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Theoretical Bounds on Control-Plane Self-Monitoring in
Routing Protocols

Raj Kumar Rajendran, Vishal Misra and Dan Rubenstein

Abstract— Routing protocols rely on the cooperation of nodes in the
network to both forward packets and to select the forwarding routes.
There have been several instances in which an entire network’s routing
collapsed simply because a seemingly insignificant set of nodes reported
erroneous routing information to their neighbors. It may have been
possible for other nodes to trigger an automated response and prevent
the problem by analyzing received routing information for inconsistencies
that revealed the errors. Our theoretical study seeks to understand when
nodes can detect the existence of errors in the implementation of route
selection elsewhere in the network through monitoring their own routing
states for inconsistencies. We start by constructing a methodology, called
Strong-Detection, that helps answer the question. We then apply Strong-
Detection to three classes of routing protocols: distance-vector, path-
vector, and link-state. For each class, we derive low-complexity, self-
monitoring algorithms that use the routing state created by these routing
protocols to identify any detectable anomalies. These algorithms are then
used to compare and contrast the self-monitoring power these various
classes of protocols possess. We also study the trade-off between their
state-information complexity and ability to identify routing anomalies.

I. INTRODUCTION

Routing protocols enable a distributed set of nodes to determine the
flow of data over important networks such as the Internet. As a result,
ensuring that nodes throughout the network properly implement the
routing-protocol is of paramount importance. The routing-protocols
in these networks are distributed, and nodes operate independently,
but must cooperate and “play by the rules” of the routing protocol if
the network is to function correctly and efficiently.

A node takes on two sets of responsibilities when it participates in a
distributed routing protocol. Within the control plane, it is responsible
for route establishment: identifying the paths through which packets
flow across the network. Within the data plane, it is responsible
for the forwarding of packets along these computed routes. Routing
can suffer if either of these responsibilities are mishandled, whether
intentionally or by accident. This paper focuses on the control plane.

One or more nodes that misimplement route establishment can
cause widespread damage. The most infamous example is the AS7007
incident in which AS7007, running the BGP protocol, announced
very short, inaccurate routes to most of the Internet [21]. For
over two hours this disrupted connectivity to large tracts of the
Internet. Despite the publicity this incident generated, it is clear
that serious anomalous behavior continues to occur. More recently,
AS3561 propagated more than 5000 improper route announcements
again leading to global connectivity problems [4]. These accidents
demonstrate the need to guard against disruption in a network
caused by misimplementations of the route establishment portion of
a protocol.

One solution is to introduce additional mechanisms that verify
the correctness of the selected routes. However, it may be difficult
to deploy such modifications within existing protocols. Since good
design philosophies seek to utilize all available information and avoid
inessential mechanisms we attempt to understand and use the inherent
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capabilities routing protocols possess for self-monitoring. More to the
point, when one considers a routing protocol in its current form, can
analysis of the information that is exchanged between nodes during
route establishment detect errors elsewhere in the network? If so what
are the kinds of errors that can be detected?

Our goal in this paper is to answer these questions by quantifying
the intrinsic capability for self-monitoring that different routing-
protocols possess and to show how this capacity for introspection
can be harnessed. Toward this we contribute the following:

• We expand on the notion of Strong Detection proposed in [28]
and show how it can be used to detect all errors detectable
through self-monitoring. We show that errors not detectable
through Strong Detection cannot be detected without additional
information by any other technique.

• We construct low-complexity algorithms that implement Strong
Detection for well-known classes of routing protocols.

• We develop computational measures that quantify the self-
monitoring ability of protocols and use them in a simulated
evaluation to compare popular classes of routing protocols.

Our contribution in this paper is theoretical: we look at general
classes of routing protocols and show how they can be analyzed
for their ability to monitor themselves. We use Strong Detection to
reveal “bounds” on the kinds of errors that these classes of routing
protocols can detect. Hence, we are identifying “complexity classes”
of routing protocols in terms of their self-monitoring abilities. We
also develop measures that provide insight into the relative state-
complexity and self-monitoring ability of protocols. We hope our
work provides a rough guide to the relative self-monitoring capacities
of the different protocols and will help in the design of robust
protocols and in choosing protocols that provide the correct balance
between complexity of state-information and resistance to corruption.

The rest of the paper is organized as follows. We discuss related
work in Sec. II and introduce the theory of Strong Detection in
Sec. III. In Sec. IV we present the distance-vector, path-vector and
link-state routing-protocols and provide practical implementations
of Strong Detection for them. In Sec. V we provide experimental
verifications of our self-monitoring techniques through simulated
evaluations. We conclude our paper with Sec. VI.

II. PRIOR WORK

While several works have identified that disruption due to incorrect
implementation in routing-protocols is an important problem, the
approaches to solutions have been different. In [22] and related
work the authors set out to identify nodes that show erroneous
behavior, but in contrast to our work, they do so by analyzing traffic
patterns (in routing parlance, they analyze data-plane data while we
analyze control-plane data). Others emphasize the need for reliable
communication [35] and use centralized public-key infrastructures or
key-distribution mechanisms to address the problem [11], [13], [1],
[12], [15], [30], [3]. However these works do not attempt to harness
the self-monitoring capabilities that protocols possess.

The authors in [34], [33] address the question of decentralized
security in networks. They propose a toolkit of primitives that can be
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added to a routing-protocol to make it more secure. Our work differs
in that we attempt to detect incorrect behavior without modifying the
protocols. Other works [24], [14] propose tools that can locate the
source of routing misbehavior in the face of uncertainty and insecure
environments.

Some bodies of work have attacked broadly similar questions.
Among these is competitive routing [23] where selfish users in a
communications network attempt to maximize their flow by con-
trolling the routing of their flows and the works attempt to find if
there exist equilibrium states. This body of work differs in that they
are concerned with traffic flows rather than reachability and with a
competitive environment rather than a misconfigured environment.

The brief announcement [28] on strong-detection was among the
first works that provided a technique for detecting static inconsisten-
cies while being grounded in a theoretical framework. It complements
other studies that have sought to understand the nature of miscon-
figurations [18] and yet others that aim to detect misconfigurations
through observance of dynamic behavior [16], [2], [31], [10], [6],
[5], [22], [7].

Some recent work that has addressed this problem uses heuristics to
make the best educated guess possible about the state of the network,
but can incorrectly infer that there are problems when in fact none
exist [8], [27], [9], [29]. Other work is willing to take advantage
of simultaneous analysis of multiple perspectives [32], where, for
instance, nodes are willing to share their routing table information.

III. DETECTING MISCONFIGURATIONS

In this section, we develop the idea of Strong Detection which will
enable us to understand the types of misconfigurations that various
classes of protocols can and cannot detect.

