sophisticated algorithmic techniques are
needed for motion planning so that agents that are part of
cycles can reach to their set points. Qualitatively we observe
that acyclic formations seem much simpler to work with
compared to cyclic formations, but this question requires more
quantitative analysis. From a topological point of view, acyclic
formations are easier to work with for more decentralized and
local operations, such as agent departures, formation splitting
and merging. In comparison, cyclic formations can easily
get complicated for some of these operations. A quantitative
analysis of convergence of agent positions to set points will be
useful to realistically compare cyclic and acyclic formations.
Although cyclic formations are more difficult to work with at
the topological level, they have some advantages over acyclic
formations. Acyclicity provides position information flow only
in one direction, thus reduces the level of cooperation shared
information among agents. If a follower agent in an acyclic
formation fails, there is no way that the leaders of that follower
can realize this failure. On the other hand, any agent, except
the global leader and the first follower, can be a part of a cycle
in a rigid formation that has the global leader-first follower
architecture. Cycles can provide feedback between agents, and
increase coherence among formation members. One possibility
for improvement is new topologies that include all agents in
cycles. Such topologies will not allow agents of out-degree
0, but will allow agents of out-degree 1. Then there will be a
need for consensus among guide agents to direct the translation
and rotation of the entire formation sensibly. Such alternate
approaches will be explored in the future.

A sequel will give analogs with rigid formations with
other types of information structures such as the following:
formations with directions, bearings (a.k.a. angle of arrival)
in both 2- and 3-space; formations with mixed directions-
distances or bearings-distances in 2-space; formations with
mixed directed/undirected links. Analogous, significant results
have been derived for distance links in 3-space, though the
results are only partial for formations with cycles in 3-space.
The problems in 3-space are primarily due to the difficulties
of characterizing and constructing minimally rigid bar-joint
frameworks in 3-space [16], [18], [20].
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