We consider a network G = (V, E, W ) where V is the set of
nodes, E is the set of edges that connect pairs of nodes, and W
the corresponding edge-weights. Each node n ∈ V is aware of all
other nodes in the network and communicates directly with a set of
neighbor nodes, represented as N(n) = {N1, · · · , N|N(n)|}. Each
node n also maintains a protocol-specific state, dn where it records
some of the information exchanged. The information contained in dn

will vary depending on the protocol used.
A node n’s state can be thought of as a table of size |V | x |N(n)|,

whose entry, dn(i, j) in the ith row and jth column is the information
reported to it by neighbor nj about the path to node i. This general
framework does fairly well at classifying a wide variety of routing
protocols that “learn from their neighbors”. An example state for the
Distance-Vector protocol is given in Sec IV-A.

Consider the perspective of node n in the network. Suppose
that some other misconfigured or malicious node n̂ in the network
incorrectly implements the protocol, and reports erroneous routing
information to its neighbors. This erroneous information could prop-
agate through the network, possibly altering dn, and lead other nodes,
including n, to select routes that are non-optimal.

If a node n analyzes route information received from other nodes
for incorrect implementations we call it a monitor. A monitor node
performs its usual routing protocol duties, but it also self-monitors
its own state for misconfigurations.

Before continuing, we state some ground rules that we apply to
keep the theoretical problem both tractable and well-specified:

• Stability: we assume that the analysis is conducted after routes
have stabilized. In real networks whose underlying topology
may continually change, routes are continually re-evaluated to
account for changes in the underlying topology. Our assumptions
rule out our ability to detect “dynamic” errors that can be
induced by other types of misconfigurations.

• Detection, not identification: Our goal here is to design tech-
niques that detect the existence of misconfigurations somewhere
in the network. We show that sometimes, even detection cannot
be achieved. Identifying the offender of the misconfiguration
once such a misconfiguration is detected is a separate problem
beyond the scope of this paper.

• Protocol Fixing: We evaluate the self-monitoring abilities of
particular routing protocols as they exist. One could ask “what
if the monitors somehow obtained some additional information
beyond the information gathered in their respective states?”. For
instance, what if forwarding along a route was attempted and
the packet never reached the destination? Clearly, additional
information might enable identification of misconfigurations that
we show cannot be identified. Our view is that this additional
information obtained should be viewed as an enhancement to
the routing protocol.

• Correctness of Monitor: We assume that the monitor node which
does the evaluation operates correctly. Clearly, we cannot make
any claims about the validity of our techniques when applied by
misconfigured nodes.

A. Weak Detection

Can other nodes detect when a misconfigured node n̂ introduces
an anomaly? This problem has been studied previously for specific
protocols. For instance, in [25], it is shown that the triangle inequality
can be applied within RIP [19] (a specific Distance Vector implemen-
tation) to detect certain misconfigurations.

A shortcoming of this previous method is that it identifies a specific
property (in the case above, the property is the triangle inequality)
that the state at a node (or set of nodes) should exhibit, and then looks
for violations only of this specific property within the node’s state. If
a violation of this property is identified, then clearly this is sufficient
evidence that the network is exhibiting a misconfiguration. However
when a violation is not found, this does not necessarily mean that a
misconfiguration does not exist.

n a b

a 0 2
b 2 0
c 3 1
d 3 3

Fig. 1. Node N’s state

?
zyx

1

Fig. 2. Undetectable Report

Consider the example state-table in Fig. 1 where node n executes
the Distance Vector Protocol along with four other nodes, a, b, c and
d. Suppose that the length of every edge in the network is known
to equal either 1 or ∞ (i.e. no edge). a and b are n’s neighbors
and are connected to it by edges of distance 1. The distance-vector
state-table of node n is shown in Fig. 1 where a reports to node n
that its shortest-path distances to nodes a,b,c and d are respectively
0, 2, 3, and 3.1 Similarly, node b reports distances of 2, 0, 1, and 3
respectively to these four nodes.

In this state-table, symmetry is not violated since a and b both
report distances of 2 to each other. Similarly the triangle inequality is
not violated in node n’s state table. For instance, a claims its shortest
path to node c has length 1. If the sum of claimed shortest path lengths
from a to b and b to c was less than 3, the triangle inequality would

1Note here that we are assuming that the value reported in the table indicates
the distance from the neighbor to the destination. An alternative form often
used is to have the value indicate the distance from the node n itself to
the destination through that neighbor. Since n knows the edge-length to its
neighbor, the two forms provide equivalent information.
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be violated, but in this graph, this sum equals 3. However, one can
see that a misconfiguration must in fact exist using the following
argument. If all the information in n’s state were correct, then there
clearly is an edge of length 1 from b to c (the only way to get length
1 between them). Now since a is distance greater than 1 from the
three nodes b, c, d it must attach to b through n (i.e. through the
edges a − n and n − b). So we have the edges a − n,n − b and
b − c. Since b is distance 3 from d and n and c are distance 1 from
b, it must be that d attaches to a. But then d(a, d) = 1 and not
3 as shown in Table 1. Therefore this network cannot exist! Here,
checking the symmetry and triangle inequality properties failed to
identify the misconfiguration even though it was possible for node n
to detect a misconfiguration using its state.

We say that the triangle-inequality based method described above
belongs to a class of methods that apply Weak Detection. A method
provides Weak Detection when, given a node’s state, an existing
misconfiguration is not detected for one (or more) of two reasons:

• The misconfiguration is undetectable, regardless of what prop-
erty is explored.

• The misconfiguration is detectable by checking some property,
but the Weak Detection method did not check the appropriate
property.

B. Strong Detection

Our work investigates what is called Strong Detection [28] where
the goal is to construct methods that, like Weak Detection methods,
detect misconfigurations. However, Strong Detection methods must
detect any misconfiguration that is detectable by any property. Note
however that there are some misconfigurations that are impossible
to detect, even by Strong Detection techniques. Consider the simple
situation pictured in Fig. 2 where node z’s only edge goes to node
y. Suppose node x wishes to determine whether or not node y is
reporting accurate information.Since information about the edge eyz

has to always propagate through node y, node y can choose to report
any distance to z. Hence if x is the monitor it cannot detect a
misconfiguration at y.

A graphical depiction of Strong and Weak detection is presented in
Fig. 3. The x−y plane represents the space of possible misconfigura-
tions for a particular protocol and the axis perpendicular to that plane
represents the space of protocols. The misconfigurations of a partic-
ular protocol are shown to be broken up into two sets: detectable and
undetectable misconfigurations. Known Weak Detection techniques,
such as the triangle-inequality, can be used to check for subsets
of the detectable misconfigurations. There may be Weak Detection
techniques, unknown as of now, that may detect other subsets of de-
tectable misconfigurations. However, Strong Detection, by definition
must detect all detectable misconfigurations. By definition, the region
covered by Strong Detection equals the detectable region, and thus
encompasses the union of what is detectable by weak detection.

We start by providing a bird’s-eye view of how Strong Detection
functions at a node n, and then we show how it can be practically
implemented. The basic idea behind implementing Strong Detection
at a monitor node n is to try to identify a network that could yield the
state dn it obtained. More formally, let G be the (possibly infinite)
set of valid network configurations, i.e., the actual network must be
described accurately by some G ∈ G. For instance, if distance is
computed in terms of the number of hops, then G would be the set of
networks with edges of length 1. If edge lengths equal propagation
delay, then G could be the set of all graphs, each of whose edge
lengths are all less than 500 (i.e., a conservative upper bound on the
propagation delay between a pair of nodes).

Suppose n checks each network G ∈ G. To check a particular
network G, n builds a “toy” network that describes G, and then, in

Distance−Vector
Link−State

Path−Vector

All Misconfigurations

Symmetry

Triangle Inequality

Unknown Property

Protocols
Routing

Un−detectable

Detectable 

Fig. 3. The Space of Misconfigurations

its local memory, simulates the routing protocol upon this (network)
graph G to obtain a state, dG

n for the node in G that corresponds to
n. n then compares the state dG

n in the “toy” network G to its actual
state dn in the real network.

There are two outcomes to consider:

• If no network G ∈ G satisfies dG
n = dn, then a misconfiguration

must have occurred: there is no valid network that would have
generated the obtained state.

• At least one G ∈ G satisfies dG
n = dn. Then n cannot detect

the misconfiguration, if one exists. This is because, from n’s
perspective, the actual network may be described by G, and
when the routing protocol was run correctly, the returned state
was dG

n . On the other hand, the network might be some other
G′ where dG′

n 6= dn when the routing protocol runs correctly,
but a misconfiguration produced dn.

The problem with Strong Detection, as described above, is the
time needed to either find a G that produces a matching state, or
the (potentially infinite) time needed to demonstrate that there is no
matching graph.

C. Computationally Feasible Strong Detection

We now describe in generality how Strong Detection can be im-
plemented within a reasonable (i.e., low-degree polynomial) amount
of time for a variety of protocols. The key idea is to identify how
to construct a single special graph, G from within the space of valid
graphs, G, which we call the canonical graph. Node n with state dn

pictured in Fig. 4(a) runs the following procedure:

• n executes an algorithm (the details of the algorithm are spec-
ified later in the paper) that takes as input its state, dn, and
outputs a particular graph G′ with edge-weights w′, which we
refer to as the canonical graph. This process is pictured in Fig.
4(b).

• If G′ is a valid graph (G′ ∈ G), then n next simulates the
routing-protocol on G′, producing simulated state d′

n for node
n as pictured in Fig. 4(b).

• If d′
n = dn, then we have identified a valid graph G′, and hence

there is either no misconfiguration or it is impossible to detect,
since G′ may accurately describe the network and would cause
n to obtain state dn within a correct implementation.

• If G′ is not valid (G′ /∈ G), or if (G′ ∈ G) but d′
n 6= dn, then

there is no graph G ∈ G that would produce state dn when the
protocol is run on it. This is a rather strong claim and we have
proofs for the protocols we consider.

This procedure applies to the very broad class of graphs where
each pair of nodes i, j has a different set Si,j of allowable values
for w(i, j), making a graph G valid if and only if w(i, j) ∈ Si,j .
The Si,j are assumed to be known a priori (i.e., node n would
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           A   B   E

B        1    0     3
C        1    2     3
D        2    1     3

A        0    1     2

G        2     1    1
F        1     2     3
E        2    3     0

Node

A

B

E

C

D

G

F

Node−State

(a) A Node’s State

           A   B   E

B        1    0     3
C        1    2     3
D        2    1     3

A        0    1     2

G        2     1    1
F        1     2     3
E        2    3     0

           A   B   E

B        1    0     3
C        1    2     3
D        2    1     3

A        0    1     2

G        2     1    1
F        1     2     3
E        2    3     0

(b) The Canonical Graph

Fig. 4. Strong Detection

know these values, and can be used as input to the algorithm that
constructs the canonical graph). Each set Si,j can be distinct, and
can be any arbitrarily chosen collection of intervals whose lower
boundary is closed (i.e., the intervals forming Si,j can be of the
form [x, y] or [x, y)). For example SA,C = {1, 3, [4.2 − 5.6]} and
SB,C = {2, 4, [5.1 − 7.6)} are valid allowable values for a single
graph. Our procedures apply to this broad class of graphs unless
otherwise stated.

We describe how the canonical graph G′ mentioned in Sec. III is
constructed for each of the protocols listed in Sec. IV.

IV. THE PROTOCOLS

In this section we study a number of routing protocols and show,
for each, how the Strong Detection technique introduced in Sec. III
can be applied by a self-monitoring node to check for detectable
errors introduced by other nodes.

For each protocol, we outline its operation, describe the state-
information contained in each node, present a low-complexity algo-
rithm to detect errors and prove that the algorithm does indeed detect
all detectable misconfigurations. We study the following protocols,
illustrating the error-detection process for each with the example
graph of Fig. 5(a). In all figures node n in the example graph is
the self-monitoring node.

• Distance-Vector
• Path-Vector with hop-by-hop distance
• Path-Vector with total distance
• Path-Vector with Incomplete Information
• Link-State

A. Distance Vector

The popular RIP protocol was [19] an early implementation of the
Distance-Vector protocol. While RIP is currently not in wide use,
variants of distance-vector remains popular in resource-constrained
settings such as ad-hoc networks and sensor-nets because of its
simplicity and minimal footprint. AODV [26] is a widely known
on-demand version of the distance-vector protocol that is used by
mobile nodes in ad-hoc networks.

1) Model: A node n’s state in distance vector is a table of size
|V | x |N(n)|, whose entry, dn(i, j) in the ith row and jth column
equals the shortest path distance that neighbor nj claims exists from
itself to node i 2.

2An alternate view has dn(i, j) to be the shortest path distance of node n
to node i through neighbor j. The two views can easily be computed from
one another.

2) Canonical Graph Construction: The canonical graph G′ is
first initialized with all the nodes in the network. Then every
pair of nodes i, j in the graph is connected with an edge whose
weight w′(i, j) is the smallest value in Si,j that is no less than
maxk∈N(n) |dn(k, i) − dn(k, j)|. 3 If no such value exists (in the
case where this maximum is larger than any value in Si,j ), then the
edge is omitted (or, equivalently, set to ∞).

After all edges are constructed, if G′ ∈ G, the distance vector
algorithm is simulated on G′ producing a state table d′

n for node n.
Then d′

n is compared to the original state table dn within which we
are attempting to identify a misconfiguration.

The state of of node n of the example graph of Fig. 5(a) is shown
in Table 5(b). The graph G′ that results in running the canonical-
constructor algorithm on the state table of Table 5(b) is shown in
Fig. 5(c). Note that while the original graph G is not a complete
graph, the reconstructed graph G′ is a complete graph. It can also be
verified that running the distance-vector algorithm on either of these
graphs produce the same state table of Table 5(b).

A

B

C

D

E

F

2

2

1

1

2 2

3

2 1

2

n

(a) Example Graph

A B
A 0 3
B 3 0
C 1 2
D 5 2
E 3 1
F 4 2

(b) State-
Table

A

B

C

D

E

F

1 2

1

2

3

3

4

3

5

2

1

2

4
2

1

n

(c) Canonical Construction

A B
A 0 3
B 3 0
C 1 2
D 5 2
E 3 1
F 6 2

(d) State-
Table with
Error

A

B

C

D

E

F

1 2

2

3

3

5

2

1

4
2

1

6 5

3

3N

(e) Canonical Graph with error

A B
A 0 3
B 3 0
C 1 2
D 5 2
E 3 1
F 6 3

(f)
Computed
State

Fig. 5. Distance Vector

Theorem 4.1: In the distance-vector protocol, dn is a valid state
table for some graph G ∈ G if and only if it is valid for the distance-
vector canonical graph, G′ ∈ G.

The proofs can be found in the Appendix.

3Note that it is this requirement that we choose a value no less than the
stated value that forces us to impose the requirement that each interval is
closed from below.
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3) Misconfiguration Examples: Now let us consider a situation
where there is a misconfiguration and show how it is detected by
node N . Suppose that node C erroneously reports to A that its
distance to node F is 5 instead of the correct distance 3. Node
N ’s state will change and be as pictured in Fig. 5(d) (A’s distances
to F has changed because of C’s error). Next node N constructs
the canonical graph G′ from its new state shown in Fig. 5(d) that
contains the changes resulting from C’s error. This canonical-graph
G′ constructed according to the algorithm outlined earlier will be as
pictured in Fig. 5(e). Note that the weights on edges eAF , eCF , eEF

and eBF have changed relative to the canonical-graph of Fig. 5(c)
constructed from the correct state. As the final step in the process,
node N executes the distance-vector protocol on the canonical-graph
G′ of Fig. 5(e). This will result in a state d′

N as pictured in Fig. 5(f).
Node N will compare this state to its state dN of Fig. 5(d) and will
notice that dN (F, B) = 2 while d′

N (F, B) = 3. Since dN 6= d′
N

node N will correctly conclude that there is a misconfiguration!
As a second example let us apply this methodology to the sample

state of Fig. 1 we considered earlier where symmetry and the triangle-
inequality properties held and the only allowable edge-weight was 1
(i.e. Sx,y = {1} for all x, y). In that case we concluded, through
a complex logical argument, that there could be no valid graph
that produced that particular state-table. We illustrate here how we
could arrive at the same conclusion using Strong Detection. Applying
the canonical-constructor described above to the state-table of Fig.
1 would produce a graph with just one edge between b and c of
weight 1. This graph obviously has no path between a and d and
therefore if we ran the distance-vector protocol on this graph it would
definitely not produce the state table of Fig. 1. We conclude, without
the complicated logic needed earlier, that this state is the result of a
misconfiguration.

4) Space and Time-Complexity: In performing Strong Detection,
the self-monitoring node executes two new procedures: one to create
the canonical-graph from its state, and the second to run the routing-
protocol on the canonical graph. The canonical graph constructed for
distance-vector in Sec. IV-A is fully-connected so has |V | nodes and
|V |×|V −1|/2 edges requiring space of the order of |V |2. Executing
the routing-protocol on the canonical-graph requires the state for each
node to be stored. This requires space of the order of k|V |2 where k
is approximately 3+2|V |1/d. Therefore the overall space-complexity
is O(|V |2+1/d) with a small proportionality constant.

Constructing each edge requires looking at the information pro-
vided by each neighbor. So it has a time-complexity of d|V |2 where
d is the number of neighbors, or out-degree. Running the distance-
vector routing-protocol on the fully-connected canonical-graph has
time complexity of O(|V |3). This is because at each node routes
need be computed for |V | nodes by looking at information provided
by |V − 1| neighbors. However the canonical graph constructor of
Sec. IV-A that produces a fully-connected graph is used in this
paper mainly for ease of exposition. In practice, alternative canonical-
constructors that produce a canonical-graph with an out-degree d
that is closer to that of the original graph will be used or the fully-
connected canonical graph can be pruned off redundant paths. For
such graphs where d << |V |, executing the protocol has a time
complexity of O(|V |2). Therefore, in practice, the overall time-
complexity will be O(|V |2).

B. Path Vector with hop-distances

In the path-vector routing algorithm, each node maintains a path (a
list of nodes to be traversed) to each node in the network. Periodically
each node exchanges some paths with each neighbor and recomputes
its most-desirable path to each node in the network based on its

individual policies. Therefore each node’s state or view consists of
the most-desirable paths each of its neighbors claims to other nodes
in the network. We first consider a version of the path-vector routing
algorithm where neighbors exchange complete paths to destinations
and additionally the hop-by-hop distance of these paths.

A B
d p d p

A 0 - 2,1 C,A
B 1,2 C,B 0 -
C 1 C 2 C
D 1,2,2 C,B,D 2 D
E 1,2 C,E 1 E
F 1,3 C,F 1,1 E,F

(a) Path Vector with hop-
distances

A B
d p d p

A 0 - 3 C,A
B 3 C,B 0 -
C 1 C 2 C
D 5 C,B,D 2 D
E 3 C,E 1 E
F 4 C,F 2 E,F

(b) Path Vector

A

B

C

D

E

F

2

2

1

2

2

2

1
3

1n

(c) Canonical Graph

Fig. 6. Path Vector

1) Model: Consider the same example network used earlier and
pictured in Fig. 5(a). The state of node n is as shown in Fig. 6(a) for
this network. Note that in this case, each node n’s state consists, as
before, of a table of size |V | x |N(n)|, whose entry, dn(i, j) in the
ith row and jth column is the information reported to it by neighbor
nj about the path to node ni. However each dn(i, j) now consists
of two vectors of length k and k + 1, h0, h1, . . . , hk and v1, . . . , vk

where hi ∈ V and vi ∈ W . The first vector is the ordered set of
nodes the shortest path from i to j takes while the second vector
represents the weights of the associated edges.

2) Canonical Graph Construction: Constructing the canonical
graph for such a state table is straightforward. For each path reported
by any neighbor, edges with the appropriate weights are added if
they don’t exist. Note that all edges in the original graph that do not
participate in a path will be excluded from the canonical graph G′.
A contradiction can arise during the construction if multiple edges of
varying lengths need to be constructed between two nodes. Such a
contradiction implies that the state table is erroneous. The algorithm
is presented in Fig. 7.

The canonical graph constructed from the state-table pictured in
Fig. 6(a) is pictured in Fig. 6(c).

Theorem 4.2: In the path-vector protocol, dn is a valid state table
for some graph G ∈ G if and only if it is valid for the path-vector
canonical graph, G′ ∈ G.
The proof is given in the Appendix.

• Initialize G′ with V
• For each dn(i, j) do

– For each vi in dn(i, j) do
∗ Add edge e′

hi−1 ,hi
with weight vi if it does not already exist.

∗ If edge e′

hi−1,hi
exists with weight not equal to vi return error.

– done (for each vi)
• done (for each dn)

Fig. 7. Canonical Construction Algorithm for Path Vector
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3) Space and Time-Complexity: We consider the space and time
complexity of the self-monitoring process here. The canonical graph
constructed for path-vector in Sec. IV-B.2 has approximately |V |
nodes and l × |V | edges where l is the average path-length and
l ≈ |V |1/d. Therefore the graph requires space of the order of
|V | × |V |1/d. Executing the routing-protocol on the canonical-graph
requires space of the order of |V |2 ∗ |V |1/d. Therefore the overall
space-complexity is O(|V |2 × |V |1/d).

Constructing the canonical graph requires looking at each edge in
all the paths, so has a time complexity equal to the number of edges
in all paths provide so is l × |V |. Running the path-vector routing-
protocol on the canonical-graph has time complexity of O(d|V |2)
since at each of |V | nodes, routes need be computed to |V | nodes
by looking at information provided by d neighbors. Therefore the
overall time-complexity will be O(|V |2).

C. Path Vector

BGP is an example of a protocol that uses path-vector routing. In
BGP a node (known as an AS) computes its most-desirable path to
each node in the network based on its individual policies. Therefore
each node’s state or view consists of the most-desirable paths each
of its neighbors claims to other nodes in the network. We consider a
simplified path-vector routing algorithm where the shortest-paths are
the most desirable paths.

1) Model: Here, neighbors exchange the total distances and
complete-paths to destinations but do not provide the hop-by-hop
distance. That is is, they exchange the sequential list of nodes than
must be traversed to reach a destination and the total distance of the
complete path but not the individual hop weights. Such a state is
pictured in Fig. 6(b).

Even though, at first glance, it may seem that there is less
information in this state than in the state of a node where the hop-by-
hop distance is also provided, it can be seen that the two states provide
identical information. This is because the individual hop weights can
be inferred from the total distance as follows. If neighbor Ni reports
a distance d(Ni, X) to node X with path Ni, . . . , Y, X then it must
be the case that the path to Y must be Ni, . . . , Y , since if a shorter
path existed to Y then the path to X through Y would also include
that path. Therefore wXY can be computed as d(Ni, X)− d(Ni, Y )
for all X, Y , in any reported path.

2) Canonical Graph Construction: Therefore the canonical graph
is the same as for the case of path-vector with hop-by-hop distance
and is also pictured in Fig. 6(c).

3) Space and Time-Complexity: Since individual edge weights
have to be computed from total path lengths, an additional l|V |
operations need to be performed relative to the algorithm for path-
vector with hop-by-hop distance. This is small compared to the
overall time-complexity.

D. Path Vector with Incomplete-Information

We now consider the path-vector algorithm, but in the case where
paths and total-distances are known to only a subset of all the nodes
in the network. This is the case in some on-demand path-vector
algorithms, where paths to a destination node are computed only
when a packet needs to be delivered to the destination. In dynamic
and mobile environments paths to a destination that are older than
preset limit are considered stale and are discarded and are only
regenerated when a new packet arrives for that destination. Such
strategies lead to a situation where a node possesses valid paths to
some subset of the nodes in its network.

1) Model: In this version of the path-vector algorithm, each node
knows the paths and the total distance to a subset M ⊂ N of the
nodes in the network. Such a state is pictured in Fig. 8(b). Even
though there are five non-neighbor nodes B, C, D, E,F , distances
and paths to only the two nodes B and D are part of the state.

Unlike the “Path-vector with total-distance to all nodes” algorithm,
in this case the individual link-weights cannot always be computed.
Consider the example network of Fig. 8(a) and the resulting state
of Table 8(b) for a network where all links eij have Si,j , the set
of allowable weights, to be the real values in the range from 2 to 3
(2 ≤ wij ≤ 3). From the state table we know that

wac + wce + web = 8 (1)

and
wac + wce + wef + wfd = 10 (2)

and from the Si,j we further know that 2 ≤ wac ≤ 3, 2 ≤ wce ≤ 3,
2 ≤ web ≤ 3, 2 ≤ wef ≤ 3, 2 ≤ wfd ≤ 3. We have five unknowns,
two equations and five ranges for the five unknowns. The value of the
five variables cannot be uniquely determined from the two equations
and therefore the correct weights for the links cannot be determined.

2) Canonical Graph Construction: The canonical graph in this
situation with incomplete information can be constructed if we can
determine allowable values for each edge-weight (wij ∈ Si,j), such
that they satisfy the total distance requirement for each known path.
So to determine the canonical path we need to find a feasible solution
for the linear set of equations given by the state-table with the
requirement that each edge-weight also satisfies its bound Si,j .

For the case where Si,j is an interval on the real-line x < wij <
y, x, wij , y ∈ < (i.e. each edge weight is known to belong to an
interval on the real-line) the problem reduces to finding an initial
feasible solution to a linear-programming problem. 4 The first-phase
of the Simplex algorithm produces such a solution [17] and so can be
used to generate the canonical graph G′. Since the Simplex algorithm
is well known, we omit the details of computation and just show one
feasible canonical graph for the state of Fig. 8(b) in Fig. 8(c).
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Z
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2
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2
n

(a) Example Graph

Ad An

A 0 -
B 8 C,E,B
D 10 C,E,F,D

(b) State-Table

A

B

W

X

Y

Z

5

2.5 2.5

2.5

2.5

3
n

(c) Feasible Graph

Fig. 8. Path-Vector with Incomplete Information

Theorem 4.3: In the path-vector protocol with incomplete-
information where each edge weight is constrained to an interval on

4In general our canonical-graph constructions are valid for a more general
Si,j .
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the real-line (x < wij < y where x, wij , y ∈ <), dn is a valid state
table for some graph G ∈ G if and only if it is valid for the canonical-
graph for Path-Vector with Incomplete-Information, G′ ∈ G .
The proof is simple and is omitted.

3) Space and Time-Complexity: The space and time complexities
are the same as that for the path-vector case except that |V | in this
case is the number of nodes to which paths are known (rather than
all nodes in the network).

E. Link State

OSPF is an example of a protocol that uses Link-State routing
where each node maintains a list of the neighbors and distances to
neighbors for each node in the network. Periodically nodes exchange
their links (or list of neighbor nodes and weights) with each neighbor.
The process stops when each node has the complete list of neighbors
(and weights) for each node in the network. From this information
each node can recreate the entire network. Therefore in the link-state
protocol each node’s state is a snapshot of the entire graph. This
property trivializes the analysis of detecting misconfigurations for
link-state protocols. In fact, we have that G′ = G. In other words,
imagine if node i were to enumerate the set of possible network
graphs which, after correctly running the link-state protocol would
produce its state Si. The only graph in this set would be G. In fact,
if n1, n2, · · · , nk are neighbors of i and all neighbor’s states match
i’s state (i.e, Snj

= Si for all neighbors j, then clearly node i cannot
detect a misconfiguration. In contrast, if two neighbors, x and y have
states that remain fixed yet do not match, Sx 6= Sy then i will detect
a misconfiguration.

The above observation can easily be extended to the following
Theorem by applying the neighbor argument above along paths of
properly-configured nodes:

Theorem 4.4: Let G = (N, E, W ) be a graph running the link-
state protocol where a subset of nodes, N ′ ⊂ N are properly
configured. Then a misconfiguration is detectable in the iff there exist
two nodes x, y ∈ N ′ where Sx 6= Sy and there is a path from x
to y through a series of nodes n1, n2, · · · , nk where nj ∈ N ′ for
1 ≤ j ≤ k.

F. Asymmetric Links

We have considered networks with symmetric edges until now.
In cases where the underlying network has asymmetric links, the
canonical graphs for the path-vector protocol proceed as for the sym-
metric case except that the edges are directed. The canonical graph for
distance-vector proceeds similar to the case for symmetric case with
a couple of differences: the monitor’s neighbor nodes are connected
to it with directed edges of the appropriate direction. Additionally
every pair of non-neighbor nodes i, j in the graph is connected with a
directed edge in each direction whose weight w′(i, j) is the smallest
value in Si,j that is no less than maxk∈N(n) dn(k, i) − dn(k, j)
(in undirected graphs we took the absolute value of the difference
between dn(k, i) and dn(k, j)). The proof that this method indeed
produces the canonical graphs for asymmetric distance-vector is
similar to the proof for symmetric distance-vector.

G. Multiple Perspectives

We have emphasized, until now, that our detection technique can
be applied to the protocol without modification or additional informa-
tion. We now consider how the same technique can be applied when
a network has several monitor nodes and the monitor nodes decide
collaborate with each other in detecting misconfigurations. Sharing
state information with other trusted monitors can help perform a more
thorough and complete inspection.

We consider a situation where a subset of trusted monitor nodes
S in the network have a trusted out-of-band communication channel
available to them to communicate with each other. They can use
this trusted channel to provide each other their state information.
Therefore each node has a state dS = ∪n∈Sdn or a view of the
network that is the union of the states of the individual nodes. With
this additional information each node can perform better detection
that with just its own perspective. The procedure to check for
misconfigurations proceeds as before except that dS is used to
construct the canonical graph rather than the dn earlier.

V. SIMULATED EVALUATION

In this section we present the results of simulation experiments
that study and distinguish the kinds of implementation errors that
can and cannot be detected through self-monitoring. We device a
series of experiments and apply them to each class of protocols
in turn. Our experiments show that there is a clear increase in the
self-monitoring ability of path-vector protocols over distance-vector.
Additionally there is a clear correlation between the detectability of
an anomaly and the distance between the monitor and the liar. It
is also clear that erroneous information about distances to multiple
nodes are more easily detectable than isolated errors.

A. Experimental Setup

In our experiments we used five different networks with 50, 100,
200, 400 and 800 nodes each. The networks were generated by the
BRITE topology generator [20] which attempts to create synthetic
topologies that accurately reflect the actual Internet topology with re-
spect to aspects such as hierarchical structure and degree distribution.
All networks are undirected graphs with flat AS-Level topologies
constructed using the Barabasi model. The nodes were placed on the
X-Y plane according to a heavy-tailed distribution (details can be
found at [20]). The edge-weight of a link between two nodes is set to
be the Euclidean distance between the two nodes. The characteristics
of the generated networks are given in Table I.

Nodes Edges Degree(%)
Avg. 1 2 3 4 5

50 97 3.9 0 58 14 6 6
100 197 3.9 0 57 11 8 7
200 397 4.0 0 50 21 8 6
400 797 4.0 0 49 20 8 8
800 1597 4.0 0 50 19 9 5

TABLE I
NETWORK CHARACTERISTICS

In all experiments one node, referred to as the monitor, is the self-
monitoring node and another node, referred to as the liar 5 publishes
erroneous information to its neighbors. The corrupt node (the liar) can
propagate incorrect information in one of two ways: it can understate
or overstate its distance to some node. In both these instances we
attempt to determine how large the misstatement needs to be before
it is detected by the monitor. We call these the negative and positive
detection-thresholds T− and T+.

To determine these thresholds we conduct a series of experiments
where we decrease the magnitude of the misstatement until we
reach the point at which it is clearly not detected. We first test a
100% misstatement and if this is not detected we set the threshold
to be 100%. If the 100% misstatement is detected we make the
misstatements smaller in increments of approximately 10% and note

5The words liar used here is not entirely accurate as a node may misstate
distances intentionally or inadvertently.
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the point at which it is no longer detected. We set this point to the
the detection threshold. Note that if none of the misstatements are
detected T− is set to -100% and T+ is set to +100%.

In addition to detection-thresholds, we recorded what we call route-
change detection. Misstatements by a node can change node’s states
without changing their routing (i.e. the change are not significant
enough to warrant routing through a different node). We therefore
recorded how often such a significant misstatement by the liar was
detected at the monitor; i.e. the fraction of times that a misstatement
that changed the monitor’s routing was detected.

We conducted two series of experiments for each protocol. In our
first series of experiments the corrupt node misstates its distance to
a single node. In these experiments we studied how the detection
thresholds were affected by three different distances: the distance
between monitor and liar, the distance between liar and lied-about,
and the distance between monitor and lied-about. In the second series
of experiments, the corrupt node misstated its distance to all nodes
in the network simultaneously by a constant factor. We varied this
factor and determined the detection-thresholds as earlier. We again
charted the detection thresholds T− and T+ as a function of the
distance between the monitor and liar. In all experiments node 0 was
arbitrarily chosen to be the monitor, but the node that played the role
of the liar varied. In both experiments the liar was chosen at random
so that the distance between the monitor and liar was uniformly
distributed between 0% and 100% of the maximum distance between
the monitor and the node furthest from it in the network. In each
of our experiments we computed the detection thresholds by setting
different nodes to be the liar and repeating the experiment between
100 and 500 times depending on the size of the network. The node
that was lied-about was always chosen randomly in a uniform fashion
from all the nodes in the network. In all cases we conducted the
experiments on more than one of the networks with 50,100,200,400
and 800 nodes mentioned above, to account for the effect of network-
size and characteristics on the ability of protocols to detect corrupt
nodes.

B. Distance Vector (DV)

Our first experiment for the distance-vector protocol charts the
understatement and overstatement detection thresholds as a function
of the distance between monitor and liar when the liar misstates
its distance to a single node. The understatement and overstatement
thresholds are charted as a function of the distance between monitor
and liar, measured in hops, for the four of size 100,200,400 and 800
nodes in Fig. 9. The results of the same experiment where the distance
between monitor and liar is measured as a percent of the maximum
distance to any node are shown in Fig. 10 for networks of size 50,
100 and 200 nodes.

In both these figures, the curves at the top half of the charts indicate
T+ the overstatement-threshold, while the plots at the bottom half
indicate T− the understatement-threshold. The area above and below
the two respective sets of curves indicate detected misstatements
while the area between the two sets of curves indicate undetected
misstatements.

An effect that is seen is that, as the distance between the liar
and monitor increases, it is less likely that the lie will be detected.
This is because a lie is less likely to reach the monitor if the liar is
further away. As the distance between two nodes increase, it is less
and less likely that their paths to other nodes go through each other.
Interestingly the plots in Fig. 9 also indicate that the detectability
of understated lies falls off less quickly in larger networks than
in smaller networks. The relationship between the parameters of
the network (connectivity, out-degree distribution), network size and

detectability is beyond the scope of this paper but is an interesting
area for future investigation.
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In the next chart (Fig. 11) we plot the detection-thresholds as a
function of three distances: distance between monitor and liar, liar
and lied-about, and monitor and lied-about for the network with 400
nodes. We notice that detection-thresholds monotonically increase
only when the distance is between the monitor and the liar. The
distance between the monitor and lied-about and the distance between
liar and lied-about are only weakly correlated to detection. These
results indicate that in large networks, it may be necessary to have
multiple nodes applying Strong Detection techniques to ensure that
there is at least one monitor within a short distance of a potentially
corrupt node.

In our second series of experiments we chart detection-thresholds
as a function of the hop-distance between liar and monitor when
the liar misstates distances to all nodes. The liar in this case
simultaneously misstates its distance to all nodes in the network
by a constant factor. We again determine the detection-thresholds
at which these simultaneous lies become perceptible by the monitor.
The results are charted in Fig. 12. By comparing it to Fig. 9 where
the liar misstated its distance to just a single node, it is clear that such
lies are more detectable. The area above and below the overstatement
and understatement curves is relatively smaller and the area between
between the curves is relatively larger. While the general trend in Fig.
12 is clear, there is a kink in the detectability of the 200 node graph.
We also noticed this kink in other experiments on the 200 node graph.
Increasing the number of sampling points did not get smoothed out
this kink. This leads us to believe that local topological details of a
network can affect detectability in that area.

Since misstatements by nodes sometimes change the distances
to target nodes at the monitor but do not change its routing, we
charted the efficiency of self-monitoring in detecting such significant
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misstatements. The fraction of lies that changed routing and were
detected is charted in Fig. 13. It should be noted that this measures
only the fraction of misstatements that changed routing at the monitor
node and were detected. It is possible that some misstatements did
not change routing at the monitor but did change routing at other
nodes.
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C. Path Vector (PV)

We next show the results of our experiments for the Path Vector
protocol. The detection-thresholds when a corrupt node misstates
distances to a single node is charted in Figs. 14 and 15 as a function
of the distance between monitor and liar. The distances are measured
in hops in Fig. 14 and as a percent of distance to the furthest node in
Fig. 15. It is clear from these graphs that anomalies are more easily
detected in path-vector than distance-vector and that the distance

between the monitor and liar clearly affects the monitor’s ability to
detect anomalies.

It can be seen that overstatements are detected less often. One
reason for this is that overstatements do not propagate as much as
understatements. If a node overstates its distance to a node, other
nodes will ignore the path through the liar and use other paths.
However if a liar understates its distance, the path through the liar
becomes attractive and attracts routes.

We again noticed the kink in the detectability of the 200 node
network mentioned earlier in Fig. 15 leading us to believe that the
particular topology of the 200 node graph affects the detectability of
our monitor node.
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Detection-thresholds as a function of the three distances: monitor
to liar, liar to lied-about and monitor to lied-about are charted in
Fig. 17 for the 800 node network. Again it is clear that only the
distance between the monitor and the liar is clearly correlated to the
detection-thresholds.

Detection thresholds when a liar misstates its distance to all nodes
is charted in Fig. 16 as a function of the hop-distance between liar
and detector. Again, by comparing it to Fig. 14, it is clear that this
class of lies are more detectable than lies to single-nodes.

D. Path Vector with Incomplete-Information

We next show the results of our experiments for the Path Vector
protocol where nodes have information to only a fraction of the
nodes in the network. In this instance we wished to study how the
availability of information to more nodes affected the ability to detect
errors elsewhere in the network. In our experiments we varied the
fraction of nodes in the network to which the monitor had routes
from 25% to 100%. The effect on the detection-thresholds curves
as a function of the distance between monitor and liar measured in
hops to a single node is charted in Figs. 18. A clear effect is seen. As
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the fraction of the nodes to which paths are available, the chance of
detection goes up. For example the area between the understatement
and overstatement curves when routes to 100% of the nodes are
available (undetected errors) is smaller than the area between the
understatement and overstatement curves when routes to 25% of the
nodes are available. This fits our intuition that as more accurate data
becomes available the more likely that an error will be detected.
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E. Comparing the Protocols

It is clear from the experimental results in Sec. V that detection-
thresholds and therefore the self-monitoring capability varies for the
different protocols. Additionally it is clear from Sec. IV that the
state-complexity of the different protocol classes vary. In this section
we briefly attempt to quantify the difference in the self-monitoring
capabilities and state-complexities of different protocols and chart the
trade-off.

A measure of the self-monitoring capacity of a protocol should
tell us about the ratio of lies it can detect relative to the lies it
cannot. Since the set of all lies is infinite the measure has to be
over some constant set of lies. We therefore define a protocol’s P’s
self-monitoring ability d(P ) for a set of lies S to be the ratio between
detected lies and all lies in the set S.

Self-Monitoring Abilityd(P ) = |detected(S)|/|S|

where S is a set of lies, and detected(S) is the set of lies in S that
are detected.

In Sec. IV we computed the state-complexities of the different
protocols. We tabulate it here in Fig. II for convenience. Note that
|V | is the number of nodes in the network, |E| the number of edges,
d the average out-degree and l the average path-length.

Protocol State-Complexity
Distance Vector 3 + d

Path Vector 2 + l
Path Vector (w hop-by-hop distance) 2(1 + l)
Path Vector (Incomplete Information) 2(1 + l)

Link-State 2(1 + |E|/|V |)

TABLE II
STATE-COMPLEXITY

We tabulate the self-monitoring ability of the different protocols,
their state-complexities and their efficiencies for the network with 200
nodes in Fig. III. The self-monitoring ability of the different protocols
is measured over the over the set of understatements uniformly
distributed between 0% and −100%. We compute the efficiency to
be the ratio between the self-monitoring ability and state-complexity.

It can be seen that the distance-vector protocol detects the smallest
fraction of lies, while the path-vector protocol shows an improvement
in detectability. The link-state protocol, which can detect all under-
statements unless the liar partitions the network, is provided as a
reference.

Protocol Monitoring Ability State-Complexity Efficiency
Distance Vector 10 3 3.3
Path Vector 32 8.6 3.7
Path Vector (w hop-
by-hop distance)

32 12 2.7

Link-State 100 8 13

TABLE III
EFFICIENCY

VI. FUTURE WORK AND CONCLUSION

Our current work involves analyzing the ability of single nodes or
groups of cooperating nodes to detect errors when groups of collab-
orating nodes misstate distances. Additionally we are investigating
the ability of a node, or a group of nodes, to pinpoint the origin
of an error. We are also interested in studying how errors propagate
across networks as a function of the protocol used and as a function
of characteristics of the network such as connectivity, diameter and
degree-distribution.

In this paper we presented a theory that establishes bounds on
the kinds of errors that can and cannot be detected through self-
monitoring in different protocols. We presented practical algorithms
for well-known routing protocols that show how this theory can be
applied by a node which, through a simple analysis of its state-
information, can check whether other nodes are in fact operating as
they are supposed to. Such policing mechanisms, we hope, will assist
in identifying accidental misconfigurations and malicious attacks and
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further act as a deterrent to malicious attackers, since careless attacks
will easily be detected.
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APPENDIX

Here we provide the proofs that the canonical-graphs G constructed
in Sec. IV for the distance vector and path-vector protocols are indeed
the only graphs that needs to be considered among all the graphs in
G. We present preliminary results as lemmas before we proceeding
to proving the main theorems.

Lemma 1.1: If there exists a graph G ∈ G with edges of length
w(i, j) between nodes i and j so that running the routing protocol
correctly on G produces table dn, then running the routing protocol
correctly on the canonical graph G′ produces a table d′

n where
d′

n(k, i) ≤ dn(k, i) for each k ∈ N(n) and every node i.
Proof: The proof is by contradiction. Assume there is a graph

G that would produce state table dn, but that a neighbor k exists
for which there is a node i where d′

n(k, i) > dn(k, i) (where a
non-existent edge in G′ has length ∞). WOLG, select i for which
dn(k, i) is minimized, i.e., i is chosen so that d′

n(k, i) > dn(k, i)
and for any other node j where d′

n(k, j) > dn(k, j), we have that
dn(k, i) ≤ dn(k, j). Let x be the node on a shortest path from k to
i in G that immediately precedes i on this shortest path (x may in
fact be node n itself). Since x is closer (no edges of length 0), by
our choice of i, we have that d′

n(k, x) ≤ dn(k, x).
Since (x, i) is an edge in graph G, in the accurate state table

the shortest path distance from any neighbor to node x can differ
from the shortest path distance to node i by no more than w(x, i),
i.e., |dn(m,x) − dn(m, i)| ≤ w(x, i) for every m ∈ N(n). Thus,
w′(x, i) ≤ w(x, i) 6.

Utilizing d′
n(k, x) ≤ dn(k, x), w′(x, i) ≤ w(x, i), and the fact

that the shortest path from k to i in G′ is no longer than the path

6Note that because the Claim assumes the existence of valid graph G and
G contains edge w(x, i), it must be the case that w(x, i) ∈ Sx,i, and hence
there is some value in Sx,i larger or equal to |dn(m, x)− dn(m, i)| for all
m.
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from k to x in G′ plus w′(x, i), we have that d′
n(k, i) ≤ d′

n(k, x)+
w′(x, i) ≤ dn(k, x) + w(x, i) = dn(k, i), contradicting d′

n(k, i) >
dn(k, i).

Lemma 1.2: Let there exist a graph G ∈ G so that running the
protocol correctly on G produces table dn and let G′ be the canonical
graph. Then d′

n(k, i) ≥ dn(k, i) for all neighbors k ∈ and all nodes
i.

Proof: The proof is also by contradiction. Let k be any
neighbor for which the claim does not hold and choose i where
d′

n(k, i) < dn(k, i) and for any j where d′
n(k, j) < d′

n(k, i) implies
that d′

n(k, j) > dn(k, j). Let x be the node on the shortest path
in the canonical graph G′ that precedes i on a shortest path from
k to i. By choice of i, we have that d′

n(k, x) ≥ dn(k, x). By
construction of G′, we have that w′(x, i) ≥ dn(k, i) − dn(k, x),
so dn(k, i) ≤ dn(k, x) + w′(x, i) ≤ d′

n(k, x) + w′(x, i), which,
since x lies one hop before i on the shortest path to i, equals to
d′

n(k, i), hence dn(k, i) ≤ d′
n(k, i), contradicting our choice of i.

Theorem 4.1: In the distance-vector protocol, dn is a valid state
table for some graph G ∈ G if and only if it is valid for the distance-
vector canonical graph, G′ ∈ G.

Proof: If the state table is valid for no graph G ∈ G, then
clearly it cannot be valid for G′ ∈ G. If it is valid for some graph
G, then by Lemmas 1.1 and 1.2, the state table d′

n of G′ will match
the state table dn of G.

Theorem 4.2:
In the path-vector protocol, dn is a valid state table for some graph

G ∈ G if and only if it is valid for the path-vector canonical graph,
G′ ∈ G.

Proof: The proof is by contradiction. Assume that there is a
graph G that would produce state table dn, but a neighbor k exists
for which there is a node i where d′

n(k, i) 6= d(k, i). WLOG choose i
for which d′

n(k, i) is minimized. Let x be the node that immediately
precedes i in the shortest-path from k to i in G′. From our choice of
i, dn(k, x) = d′

n(k, x) but dn(k, i) 6= d′
n(k, i), therefore w′(x, i) 6=

w(x, i). Since in our construction, we draw an edges e′(x, i) with
weight w′(x, i) if and only if it is contained in some path d(m,n), it
must be the case that w′(x, i) = w(x, i) leading to a contradiction.


